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Abstract: Let C denote the complex numbers. Given a function F(z) : C? — C%, suppose that
w € CY is a fixed point, that is, F'(w) = w, and that F(z) is analytic at w. Then for 1 < p < ¢, the
q X 1 vector recurrence equation

Zn+1 = F (Zn)

for n =0,1,2,... has a solution of the form
> .
2n = 2p (w,ar™) = Z a;(w) (ar™)",
ieNP
where ag, (w) = w, 0, = (0,...,0), a € C? is arbitrary,

P
(ar™)' = H (agr)™
k=1

and 7y,...,7r, are any distinct eigenvalues of F(w), where F(z) = dF(z)/z' € C7*9. The other
a;(w) are given recursively using a new type of multivariate Bell polynomial.

Keywords: Bell polynomial; Logistic map; Mandelbrot equation

1 Introduction

We are not aware of any research on finding solutions for vector nonlinear recurrence equations.
Withers and Nadarajah (2023b) was the first paper giving solutions for vector nonlinear recurrence
equations. In this paper, we have provide extensions of results in Withers and Nadarajah (2023b).

Set N'={0,1,2,...}. Let R and C denote the real and complex numbers. Let F'(z) : C? — C?
be a given function. Choose any w such that w = F(w). Set F(z) = dF(2)/z' € C?*, F = F(w),
and that F'(z) is analytic at w. Section 3 gives solutions to the general ¢ x 1 recurrence equation

21 = F (2n) (1)

for n =0,1,... when det F # 0.
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Set 0, = (0,...,0). Our solutions have the form

p
2= 20 (w,0r") = >0y (") =w+dn, 1<p<g, (2)
i
/p . . p .
d, = Zai (ar™)", (ar™)" = H (axrp)™, (3)
i=1 k=1
where ag, = w, 3¢ sums over i = (i1,...,i,) € NP, 307 excludes i = 0,, r = (r1,...,7p) are any

distinct eigenvalues of F' = F(w), a; = a;(w) € CP is given by a recurrence equation, and a € C? is
arbitrary. As p increases from 1 to g, this gives an increasingly rich class of solutions. The solutions
for different p do not overlap.

Our main results are given in Section 3. Sections 4-5 and the appendix deal with the cases
p=1, (p,q) =(2,2),(2,3), and (3, 3).

If the initial value zg is given, the solution (2) works if

p
zZ0 — a; &
7

for some a in CP. If p = ¢, this can be inverted to find « by multivariate Lagrange inversion if zg
is not too far from w. See, for example, Gessel (1987). If ¢ = 1, (2) can be simplified further: see
Withers and Nadarajah (2022). The case p = 1 was treated in Withers and Nadarajah (2023b):

see Section 4. Note that I € N, rf =1 implies z,4; = z,. For j = (j1,...,J,) any row vector in
N4, set
g . .
jt=114" 0i=0/0z,, Fj(z) =0 0 F(2), f(j) = Fj(w)/j. (4)
i=1

F(z) and f(j) are column vectors with kth components Fj(z) and fi(j) for 1 < k < q. The kth
components of a;, d, and z, of (2) are a; , dp i, 2n k. To minimise double subscripts we sometimes
use

a(i) =a;: NP =C9, ap(i) =a; : NP =C. (5)

2 A new type of Bell polynomial

Expressions for powers of a power series with coefficients a; : N' — C are given in terms of the
partial ordinary Bell polynomial B; i,(a). These are defined in terms of

oo
S(z,a) = Z a;x
i=1
for z in C and a = (a1, ag,...) any sequence in C by

S(z,a)’ =" a" Bij(a) (6)
i=j
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for j =0,1,.... They are tabled on page 309 of Comtet (1974) for i < 10. We drop the hat and
write B; j(a) or Bil’j1 (a) for his B; j(a).

We now extend (6) to x € CP and i € NP. Set I(A) =1 or 0 for A = 0 true or false. For x € CP
and a = {a; € C: i € NP} excluding i = 0, or with ag, = 0, set

p
wi:Hx Sp’ Zazx eC.
k=1

Define the (p,1)-Bell polynomial Bf,’jl(a) on a; : NP — C by
P

SP( Z (7)

for j =0,1,.... We now show that
BPHa) = 0if j > [i| = i1+ +ip. (8)
To see this, take p = 2 and set B; = Bf’él(a). Then
S(xz,a) = z1a1,0 + 22001 + .75%(1270 + z12201,1 + x%ao,g 4+
S(z,a)® = x1B1o + 22Bo1 + ¥3Bag + x129B11 + 253Bo2 + - - -
So, B; = 0 for |i] < 3. By (8), we can replace Y ¥ in (7) by Zﬁ|>j‘ This form of multivariate Bell

polynomial was introduced by Withers and Nadarajah (2010). “See also Withers and Nadarajah
(2013a, 2013b).

Now suppose that a; € C?, not C, where again i € NP excluding i = 0,, or equivalently with
a; = 04 for i = 0p. Then we can extend (7) to the (p, ¢)-Bell polynomial B}/ (a) on a; : N7 — C1
by noting that for j € N'¢

implies
q q
(574G, )} = [ [5" (00" = 3 B! )
k=1
where
Bp’]q(a) = Z H zk,Jk , Ak =ik, i € NP). (10)

i1 tig=i k=1
By (8), jr < |ig| for k=1,..., ¢ implies |j| = j1 +--- + jq < |i|. So,
B (a) = 0 if 4] > [i].
So, > in (9) can be replaced by E‘ >l A recurrence equation for Bp q( ) is given in terms of
ek, the kth unit vector in N9, b

BPL_ (a) = [ coefficient of #' in Sp’q(:v,a)jSp’l(x,a,k)] = Z BP(a) aj,

1,J+t€k q 11,]
11+i0=1
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for 1 <k <pandj € N For example,

BYI(a)=1(j=0,), By (a)=1(i=0,), B" (a)=a;y, (11)

Op,J ,0p 2,€b,q
and j = ey, 4 + - + ey, 4 implies

p

Bgf(a) = Z @iy ,by * " Qi by -

i =i

B£ ’]g(a) is a new type of Bell polynomial. A different type of multivariate Bell polynomial was used
in Section 5 of Withers and Nadarajah (2012).

3 Main results

Let eg 4 be the kth unit row vector in N1X9. Set I, = diag(1,...,1) € C7*9. Given w = F(w), we
seek a solution of (1) of the form (2). Define the order of a; as |i| =41 + --- 4+ ip. We now give a;

of order 1, then a; of order |i| > 2 in terms of a; of lower order. We switch to the notation of (5).
Set B; j = Bg’jq(a), a(i) = a;, ag(i) = a; -

Theorem 3.1 Let w be any solution of F(w) = w. Let F be analytic at w. Fizp € {1,2,...,q}.
Let r1,...,r, be any distinct eigenvalues of

I = F(w) = (f(erg)s---» fleqq))
of (4). For1 <k <p, let a(eyyp) be a right eigenvector of F with eigenvalue ry,. Assume that for
i ¢ {eip,.--repp}s

p
rt = H T is not an eigenvalue of F. (12)
k=1

Then for all a € CP, a solution of (1) is given by (2), where for |i| > 2,

lil

ali) = (rin—F)_ B, E; = Z Bij 1) = Cin (13)

2<|jl<ldl k=2

Cir =Y _[Bijf(j)]

b/k

at j =ep g+ -+ ey q, and Zb/k sums over 1 < by < ---<b, <gq.

(12) implies that roots of 1 are not eigenvalues of F. For, if 1Y1 ry, ... , Tp are eigenvalues, then
I . .
1= (11/1) H rJ---7r0 is not an eigenvalue.

P
Proof Note that

dn =95 (ar", ay) Zazk ar™
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for (ar™)" of (3) and a,, of (10). The Taylor series expansion gives
Znt1 — W = dpy1 = F (2n) — F(w) :ZdZL f(), (14)

where

Hdnk = > Bij (")
li]>5]
by (9). For i € NP the coefficient of (ar™)" in (14) is 7 a(i) = C;, where
Z Bi; f(j Zq,k (15)
i<l k=1

Consider the case i = e,;,, where 1 < m < p. By (11) and (15),

q q
rma (€mp) = Ce,,, = Z Bey peng | (€hg) = Zak (emp) [ (ekq) = Fa(emp)-
k=1 k=1
So, for m = 1,...,q, a(emyp) is a right eigenvector of F with eigenvalue r,,. Now take li] > 2.

Then Cy; = Fa(i). So, (15) implies (13). The proof is complete. O
We now illustrate how B; ; can be calculated as needed using the fact that j = ey, o+ +ep, 4
implies

p

B; ;= Z ap, (i1) -+ apy, (ig) -

i1+t =1
For |i| = r, we write ¢ = Iy + -+ -+ I, where I, = ep, p, 1 < Dy--- < D, <p.

. N\ -1
Consider the case |i| = 2. The partitions of 2 are 2 and 11. So, a(i) = (rllq - F) E,, where,

for j = epq + €cyq,

By=Ciz=> Bij f(j), Barj=ay(h)ac(lh), Brin, = Zab h)ac(12),
b<ec
where

2

Z Ab7c = Ab,c + Ac7b~
b,c

N
For example, if i = 2e; 5, a(i) = (T%Iq — F) Ci2, where

C@Q = Z ap (617p) Qe (el,p) f (€b7q + €C7q) . (16)

1<b<c<q
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Ifi=e1p+exp a(i) = (rlrglq — F) Ci,2, where

2
Cia= Y | as(erp)ac(ezp)| fleng+ecq). (17)

1<b<c<q | b,c

Consider the case |i| = 3. The partitions of 3 are 3,21 and 111. So, a(i) = (rin - F) (Ci2 + Ci3),

where, for j = e, 4 + €cq,

Ciz = Bi;f()),

b<c
2 2
Bsr; =Y ay(h)ac(2D), Baning = Y [ay (1) ac (Io) + ay (1) ac (I + I)]
b,c b,c

2 3
Bri+1+135 = Z Z ap (I1) ac (I2 + I3)
be 1,23

and, for j = epq + €cq + €dq,

Cig= Y Bijf(), Ban; = as(I)ac(I)aq(l1),

b<c<d

3 6
Boning = Y ap(I) ac () aq(I2), Brnprrsy = Y ap(T) ac(12) aq(Is),
b,c.d b,c,d

and Zév c.q sums over all permutations of b, ¢, d giving N distinct terms. N is the multinomial
coefficient.

. .\ 1
Consider the case |i| = 4. The partitions of 4 are 4,31,22,211 and 1111. So, a(i) = (rlfq - F> Zé:2 Ci ks
where, for j = e, 4 + ecq,

Cip =Y Bijf(j),
b<c
2
Banj =Y ap(I1) ac (311) + ay (211) ac (211),
b,c
2
Bary1,, = Z [CLb (311) ac (I2) + ap (211) ac (I + I2) + ap (11) ac (I + Ig)] ,
b,c
2
Bongang =Y lay (211 + L) ac (I) + ay (21h) ac (212) + ap (I) ac (I + 21)] ,
b,c
2 6
Bor 41+ 13, = Z ap (20) ac (I + I3) + Z ap (20 + 1) ac (I3) | ,
b,c 1,2,3
4 6

Br+n+n+n,y = Z Z ay (I1) ac (I2 + I3 + 11) + Z ap (I + 1) ac (I3 + In) |
be |1,23 12,3
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and, for j = epq + €cq + €dq,

3
Ciz= Z B;if(j), Bar,j = Zab (26) ac (I1) aq (I1),

b<c<d b,c,d

6
Bspany =Y ay(2h) ac () aq (I2) ,
b,c,d
3
Bantang = Y las (21h) ac (I2) ag (I2) + ay (1) ac (1) aq (212)]
b,c,d
6
Bory 41,414, Z ap (211) ac (I2) aq (I3) + ap (I1) ac (I1 + I2) aa (13)]
od
12
Brishrs+ng = ) las (It + 12) ac (Is) aq (14)]
b,c,d

and, for j = ep, + ey, + €py + €1,

4
Cia= Y Bijf(j), Barj =[] aw, (I).
b1<---<by k=1
6

Bap i1y = Y b (In) ay, (In) ap, (1) ay, (I2)
by---by
6

Bontong = Y, ab (1) ay, (1) as, (I2) ap, (I2)
by---by
12

Borinyitsg = Y by (1) ap, (In) ab, (I2) ap, (1)
bi--+by

24 4
Brsnrnirg = Yy | ] an (Ii)-

by-by k=1

4 The case p=1

We now show that the solution with p = 1 reduces to that of Withers and Nadarajah (2023b), since
E; of (13) agrees with that given there by two methods, the second being (2.7) there. Withers and
Nadarajah (2023b) gave many examples. We now give some values of B; j = Bil’ ’]q.

Set 0,5 = I(r = s). Then e;; = 1, r; is any eigenvalue of F with right eigenvector a; € C9.
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j =ep g+ -+ e, q implies that
1

Bij= > ay (i1)ap, (ir),

i1 tig=i
Bij =0k ap, (1), Ba,j = 01 ap, (2) + 0g2 ap, (1)ap, (1),

2
B3 =0k aby (3) + 0k2 > ab, (1)an, (2) + Sk3 ap, (1)ap, (1)as, (1),
b1,b2

2
Buj = Okaap, (4) + 0k2 | Y an, (1)a,(3) + ap, (2)ap, (2)

b1,ba
3
+ Ok,3 Z Ay (l)abz(l)ab3 (2) + Ok.4 b, (l)abQ(l)abs(l)ab4<1)7
b1,b2,b3

and in general, Bil’ ’jq can be read off the expression for BZ{ ’jl tabled on page 309 of Comtet (1974).
By (16) and (17),

Copo = Z ap(L)ac(1) f (€bq + €cq) s

b<c
2
03,2 = Z Z ab(l)ac(Q) f (eb,q + ec,q) )
b<c | b,c
Cs3 = Z ap(1)ac(1)aq(1) f(enq + €cq + €aq) -
b<c<d

This gives C; ; needed in (13) for a(2), a(3).

5 Examples with p = ¢ =2, F' = (f(10), f(01))

Consider the case [i| = 2.

N1
as = (T%b — F) C2,2, (18)
-1
ap2 = (Tg - F) Co2,2, (19)
-1
ap = (7“17’2]2 - F) Ci1,2, (20)

where

Cao2 = afy 1 £(20) + afy o f (02) + a10,1010,2(11),
Coz2 = a%l,zf(zo) + agl,lf(02) + ao1,1a01,2f(11),
Chii,2 = 2a10,1001,1f(20) + (a10,1001,2 + ao1,1610,2) f(11) + 2a10,2a01,2f(02).

Consider the case |i| = 3.
-1
agy = (7‘?12 - F) (Cs02 + C30,3)

-1
a1 = (7“%?”212 - F) (Co12+ Co13), (21)
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where

Cs0,2 = 2a10,1a20,1.f (20) + (a10,1a20,2 + a10,2a20,1) f(11) + 2a10,2a20,2.f (02),
Cs0,3 = a1 f(30) + alO 2£(03) + afy 1ar02f(21) + aro1ag o f(12),

Co1,2 = 2a10,1011,1 £(20) + (ar0,1a11,2 + a11,1a01,2) f(11) + 2a10,2a11,2(02),
Co13 = 3a%071a01,1f(30) + (a%mam,g + 2a10,1a01,1a10,2) f(21)

+ (0%0,2%1,1 + 2a10,2a01,2a10,1) f(12) + 30%0,2%1,2]7(03)-

ap3 and a2 can be written down from asg and a9;.

Example 5.1 Tuke F(z) = (G(z1),2122), where F : C — C is analytic. For j = 0,1,..., set
gi = G.,; (w1) /4. Then F = (f(10), f(01)), where f(10) = (g1,w1)’, f(01) = (0,w1)". Other f(5)
are Oz except for f(11) = (0,1)", f(j10) = g5, (1,0)" for j1 > 2. The fized points w are given by
w1 = G (w1) and we = wiws, that is, w1 =1 or we = 0. The eigenvalues are 1y = g1 and ro = w;.

Consider the case wi # 1, wy = 0. Then ' = diag (91, w1) and we can take r1 = g1, ag = (1,0)’,
or rg = wy, ag = (0,1). That is, (1,0)" and (0,1) are right eigenvectors of F with respective
eigenvalues g1 and wy. For |i| = 2,3, a; are given by (18)-(21) with f(j) as above. A refined form
of this solution is given by Corollary 2.4 and Theorem 2.2 of Withers and Nadarajah (2023a): for
g1 #0 or 1, xny1 = G (x,) has a solution

Ty = w1 + Z 5191 agl s
where s1 = 1, and for i > 2, s; is given by the recurrence formula
i
si=U; 's; = Ni/Di, s; = ZBi,j(S) Vs
where
i
- -
Ui=g{"' =1, Di =[] Uj, v; =gl %g;,

j=2
Ny =v9, N3 = 21)% + Usvs, Ny = (7" + 5)1):2)’ + U2(3T + 5)1}21}3 + D3y,

and N5, Ng, s, ...,s¢ are given in Withers and Nadarajah (2023a) explicitly. An equivalent result
is given by Theorem 3.1 of Withers and Nadarajah (2022). Note that yn11 = Tpyy implies that

n—1
Yn = Yo H N
N=0

forn >1.

Consider the case w1 = 1, that is, G(1) = 1. Then wa is arbitrary. Examples of this are G(x) =
2, G(z) =14 bz + ) = b(1 + )%, G(z) = exp [—a(z —1)], G(z) = 1+ bIn[(z+¢)/(1+¢c)].

The eigenvalues are r =11 = g1 andr =19 = 1.
Consider the case w1 =1, r =r; = g1. A right eigenvector is (g1 — l,wg)/.

Consider the case w1 =1, r =1y = 1. A right eigenvector is (0,1)’.
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Example 5.2 Take F(z) = (204 c1, 2122 +¢2)'. So, w1 = wy + ¢1, wy = wiws + ca, w3 +
(c1 =D wa+ca =0, wy = (1 —c1 =+ 51/2) /2 = wa 1, w2 say, where § = (¢1 — 1)2 —deo, giving two
fized points w; = (wa; + c1,wa;) fori = 1,2. The non-zero f(j) are f(10) = (0,wq)’, f(01) =
(1,w1) and f(11) = (0,1)".

Example 5.3 An extension of the Mandelbrot equation z,.1 = 22 + ¢ to C? is
— 2 )
Tn41 = Yp + €2, Ynt1 = T, + C1,

that is,

2
z5 + c2
F(z)= ("%
(2) (z% =+ cl) ’

implying that

F' = (£(10), £(01)) =2 ( X 1152)

w1

and wy = w3 + co, wy = w2 + 1, wy — ¢y = (W4 1), w202 —wy + 2+ ¢y = 0. Its four
roots (and so the four fixed points w), can be computed by Section 3.8.8 of Abramowitz and Stegun

(1964). For a given fized point w, the eigenvalues are ri,ro = +2v, where v = (w1w2)1/2. The
non-zero f(j) are f(10) = 2wieh, f(01) = 2wael, f(20) =€, f(02) = ¢].

Example 5.4 An extension of the logistic map zp+1 = ¢z (1 — zy,) to C? is

Ip+1 = C1Tn (1 - yn) y Yn4+1 = C2Yn (1 - mn) )

that is,
. C121 (1 — 22)
F(Z) o <CQZQ (1 — Zl)> ’

implying

P-gon o= ("0 ()

with four fized points given by w; =0 or 1 — 02_1 and wo =0 or 1 — 01_1.

the roots of r> — rT + D, that is,

The eigenvalues of F are

1,7 = (T:l: 51/2) /2

thrace(F) =c (1 —wy)+ec2(1—wy),
§=T?—4D =2 (1 —wy)* + 2yc1ca + A (1 —w2)?, v = (14 wy) (1 +ws) — 2,
D:detF:clcg(l—wl—wg).

The only other non-zero f(j) is f(11) = (—c1,c2)’.
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Appendix

Take p = 2 and ¢ = 3. In this case, F' = (f(100), f(010), £(001)). By (16) and (17),

Choa = a1(10)2£(200) + az(10)2£(020) + a3(10)2£(002)

+a1(10)a2(10) £(110) + a1(10)as(10) f£(101) + a2(10)as(10) f(011),

Ci1.2 = 2a1(10)a1 (01) £(200) + 2as(10)az(01)£(020) + 2a3(10)az(01) £(002)

+ [a1(10)a2(01) + a2(10)a1 (01)] £(110) + [a1(10)asg(01) + a3(10)a; (01)] £(101)
+ [a2(10)as(01) 4+ a3(10)az(01)] £(011).

Similarly, we can obtain a(i) for |i| = 3.

Take p = ¢ = 3. In this case, F' = (f(100), f(010), f£(001)). We spell out C;j needed for a(i),
li| =2,3. If |i| = 2, by (16) and (17),

i = (200) : Cj o = a1(100)% £(200) 4 a3 (100)? £(020) + a3(100)? £(002)

+ a1(100)as(100) £(110) + a1(100)as(100) £(101) + as(100)as(100) £(011).

i=110: C; 5 = 2a1(100)ay(010) £(200) + 2a2(100)as(010) £(020)

+ 2a3(100)a3(010) £(002) + [a1(100)az(010) + az(100)a; (010)] £(110)

+ [a1(100)a3(010) + a3(100)a; (010)] £(101) + [a2(100)as(010) + as(100)az(010)] f(011).
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If |¢| = 3 then

i = (300): C;a = 2a1(100)ay(200) £(200) + 2as(100)as(200) f(020)

+ 2a3(100)a3(200) £(002) + [a1(100)as(200) + as(100)a; (200)] £(110)

+ [a1(100)a3(200) + a3 (100)a1 (200)] f(101)

+ [a2(100)a3(200) + as(100)az(200)] f(011).

i = (300): Cyis = a1(100)° £(300) + az(100)% £(030) 4+ a3(100)% £(003)

+ a1(100)2a3(100) £(210) + a1 (100)as(100)% £(120) + a1 (100)as5(100) £(201)

+ a1(100)a3(100)? £(102) + as(100)%a3(100) £(021) + az(100)as(100)? £(012)

+ a1 (100)az(100)as(100) £(111).

i = (210) : Cio = 2a1(200)a1(010) f(200) + 2a2(200)as(010) £(020)

+ 2a3(200)a3(010) f(002)

+ [a1(200)a2(010) + a1 (100)as(110) + a2(200)a1 (010) + as(100)aq (110)] f(110)

+ [a1(200)a3(010) + a1 (100)a3(110) + a3(200)a; (010) + a3(100)aq (110)] F£(101)

+ [a2(200)a3(010) + a2 (100)a3(110) + a3(200)as(010) + as3(100)as(110)] f£(011).

i=(210): C;3 = 3a1(100)%a;(010) £(300) + 3a2(100)%a2(010) f(030)

+ 3a3(100)%a3(010) £(003) + [a1(100)2a2(010) + 2a1(100)a2(100)a1(010)] £(210)

+ [al(loo)zag(ow) + 2a1(100)a3(100)a1(010)] f(201) + [a2(100)2a1(010) + 2a2(100)a1(100)a2(010)] £(120)

+ [a3(100)2a1(010) T 2a3(100)a1(100)a3(010)] £(102)

+ [a2(100)2a3(010) + 2a2(100)a3(100)a2(010)] £(021)

+ [a3(100)2a2(010) + 2a3(100)a2(100)a3(010)] £(012)

+ [a1(100)as(100)as(010) + as(100)as(100)aq (010) + as3(100)at (100)az (010)] fF(111).

i=(111): C;o = 2[a1(100)ay(011) + a1 (010)ay(101) + a1 (001)a1 (110)] £(200)

+ 2[a2(100)az(011) + a3 (010)az(101) + a3 (001)as(110)] £(020)

+ 2[a3(100)a3(011) + a3(010)as(101) + a3(001)as(110)] £(002)

+ [a1(100)as (011) + a3 (100)a1 (011) + a1 (010)az(101) + a3 (010)aq (101) + a1 (001)as(110) + a3 (001)a1 (110)] f(110)
+ [a1(100)as(011) + a3(100)a1 (011) + a1 (010)as3(101) + a3(010)aq (101) + a1 (001)as(110) + as(001)a1 (110)] f(101)
+ [a2(100)a3(011) + a3(100)as(011) + a2(010)as(101) + a3(010)as (101) + a(001)as(110) + a3(001)az(110)] F(011).
i=(111): C; 3 = 6a1(100)as (010)ai (001) £(300) + 6as(100)as(010)az(001) £(030) + 6a3(100)as(010)as(001) f£(003)
+ 2[a1(100)a1 (010)az (001) + a1 (100)a1 (001)az(010) + a1 (010)ay (001)asz(100)] £(210)

+ 2[a1 (100)a1 (010)as(001) + a1 (100)a; (001)az(010) + a1 (010)a1 (001)as(100)] f(201)

+ 2[a1(100)a3(010)as(001) + ay (100)asz(001)as(010) + a1 (010)as(001)asz(100)] £(102)

+ 2[a2(100)as(010)as(001) + az(100)as (001)as(010) + az(010)az (001)as(100)] f(021)

+ 2[a2(100)a3(010)as(001) + a(100)asz(001)as(010) + az(010)asz(001)asz(100)] £(012)

+ [a1(100)az(010)as(001) + a1 (100)as(010)as (001) + as(100)at (010)as(001) + az(100)as(010)at (001) + a3(100)a1 (010)as(001) + as(100)as(010)a; (001)] fF(111).
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