
LOCAL UNIQUE FACTORIZATION DOMAINS WITH INFINITELY MANY
NONCATENARY POSETS

ALEXANDRA BONAT AND S. LOEPP

ABSTRACT. We demonstrate a class of local (Noetherian) unique factorization domains (UFDs)

that are noncatenary at infinitely many places. In particular, if A is in our class of UFDs, then the

prime spectrum of A, when viewed as a partially ordered set, has infinitely many disjoint (except at

the maximal ideal) copies of a noncatenary saturated finite poset. As a consequence of our result,

there are infinitely many height one prime ideals P of A such that A/P is noncatenary. We also

construct a countable local UFD A satisfying the property that for every height one prime ideal P of

A, A/P is noncatenary.

1. INTRODUCTION

An overarching goal of commutative algebra is to understand the set of prime ideals (the prime

spectrum) of a commutative ring. One way of understanding this set is to examine its structure as

a partially ordered set (poset) under containment. One open question is, given a partially ordered

set X , when is X isomorphic to the prime spectrum of a Noetherian ring? This question has not

been answered fully, although much progress has been made (see, for example, [11] for a nice

survey). Relatedly, we can focus on a subset of the prime spectrum of a Noetherian ring and ask

the question: given a partially ordered set X , can it be embedded into the prime spectrum of a

Noetherian ring in a way that preserves saturated chains? Particularly, we are interested in whether

or not Noetherian rings with desirable algebraic properties can have prime spectra that behave

strangely. Recall that a ring R is said to be noncatenary if there exist prime ideals P and Q of R

such that P ⊂ Q and there are saturated chains of prime ideals of different lengths that start at P

and end at Q. This is an example of a strange property a ring can have that will be investigated

in more detail in this paper. It was previously conjectured that noncatenary Noetherian rings do
1

19 Aug 2024 10:52:10 PDT
240304-Loepp Version 3 - Submitted to Rocky Mountain J. Math.



not exist. However, in 1956, this conjecture was disproved by Nagata in [10] when he constructed

a noncatenary Noetherian domain. Then, in 1979, Heitmann proved in [3] that, given any finite

partially ordered set X , there exists a Noetherian domain R such that X can be embedded into

the prime spectrum of R in a way that preserves saturated chains. Since posets can be arbitrarily

noncatenary, this shows that there is no limit to “how noncatenary” a Noetherian domain can be.

These results regarding noncatenary Noetherian rings raise the question of whether or not a

Noetherian ring with nice algebraic properties can have unusual posets embedded in its prime

spectrum. In particular, one might ask whether or not a Noetherian unique factorization domain

(UFD) can be noncatenary. The answer to this question was not known until Heitmann constructed

a noncatenary UFD in [4] in 1993. Later, more examples of families of noncatenary UFDs were

constructed (see, for example, [1] and [8]). Finally, in [2] it was shown, that, similar to Heitmann’s

result in [3] for Noetherian rings, given a finite partially ordered set X , there exists a Noetherian

UFD R such that X can be embedded into the prime spectrum of R in a way that preserves saturated

chains. It is natural to ask whether or not this result holds if X is countably infinite.

Particularly, in this article, we are interested in whether a Noetherian UFD can be “infinitely

noncatenary.” More specifically, we ask if there exists a Noetherian UFD whose prime spectrum

contains infinitely many disjoint noncatenary posets. We use ideas from [8], [4], and [1] to show in

Theorem 3.2 that such a Noetherian UFD does indeed exist. A consequence of Theorem 3.2 is that

there exist Noetherian UFDs A satisfying the property that for infinitely many height one prime

ideals P of A, the ring A/P is noncatenary. Hence, whereas in previous literature it is shown

that the prime spectrum of a Noetherian UFD can contain finite noncatenary posets, Theorem

3.2 indicates the previously unknown result that UFDs can be much more noncatenary; in fact,

infinitely noncatenary. This is surprising given that Noetherian UFDs are usually considered to

be very well-behaved rings. Moreover, in Theorem 4.7, we construct a four-dimensional local

(Noetherian) UFD such that the quotient ring at every height one prime ideal is noncatenary. Thus,

we have shown that there exists a Noetherian UFD that is not only noncatenary at infinitely many

places, but is, in some sense, noncatenary everywhere.
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We now describe Theorem 3.2 in more detail. Let T be a complete local ring with depth at least

two such that no integer of T is a zerodivisor. Letting {P0,1, . . . , P0,s} be the minimal prime ideals

of T , assume that dim(T/P0,i) = ni ≥ 3 for all i = 1, 2, . . . , s. Then Theorem 3.2 states that

there exists a subring A of T such that A is a local UFD whose completion is T . Moreover, A has

an infinite set of height one prime ideals {Jn}n∈N such that, for each n ∈ N, there are saturated

chains of prime ideals of lengths n1−1, n2−1, . . . , ns−1−1, and ns−1 that start at Jn, end at the

maximal ideal of A, and are disjoint except at Jn and at the maximal ideal of A. It then follows that

the prime spectrum of A contains infinitely many disjoint copies (except at the maximal ideal) of a

noncatenary saturated finite poset. It also follows that A is noncatenary and A/Jn is noncatenary

for every n ∈ N.

To illustrate the ideas behind the proof of Theorem 3.2, we first explain the strategy of the proof

using the complete local ring T = k[[x, y, z, w, t]]/((x) ∩ (y, z)) where k is a field and x, y, z, w, t

are indeterminates. Note that this is the ring Heitmann used in [4] to exhibit the first example of

a noncatenary local (Noetherian) UFD. Let x, y, z, w, t now denote their images in T . Then the

minimal prime ideals of T are P0,1 = (x) and P0,2 = (y, z), and we have dim(T/P0,1) = 4 and

dim(T/P0,2) = 3 . Therefore, T is not equidimensional and dim(T ) = 4. By Theorem 3.8 in [1], T

is the completion of at least one noncatenary local (Noetherian) UFD. We build off of the methods

in [1], [4], and [8] to find a particular subring A of T that is a local UFD whose completion is

T . We construct A in such a way that there are infinitely many pairs of height one prime ideals

{P (1)
n , P

(2)
n }n∈N of T (the first containing P0,1 and the second containing P0,2) such that each pair

is “glued together" in A to different height one prime ideals, i.e. P (1)
n ∩ A = P

(2)
n ∩ A ̸= (0) for

all n ∈ N. We also adjoin generators of carefully chosen coheight one prime ideals of T to A

(infinitely many containing P0,1 and infinitely many containing P0,2) to ensure that A has infinitely

many noncatenary posets of prime ideals. Specifically, the prime spectrum of A contains the poset

in Figure 1, which is the poset in Figure 2 repeated infinitely many times. See Example 3.3 for

more details. Note that since A is a local UFD whose completion is T and since all local UFDs

with dimension less than four are catenary, it is necessary that the ring T we chose has dimension
3
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FIGURE 1

FIGURE 2

at least four. It is also necessary that T is not equidimensional since if the completion of a local

ring is equidimensional, then, by Theorem 31.6 in [9], that ring must be universally catenary.

In Theorem 4.7 we use the complete local ring T = Q[[x, y, z, w, t]]/((x)∩(y, z)) to construct a

local UFD that is noncatenary at every height one prime ideal. The proof of this theorem requires

a more in-depth analysis of the properties of chains of prime ideals of T. We use an inductive

process to construct the desired subring A, which is a local (Noetherian) UFD such that the com-

pletion of A at its maximal ideal is T and such that every height one prime ideal is contained in a

maximal saturated chain of prime ideals of length three and a different such chain of length four.

In particular, every height one prime ideal of A is contained in a subset of the prime spectrum that

is isomorphic to the poset in Figure 2.
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This paper is organized in the following way. In Section 2, we recall the notion of an N-subring

of a complete local ring, first introduced in [4]. The bulk of Section 2 is devoted to stating and

proving results about N-subrings that are essential for our constructions. We state and prove our

main result, Theorem 3.2, in Section 3. In particular, in Section 3.1, we demonstrate a class of

local (Noetherian) UFDs such that, if A is in the class, then the prime spectrum of the local UFD

A produced by Theorem 3.2 has infinitely many disjoint (except at the maximal ideal) copies of

a noncatenary saturated finite poset, which is determined by a given complete local ring T . In

this setting, we are viewing the prime spectrum of A as a poset with respect to inclusion and we

are using the term “saturated" describing the finite poset to mean that if P ⊂ Q is saturated in

the finite poset, then P ⊂ Q is saturated in the prime spectrum of A. (For the definition of a

noncatenary poset see Section 2 of [8]). Finally, in Section 4, we construct a four-dimensional

countable local (Noetherian) UFD A such that, for every height one prime ideal P of A, the ring

A/P is noncatenary.

2. PRELIMINARIES

We first establish some terminology. In this paper, all rings are assumed to be commutative with

unity. When R is a Noetherian ring with exactly one maximal ideal, we say R is local. If R has

exactly one maximal ideal but is not necessarily Noetherian, we call it quasi-local. We use the

notation (R,M) when R is a quasi-local ring and M is the maximal ideal of R. If (R,M) is a

local ring, we use R̂ to denote the M -adic completion of R. We use the standard notation Spec(R)

to denote the set of prime ideals of the ring R. If R is a local ring, we informally refer to two prime

ideals P,Q ∈ Spec (R̂) as being “glued together" in R if P ∩R = Q ∩R.

Before we begin, we recall what it means for a ring to be noncatenary.

Definition 2.1. A ring R is called noncatenary if there exists P,Q ∈ Spec (R) with P ⊂ Q, such

that there are (at least) two saturated chains of prime ideals from P to Q with different lengths. If

no such pair of prime ideals exists, then R is said to be catenary.
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The following prime avoidance lemma will be used multiple times in our construction.

Lemma 2.2 ([4], Lemma 2). Let T be a complete local ring with maximal ideal M , let C be

a countable set of prime ideals in Spec (T ) such that M /∈ C, and let D be a countable set of

elements of T . If I is an ideal of T which is contained in no single P in C, then

I ̸⊂
⋃

{(P + r) : P ∈ C, r ∈ D}.

To construct our noncatenary UFDs, we use ideas and results from [4] which rely heavily on a

specific type of subring of a complete local ring called an N-subring.

Definition 2.3 ([4]). Let (T,M) be a complete local ring. We say a quasi-local subring (R,M∩R)

of T is an N-subring of T if R is a UFD and

(1) |R| ≤ max{ℵ0, |T/M |}, with equality only when T/M is countable,

(2) Q ∩R = (0) for all Q ∈ Ass(T ), and

(3) If t ∈ T is regular and P ∈ Ass(T/tT ), then ht(P ∩R) ≤ 1.

The remainder of this section will be devoted to stating and proving results about N-subrings

that will be crucial for our constructions.

The following lemma establishes machinery to adjoin an element of T to an N-subring of T and

ensure that the result is still an N-subring of T . Note that, if R is a subring of a ring T and P is a

prime ideal of T , then there is an injective map from R/(P ∩ R) to T/P . Thus, it makes sense to

say that an element x+ P ∈ T/P is either algebraic or transcendental over the ring R/(P ∩R).

Lemma 2.4 ([6], Lemma 11). Let (T,M) be a complete local ring and let p ∈ Spec(T ). Let R be

an N-subring of T with p ∩R = (0). Suppose C ⊂ Spec(T ) satisfies the following conditions:

(1) M /∈ C,

(2) p ∈ C,

(3) {P ∈ Spec(T ) | P ∈ Ass(T/rT ) with 0 ̸= r ∈ R} ⊂ C, and

(4) Ass(T ) ⊂ C.
6
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Let x ∈ T be such that x /∈ P and x + P is transcendental over R/(P ∩ R) as an element of

T/P for every P ∈ C. Then, S = R[x](M∩R[x]) is an N-subring of T properly containing R,

|S| = max{ℵ0, |R|}, and p ∩ S = (0).

In the proof of Theorem 3.2, we ensure that our final UFD contains generating sets of carefully

chosen prime ideals of T . Lemma 2.5 shows how to extend a given N-subring to another N-

subring that contains a generating set for an ideal Q ∈ Spec(T ) satisfying certain properties.

Later, in Lemma 2.6, we will show that this can actually be applied infinitely many times so that

our N-subring contains generating sets for infinitely many Q satisfying certain properties.

Lemma 2.5. Let (T,M) be a complete local ring with depth(T ) ≥ 2, let R be a countable N-

subring of T , and let p be a nonmaximal prime ideal of T such that p∩R = (0). Let Q be a prime

ideal of T such that Q ̸⊆ p and Q ̸⊆ P for any P ∈ Ass(T ) and any P ∈ Ass(T/zT ) with z a

nonzero regular element of T . Then there exists a countable N-subring S of T such that R ⊆ S,

prime elements in R are prime in S, S contains a generating set for Q, and p ∩ S = (0).

Proof. Let Q = (a1, a2, . . . , am) for ai ∈ T . Define

C = Ass(T ) ∪ {P ∈ Spec (T ) |P ∈ Ass(T/rT ) for some 0 ̸= r ∈ R} ∪ {p}.

Note that, since depth(T ) ≥ 2, M ̸∈ C and, since R is countable, so is C. In addition, our

hypotheses imply that Q ̸⊆ P for all P ∈ C. Lemma 2.2 with D = {0} gives that Q ̸⊆
⋃

P∈C P.

So, let q1 ∈ Q such that q1 ̸∈ P for any P ∈ C.

Fix some P ∈ C. If a1+ tq1+P = a1+ t′q1+P for t, t′ ∈ T then q1(t− t′) ∈ P . Since q1 ̸∈ P ,

we have t− t′ ∈ P and so t+ P = t′ + P . It follows that if t+ P ̸= t′ + P then a1 + tq1 + P ̸=

a1 + t′q1 + P . Now let D(P ) be a full set of coset representatives for the cosets t+ P ∈ T/P that

make (a1 + q1t)+P algebraic over R/(P ∩R). Since the algebraic closure of R/(P ∩R) in T/P

is countable, we have that D(P ) is countable. Let D =
⋃

P∈C D(P ), and note that D is countable.

Use Lemma 2.2 to find m1 ∈ M such that m1 ̸∈
⋃
{(P + r) |P ∈ C, r ∈ D}. It follows that

(a1+q1m1)+P is transcendental over R/(P ∩R) for all P ∈ C. By Lemma 2.4, if ã1 = a1+q1m1

7
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then R1 = R[ã1](M∩R[ã1]) is a countable N-subring of T with p∩R1 = (0). Let P ∈ Ass(T ). Then

ã1 + P is transcendental over R/(P ∩ R) and P ∩ R = (0). It follows that ã1 is transcendental

over R and so prime elements in R are prime in R1. Note that (ã1, a2, . . . , am) +MQ = Q and so

by Nakayama’s Lemma, Q = (a1, a2, . . . , am) = (ã1, a2, . . . , am).

Repeat the above process with R replaced by R1 to find q2 ∈ Q and m2 ∈ M so that, if

ã2 = a2 + q2m2 then R2 = R1[ã2](M∩R1[ã2]) is a countable N-subring of T , p ∩ R2 = (0), prime

elements in R1 are prime in R2, and Q = (a1, a2, . . . , am) = (ã1, a2, . . . , am) = (ã1, ã2, . . . , am).

Continue the process to find a countable N-subring Rm of T such that R ⊆ Rm, p ∩ Rm = (0),

prime elements in R are prime in Rm and Rm contains a generating set for Q. Then S = Rm is the

desired N-subring of T . □

The following lemma shows that we can repeat Lemma 2.5 infinitely many times. In other

words, given a countable set of prime ideals of T satisfying certain conditions, the lemma allows

us to adjoin a generating set for each of these prime ideals to an N-subring of T , with the resulting

ring being an N-subring of T .

Lemma 2.6. Let (T,M) be a complete local ring with depth(T ) ≥ 2, let R be a countable N-

subring of T , and let p be a nonmaximal prime ideal of T with p ∩ R = (0). Let {Qj}j∈N be

a countable set of prime ideals of T such that for every j ∈ N, Qj ̸⊆ p and Qj ̸⊆ P for any

P ∈ Ass(T ) and any P ∈ Ass(T/zT ) with z a nonzero regular element of T . Then there exists a

countable N-subring S of T such that R ⊆ S, p ∩ S = (0), prime elements in R are prime in S,

and, for every j ∈ N, S contains a generating set for Qj .

Proof. Let R1 be the countable N-subring obtained by applying Lemma 2.5 with Q = Q1. We

inductively define Rk for every k > 1. Assume that k > 1 and Rk−1 has been defined so that

for ℓ ≤ k − 1, Rℓ is a countable N-subring of T containing generating sets for Q1, Q2, . . . , Qℓ,

p∩Rℓ = (0), and prime elements of Rℓ−1 are prime in Rℓ. Define Rk to be the countable N-subring

obtained from Lemma 2.5 so that Rk contains a generating set for Qk, p ∩ Rk = (0), and prime

elements of Rk−1 are prime in Rk.
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Let S =
⋃

k∈N Rk. We claim that this is the desired N-subring of T . For all k ∈ N, Rk is

countable and prime elements of Rk−1 are prime in Rk. By Lemma 6 in [4], S is a countable

N-subring of T such that prime elements in R are prime in S. Furthermore, a generating set for

Qk is contained in Rk, so, for every j ∈ N, S contains a generating set for Qj . Finally, since

p ∩Rj = (0) for every j ∈ N, we have p ∩ S = (0). □

We use the next result in the proof of Theorem 3.2 to identify height one prime ideals of T that

will be glued together in our final UFD.

Lemma 2.7. Let (T,M) be a complete local ring and let R be a countable N-subring of T . Let

Q be a prime ideal of T such that Q ̸⊆ P for any P ∈ Ass(T ) and any P ∈ Ass(T/rT ) with

0 ̸= r ∈ R. Let X = {Q1, Q2, . . . , Qn} be a (possibly empty) set of prime ideals of T such that

Q ̸⊆ Qj for all j = 1, 2, . . . , n. Then there exists a height one prime ideal P ′ of T such that

P ′ ⊆ Q and P ′ ̸⊆ P for any P ∈ Ass(T ) and any P ∈ Ass(T/rT ) with 0 ̸= r ∈ R. Moreover, if

X is not empty then P ′ ̸⊆ Qj for all j = 1, 2, . . . , n.

Proof. Use Lemma 2.2 with

C = Ass(T ) ∪ {P ∈ Spec (T ) |P ∈ Ass(T/rT ) for some 0 ̸= r ∈ R} ∪X,

D = {0} and I = Q to find q ∈ Q such that q is not an element in any prime ideal in C. Then

q is a nonzero regular element of T . Let P ′ be a minimal prime ideal of qT contained in Q. By

the principal ideal theorem, ht(P ′) = 1. By the way q was chosen and since q ∈ P ′, we have that

P ′ ̸⊆ P for any P ∈ C, as desired. □

Note that, in the above lemma, if Q contains only one minimal prime ideal of T then P ′ also

contains only one minimal prime ideal of T .

In the next lemma, we show that, given an N-subring R of T and given certain height one prime

ideals P1, . . . , Ps of T , we can adjoin a special element x̃ of T to R and obtain another N-subring

of T . Specifically, x̃ will satisfy the property that it is in Pi for all i = 1, 2, . . . , s. Our final UFD
9
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A in the proof of Theorem 3.2 will satisfy the property that Pi ∩A = x̃A for all i = 1, 2, . . . , s. In

other words, the prime ideals P1, . . . , Ps will be glued together in A.

Lemma 2.8. Let (T,M) be a complete local ring with depth(T ) ≥ 2 and suppose R is a countable

N-subring of T . Let P1, . . . , Ps be height one prime ideals of T such that, for every i = 1, 2, . . . , s

we have that Pi ̸⊆ P for any P ∈ Ass(T ) and any P ∈ Ass(T/rT ) with 0 ̸= r ∈ R. Let X be a

(possibly empty) finite set of prime ideals of T such that Pi ̸⊆ Q for every Q ∈ X and for every

i = 1, 2, . . . , s. Then, there exists x̃ ∈
⋂s

i=1 Pi with x̃ ̸∈
⋃

Q∈X Q such that S = R[x̃](R[x̃]∩M) is

an N-subring of T with Pi ∩ S = x̃S for every i = 1, 2, . . . , s. Moreover, prime elements in R are

prime in S.

Proof. Define

C = Ass(T ) ∪ {P ∈ Spec (T ) |P ∈ Ass(T/rT ) for some 0 ̸= r ∈ R} ∪X

and note that C is countable and M ̸∈ C. Now, if i ∈ {1, 2, . . . , s}, we have Pi ̸⊆ P for all

P ∈ C. For every i = 1, 2, . . . , s, apply Lemma 2.2 to find xi ∈ Pi such that xi /∈ P for all

P ∈ C. Define x =
∏s

i=1 xi and note that x ∈
⋂s

i=1 Pi and x ̸∈ P for every P ∈ C. Now, fix

P ∈ C and let t, t′ ∈ T . If x(1 + t) + P = x(1 + t′) + P as elements of T/P then x(t− t′) ∈ P .

Since x ̸∈ P , we have t − t′ ∈ P and so t + P = t′ + P . It follows that if t + P ̸= t′ + P

then x(1 + t) + P ̸= x(1 + t′) + P . Let D(P ) be a full set of coset representatives for the cosets

t + P that make x(1 + t) + P algebraic over R/(P ∩ R), and note that D(P ) is countable. Let

D =
⋃

P∈C D(P ). Use Lemma 2.2 to find α ∈ M so that x(1 + α) + P ∈ T/P is transcendental

over R/(P ∩ R) for every P ∈ C. Define x̃ = x(1 + α). Then x̃ ̸∈
⋃

Q∈X Q. By Lemma 2.4,

S = R[x̃](M∩R[x̃]) is an N-subring of T . Since x̃ is transcendental over R, prime elements of R are

prime in S. Fix i ∈ {1, 2, . . . , s}. Since x̃ ∈ S and x̃ ∈ Pi, we have x̃S ⊆ Pi ∩ S. Since R is a

domain, x̃S is a prime ideal of S. Now x̃ is a regular element of T and Pi is a height one prime

ideal of T . It follows that Pi ∈ Ass(T/x̃T ). As S is an N-subring of T we have ht(Pi ∩ S) = 1

and so Pi ∩ S = x̃S. □
10
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3. THE MAIN RESULT

In this section, we state and prove our main result, Theorem 3.2, which can be used to show

that there exist local UFDs A that are “infinitely" noncatenary. More specifically, the result shows

that there exist local UFDs A such that A has infinitely many height one prime ideals {Jn}∞n=1

satisfying the property that, for every n ∈ N, there are saturated chains of prime ideals of different

lengths starting at Jn and ending at the maximal ideal of A. It follows that A is noncatenary and

that A/Jn is noncatenary for every n ∈ N. After proving Theorem 3.2, we provide an illustrative

example. Finally, in Section 3.1, we show that Theorem 3.2 can be used to find an infinite family

of local UFDs that satisfy the above conditions.

The first step in the proof of Theorem 3.2 is to start with a complete local ring T with s minimal

prime ideals and then, for each minimal prime ideal P of T , we identify infinitely many coheight

one prime ideals of T that contain P and satisfy the hypotheses of Lemma 2.6. We then use Lemma

2.6 to find an N-subring R0 of T that contains generating sets for all of our chosen coheight one

prime ideals. We strategically adjoin elements of T to R0 to construct our final local UFD A, and

so A will contain R0. It follows that A will contain generators of all of our chosen coheight one

prime ideals of T . This property will be useful in proving that A contains our desired saturated

chains of prime ideals.

We use Lemma 3.1 to find our infinite sets of coheight one prime ideals of T .

Lemma 3.1. Let (T,M) be a local catenary ring with depth(T ) ≥ 2 and let P0 be a minimal prime

ideal of T with dim(T/P0) = n ≥ 3. Then there are infinitely many prime ideals Q of T satisfying

the conditions that P0 is the only minimal prime ideal contained in Q, dim(T/Q) = 1, and Q ̸⊆ P

for any P ∈ Ass(T ) and any P ∈ Ass(T/zT ) with z a nonzero regular element of T .

Proof. Let P0 ⊊ Q1 ⊊ · · · ⊊ Qn−1 ⊊ M be a saturated chain of prime ideals of T obtained from

Lemma 2.8 in [1] such that, for each i = 1, 2, . . . , n− 1, Qi ̸∈ Ass(T ) and P0 is the only minimal

prime ideal contained in Qi. Suppose that Qn−2 ⊆ P for some P ∈ Ass(T ). As depth(T ) ≥ 2,

M ̸∈ Ass(T ). Since T is catenary and Qn−2 ̸∈ Ass(T ), we have dim(T/P ) = 1. By Theorem
11
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17.2 in [9], 2 ≤ depth(T ) ≤ dim(T/P ) = 1, a contradiction. It follows that Qn−2 ̸⊆ P for all

P ∈ Ass(T ). Thus, there exists a regular element x ∈ T with x ∈ Qn−2.

Let

X = {Q ∈ Spec (T ) |Qn−2 ⊊ Q ⊊ M is saturated}.

Since T is Noetherian, X has infinitely many elements. Suppose Q ∈ X such that Q contains P1

where P1 is a minimal prime ideal of T satisfying P1 ̸= P0. Then Q is a minimal prime ideal of

Qn−2 + P1, of which there are only finitely many. The two sets Ass(T ) and Ass(T/xT ) are finite.

Thus, the set

Y = {Q ∈ X |Q ̸∈ Ass(T ), Q ̸∈ Ass(T/xT ) and

P0 is the only minimal prime ideal of T contained in Q}

contains infinitely many elements. Let Q ∈ Y . Then dim(T/Q) = 1 and Q ̸⊆ P for any

P ∈ Ass(T ).

Since TQ is a flat extension of T and x is a regular element of T , we have that x is a regular

element of TQ. As Q ̸∈ Ass(T/xT ), the corollary to Theorem 6.2 in [9] gives that QTQ ̸∈

Ass(TQ/xTQ). It follows that depth(TQ) ≥ 2. Now suppose that Q ⊆ P for some P ∈ Ass(T/zT )

where z is a nonzero regular element of T . Then P = M or P = Q. As depth(T ) ≥ 2, M ̸∈

Ass(T/zT ) and so P = Q. Therefore, Q ∈ Ass(T/zT ). It follows that QTQ ∈ Ass(TQ/zTQ),

contradicting that depth(TQ) ≥ 2. Hence all elements of Y satisfy the desired conditions. □

We are now ready to prove the main result of this paper. Note that if T in Theorem 3.2 is

chosen so that ni ̸= nj for at least one pair of i, j ∈ {1, . . . , s} then the resulting local UFD A is

necessarily noncatenary.

Theorem 3.2. Let (T,M) be a complete local ring such that no integer of T is a zerodivisor of T

and such that depth(T ) ≥ 2. Let {P0,1, . . . , P0,s} be the minimal prime ideals of T and suppose

that for i = 1, 2, . . . , s, we have dim(T/P0,i) = ni ≥ 3. Then there exists a local UFD (A,M ∩A)

such that Â = T and such that, for all n ∈ N and for all i = 1, 2, . . . , s, there exist saturated
12
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chains of prime ideals (0) ⊊ Jn ⊊ J
(i)
2,n ⊊ · · · ⊊ J

(i)
ni−1,n ⊊ M ∩ A of A satisfying J

(i)
a,b = J

(j)
c,d if

and only if i = j, a = c, and b = d, and Jn = Jm if and only if n = m.

In the statement of Theorem 3.2 and in its proof, the notation P (i) for a prime ideal P has no

relation to the ith symbolic power of P but is just a notational label.

Proof. The strategy for our proof is to first use Lemma 3.1 to find, for every i = 1, 2, . . . s, in-

finitely many prime ideals {Q(i)
n }n∈N of T that satisfy the assumptions of Lemma 2.6, as well as

the properties that, for every n ∈ N, Q(i)
n contains P0,i and Q

(i)
n has coheight equal to one (i.e.

dim(T/Q
(i)
n ) = 1). We then note that a localization of the prime subring of T is an N-subring,

and we use Lemma 2.6 to obtain an N-subring R0 of T that contains generators of Q(i)
n for all

i = 1, 2, . . . , s and for all n ∈ N. Our final UFD A will contain R0 and hence A will contain

generators of all of the Q(i)
n ’s. Next, we alternate using Lemma 2.7 and Lemma 2.8 infinitely many

times to find appropriate height one prime ideals of T that will be glued together in A, along with

elements that will generate the prime ideals of A that the height one prime ideals will glue to. In

particular, for each j = 1, 2, . . . s, we find infinitely many height one prime ideals {P (j)
m }m∈N of

T such that the prime ideal P (j)
m contains P0,j and satisfies P

(j)
m ⊆ Q

(i)
n if and only if i = j and

n = m. In this way, each identified height one prime ideal is paired with an identified coheight

one prime ideal. We rely on results from [4] to finish the construction our UFD A. We then care-

fully construct saturated chains of prime ideals of T . Each chain will contain one of our identified

height one prime ideals P
(i)
n , along with its corresponding coheight one prime ideal Q(i)

n . When

we intersect these chains with A, the nonmaximal prime ideals of height at least two will remain

distinct, while P (i)
n ∩A = P

(j)
m ∩A (i.e. P (i)

n and P
(j)
m are glued together in A) if and only if n = m.

Moreover, P (i)
n ∩ A ̸= (0) for all i = 1, 2, . . . s and for all n ∈ N. These properties will imply that

our desired saturated chains of prime ideals of A are obtained by intersecting our chains from T

with A. We now begin implementing this strategy.
13
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For each minimal prime ideal P0,i, apply Lemma 3.1 to find infinitely many coheight one prime

ideals {Q(i)
n }n∈N of T above each P0,i such that Q(i)

n ̸= Q
(i)
m if n ̸= m and each Q

(i)
n ̸⊆ P for any

P ∈ Ass(T ) and any P ∈ Ass(T/zT ) with z a nonzero regular element of T .

Let Π be the prime subring of T and let R be Π localized at M ∩ Π. Then R is a countable

N-subring of T . By Lemma 2.6, there is a countable N-subring R0 of T that contains a generating

set for Q(i)
n for every i = 1, 2, . . . , s and for every n ∈ N.

Now that we have infinitely many coheight one prime ideals of T above each minimal prime

ideal, all of which have a generating set contained in R0, we next focus on finding s height one

prime ideals P (i)
1 of T such that P0,i ⊆ P

(i)
1 ⊆ Q

(i)
1 . These s prime ideals will then be glued together

in an N-subring that is an extension of R0 to a height one prime ideal. To do this, use Lemma 2.7

letting X be the empty set to find height one prime ideals P
(i)
1 of T for each i = 1, 2, . . . , s

satisfying P
(i)
1 ⊆ Q

(i)
1 and P

(i)
1 ̸⊆ P for any P ∈ Ass(T ) and for any P ∈ Ass(T/rT ) with

0 ̸= r ∈ R0. By Lemma 2.8 there exists x̃1 ∈
⋂s

i=1 P
(i)
1 such that R1 = R0[x̃1](M∩R0[x̃1]) is

a countable N-subring of T with P
(i)
1 ∩ R1 = x̃1R1 for every i = 1, 2, . . . , s. Moreover, prime

elements of R0 are prime in R1.

Our goal now is to find s height one prime ideals P
(i)
2 of T such that P0,i ⊆ P

(i)
2 ⊆ Q

(i)
2 and

such that each P
(i)
2 is not contained in any Q

(j)
1 . These s prime ideals will then be glued together

in an N-subring that is an extension of R1 to a height one prime ideal. To do this, we essentially

repeat the process in the previous paragraph. Specifically, for each i = 1, 2, . . . s, use Lemma

2.7 with X = {Q(i)
1 } to find height one prime ideals P (i)

2 of T for each i = 1, 2, . . . , s satisfying

P
(i)
2 ⊆ Q

(i)
2 and P

(i)
2 ̸⊆ P for any P ∈ Ass(T ) and for any P ∈ Ass(T/rT ) with 0 ̸= r ∈ R1.

Moreover, P (i)
2 ̸⊆ Q

(i)
1 for all i = 1, 2, . . . , s. Suppose P

(i)
2 ⊆ Q

(k)
1 for some k ̸= i. Then Q

(k)
1

contains P0,i and P0,k, a contradiction. It follows that P (i)
2 ̸⊆ Q

(k)
1 for all i = 1, 2, . . . , s and for all

k = 1, 2, . . . , s.

By Lemma 2.8 using X = {Q(1)
1 , Q

(2)
1 , . . . , Q

(s)
1 } there exists x̃2 ∈

⋂s
i=1 P

(i)
2 with x̃2 ̸∈ Q

(i)
1 for

all i = 1, 2, . . . , s such that R2 = R1[x̃2](M∩R1[x̃2]) is a countable N-subring of T with P
(i)
2 ∩R2 =

14
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x̃2R2 for every i = 1, 2, . . . , s. Moreover, prime elements of R1 are prime in R2. In particular, x̃1

is a prime element of R2.

Repeat this process using Lemma 2.7 with X = {Q(i)
1 , Q

(i)
2 } to find height one prime ideals P (i)

3

and then Lemma 2.8 to find an element x̃3 of T and an N-subring R3 of T . Continue inductively

so that, if P (i)
n−1 for every i = 1, 2, . . . , s, x̃n−1, and Rn−1 have been defined, use Lemma 2.7 with

X = {Q(i)
1 , Q

(i)
2 , . . . , Q

(i)
n−1} and Lemma 2.8 with X =

⋃s
i=1{Q

(i)
1 , Q

(i)
2 , . . . , Q

(i)
n−1} to define the

following:

• height one prime ideals P
(i)
n of T for each i = 1, 2, . . . , s satisfying P

(i)
n ⊆ Q

(i)
n and

P
(i)
n ̸⊆ P for any P ∈ Ass(T ) and for any P ∈ Ass(T/rT ) with 0 ̸= r ∈ Rn−1. Moreover,

for all i = 1, 2, . . . , s and for all k = 1, 2, . . . , s, P (i)
n ̸⊆ Q

(k)
j whenever j < n.

• an element x̃n of T such that x̃n ∈
⋂s

i=1 P
(i)
n and, for all i = 1, 2, . . . , s we have x̃n ̸∈ Q

(i)
j

whenever j < n.

• a countable N-subring Rn of T containing x̃1, x̃2, . . . , x̃n such that P (i)
n ∩ Rn = x̃nRn for

every i = 1, 2, . . . , s. Moreover, prime elements of Rn−1 are prime in Rn. In particular,

x̃1, x̃2, . . . , x̃n are prime elements of Rn.

By Lemma 6 in [4], which gives sufficient conditions for a union of an ascending chain of N-

subrings to be an N-subring and for prime elements in one of the N-subrings to remain prime in

the union, S =
⋃∞

n=1 Rn is a countable N-subring of T and x̃n is a prime element of S for every

n ∈ N.

At this point, we use the construction in [4] to build our UFD A. In particular, in the proof of

Theorem 8 in [4], one starts with a complete local ring T̃ and a localization of the prime subring

of T̃ and then constructs a UFD whose completion is T̃ . For our proof, we replace the localization

of the prime subring of T in the proof of Theorem 8 in [4] with the N-subring S above. We then

follow the proof of Theorem 8 in [4] to construct a UFD (A,M ∩ A). In particular, A contains S,

Â ∼= T , and prime elements of S are prime in A. Since A contains S, it contains a generating set

for each Q
(i)
n and so (Q

(i)
n ∩A)T = Q

(i)
n . Also note that x̃n is a prime element of A for every n ∈ N

and, for every i = 1, 2, . . . , s and for every n ∈ N, we have P
(i)
n ∩ A = x̃nA. Because T/Q

(i)
n =
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T/(Q
(i)
n ∩A)T is the completion of A/(Q(i)

n ∩A), we have 1 = dim(T/Q
(i)
n ) = dim(A/(Q

(i)
n ∩A)

for every i = 1, 2, . . . , s and for every n ∈ N.

By construction, for each n ∈ N, the height one prime ideals P
(i)
n for i = 1, . . . , s get glued

together in A to the height one prime ideal x̃nA. Define Jn = x̃nA = P
(i)
n ∩A. Note that Jn = Jm

if and only if n = m. Now for each n ∈ N, we will show that there are s disjoint saturated chains

of prime ideals of A all starting at Jn and ending at M∩A where the ith chain contains Q(i)
n ∩A and

has length ni− 1. To find these chains, we first define a prime ideal J (i)
2,n of A for all i = 1, 2, . . . , s

and for all n ∈ N. For a fixed i ∈ {1, 2, . . . , s} and a fixed n ∈ N, the prime ideal J (i)
2,n will contain

Jn and have height two. To define J
(i)
2,n, we identify a height two prime ideal Q(i)

2,n of T that is

contained in Q
(i)
n and strictly contains P (i)

n . The ideal J (i)
2,n will be the intersection of Q(i)

2,n with A.

Observe that x̃nA ⊆ Q
(i)
n ∩ A. Suppose we have x̃nA = Q

(i)
n ∩ A. Then there is a yn ∈ M ∩ A

with yn ̸∈ Q
(i)
n ∩ A = x̃nA. In this case, M ∩ A is a minimal prime ideal of (x̃n, yn)A and so, by

the generalized principal ideal theorem, ht(M ∩ A) ≤ 2. It follows that dim(T ) = dim(A) ≤ 2,

a contradiction. Hence x̃nA ⊊ Q
(i)
n ∩ A. If Q(i)

n ∩ A = Q
(k)
n ∩ A where i ̸= k, then Q

(i)
n = Q

(k)
n ,

a contradiction. Thus, by prime avoidance, there exists p(i)n ∈ A such that p(i)n ∈ Q
(i)
n , p(i)n ̸∈ x̃nA

and p
(i)
n ̸∈ Q

(k)
n for k ̸= i. Let Q(i)

2,n be a minimal prime ideal of P (i)
n + p

(i)
n T that is contained in

Q
(i)
n and note that P (i)

n ⊊ Q
(i)
2,n is saturated. In particular, ht(Q(i)

2,n) = 2. Define J (i)
2,n = Q

(i)
2,n∩A and

note that, since T is a faithfully flat extension of A, ht(J (i)
2,n) ≤ 2. It follows that (0) ⊊ Jn ⊊ J

(i)
2,n

is saturated. Also observe that J (i)
2,n = J

(k)
2,n if and only if i = k.

Note that J (i)
2,n = Q

(i)
n ∩ A if and only if dim(T/P0,i) = ni = 3. If we are in this case, we have

completed defining our chain. So suppose J
(i)
2,n ⊊ Q

(i)
n ∩ A. We define Q

(i)
t,n and J

(i)
t,n inductively

for t ≥ 3. Assume Q
(i)
t−1,n and J

(i)
t−1,n have been defined and suppose J

(i)
t−1,n ⊊ Q

(i)
n ∩ A. Let

q
(i)
t,n ∈ Q

(i)
n ∩ A with q

(i)
t,n ̸∈ J

(i)
t−1,n, and let Q(i)

t,n be a minimal prime ideal of Q(i)
t−1,n + q

(i)
t,nT that

is contained in Q
(i)
n . Define J

(i)
t,n = Q

(i)
t,n ∩ A. As we continue inductively defining Q

(i)
t,n and J

(i)
t,n,

eventually there will be an ℓ ∈ N such that J (i)
ℓ−1,n ⊊ Q

(i)
n ∩A and J

(i)
ℓ,n = Q

(i)
n ∩A. At this point, we

stop, and so we only define Q
(i)
t,n and J

(i)
t,n until t = ℓ. Note that Q(i)

ℓ,n = Q
(i)
n and if µ < ρ ≤ ℓ, then

J
(i)
µ,n ⊊ J

(i)
ρ,n. Observe that P0,i ⊊ P

(i)
n ⊊ Q

(i)
2,n ⊊ · · · ⊊ Q

(i)
ℓ,n ⊊ M is saturated. Since T is catenary,
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ℓ = ni − 1. By the going down property, the chain (0) ⊊ Jn ⊊ J
(i)
2,n ⊊ · · · ⊊ J

(i)
ni−1,n ⊊ M ∩ A is

saturated.

Finally, we show that if J (i)
a,b = J

(k)
c,d then i = k, a = c, and b = d. Suppose J

(i)
a,b = J

(k)
c,d for some

b ̸= d. Without loss of generality, assume that b < d. Then x̃d ∈ J
(i)
a,b ⊆ Q

(i)
b , a contradiction since

x̃d ̸∈ Q
(i)
j for j < d, and so we have b = d and J

(i)
a,b = J

(k)
c,b . Then p

(i)
b ∈ Q

(k)
b . If i ̸= k then this

contradicts the way p
(i)
b was chosen. It follows that i = k, and thus, a = c as well. □

Recall that all local Noetherian UFDs of dimension at most three are catenary. In addition, if A

is a local ring and Â is equidimensional, then A is universally catenary. Since we are interested

in the case where A is noncatenary, Theorem 3.2 is most interesting in our setting when T is a

complete local ring of dimension at least four that is not equidimensional (i.e. ni ̸= nj for some

i, j ∈ {1, 2, . . . , s}). In this case, the local UFD A given by the theorem has infinitely many height

one prime ideals J1, J2, . . . such that A/Jn is noncatenary for every n ∈ N. More specifically, for

every n ∈ N, if i ∈ {1, 2, . . . , s}, then A/Jn has a saturated chain of prime ideals of length ni − 1

that starts at the zero ideal of A/Jn and ends at the maximal ideal of A/Jn.

We now turn to the example introduced in Section 1.

Example 3.3. Let T = C[[x, y, z, w, t]]/((x) ∩ (y, z)). Then T satisfies the conditions of Theorem

3.2. Let x, y, z, w, t denote their images in T . The minimal prime ideals of T are (x) and (y, z), and

we have dim(T/(x)) = 4 and dim(T/(y, z)) = 3. By Theorem 3.2, T is the completion of a UFD

A such that A has infinitely many height one prime ideals {Jn}n∈N satisfying the condition that,

for every n ∈ N, there is a saturated chain of prime ideals of length 3 starting at Jn and ending

at the maximal ideal of A, and there is a saturated chain of prime ideals of length 2 starting at

Jn and ending at the maximal ideal of A. Moreover, all of these chains are disjoint (except at

the maximal ideal of A). As a consequence, A/Jn is noncatenary for every n ∈ N. We note

that one has some choice for the elements of the chains having coheight one. In the proof of

Theorem 3.2, one can choose the prime ideals Q(i)
n to satisfy the required conditions. The elements

of the chains in A of coheight one will be the prime ideals Q
(i)
n ∩ A of A. For example, for our
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given T , let {αn}n∈N be distinct elements of C. One could choose Q
(1)
n to be (x, y, w, t + αnz)

and Q
(2)
n to be (y, z, w, t + αnx). In this case, the coheight one ideals in the chains of length

3 will be (x, y, w, t + αnz) ∩ A and the coheight one ideals in the chains of length 2 will be

(y, z, w, t + αnx) ∩ A. Furthermore, the generator x̃n of the height one prime ideal Jn of A will

be a regular element of (x, y, w, t+ αnz) ∩ (y, z, w, t+ αnx).

Example 3.3 can be generalized to produce a class of local UFDs that are noncatenary at infin-

itely many places.

3.1. A class of local UFDs that are noncatenary at infinitely many places. Let s ≥ 2 and let

n = 1 + 2 + 3 + · · · + s = s(s + 1)/2. Let T ′
s = C[[x1, x2, . . . , xn, xn+1, xn+2]], and define the

ideal Is of T ′
s by

Is = (x1) ∩ (x2, x3) ∩ (x4, x5, x6) ∩ · · · ∩ (xn−s+1, . . . , xn).

Let Ts = T ′
s/Is and let x1, x2, . . . , xn denote their images in Ts. The minimal prime ideals of Ts are

{(x1), (x2, x3), (x4, x5, x6), . . . , (xn−s+1, . . . , xn)} and we have dim(Ts/((xn−s+1, . . . , xn))) = 2+

(s− 1)s/2 ≥ 3. It follows that the coheight of every minimal prime ideal of Ts is at least 3. Note

that, if P and P ′ are distinct minimal prime ideals of Ts, then dim(Ts/P ) ̸= dim(Ts/P
′). Since Ts

satisfies the conditions of Theorem 3.2, it is the completion of a UFD As such that As has infin-

itely many height one prime ideals {Jn}n∈N satisfying the condition that, for every n ∈ N, there

are saturated chains of prime ideals of s different lengths that start at Jn and end at the maximal

ideal of As. Moreover, all of these chains are disjoint (except at the maximal ideal of As). As a

consequence, As/Jn is noncatenary for every n ∈ N, and so, for every s ∈ N, As is noncatenary

at infinitely many places.

4. A VERY NONCATENARY UFD

In this section, we construct a dimension four countable local UFD A such that, for every height

one prime ideal P of A, the ring A/P is noncatenary. To do this, we start with the complete local
18
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ring

T = Q[[x, y, z, w, t]]/((x) ∩ (y, z)).

The ring A will be a subring of T with Â ∼= T . Therefore, T is a faithfully flat extension of A, and

this fact will help us show that A satisfies our desired property. To show that Â ∼= T , we use the

following result.

Proposition 4.1 ([5], Proposition 1). Let (R,M ∩R) be a quasi-local subring of a complete local

ring (T,M) such that the map R −→ T/M2 is onto and IT ∩ R = I for every finitely generated

ideal I of R. Then R is Noetherian and the natural homomorphism R̂ −→ T is an isomorphism.

To show that Â ∼= T using Proposition 4.1, we guarantee that the map A −→ T/M2 is onto and

IT ∩A = I for every finitely generated ideal I of A. We use the next lemma when constructing A

to ensure that it satisfies these two properties.

Lemma 4.2 ([7], Lemma 3.7). Let (T,M) be a complete local ring with depth(T ) ≥ 2 and let p

be a nonmaximal prime ideal of T . Let (R,M ∩R) be an infinite N-subring of T with p∩R = (0)

and let u ∈ T . Then there exists an N-subring (S,M ∩ S) of T such that

(1) R ⊆ S ⊆ T,

(2) u+M2 is in the image of the map S −→ T/M2,

(3) |S| = |R|,

(4) p ∩ S = (0),

(5) prime elements of R are prime in S, and

(6) for every finitely generated ideal I of S, we have IT ∩ S = I .

In the next lemma, we show that, if T is a complete local ring satisfying certain conditions and

R is a countable N-subring of T , then we can enlarge R to another countable N-subring A of T

whose completion is T . Moreover, for a given nonmaximal ideal p of T , if p ∩ R = (0), then

p ∩ A = (0) as well.
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Lemma 4.3. Let (T,M) be a complete local ring containing the rationals with T/M countable

and depth(T ) ≥ 2. Let p be a nonmaximal prime ideal of T . Let (R,M ∩ R) be a countable

N-subring of T with p∩R = (0). Then there exists a countably infinite N-subring (A,M ∩A) of T

such that R ⊆ A, prime elements of R are prime in A, A is Noetherian, Â ∼= T , and p ∩ A = (0).

Proof. Since T/M is countable, T/M2 is countable. Enumerate the elements of T/M2 as u0 +

M2, u1 +M2, u2 +M2, . . . ,. Let R0 = R, a countably infinite N-subring of T with p ∩ R = (0).

We will extend R0 = R by using Lemma 4.2 infinitely many times, once for each un ∈ T . Let

R1 be the countable N-subring of T obtained from Lemma 4.2 that extends R0 = R using u = u0.

Then for n ≥ 2, let Rn be the countable N-subring of T obtained from Lemma 4.2 that extends

Rn−1 using u = un−1.

Let A =
⋃∞

j=0 Rj and note that R ⊆ A. By Lemma 6 in [4], A is a countable N-subring of T and

prime elements of R are prime in A. By construction, p ∩ A = (0) and the map A −→ T/M2 is

onto. Now let I be a finitely generated ideal of A and let c ∈ IT ∩A. We have I = (a1, a2, . . . , am)

for some ai ∈ A. Choose N so that c, a1, a2, . . . , am ∈ RN . Then c ∈ (a1, . . . , am)T ∩ RN =

(a1, . . . , am)RN ⊆ I. It follows that IT ∩A = I . By Proposition 4.1, we have that A is Noetherian

and Â ∼= T. □

As mentioned previously, we begin our construction with the complete local ring

T = Q[[x, y, z, w, t]]/((x) ∩ (y, z)).

The next three results, Lemma 4.4, Lemma 4.5, and Lemma 4.6, demonstrate facts about this ring

that we use in Theorem 4.7 to construct the UFD A that is noncatenary at every height one prime

ideal. Before we state and prove these lemmas, we give a short outline of the proof of Theorem

4.7 and explain how Lemma 4.4, Lemma 4.5, and Lemma 4.6 are used in that proof.

In the rest of this section, let x, y, z, w, t denote their corresponding images in T . To prove

Theorem 4.7, we first use Lemma 4.3 to find an N-subring A0 of T such that the completion of A0

is T and such that (x, y, z) ∩ A0 = (0). For each height one prime ideal ajA0 of A0, we let P1,aj
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be a minimal prime ideal (in T ) of (aj, x) and we let P2,aj be a minimal prime ideal of (aj, y, z).

Lemma 4.5 allows us to conclude that P1,aj does not contain (y, z) and P2,aj does not contain (x).

Lemma 4.4 then produces two coheight one prime ideals of T , Q1,aj and Q2,aj , each containing

only one minimal prime ideal of T and satisfying P1,aj ⊆ Q1,aj and P2,aj ⊆ Q2,aj . We then use

Lemma 4.6 to show that these coheight one prime ideals satisfy the conditions of Lemma 2.6, and

so we can find an N-subring R1 that contains a generating set for each Qi,aj . We apply Lemma 4.3

to R1 to obtain an N-subring A1 of T with Â1
∼= T , R1 ⊆ A1 and (x, y, z)∩A1 = (0). We continue

this process to define an infinite chain of N-subrings of T , A0 ⊆ R1 ⊆ A1 ⊆ R2 ⊆ A2 · · · . The

union of this chain produces a local UFD A such that A/P is noncatenary for every height one

prime ideal P .

Lemma 4.4. Let a be a nonzero regular element of the complete local ring

T = Q[[x, y, z, w, t]]/((x) ∩ (y, z)).

Suppose that the ideal (a, x) has a minimal prime ideal P1 that does not contain (y, z) and that

the ideal (a, y, z) has a minimal prime ideal P2 that does not contain (x). Then there exist prime

ideals Q1 and Q2 of T such that, for i = 1, 2, we have Pi ⊊ Qi, Qi only contains one minimal

prime ideal of T and dim(T/Qi) = 1.

Proof. Let M = (x, y, z, w, t). Note that P1 and P2 contain only one minimal prime ideal of T and

that the chains (x) ⊊ P1 and (y, z) ⊊ P2 are saturated. Since T is Noetherian and catenary, there

are infinitely many prime ideals strictly between P2 and M . If Q is such a prime ideal containing

(x), then Q is a minimal prime ideal of P2 + (x), of which there are only finitely many. Therefore,

we can choose Q2 to satisfy the conditions that P2 ⊊ Q2 ⊊ M and Q2 does not contain (x).

There exists a prime ideal J of T such that P1 ⊊ J ⊊ M and dim(T/J) = 1. Since T is

catenary, P1 ⊊ J is not saturated. There are infinitely many prime ideals strictly between P1 and

J . If I is such a prime ideal containing (y, z), then I is a minimal prime ideal of P1 + (y, z) of

which there are only finitely many. Thus, there is a prime ideal I of T satisfying the conditions
21

19 Aug 2024 10:52:10 PDT
240304-Loepp Version 3 - Submitted to Rocky Mountain J. Math.



that P1 ⊊ I ⊊ J ⊊ M and I does not contain (y, z). By a similar argument replacing P1 by I ,

there exists a prime ideal Q1 of T satisfying the conditions that P1 ⊊ I ⊊ Q1 ⊊ M and Q1 does

not contain (y, z). □

Lemma 4.5. Let a be an element of the complete local ring T = Q[[x, y, z, w, t]]/((x) ∩ (y, z))

satisfying the condition that a ̸∈ (x, y, z). Then every minimal prime ideal of the ideal (a, x) does

not contain (y, z) and every minimal prime ideal of the ideal (a, y, z) does not contain (x).

Proof. Let P1 be a minimal prime ideal of (a, x). Then in the ring T/(x), the principal ideal

theorem gives us that ht(P1/(x)) = 1. Suppose (y, z) ⊆ P1. Then (x, y, z) ⊆ P1 and so in the ring

T/(x), (x, y, z)/(x) ⊆ P1/(x), and it follows that ht((x, y, z)/(x)) ≤ 1. But (x, y)/(x) is a prime

ideal of T/(x) and we have (x)/(x) ⊊ (x, y)/(x) ⊊ (x, y, z)/(x), a contradiction.

Now let P2 be a minimal prime ideal of (a, y, z) and suppose that (x) ⊆ P2. Then (x, y, z) ⊆ P2.

In the ring T/(y, z), both of the prime ideals P2/(y, z) and (x, y, z)/(y, z) have height one, and so

P2/(y, z) = (x, y, z)/(y, z). Thus, a + (y, z) ∈ (x, y, z)/(y, z) and we have that a ∈ (x, y, z), a

contradiction. □

Lemma 4.6. Let Q be a prime ideal of the complete local ring T = Q[[x, y, z, w, t]]/((x)∩ (y, z))

satisfying dim(T/Q) = 1. Then, Q ̸⊆ P for any P ∈ Ass(T/vT ) with v a nonzero regular element

of T .

Proof. Note that depth(T ) = 3 and so if v is a nonzero regular element of T then (x, y, z, w, t) ̸∈

Ass(T/vT ). So suppose that Q ∈ Ass(T/vT ) for some nonzero regular element v of T . Then

Theorem 17.2 in [9] gives us that the dimension of the ring (T/vT )/(Q/vT ) ∼= T/Q is greater

than or equal to the depth of the ring T/vT . This implies that the depth of T/vT is at most one,

contradicting that the depth of T is 3. □

We are now equipped with the tools needed to prove the main result of this section.

Theorem 4.7. Let T = Q[[x, y, z, w, t]]/((x) ∩ (y, z)). There exists a local UFD A such that

Â ∼= T and such that, for every height one prime ideal P of A, A/P is noncatenary.
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Proof. Let R0 = Q, let p = (x, y, z), and let M = (x, y, z, w, t). Observe that R0 is an infinite

N-subring of T and p∩R0 = (0). Use Lemma 4.3 to find a countable N-subring A0 of T such that

A0 is Noetherian, Â0
∼= T , and p ∩ A0 = (0). Since Â0

∼= T , the map A0 −→ T/M2 is onto and

IT ∩ A0 = I for every ideal I of A0.

Because A0 is a Noetherian UFD, all of its height one prime ideals are principal. Enumerate

the height one prime ideals of A0 by a1A0, a2A0, . . . , anA0, . . . . Note that, for all j ≥ 1, we

have aj ̸∈ p. For j ≥ 1, let P1,aj be a minimal prime ideal (in T ) of (aj, x) and let P2,aj be a

minimal prime ideal of (aj, y, z). By Lemma 4.5, P1,aj does not contain (y, z) and P2,aj does not

contain (x). By Lemma 4.4, there are prime ideals Q1,aj and Q2,aj of T such that P1,aj ⊆ Q1,aj ,

P2,aj ⊆ Q2,aj , Q1,aj and Q2,aj only contain one minimal prime ideal of T , dim(T/Q1,aj) = 1, and

dim(T/Q2,aj) = 1. Since dim(T/p) > 1, we have Q1,aj ̸⊆ p and Q2,aj ̸⊆ p for all j ≥ 1. Note

that if P ∈ Ass(T ) = {(x), (y, z)}, then Q1,aj ̸⊆ P and Q2,aj ̸⊆ P for all j ≥ 1. By Lemma

4.6, for j ≥ 1 we have Q1,aj ̸⊆ P and Q2,aj ̸⊆ P for any P ∈ Ass(T/vT ) with v a nonzero

regular element of T. Use Lemma 2.6 to find a countable N-subring R1 of T such that A0 ⊆ R1,

p∩R1 = (0), prime elements in A0 are prime in R1, and for every j ≥ 1, R1 contains a generating

set for Q1,aj and for Q2,aj .

By Lemma 4.3 there exists a countable N-subring A1 of T such that R1 ⊆ A1, prime elements in

R1 are prime in A1, A1 is Noetherian, Â1
∼= T , and p∩A1 = (0). Note that IT ∩A1 = I for every

ideal I of A1. Also note that prime elements in A0 are prime in A1. Thus, if ajA0 is a height one

prime ideal of A0, then ajA1 is a height one prime ideal of A1. However, A1 might have additional

height one prime ideals, and so we need to repeat the procedure replacing A0 with A1. That is,

enumerate the height one prime ideals of A1, find the appropriate height one and coheight one

prime ideals of T , and adjoin the generators of the coheight one prime ideals to find a countable N-

subring R2. Continue to form a countably infinite chain of N-subrings R0 ⊆ A0 ⊆ R1 ⊆ A1,⊆ · · ·

of T .

Define A =
⋃∞

n=0 An. By Lemma 6 in [4], A is a countable N-subring of T and elements that

are prime in Aj for some j ≥ 0 are also prime in A. Since A is an N-subring, it is a UFD. By
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construction, the map A −→ T/M2 is onto and IT ∩A = I for every finitely generated ideal I of

A. By Proposition 4.1, A is Noetherian and Â ∼= T .

Let P be any height one prime ideal of A. Since A is a UFD, P is principal, and so P = aA for

some a ∈ A. Choose N so that a ∈ AN . Suppose that a = p1p2 · · · pm is the prime factorization

of a in AN . Then p1, p2, . . . , pm are all prime elements in A, and so a = p1p2 . . . pm is also the

prime factorization of a in A. As a is prime in A, we have that m = 1 and a = p1. It follows

that a is prime in AN . Thus AN+1, and hence A, contains a generating set for prime ideals Q1

and Q2 of T where Q1 contains a minimal prime ideal P1 of (a, x), Q2 contains a minimal prime

ideal P2 of (a, y, z), Q1 and Q2 contain only one minimal prime ideal of T , dim(T/Q1) = 1, and

dim(T/Q2) = 1. Note that P1 and P2 are both height one prime ideals of T . Thus, ht(P1 ∩A) = 1

and ht(P2∩A) = 1. Therefore, P1∩A = aA and P2∩A = aA. The rest of the argument is similar

to the argument in the proof of Theorem 3.2, and so we omit some of the detailed explanations.

The completion of A/(Q1 ∩ A) is T/Q1 and it follows that dim(A/(Q1 ∩ A)) = 1. Similarly,

dim(A/(Q2 ∩A)) = 1. Therefore, aA ⊊ Q1 ∩A and aA ⊊ Q2 ∩A. Let b ∈ Q1 ∩A with b ̸∈ aA

and let c ∈ Q2 ∩A with c ̸∈ aA. Let Q′
1 be a minimal prime ideal of P1 + bT contained in Q1 and

let Q′
2 be a minimal prime ideal of P2 + cT contained in Q2. Then Q′

2 = Q2, (0) ⊊ aA ⊊ Q′
1 ∩A

is saturated and (0) ⊊ aA ⊊ Q′
2 ∩A = Q2 ∩A ⊊ M ∩A is saturated. We now have Q′

1 ⊊ Q1 and

so Q′
1 ∩A ⊊ Q1 ∩A. Let d ∈ Q1 ∩A with d ̸∈ Q′

1, and let I be a minimal prime ideal of Q′
1 + dT

contained in Q1. Then I = Q1 and we have that (0) ⊊ aA ⊊ Q′
1∩A ⊊ I ∩A = Q1∩A ⊊ M ∩A

is saturated. We have shown that there is a saturated noncatenary poset of prime ideals in the prime

spectrum of A that is isomorphic to Figure 2 where the minimal node is (0), the node above it is

P = aA, and the maximal node is M ∩ A. It follows that A/aA = A/P is noncatenary. □
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