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Abstract

Crime and its suppression and prevention have become rapidly growing chal-

lenges worldwide and are important considerations in many national policies on

public safety and security. This model is based on the consideration and treat-

ment of criminal behaviour as a “socially infectious disease”and consequently

a public health concern. A modified epidemiological model is used to investi-

gate the effects of two time dependent strategies to curb this behaviour. The

first control strategy considered is preventative - aimed at encouraging potential

criminals away from a life of crime, while the second one is aimed at rehabil-

itation of criminals. Local stability analysis around the equilibrium points is

performed and Pontryagin’s maximum principle is used to derive optimal con-

trol strategies for minimizing criminal behaviour. To confirm some of these

findings, numerical simulations are performed. Based on the computational re-

sults obtained, a strategy using more of developmental crime prevention and

early intervention programs may be the most practical to implement. This

perspective has implications for the design and development of programs and

targets which may be used as guides by policy-makers.
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1. Introduction

A major challenge facing many emerging and developing countries nowadays

is that of criminal behaviour [1]. Apart from creating a general feeling of fear

and insecurity, this behaviour may result in a decline in tourism, increased em-

igration in conjunction with a resulting brain drain as well as a loss of investor5

confidence - factors which contribute to reduced economic growth and develop-

ment. With limited resources (financial, infrastructural) available to tackling

this problem, mitigation strategies need to be implemented in a well-planned

manner that is both cost-effective and time efficient.

In 1996, the WHO declared violence as a major, growing public health prob-10

lem worldwide [2]. Violent young people tend to commit a range of crimes [2].

An interdisciplinary approach to tackling crime that is rapidly gaining popular-

ity is to consider violent behaviour as a “contagious brain process”[3] and then

use a public health approach to mitigate its spread [4, 3]. In this approach,

after defining the problem, risk and protective factors are identified and used to15

develop and then test mitigation strategies. If these strategies are deemed ef-

fective, they are then implemented. In the absence of the wherewithal to adopt

this approach fully, but still in keeping with the general precepts, mathemati-

cal models can be used to bridge the gap by “testing”different prevention and

intervention strategies to determine the most effective ones.20

This is not a new concept - modeling of behaviour using an infectious disease

approach has been done for juvenile delinquency [5] fanatical and violent ideol-

ogy [6, 7, 8, 9], violent crime and burglary [10, 11] and gang membership [12, 13].

By considering criminal behaviour as a socially infectious disease spread by peer

influence, a similar approach can be used to model criminal behaviour and to25

explore treatment and prevention control strategies for its mitigation.

Mathematical models are commonly used to explore possible “what if”scenarios

and compare the relative merits of different control strategies, both in prepara-

tion for and during an outbreak [14]. These may include combinations of pre-
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vention strategies (such as vaccination and quarantine) and treatment strategies30

such as isolation, which can lead to disease elimination when administered at

the right time and in the right amount [15, 16]. By applying these concepts

from the Public Health Approach to violence prevention, models can assist in

determining “what proportion of individuals to treat at each point in time sub-

ject to the cost of treatment, the value of susceptible and infected individuals35

to social welfare, as well as the transmission dynamics”[17].

The majority of modelling work incorporating control strategies is of two

types. In the first type, the control strategies are represented by a parameter

and the goal is to understand how changing the value of the parameter changes

the dynamics of the system. In the second category, the controls are allowed to40

vary with time and the goal is to minimise the cost of infection or the cost of

implementing the control, or both. This technique is known as optimal control

theory and can provide valuable information about the optimal use of prevention

and treatment resources especially when resources are limited [18]. Here, the

aim of applying optimal control is to control the spreading of the disease while45

considering cost of an activity or program to society.

Optimal control theory has been used to identify strategies for the treat-

ment of many diseases - COVID-19 [19], Ebola [20], Dengue [21] and Pandemic

Influenza [18]. It has also been applied to social problems [22], crime to de-

termine optimal intervention strategies aimed at reducing property crime while50

considering the effects of unemployment [23], gangs and financial crime [24, 25].

This paper applies optimal control methods specifically Pontryagin’s maxi-

mum principle, to a dynamic model where criminal behaviour is treated as an

infectious disease. Our aim is to find the best strategy that will minimize the

total number of potential criminals. This paper is organised as follows: Section55

2 describes the model. Section 3 analyses the model with constant controls in

terms of basic reproduction number, equilibria and stability. The formulation

of the optimal control problem is presented in Section 4 and the results of nu-

merical simulations and the discussion are described in Sections 5 and 6 with

conclusions summarised in Section 7.60
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2. Formulation of the Model

Criminal behaviour and violence behave as contagious diseases with similar

characteristics to an infectious disease such as clustering, spread, and trans-

mission [26]. From this perspective, an epidemiological model may therefore

be modified to describe the transmission of criminal behaviour in a population65

while including strategies to both mitigate spread as well as to to reduce the

likelihood of developing “the disease”analogous to public health interventions

to managing an infectious disease outbreak. Primary prevention strategies aim

to prevent the onset of criminal behaviour. This is based on the use of de-

velopmental crime prevention and early intervention strategies and programs70

designed to build protective factors and provide support and guidance to at risk

individuals. Strategies include educational, skill and competency building, and

mentoring programs [27] as well as practices such as the use of youth street work-

ers to find and assist at risk individuals [28]. In contrast, tertiary prevention

focuses on the aftermath of this behaviour with rehabilitation and reintegra-75

tion treatment programs designed to reduce recidivism. This includes strategies

such as educational and vocational programs, treatment center placement, and

mental health counseling.

Using this framework for our model, the population is divided into four dis-

joint compartments/ classes based on status with respect to criminal behavior:80

P : Members of the population who are at risk/ susceptible to criminal be-

haviour - Potential Criminals.

C : Members of the population who are engaged in criminal behaviour - Crim-

inals.

J : Members of the population who are incarcerated.85

R : Members of the population who are in an prevention or rehabilitation

program and are no longer susceptible to criminal behaviour - Reformed/

Recovered people.

4
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2.1. Model Equations

Figure 1 illustrates the flow of individuals among these compartments. By90

considering the contagiousness of criminal behaviour, vulnerable individuals P

through interaction with criminals C may engage in criminal behaviour at the

rate βCP
N . However, prevention programs represented by u1(t) target these vul-

nerable individuals to to lower the likelihood of future violence and criminality

so that they are no longer susceptible to criminal behaviour. Though criminals95

may be removed via incarceration at a rate Φ, on release, they may return to the

same environment that initially created the opportunities for criminal behavior

and some may re-join the criminal class at a rate (1−f)γ, where γ−1 represents

the time spent in incarceration. Yet there are alternatives to incarceration for

certain types of offences (depending on their seriousness/severity) - these can100

take the form of rehabilitation programs - u2(t) - with the aim of preventing

future crime by altering a criminal’s behavior. The rate of entry and exit into

the system is proportional to the population size and given by µ.

A description of model parameters is given in Table 1. Since the model

monitors changes in the human population, the variables and the parameters105

are assumed to be positive for all t ≥ 0. The following system of nonlinear

differential equations describes the dynamics of the system:

P ′ = µN − βCP

N
− u1(t)P − µP (1)

C ′ =
βCP

N
+ (1− f)γJ − u2(t)C − ϕC − µC (2)

J ′ = ϕC − γJ − µJ (3)

R′ = u1(t)P + u2(t)C + fγJ − µR (4)

N = P + C + J +R (5)

Assuming a constant population size N , and re-scaling, so that p = P
N ;

c = C
N ; j = J

N and r = R
N gives the following system of five equations:

5
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Table 1: Description of the Parameters used in the Model

Parameter Description

µ Entry rate and Death rate

1− f Proportion of incarcerated people who return to life of crime

γ (average length of incarceration)−1

β Contact rate which results in becoming a criminal

Φ Rate of incarceration

u1 The proportion of people in a prevention program per year

u2 The proportion of criminals in a rehabilitation program per year

p′ = µ− βcp− u1(t)p− µp (6)

c′ = βcp+ (1− f)γj − u2(t)c− ϕc− µc (7)

j′ = ϕc− γj − µj (8)

r′ = u1(t)p+ u2(t)c+ fγj − µr (9)

p+ c+ j + r = 1 (10)

3. Analysis of the Model with Constant Controls110

The first step of the analysis is to check that the model is well-posed. Since

p′ ≥ 0 if p = 0, c′ ≥ 0 if c = 0, j′ ≥ 0 if j = 0 and r′ ≥ 0 if r = 0, we have p ≥ 0,

c ≥ 0, j ≥ 0,r ≥ 0 for t ≥ 0. Also, since p′ ≤ 0 if p = µ
u1+µ

, we have p ≤ µ
u1+µ

for t ≥ 0. Thus the solution always remains in the biologically realistic region

0 ≤ p ≤ µ
u1+µ

, c ≥ 0, j ≥ 0,r ≥ 0, where 0 ≤ p, c, j, r ≤ 1. We now examine the115

existence and stability behaviour of the system at equilibrium points.

3.1. Equilibrium points

Equilibrium states (steady states of the system) provide insight into the

long-term behavior of a system and can be used to determine if the system has

6
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Figure 1: Model Diagram

periodic behavior or not, i.e., whether there are oscillations. After setting the120

system of equations equal to zero, and solving the resultant equations, there are

two possible equilibrium states - the criminal-free equilibrium where criminal

behaviour is not present in the population and the coexistence equilibrium. At

the criminal-free equilibrium , E0 : (p, c, j, r) = ( µ
u1+µ

, 0, 0, u1

u1+µ
) and at the

co-existence equilibrium E1: p = u2+ϕ+µ−(1−f)γλ
β , c = µ

βp − (u1+µ)
β , j = ϕ

γ+µc125

and r = 1−p− c− j. In order to determine the conditions necessary to mitigate

criminal behaviour so that the system is in a criminal-free equilibrium, the basic

reproduction number R0 is determined.

3.2. Calculation of R0

In the early stages of a crime outbreak, R0 is the key quantity of interest,

and the goal is to identify mitigation strategies to reduce it below the threshold

R0 = 1. When this occurs, the system will be in the desirable criminal-free

equilibrium state. R0 is calculated using the next generation operator method

[29]. In applying this method, c and j are considered the infective compartments

7
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and s and r represent non-infective classes. We obtain

R0 =
βP∗

(u2 + ϕ+ µ)− (1−f)γΦ
γ+µ

,

where P∗ = µ
u1+µ

. For our model, R0 represents the fraction of individuals130

leaving p and j who progress to c. Re-writing the co-existence equilibrium in

terms of R0 i.e. j = ϕ
γ+µ , c, p = µ

u1+µ
1
R0

and c = η
β (R0 − 1), shows its relation

to R0 where it exists when R0 > 1. This means that to control the spread of

criminal behaviour, we need to reduce R0 to values less than one.

3.3. Stability135

The only steady state solutions that are observable in a physical system

are the stable equilibria. In this section, the local stability of the criminal-free

equilibrium and the co-existence equilibrium will be investigated. In order to

determine the conditions necessary for the stability of each state, the Jacobian

J =


A1 A2 A3

A4 A5 A6

A7 A8 A9


of the system is determined such that

A1 = −βc− u1 − µ

A2 = −βp

A3 = 0

A4 = βc

A5 = βp− u2 − ϕ− µ = βp− ψ

A6 = (1− f)γ

A7 = 0

A8 = ϕ

A9 = −γ − µ

where ψ = u2 + ϕ+ µ, and where for ease of analysis the system is reduced to

three differential equations since r = 1− p− c− j.

8
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3.4. Stability of the criminal-free equilibrium

The criminal-free equilibrium values are substituted into J . The algebraic

expressions in the Jacobian matrix are simple enough to allow for a straightfor-140

ward determination of the eigenvalues.

The eigenvalues are:

1. −u1 − µ < 0,

2. 1
2

[
β µ
u1+µ

− ψ − γ − µ
]
± 1

2

√√√√√
(
β µ
u1+µ

− ψ − γ − µ
)2

+

4 (γ + µ)
(
β µ
u1+µ

− ψ
)
+ 4(1− f)γϕ

These eigenvalues will be negative when (γ + µ)
(
β µ
u1+µ

− ψ
)
+ (1− f)γϕ < 0.145

Hence R0 =
β µ

u1+µ

(ψ− (1−f)γϕ
γ+µ )

< 1 and β µ
u1+µ

− ψ − γ − µ < 0. It follows that the

criminal-free equilibrium is locally (asymptotically) stable if R0 < 1.

3.5. Stability of the co-existence equilibrium

p′ = µ− βcp− u1(t)p− µp (11)

c′ = βcp+ (1− f)γj − u2(t)c− ϕc− µc (12)

j′ = ϕc− γj − µj (13)

r′ = u1(t)p+ u2(t)c+ fγj − µr (14)

p+ c+ j + r = 1 (15)

After substituting the co-existence equilibrium expressions in J and obtain-

ing the characteristic equation λ3 + a1λ
2 + a2λ + a3 = 0, the Routh-Hurwitz150

criteria a1 > 0; a3 > 0 and a1a2 − a3 > 0 are used to obtain conditions for

stability.

Here

a1 = (γ + µ)− (βp− ψ) + (βc+ u1 + µ) .

From eq (7)

βp− ψ = −(1− f)γj/c = −(1− f)γ
ϕ

γ + µ
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which gives

a1 = (γ + µ) + (1− f)γ
ϕ

γ + µ
+ (βc+ u1 + µ) > 0.

Also,

a3 = −ϕ(1−f)γ (βc+ u1 + µ)+(γ + µ)βc (βp)−(γ + µ) (βp− ψ) (βc+ u1 + µ) .

Using eq (7),

a3 = (γ + µ)βc (βp) > 0,

a2 = (γ + µ) (βc+ u1 + µ) + βcβp+ (βc+ u1 + µ) (1− f)γ
ϕ

γ + µ
,

a1a2− a3 =


γ + µ

+ (1−f)γϕ
γ+µ

+βc+ u1 + µ




(γ + µ) (βc+ u1 + µ)

+βcβp

+ (βc+u1+µ)(1−f)γϕ
γ+µ

− ((γ + µ)βc (βp))

=


γ + µ

+ (1−f)γϕ
γ+µ

+η(R0 − 1)

+u1 + µ




(γ + µ)

 η(R0 − 1)

+u1 + µ

+

βµ(1− 1
R0

)+

(η(R0−1)+u1+µ)(1−f)γϕ
γ+µ

−
(
βµ (γ + µ) (1− 1

R0
)

)

and we can conclude that a1a2 − a3 > 0 when R0 > 1. Thus, the co-existence

equilibrium is locally (asymptotically) stable for R0 > 1.

4. Formulation and Analysis of the Optimal Control Problem155

So far, we have considered prevention and treatment programs that must be

maintained at constant levels at all times. However, this may be costly over time

and it may be more practical to consider time dependent controls. This section

describes the circumstances under which criminal behaviour can be controlled

or curtailed using optimal control theory. Though there are seven parameters160

in the model, u1 and u2 are the measures that are designated for control in this

model.

10
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A straightforward computation shows their relation to R0 and the partial

derivatives
∂R0

∂u1
= − βµ(

(u1 + µ)
2
(u2 + ϕ+ µ)− (1−f)γΦ

γ+µ

)
∂R0

∂u2
= − βP∗(

(u2 + ϕ+ µ)− (1−f)γΦ
γ+µ

)2 .

Since ∂R0

∂u1
< 0 and ∂R0

∂u2
< 0, increasing the prevention and treatment rate

decreases R0. This means that by controlling u1 and u2 the transmission of

criminal behaviour may be reduced.165

An important consideration when designing any public health policy is the

costs associated with its implementation. For this model, such costs include

not only the cost of prevention and rehabilitation measures but the other costs

mentioned in the introduction. Our aim is to minimize the number of criminals

while at the same time minimizing the cost of controls u1(t), u2(t) on [0;T ]

where T is the time period over which the mitigation strategies will be applied.

Thus, we are seeking an optimal control pair (u∗1(t), u
∗
2(t)) so that

J(u∗1, u
∗
2) = min {J(u1, u2) : (u1, u2) ∈ U} (16)

where the Lebesgue measurable control set U is defined as

U = {u1(t), u2(t) : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ]}

subject to

p′ = µ− βcp− u1p− µp (17)

c′ = βcp+ (1− f)γj − u2c− ϕc− µc (18)

j′ = ϕc− γj − µj (19)

r′ = u1p+ u2c+ fγj − µr (20)

p+ c+ j + r = 1. (21)

11
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The control scheme is optimal if it minimizes the objective function

J(u1, u2) =

T∫
0

[
Kc(t) +

B1

2
u21 +

B2

2
u22

]
dt (22)

where B1 and B2 are the relative weights attached to the cost or effort required

to implement each of the control measures and reflect the importance of one type

of measure over the other. Here, the weight factor K balances out the relative

importance of the c(t) in the objkective functional. It is a relative measure of170

the importance of reducing the number of criminals. Therefore, the term Kc(t)

represents the cost due to the number of criminals. The first term on the right

hand side in eq.22 represents the goal of the control measures - to reduce the

number of the criminals, while the other terms denote the systemic cost of the

control measures.175

The squares on the control variables are used to capture the effects of non-

linear costs potentially arising from implementation of the controls. This form

was chosen as implementation of any public health intervention does not have a

linear cost, but instead there are increasing costs with reaching higher fractions

of the population [30]. The quadratic cost on the control is the simplest and180

most widely used nonlinear representation of control cost [31, 32].

The necessary conditions that an optimal control must satisfy come from

Pontryagin’s Maximum Principle. The existence of the optimal controls u∗1, u
∗
2

and the corresponding optimal solutions p∗(t), c∗(t), j∗(t), r∗(t) using Pontrya-

gin’s maximum principle are given in the Appendix. The state system of differ-185

ential equations and its adjoint system together with the control characterization

form the optimality system, which is solved numerically in the next section.

5. Numerical Results

Prevention and treatment programs are essential components of any crime

reduction program. A central concern among policy makers and planners is190

allocation of controls i.e. the division of control efforts between treatment and

prevention schemes. In this section, the control strategies are implemented

12
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Table 2: Values of the Parameters used in the Model

Parameter Value

µ 0.0503+0.00258=0.05288 yr−1

1− f 0.56

γ 0.2

β 0.71

u1,u2,T 0 ≤ u1, u2 ≤ 1, t ∈ [0, 5]

Φ 0.115

p(0), c(0) j(0) 0.8278, 0.04, 0.0322

and their effect in reducing or eliminating potential criminals and criminals is

investigated. This is done by solving the state equations using a numerical

approach known as the backward-forward sweep method in Matlab [33, 21].195

The values for the initial conditions and model parameters are given in Table

2. Though parameters were a challenge to determine, the values were estimated

using data from Trinidad and Tobago with full details provided in [12].

The age at which individuals can be held liable for criminal offences varies

around the world - ranging generally from from the age of 10 years in England200

and Wales to 14 years in Trinidad and Tobago to 16 years in Argentina [34].

Bearing this in mind, we consider a population N(t) of individuals aged more

that 14 years who are “at risk”for engaging in or have engaged in criminal

behaviour. Based on the ages of the population considered, the term delinquent

may be used interchangebly in this model as delinquency is a wrongful act205

committed by a juvenile, whereas a “crime”is generally attributed to an adult.

Three scenarios are investigated for the control measures which are applied

over a five year period:

Scenario 1 : The situation where control u1(t) is more costly than u2(t) (i.e.

the weight factors are B1 = 10, B2 = 1) so that prevention strategies210

require a bigger cost or effort than rehabilitation ones, and K = 10.
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Scenario 2 : The situation where control control u2(t) is more costly than

u1(t) (i.e. the weight constants are B1 = 1, B2 = 10) so that rehabilitation

strategies require a bigger cost or effort than intervention ones, and K =

10.215

Scenario 3 : The situation where the cost or effort of implementing both con-

trols are weighed equally (i.e. the weight constants are B1 = 1, B2 = 1),

and K = 10.

A relatively high value of K = 10 is chosen since we want to emphasize that in

our optimization attempts, the resulting size of the criminal group should be as220

small as possible. Note also that for optimality, it is preferable to use less of the

control with the bigger weight and more of the control with the lesser weight.

As shown in Figure 2, Scenario 1 resulted in the lowest proportion of recov-

ered people, while Scenario 2 generated the highest proportion of individuals

in the recovered category, having renounced a life of crime. It is also interest-225

ing to observe that the largest proportion of detained criminals corresponds to

Scenario 2, though this is only approximately a 2% more than the others.

Numerical results from Figure 3 show that, in general, the use of prevention

and rehabilitation controls results in a marked reduction from the onset in the

number of the criminals. This is true for all three scenarios under consideration.230

In the control profile for scenario 1, the optimal treatment control u2 remains

at the upper bound until time t =2 years, before steadily decreasing to the

lower bound. Note that in scenario 1, more of the rehabilitation control u2(t) is

used, while the prevention control u1(t) does not play a significant role. From a

practical viewpoint, this scenario is far from ideal. In most treatment programs,235

challenges such as recruitment, attendance and compliance [35] are common -

which hampers the overall effectiveness of the strategy.

In the case where both weights are equal B1 = B2 = 1 (i.e. Scenario 3),

although there is a high proportion of recovered people (see Figure 2), we must

apply more of the rehabilitation control u2 - which remains at the upper bound240

for almost two years, while the prevention control u1 starts off at the upper
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bound but rapidly decreases to zero therafter. As previously explained, keeping

u2 at the maximum value for this long may be difficult and impractical to

sustain. This Scenario also requires significantly more of the treatment control

u2 than of the prevention control u1 at any given time. For these reasons, we do245

not consider this scenario to be an efficient stategy for the reduction of criminal

behaviour.

In contrast, for Scenario 2 with B1 = 1, B2 = 10, the main emphasis is

on prevention of criminal activity. Research has demonstrated the success of

developmental crime prevention and early intervention programs [36]. Despite250

this scenario having the highest proportion of incarcerated people (see Figure

2), a significant reduction of criminals is still achieved (Figure 3 indicates an

overall decrease from 30% to 10%). The control profile in Figure 3 indicates that

the optimal treatment control u2 is at the upper bound for t = 1
2 years before

rapidly decreasing to the lower bound. In contrast, the prevention control u1255

starts off at approximately 80%, and takes just over 2 years to decrease to the

same level (just under 30%) as the treatment control u2. The rapid decrease in

the level of u2 is of great significance, given that this is the most difficult type

of control strategy to implement successfully [35]. This strategy where we “hit

them hard ”at the beginning and then taper all efforts is undoubtedly the most260

practical of the three scenarios examined.

It is interesting to note that none of the scenarios examined reduces the

proportion of criminals to zero over the time period of implementation. Since

the emphasis is on prevention and rehabilitation, it is also not surprising that

there is no significant change in the number of people incarcerated for any of265

the scenarios under consideration (see Figure 2).

6. Cost Effectiveness Analysis

Cost-effectiveness analysis is a method used to compare the cost benefits

of implementing the control strategies implemented. In this section we will

consider two approaches, the average cost-effectiveness ratio (ACER) and the270
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Figure 2: Comparison of the effect of all the different control strategies on the number of

recovered individuals and those incarcerated

incremental cost-effectiveness ratio (ICER).

Average Cost-Effectiveness Ratio (ACER) deals with a single intervention

approach. The ACER is calculated as

ACER =
Total cost for the implementation of the strategy

Total number of infections reduced by the strategy
.

Based on this cost analysis, the most cost-effective strategy is the one with the

smallest ACER value.

In view of the objective functional , the total cost produced by an interven-

tion is expressed mathematically as

T∫
0

[
B1

2
u21 +

B2

2
u22

]
dt.

The number of infections reduced due to the particular strategy is estimated as

the difference between the total number of infected individuals without control275

and the total number of infected individuals with control in the simulation

period.

Incremental Cost-Effectiveness Ratio (ICER) is used to compare the differ-

ences between the costs and health outcomes of two optional approaches. To
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Figure 3: Comparison of Potential Criminals and Criminals with respect to different control

options with the top graphs showing scenario 1, the middle ones scenario 2 and the lowest

scenario 3
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Table 3: Total infection reduction, total cost and ACER

Strategy Infection Reduction Total Cost ACER

Strategy 1: B1 = 10, B2 = 0 0.4895 1.5266 3.1186

Strategy 2: B1 = 0, B2 = 50 0.8019 3.2919 4.1054

Strategy 3: B1 = 10, B2 = 50 0.9730 3.5519 3.6505

compare two or more competing intervention strategies incrementally, one in-

tervention is compared with the next-less-effective alternative. Thus, the ICER

is calculated as

ICER =
Total Cost (Strategy A)− Total Cost (Strategy B)

# Infections Reduced (Strategy A)−# Infections Reduced (Strategy B)

The strategy with the least ACER is the most cost effective.

The ACER values for three control strategies are calculated in Table 3.

These are280

Strategy 1 : Prevention as the control. In this case, only u1 is taken as a

control variable.

Strategy 2 : Rehabilitation as the control. In this case, only u2 as the control

variable.

Strategy 3 : Combination of preventative and intervention strategies. In this285

case u1 and u2 are defined as control variables.

It is assumed that the cost of rehabilitation is significantly greater than the

cost of prevention, we assume the weight constants B1 = 10 and B2 = 50.

From Table 3, it follows that Strategy 2 is more costly and less effective than

Strategy 1 and Strategy 3 . We conclude that the Strategy 1 is the most cost290

effective of all for this particular study. Thus, according to ACER the control

strategies from the most to the least are listed as Strategy 1, Strategy 3, and

Strategy 2.

To implement the ICER, the interventions strategies are then ranked accord-

ing to their increasing order of total number of infections reduced. The strategy
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to be discarded from the list of alternative interventions at each step is that

corresponding to the highest ICER value. We first compared the ICER value

for Strategies 1 and 2. Their ICER values are computed as follows:

ICER(1) =
1.5266

0.4895
= 3.1186

ICER(2) =
3.2919− 1.5266

0.8019− 0.4895
= 5.6508

From ICER(1) and ICER(2)), it is observed that the ICER for Strategy 2

is greater than the ICER for Strategy 1. This implies that Strategy 2 strongly295

dominates Strategy 1, indicating that Strategy 1 is less costly and more effective

in comparison with Strategy 2. As a result, Strategy 2 is eliminated from

subsequent ICER computations.

Strategies 1 and 3 are now compared.

ICER(1) =
1.5266

0.4895
= 3.1186

ICER(3) =
3.5519− 1.5266

0.9730− 0.4895
= 54.1888

From ICER(1) and ICER(3), it is observed that the ICER for Strategy 3 is

greater than the ICER for Strategy 1. This implies that Strategy 3 strongly300

dominates Strategy 1, indicating that Strategy 1 is less costly and more effective

in comparison with Strategy 3. Therefore, Strategy 1 (the Strategy that imple-

ments prevention controls) has the least ICER and is thus most cost-effective

of all the control strategies. This agrees with the results obtained before using

the ACER method, that Strategy 1 is the most cost-effective strategy.305

7. Discussion

Violence and criminality affects not only their victims but ultimately exacts

both a human and an economic toll on countries. Model results confirm that

that like any disease, prevention is better than cure and it is more cost effective

to prevent than it is to treat. Research has shown that rapid, early intervention310

and prevention programs are more effective in reducing delinquent behavior [37]
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than rehabilitation programs. Figure 2 showed that when using both strategies

with an emphasis on prevention, the prevention control needs only to be ap-

plied at a maximum value for a short time initially before gradually decreasing

in contrast to when there is an emphasis on rehabilitation. This means that315

changing behaviour with family, school, and community interventions can make

a significant difference so that protective factors outweigh risk factors.

The recent COVID-19 pandemic has highlighted the importance of mathe-

matical models in informing policy decisions. In the design and development

of crime mitigation initiatives, cost and strategy are important considerations320

for effective delivery of programs. This method has implications for designing

strategies to inform policy responses. It allows us to conduct “social experi-

ments”without the ethics and costs attached to experimenting on human be-

ings, and may provide valuable insights into the effectiveness of time-dependent

control efforts. Using this method, controls u1(t) and u2(t) may be gradually325

relaxed from maximum effort u1 = 1 and u2 = 1 in an approximate time frame,

as indicated by the model, and the resources diverted elsewhere. While param-

eters were estimated, the model has the potential to assist in setting targets for

the amount and length of of control strategies. Future research can investigate

whether these strategies are more effective than improving areas such as deter-330

rence (related to contact rates), incarceration rate and rehabilitation/recividism

in the criminal justice system.

8. Conclusion

Implementing programs for reducing the number of individuals involved in

criminal behaviour is usually a challenge for policy makers and planners. Mathe-335

matical models may be used to determine “dynamically varying policies”subject

to the cost of controls and the burden of criminals to society. With constant

contols, achieving the goal of reducing criminals may be costly, as the inter-

vention and prevention programs will need to keep running for infinite time

at those levels. However, when time dependent controls via optimal control is340
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applied, new insights on different intervention and rehabilitation policies may

arise. Based on the computational results obtained, a strategy using more of

developmental crime prevention and early intervention programs may be the

most practical and least costly to implement.

Appendix A. The optimal control: Existence and characterization345

The necessary conditions that an optimal control must satisfy come from

Pontryagin’s Maximum Principle. We first show the existence of solutions of

the system and then we will prove the existence of optimal control.

Appendix A.1. Existence of an Optimal Control Pair

From the definition of the controls u1 and u2 and the restrictions on the350

nonnegativeness of the state variables we see that a solution of the system exists

[38].

The existence of the optimal control can be obtained using a result by [39].

To use this result, we must check the following properties:

(1) The set of controls and corresponding state variables are nonempty.355

(2) The control set U is convex and closed.

(3) The right-hand side of the state system is bounded by a linear function

in the state and control variables.

(4) The integrand of the objective functional is convex on U .

(5) There exist constants c1, c2 > 0 and ρ > 1 such that the integrand

L(T, u1, u2) of the objective functional satisfies

L(T, u1, u2) ≥ −c2 + c1 ∥(u1, u2)∥ρ .

In order to verify these conditions, we use a result by Lukes [10, Th 9.2.1,360

p. 182] [40] to give the existence of solutions of the system. Thus property (1)

is satisfied. By definition of convex set, the control set U is convex and closed,

hence, the second property is also satisfied. Since our state system is bilinear

in u1, u2, the RHS of eq.17-eq.20 satisfies condition 3, using the boundedness

of the solutions.365
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The integrand of our objective functional is convex. In addition, we can

easily see that there exist a constant ρ > 1 and positive numbers c1 and c2

satisfying L(T, u1, u2) ≥ c1
(
|u1|2 + |u2|2

)β/2 − c2 because the state variables

are bounded. Hence, the existence of optimal control follows from the existence

results by Fleming and Rishel [39].370

Appendix A.2. Characterisation of an Optimal Control

We characterize the optimal controls u∗1, u
∗
2 which give the optimal levels

for the various control measures and the corresponding states (p∗, c∗, j∗). The

necessary conditions that optimal solutions must satisfy are derived from Pon-

tryagin’s Maximum Principle [41]. This principle converts the system of equa-

tions 17 - 21 and eq.22 into a problem of minimizing pointwise a Hamiltonian

H, with respect to (u1, u2)

H = Kc(t) +
B1

2
u21 +

B2

2
u22 + λ1(µ− βcp− u1p− µp)

+λ2(βcp+ (1− f)γj − u2c− ϕc− µc) + λ3(ϕc− γj − µj)

where λi, for i = 1, 2, 3 are the adjoint functions associated with states p, c, and

j respectively. By differentiating the Hamiltonian (H) with respect to each state

variable, we find the differential equation for the associated adjoint. Hence, the

adjoint system is,

λ
′

1 = −∂H
∂p

= λ1(βc+ u1 + µ)− λ2βc

λ
′

2 = −∂H
∂c

= −K + βpλ1 + λ2(−βp+ u2 + ϕ+ µ)− λ3ϕ

λ
′

3 = −∂H
∂j

= −λ2(1− f)γ + λ3(γ + µ)

and the transversality conditions λi(T ) = 0 for i = 1, 2, 3.

By considering the optimality conditions, ∂H
∂u1

= 0, ∂H
∂u2

= 0 and solving for

u∗1, u
∗
2, subject to the constraints, the characterizations can be derived.

∂H

∂u1
= B1u1 − λ1p = 0.
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thus u∗1 = λ1p
B . Also

∂H

∂u2
= Bu2 − λ2c = 0,

so that u∗2 = λ2c
B2
. Taking into account the bounds on u∗1, we obtain the charac-

terization of u∗1,u
∗
1 = min(max(0, λ1p

B1
), 1) and u∗2 = min(max(0, λ2c

B2
), 1)

Appendix A.3. Optimality System375

Therefore the system is described as:

State equations:

p′ = µ− βcp− u1p− µp (A.1)

c′ = βcp+ (1− f)γj − u2c− ϕc− µc (A.2)

j′ = ϕc− γj − µj (A.3)

with initial conditions, p (0) = p0 ≥ 0, c (0) = c0 ≥ 0, j (0) = j0 ≥ 0 .

Adjoint equations:

λ
′

1 = λ1(βc+ u1 + µ)− λ2βc

λ
′

2 = −K + βpλ1 + λ2(−βp+ u2 + ϕ+ µ)− λ3ϕ

λ
′

3 = −λ2(1− f)γ + λ3(γ + µ)

Transversality equations (for i = 1, 2, 3):

λi(T ) = 0

Characterization of the optimal control u∗1, u
∗
2:380

u∗1 =


0 if λ1p

B1
< 0

λ1p
B1

if 0 ≤ λ1p
B1

≤ 1

1 if λ1p
B1

> 1

u∗2 =


0 if λ2c

B2
< 0

λ2c
B2

if 0 ≤ λ2c
B2

≤ 1

1 if λ2c
B22

> 1
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In compact notion we can write

u∗1 = min(max(0,
λ1p

B1
), 1)

u∗2 = min(max(0,
λ2c

B2
), 1).

Due to the a priori boundedness of the state and adjoint functions and the

resulting Lipschitz structure of the ODEs, we obtain the uniqueness of the

optimal control for small T . The uniqueness of the optimal control follows from

the uniqueness of the optimality system.
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