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Abstract. For a planar domain D ⊂ C and an admissible weight function µ on it,
some aspects of the boundary behaviour of the corresponding weighted Bergman kernel
KD,µ are studied. First, under the assumption that µ extends continuously to a smooth
boundary point p of D and is non-vanishing there, we obtain a precise relation between
KD,µ and the classical Bergman kernel KD near p. Second, when viewed as functions
of such weights, the weighted Bergman kernel is shown to have a suitable additive and
multiplicative property near such boundary points.

1. Introduction

Let D ⊂ Cn be a domain and µ a positive measurable function on it. Let L2
µ(D) denote

the space of all functions on D that are square integrable with respect to µdV , where
dV denotes standard Lebesgue measure, and set Oµ(D) = L2

µ(D) ∩ O(D). The class of

weights µ for which Oµ(D) ⊂ L2
µ(D) is closed, and for any z ∈ D, the point evaluations

z 7→ f(z) ∈ C are bounded on Oµ(D) were considered by Pasternak–Winiarski in [11], [12]
and termed admissible therein. In this situation, there is a reproducing kernel KD,µ(z, w)
which is the weighted Bergman kernel with weight µ. Let KD,µ(z) = KD,µ(z, z) for z ∈ D.
A sufficient condition for µ to be admissible is that µ−a be locally integrable in D with
respect to dV for some a > 0 – see [12]. In particular, this holds if 1/µ ∈ L∞

loc(D). As
usual, the classical Bergman kernel and its restriction to the diagonal will be denoted by
KD(z, w) and KD(z) respectively, and this corresponds to the case µ ≡ 1.

The purpose of this note is to quantitatively compare KD,µ(z) with KD(z). Let us
fix the notations first. For quantities A,B, the notation A ∼ λB will mean that A/B
approaches λ when suitable limits are taken, while A ≈ B will mean that A/B is bounded
above and below by positive constants. As is customary, for a domain D ⊂ Cn, δ(z)
denotes the Euclidean distance of z to the boundary ∂D. Finally, for a domain D ⊂ Cn

and a fixed base point p ∈ ∂D, let A(D, p) be the collection of all admissible weights
µ ∈ C0(D) ∩ L∞(D) that extend continuously to p with µ(p) > 0.

Theorem 1.1. Let D ⊂ C be a bounded domain and suppose that p ∈ ∂D is a C2-smooth
boundary point. Let µ ∈ A(D, p). Then

KD,µ(z) ∼
1

µ(p)
KD(z) ≈

1

µ(p)
(δ(z))−2
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as z → p. Further, if D is simply connected, then for integers α, β ≥ 0,

∂α+β

∂zα∂zβ
KD,µ(z) ∼

1

µ(p)

∂α+β

∂zα∂zβ
KD(z) ≈

1

µ(p)
(δ(z))−(α+β+2)

as z → p.

Various estimates have been obtained for weighted Bergman kernels in different settings
with varying assumptions on the weights. From this extensive basket of results, we men-
tion [2, 3, 4, 5, 6] as prototypes that are perhaps closest in spirit to Theorem 1.1 in the
sense that they deal with estimates for these kernels on a given domain with suitable as-
sumptions on the weights such as log–plurisuperharmonicity ([2, 3]) or admitting a power
series representation involving the defining function and its logarithm ([4]). On the other
hand, Theorem 1.1 rests only on the continuity of µ at a boundary point and provides
precise boundary estimates for the weighted kernel; for simply connected domains, it pro-
vides information on all derivatives of the weighted kernel near such a point. The scaling
principle is used to reduce the proof to the paradigm of a Ramadanov type theorem for a
family of varying domains, that are not necessarily monotone and equipped with varying
weights – see [10] for a related Ramadanov theorem of this type. The presence of varying
weights is due to the fact that the weighted kernels transform as

(1.1) KD1,µ(z, w) = Jf(z)KD2,µ◦f−1(f(z), f(w))Jf(w)

under a biholomorphism f : D1 → D2; here, Jf is the Jacobian determinant of f . Another
ingredient in the proof of Theorem 1.1 that we have had to rely on is the Riemann mapping
theorem, and it is for this reason that we do not know whether it holds for domains in
Cn.

The weights we have considered do not vanish on the boundary. At the other extreme,
take D ⊂ Cn, a smoothly bounded domain and consider the class of weights given by
µd(z) = K−d

D (z) for some integer d ≥ 0. These weights vanish on the boundary ∂D
and are admissible since 1/µd = Kd

D is locally bounded on D. Denote the corresponding
weighted Bergman kernel by KD,d. The intrinsic advantage of µd as a weight is that KD,d

transforms much like the unweighted kernel under biholomorphisms. It can be checked
that

KD1,d(z, w) = (Jf(z))d+1KD2,d(f(z), f(w))(Jf(w))
d+1

for a biholomorphism f : D1 → D2 – this holds for domains in Cn also. Adapting the
techniques from [1], shows that

KD,d(z) ∼ (2d+ 1)(KD(z))
d+1

as z → p ∈ ∂D.

Theorem 1.1 has a useful consequence. It clarifies the relation between the Bergman
kernel associated to a sum or product of suitable weights and the sum or product of such
kernels arising from individual weights.

Corollary 1.2. Let D ⊂ C and p ∈ ∂D be as in Theorem 1.1. For 1 ≤ i ≤ n, let µi be
a finite collection of weights in A(D, p). Let αi > 0 be a given n-tuple of positive reals.
Then, as z → p,

(i) Kn
D,µ1·µ2···µn(z) ∼ (µ1(p) · µ2(p) · · ·µn(p))n−1 (KD,µ1 ·KD,µ2 · · ·KD,µn) (z), and
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BOUNDARY BEHAVIOUR OF WEIGHTED BERGMAN KERNELS 3

(ii) KD,α1µ1+α2µ2+...+αnµn(z) ∼ λ (α1KD,µ1 + α2KD,µ2 + . . .+ αnKD,µn) (z), where

1

λ
=

n∑
i,j=1

αiαj
µi(p)

µj(p)
.

Acknowledgements: The authors would like to thank the referee for carefully reading the
article and providing helpful suggestions.

2. Weights that do not vanish on the boundary

In this section, we will prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. A quick recap of the scaling principle is as follows: let D ⊂ C be
a domain and p ∈ ∂D a C2-smooth boundary point of D. Let ψ be a C2-smooth defining
function for D in a neighbourhood U of p. Choose a sequence pj in D converging to p.
For j ≥ 1, let

Tj(z) =
z − pj
−ψ(pj)

, z ∈ C

and set Dj = Tj(D). Note that 0 ∈ Dj for every j as Tj(pj) = 0. Let K ⊂ C be a compact
set. Since ψ(pj) → 0 as j → ∞, the Tj(U)’s eventually contain every compact set and
hence, K in particular. By writing the Taylor series expansion of ψ near z = pj, we see
that

ψ ◦ T−1
j (ζ) = ψ(pj + ζ(−ψ(pj))) = ψ(pj) + 2ℜ

(
∂ψ

∂z
(pj)ζ

)
(−ψ(pj)) + (ψ(pj))

2 O(1)

where O(1) is a term that is uniformly bounded on K as j varies. Therefore, the functions
ψ ◦ T−1

j are well defined on K for all large j.

Now note that the defining functions of Dj near Tj(p) ∈ ∂Dj are given by

ψj(z) =
1

(−ψ(pj))
ψ ◦ T−1

j (z) = −1 + 2ℜ
(
∂ψ

∂z
(pj)z

)
+ (−ψ(pj)) O(1).

We now claim that the ψj’s converge to

ψ∞(z) = −1 + 2ℜ
(
∂ψ

∂z
(p)z

)
on all compact subsets of C. For simplicity, assume that ∂ψ

∂z
(p) = 1 by a suitable nor-

malization. Therefore, ψ∞(z) = −1 + 2ℜz. Let H denote the half space defined by ψ∞,
i.e.,

H = {z : −1 + 2ℜz < 0} .
To see the convergence of ψj’s to ψ∞ on compact sets of C, note that ψj is a defining
function of Dj on Tj(U), and Tj(U) eventually contains K ∩Dj for any compact subset
K ⊂ C. Hence

K ∩Dj = {z ∈ K : ψj(z) < 0}
for sufficiently large j. Since ψj → ψ∞ uniformly on compacts, K ∩Dj converges in the
Hausdorff sense to {z ∈ K : ψ∞(z) < 0} = K ∩H. Thus, the domains Dj converge to H
in the Hausdorff sense on every compact subset of C. The same reasoning shows that the
domains Tj(D∩U) also converge to the same limiting half-space H in the Hausdorff sense
on compact sets. In particular, every compact subset of H is eventually contained in Dj
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(as well as Tj(D ∩ U)), and every compact subset that is disjoint from H is eventually

disjoint from Dj (as well as Tj(D ∩ U)).
Moving ahead, we want to study the behavior of KD(pj, pj) as j → ∞. The transfor-

mation formula for the weighted Bergman kernels under biholomorphisms Tj : D → Dj

gives

(2.1) KD,µ(z, w) = Tj
′(z)KDj ,µ◦T−1

j
(Tj(z), Tj(w))Tj

′(w), z, w ∈ D.

Let µj = µ ◦ T−1
j . Since T ′

j ≡ −1/ψ(pj), we have

(2.2) KD,µ(z, w) =
1

(ψ(pj))2
KDj ,µj(Tj(z), Tj(w)), z, w ∈ D.

Since Tj(pj) = 0 for all j ≥ 1, we obtain

KD,µ(pj, pj) =
1

(ψ(pj))2
KDj ,µj(0, 0).

Therefore, it is enough to study the behavior of KDj ,µj(0, 0) as j → ∞.

Case 1. Since D is simply connected and Tj’s are affine maps, the domains Dj’s are also
simply connected. Let Fj : Dj → H be the Riemann maps such that Fj(0) = 0 and
Fj

′(0) > 0. Let νj = µj ◦ F−1
j = µ ◦ T−1

j ◦ F−1
j . The transformation formula for the

weighted Bergman kernels under Fj’s gives

(2.3) KDj ,µj(z, w) = F ′
j(z)KH,µj◦F−1

j
(Fj(z), Fj(w))F ′

j(w), z, w ∈ Dj.

Let νj = µj ◦ F−1
j = µ ◦ T−1

j ◦ F−1
j . Note that νj(z) = µ

(
pj − ψ(pj)F

−1
j (z)

)
. By

Proposition 2.1 below, F−1
j (K) is uniformly bounded on compact sets K ⊂ C. Since µ

extends continuously to p, it follows that

νj → ν∞ ≡ µ(p) > 0

locally uniformly on H. The problem is therefore reduced to studying the Riemann maps
Fj and the kernels KH,νj . Note that the domain is now fixed (i.e., H) and only the weights
vary.

Proposition 2.1. The Riemann maps Fj converge to the identity map iH locally uniformly
on H.

Proof. Since every compact K ⊂ C \ H is eventually contained in C \ Dj, both families
{Fj} and {F−1

j } omit at least two values in C and fix the origin. Therefore, {Fj} and

{F−1
j } are normal families.

Pick a subsequence {jk} such that both {Fjk} and {F−1
jk

} converge locally uniformly

on H to some holomorphic functions F, G : H → H respectively and F (0) = G(0) = 0.
Since H is biholomorphic to the unit disc D, we may assume that F,G : D → D and there
is an interior point z0 ∈ D that is fixed by both F,G. Now neither F nor G can map an
interior point of D to a point on ∂D, for in this case, either would reduce to a constant
function by a standard argument using peak functions that exist at each point on ∂D.
This would contradict the fact that F,G both fix z0 ∈ D. Going back to H, this means
that F,G : H → H.

15 Jun 2024 04:35:38 PDT
230913-Jain Version 2 - Submitted to Rocky Mountain J. Math.



BOUNDARY BEHAVIOUR OF WEIGHTED BERGMAN KERNELS 5

Now, Fjk ◦F−1
jk

≡ idH and F−1
jk

◦Fjk ≡ idDj
. Since Fjk ◦F−1

jk
converges to F ◦G locally

uniformly on H, we have F ◦G ≡ idH. Since any compact K ⊂ H is eventually contained
in Dj, the sequence F−1

jk
◦ Fjk converges to G ◦ F uniformly on K. So, (G ◦ F )|K ≡ idK

and therefore G ◦ F ≡ idH. Thus, F is an automorphism of H such that F (0) = 0 and
F ′(0) > 0.

Let φ : H → D be the Riemann map such that φ(0) = 0 and φ′(0) > 0. Then,
ϕ = φ ◦ F ◦ φ−1 is an automorphism of D such that ϕ(0) = 0 and ϕ′(0) > 0. So, ϕ ≡ idD
and therefore F ≡ IdH.

Hence, the Riemann maps Fj converge to the identity map idH locally uniformly on
H. □

The following characterization of weighted Bergman kernels from [10] will be used.

Lemma 2.2. Let Ω be a domain in Cn and ν be an admissible weight on Ω. For w ∈ Ω,
let Sν,w(Ω) ⊂ Oν(Ω) denote the set of all functions f such that f(w) ≥ 0 and ∥f∥L2

ν(Ω) ≤√
f(w). Then the weighted Bergman function KΩ,ν(·, w) is uniquely characterized by the

properties:

(i) KΩ,ν(·, w) ∈ Sν,w(Ω);
(ii) if f ∈ Sν,w(Ω) and f(w) ≥ KΩ,ν(w,w), then f(·) ≡ KΩ,ν(·, w).

Proposition 2.3. We have that

lim
j→∞

KH,νj = KH,ν∞

locally uniformly on H×H.

Proof. Let W ⊂ H be a compact. Choose a neighborhood W̃ ⊂⊂ H of W . Since {F−1
j }

is a normal family on H, there exists a compact set W0 ⊂ C such that F−1
j (W̃ ) ⊂ W0

for all j ≥ 1. Choose a neighborhood V ⊂ C of p such that µ ≥ c a.e. on D ∩ V for
some constant c > 0. Since the domains Tj(V ) eventually contain every compact subset,

W0 ⊂ Tj(V ) for all large j. Thus, νj ≥ c a.e. on W̃ for all large j.

For a domain Ω ⊂ C, an admissible weight ρ on Ω and z ∈ Ω, it is straightforward to
check that (proof is similar to the classical case; see [7])

(2.4) KΩ,ρ(z, z)
−1/2 = min{∥g∥L2

ρ(Ω) : g ∈ Oρ(Ω), g(z) = 1},

where we assume that KΩ,ρ(z, z) > 0. Therefore, if Ω̃ ⊂ Ω is a domain with an admissible

weight ρ̃ on Ω̃ such that ρ̃ ≤ ρ a.e. on Ω̃, then KΩ̃,ρ̃(z, z) ≥ KΩ,ρ(z, z) for every z ∈ Ω̃.
This is the monotonicity property. It holds even when KΩ,ρ(z, z) = 0 because KΩ̃,ρ̃(z, z)
is always non-negative.

Since D is bounded and µ ∈ L∞(D), the constant function 1 belongs to Oµ(D). This
implies thatKD,µ(z, z) > 0 for every z ∈ D. Now (2.1) and (2.3) show thatKH,νj(z, z) > 0
for all z ∈ H and j ≥ 1.
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Now for z, w ∈ W and j ≥ j0, where j0 is sufficiently large,

|KH,νj(z, w)| = |⟨KH,νj(·, w), KH,νj(·, z)⟩L2
νj

(H)| ≤ ∥KH,νj(·, w)∥L2
νj

(H)∥KH,νj(·, z)∥L2
νj

(H)

=
√
KH,νj(w,w)

√
KH,νj(z, z) ≤

√
KW̃ ,c(w,w)

√
KW̃ ,c(z, z)

=
1

c

√
KW̃ (w,w)

√
KW̃ (z, z) ≤ 1

c
sup
ξ∈W

KW̃ (ξ, ξ) =: C <∞,

by the monotonicity property. Hence,
{
KH,νj

}
is a normal family. It suffices to show that

every subsequence converges to the kernel KH,ν∞ . By taking a subsequence and retaining
notion, assume that

lim
j→∞

KH,νj = k

locally uniformly on H ×H for some function k on H ×H which is holomorphic in the
first variable and anti-holomorphic in the second.

Fix w ∈ H. For a compact set W ⊂ H,∫
W

|k(z, w)|2ν∞(z)dz ≤ lim inf
j→∞

∫
W

|KH,νj(z, w)|2νj(z)dz

≤ lim inf
j→∞

∫
H
|KH,νj(z, w)|2νj(z)dz = lim inf

j→∞
KH,νj(w,w)

= k(w,w)

and therefore ∫
H
|k(z, w)|2ν∞(z)dz ≤ k(w,w).

Therefore, k(·, w) ∈ Oν∞(H). Also, k(w,w) ≥ 0 and ∥k(·, w)∥L2
ν∞ (H) ≤

√
k(w,w). Thus,

the function k(·, w) ∈ Sν∞,w(H). Since µ ∈ L∞(D), there exists a constant M > 0 such
that νj ≤M for all j and hence∫

H

∣∣∣∣KH,ν∞(z, w)

KH,ν∞(w,w)

∣∣∣∣2 νj(z)dz ≤ M

µ(p)

∫
H

∣∣∣∣KH,ν∞(z, w)

KH,ν∞(w,w)

∣∣∣∣2 ν∞(z)dz <∞.

for all j. This shows that KH,ν∞(·, w)/KH,ν∞(w,w) ∈ Oνj(H) for every j. Furthermore,
note that KH,νj(·, w)/KH,νj(w,w) is the unique solution of the extremal problem

min{∥f∥L2
νj

(H) : f ∈ Oνj(H), f(w) = 1},

which follows from (2.4). So,

1

KH,νj(w,w)
=

∫
H

∣∣∣∣KH,νj(z, w)

KH,νj(w,w)

∣∣∣∣2 νj(z) dz ≤ ∫
H

∣∣∣∣KH,ν∞(z, w)

KH,ν∞(w,w)

∣∣∣∣2 νj(z) dz.
Taking limits as j → ∞ on both sides and using the dominated convergence theorem, we
see that

1

k(w,w)
≤

∫
H

∣∣∣∣KH,ν∞(z, w)

KH,ν∞(w,w)

∣∣∣∣2 ν∞(z) dz =
1

KH,ν∞(w,w)
,

i.e., k(w,w) ≥ KH,ν∞(w,w). Therefore, k(·, w) ≡ KH,ν∞(·, w) by Lemma 2.2. Since
w ∈ H was arbitrary, k = KH,ν∞ . □
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Hence, (2.3), Proposition 2.1 and Proposition 2.3 show that

lim
j→∞

KDj ,µj = KH,ν∞

locally uniformly on H × H. The same holds for all the derivatives of the weighted
Bergman kernel, where derivative estimates follow from the Cauchy integral formula.

For integers α, β ≥ 0, let us denote ∂α+β

∂ξα∂ζ̄β
KΩ,ρ(ξ, ζ) by Kα,β

Ω,ρ . Upon differentiating

(2.2), we obtain

Kα,β
D,µ(z, w) =

1

(−ψ(pj))α+β+2
Kα,β
Dj ,µj

(Tj(z), Tj(w)), z, w ∈ D.

Thus,

(2.5) Kα,β
D,µ(pj, pj) =

1

(−ψ(pj))α+β+2
Kα,β
Dj ,µj

(0, 0) ∼ 1

(−ψ(pj))α+β+2
Kα,β

H,ν∞(0, 0)

as j → ∞. Note that for µ ≡ 1, we have µj ≡ 1. Therefore,

lim
j→∞

Kα,β
D,µ(pj, pj)

Kα,β
D (pj, pj)

= lim
j→∞

Kα,β
Dj ,µj

(0, 0)

Kα,β
Dj

(0, 0)
=
Kα,β

H,ν∞(0, 0)

Kα,β
H (0, 0)

=
1

µ(p)

Kα,β
H (0, 0)

Kα,β
H (0, 0)

=
1

µ(p)
.

We shall now compute Kα,β
H . Applying the transformation formula for the Bergman

kernels under the biholomorphism f : H −→ D defined by

f(z) =
2z + 1

−2z + 3

gives that for z, w ∈ H (see [7])

KH(z, w) = f ′(z)KD(f(z), f(w)) f ′(w)

=
8

(−2z + 3)2
(−2z + 3)2(−2w̄ + 3)2

64π(1− z − w̄)2
8

(−2w̄ + 3)2
=

1

π(1− z − w̄)2
.

Therefore, for integers α, β ≥ 0

∂α+β

∂zα∂w̄β
KH(z, w) =

α!β!

π(1− z − w̄)α+β+2
, z, w ∈ H.

So, Kα,β
H (0, 0) = α!β!/π. Since |ψ(z)| ∼ 2δ(z), it follows that

Kα,β
D,µ(pj) =

1

|ψ(pj)|α+β+2
Kα,β
Dj ,µj

(0) ≈ 1

δ(pj)α+β+2
Kα,β
Dj ,µj

(0),

and Kα,β
Dj ,µj

(0) converges to Kα,β
H,ν∞(0) = (1/µ(p))Kα,β

H (0) which is a finite constant. There-
fore, we have proved

(2.6)
∂α+β

∂zα∂z̄β
KD,µ(z) ∼

1

µ(p)

∂α+β

∂zα∂z̄β
KD(z) ≈

1

µ(p)
(δ(z))−(α+β+2)

as z → p. This completes the simply connected case.
□

Case 2. WhenD is not simply connected,KD,µ(z) can be localized near p as in Proposition
2.4 below. This is possible because p, being a C2-smooth boundary point, is a local
holomorphic peak point (see [7] for details).
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Proposition 2.4. [Localization] Let D ⊂ C be a bounded domain and suppose that p ∈ ∂D
is a local holomorphic peak point. Let µ ∈ A(D, p). Then there exists a neighbourhood U
of p such that

lim
ζ→p

KD,µ(ζ, ζ)

KD∩U,µ(ζ, ζ)
= 1

where KD∩U,µ denotes the Bergman kernel for D ∩ U with respect to the weight µ|D∩U .

Proof. The standard proof using L2-methods works verbatim for the weighted case because
of the lower and upper bounds on the weight µ as µ ∈ A(D, p). The assumptions on µ
imply that KD∩U,µ is well-defined and positive. Further, since L2(D) ⊂ L2

µ(D), several

auxiliary functions that appear in the standard proof and belong to pertinent L2-spaces
are actually in L2

µ(D). The details are omitted. See [7] for details. □

Choose a neighborhood U of p in C as in Proposition 2.4 such that D ∩ U is simply
connected. Note that µ|D∩U ∈ A(D∩U, p). For a sequence pj in D∩U converging to the
boundary point p, it therefore follows from Case 1 that

lim
j→∞

KD∩U,µ(pj, pj)

KD∩U(pj, pj)
=

1

µ(p)
.

Hence, by Proposition 2.4 we have

lim
j→∞

KD,µ(pj, pj)

KD(pj, pj)
= lim

j→∞

(
KD,µ(pj, pj)

KD∩U,µ(pj, pj)
· KD∩U,µ(pj, pj)

KD∩U(pj, pj)
· KD∩U(pj, pj)

KD(pj, pj)

)
= 1 · 1

µ(p)
· 1 =

1

µ(p)
.

Similarly,

KD,µ(pj, pj) =
KD,µ(pj, pj)

KD∩U,µ(pj, pj)
KD∩U,µ(pj, pj)

≈ 1 · 1

µ(p)
(δ(pj))

−2.

Hence,

(2.7) KD,µ(z) ∼
1

µ(p)
KD(z) ≈

1

µ(p)
(δ(z))−2,

as z → p. □

This completes the proof of Theorem 1.1. □

Remark 2.5. From the proof of Theorem 1.1, observe that the boundedness assumption
on D is used only in the localization. A different technique for localization from [9] can
be adapted here to localize the weighted Bergman kernels for unbounded domains. The
details are omitted.

Proof of Corollary 1.2. Since µ1 ∈ C0(D) ∩ L∞(D), we have 1/µ1 ∈ L∞
loc(D). So,∫

K

1∑n
i=1 αiµi(z)

dz ≤
∫
K

1

α1µ1(z)
dz <∞
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for any compact K ⊂ D. Thus, µS =
∑n

i=1 αiµi is an admissible weight on D. Also,
µS ∈ A(D, p) as µi ∈ A(D, p) and αi > 0 for all i ≤ n. Therefore,

KD,µS(z) ∼
1

µS(p)
KD(z) as z → p.

Since KD,µi(z) ∼ 1
µi(p)

KD(z) as z → p for every i ≤ n,

lim
z→p

Kα1µ1+...+αnµn(z)

(α1Kµ1 + . . .+ αnKµn)(z)
=

1∑n
i=1 αiµi(p)

1∑n
j=1

αj

µj(p)

=
1∑n

i,j=1 αiαj
µi(p)
µj(p)

which proves (ii). Now let µM = µ1 . . . µn and note that µM ∈ A(D, p). Hence

KD,µM (z) ∼ 1

µM(p)
KD(z) as z → p.

Since KD,µi(z) ∼ 1
µi(p)

KD(z) as z → p for every i ≤ n,

lim
z→p

Kµ1...µn(z)
n
√

(Kµ1 . . . Kµn)(z)
=

n
√
µ1(p) . . .

n
√
µn(p)

(µ1 . . . µn)(p)
=

1

(µ1(p) . . . µn(p))
n−1
n

which proves (i). □

3. Concluding Remarks and Questions

Theorem 1.1 shows that the weighted kernel KD,µ and the classical one KD have the
same rate of blow up near a smooth boundary point. However, D is assumed to be simply
connected in order to get estimates on the boundary behaviour of the derivatives of KD,µ.
We believe that the simply connected assumption can be dispensed with but we have
not been able to show this. Further, it is also not clear whether these estimates hold for
domains in Cn even with additional pseudoconvexity assumptions. In the same vein, the
assumption that µ(p) > 0 is crucially used. This raises the question of what happens if
µ(p) = 0. The weights of the form µd = K−d

D , d ≥ 0, all vanish on the boundary. For
this specific class of weights, the boundary behaviour is known as indicated. But can
something be said for the weighted kernels arising from general weights that vanish on
the boundary?

The connection between the weighted Bergman kernel and Green’s function has been
recently explored in [8]. It would be interesting to see how the weighted Green’s function
fits within the paradigm studied here.
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