More solutions to vector nonlinear recurrence equations

by
Christopher S. Withers, Callaghan Innovation, Lower Hutt, New Zealand
email: kit.withers@gmail.com
Saralees Nadarajah, University of Manchester, Manchester M13 9PL, UK
email: mbbsssn2@manchester.ac.uk

Abstract

Let \mathcal{C} denote the complex numbers. Given a function $F(z): \mathcal{C}^{q} \rightarrow \mathcal{C}^{q}$, suppose that $w \in \mathcal{C}^{q}$ is a fixed point, that is, $F(w)=w$, and that $F(z)$ is analytic at w. Then for $1 \leq p \leq q$, the $q \times 1$ vector recurrence equation

$$
z_{n+1}=F\left(z_{n}\right)
$$

for $n=0,1,2, \ldots$ has a solution of the form

$$
z_{n}=z_{n}\left(w, \alpha r^{n}\right)=\sum_{i \in \mathcal{N}^{p}}^{\infty} a_{i}(w)\left(\alpha r^{n}\right)^{i},
$$

where $a_{0_{p}}(w)=w, 0_{p}=(0, \ldots, 0), \alpha \in \mathcal{C}^{p}$ is arbitrary,

$$
\left(\alpha r^{n}\right)^{i}=\prod_{k=1}^{p}\left(\alpha_{k} r_{k}^{n}\right)^{i_{k}}
$$

and r_{1}, \ldots, r_{p} are any distinct eigenvalues of $\dot{F}(w)$, where $\dot{F}(z)=d F(z) / z^{\prime} \in \mathcal{C}^{q \times q}$. The other $a_{i}(w)$ are given recursively using a new type of multivariate Bell polynomial.
Keywords: Bell polynomial; Logistic map; Mandelbrot equation

1 Introduction

We are not aware of any research on finding solutions for vector nonlinear recurrence equations. Withers and Nadarajah (2023b) was the first paper giving solutions for vector nonlinear recurrence equations. In this paper, we have provide extensions of results in Withers and Nadarajah (2023b).

Set $\mathcal{N}=\{0,1,2, \ldots\}$. Let \mathcal{R} and \mathcal{C} denote the real and complex numbers. Let $F(z): \mathcal{C}^{q} \rightarrow \mathcal{C}^{q}$ be a given function. Choose any w such that $w=F(w)$. Set $\dot{F}(z)=d F(z) / z^{\prime} \in \mathcal{C}^{q \times q}, \dot{F}=\dot{F}(w)$, and that $F(z)$ is analytic at w. Section 3 gives solutions to the general $q \times 1$ recurrence equation

$$
\begin{equation*}
z_{n+1}=F\left(z_{n}\right) \tag{1}
\end{equation*}
$$

for $n=0,1, \ldots$ when $\operatorname{det} \dot{F} \neq 0$.

Set $0_{p}=(0, \ldots, 0)$. Our solutions have the form

$$
\begin{align*}
& z_{n}=z_{n}\left(w, \alpha r^{n}\right)=\sum_{i}^{p} a_{i}\left(\alpha r^{n}\right)^{i}=w+d_{n}, 1 \leq p \leq q, \tag{2}\\
& d_{n}=\sum_{i=1}^{\prime p} a_{i}\left(\alpha r^{n}\right)^{i},\left(\alpha r^{n}\right)^{i}=\prod_{k=1}^{p}\left(\alpha_{k} r_{k}^{n}\right)^{i_{k}}, \tag{3}
\end{align*}
$$

where $a_{0_{p}}=w, \sum_{i}^{p}$ sums over $i=\left(i_{1}, \ldots, i_{p}\right) \in \mathcal{N}^{p}, \sum_{i}^{\prime p}$ excludes $i=0_{p}, r=\left(r_{1}, \ldots, r_{p}\right)$ are any distinct eigenvalues of $\dot{F}=\dot{F}(w), a_{i}=a_{i}(w) \in \mathcal{C}^{p}$ is given by a recurrence equation, and $\alpha \in \mathcal{C}^{p}$ is arbitrary. As p increases from 1 to q, this gives an increasingly rich class of solutions. The solutions for different p do not overlap.

Our main results are given in Section 3. Sections 4-5 and the appendix deal with the cases $p=1,(p, q)=(2,2),(2,3)$, and (3,3).

If the initial value z_{0} is given, the solution (2) works if

$$
z_{0}=\sum_{i}^{p} a_{i} \alpha^{i}
$$

for some α in \mathcal{C}^{p}. If $p=q$, this can be inverted to find α by multivariate Lagrange inversion if z_{0} is not too far from w. See, for example, Gessel (1987). If $q=1$, (2) can be simplified further: see Withers and Nadarajah (2022). The case $p=1$ was treated in Withers and Nadarajah (2023b): see Section 4. Note that $I \in \mathcal{N}, r_{k}^{I} \equiv 1$ implies $x_{n+I}=x_{n}$. For $j=\left(j_{1}, \ldots, j_{q}\right)$ any row vector in \mathcal{N}^{q}, set

$$
\begin{equation*}
j!=\prod_{i=1}^{q} j_{i}!, \quad \partial_{i}=\partial / \partial z_{j_{i}}, \quad F_{. j}(z)=\partial_{1}^{j_{1}} \cdots \partial_{q}^{j_{q}} F(z), f(j)=F_{. j}(w) / j! \tag{4}
\end{equation*}
$$

$F(z)$ and $f(j)$ are column vectors with k th components $F_{k}(z)$ and $f_{k}(j)$ for $1 \leq k \leq q$. The k th components of a_{i}, d_{n} and z_{n} of (2) are $a_{i, k}, d_{n, k}, z_{n, k}$. To minimise double subscripts we sometimes use

$$
\begin{equation*}
a(i)=a_{i}: \mathcal{N}^{p} \Rightarrow \mathcal{C}^{q}, a_{k}(i)=a_{i, k}: \mathcal{N}^{p} \Rightarrow \mathcal{C} \tag{5}
\end{equation*}
$$

2 A new type of Bell polynomial

Expressions for powers of a power series with coefficients $a_{i}: \mathcal{N} \rightarrow \mathcal{C}$ are given in terms of the partial ordinary Bell polynomial $\widehat{B}_{i, k}(a)$. These are defined in terms of

$$
S(x, a)=\sum_{i=1}^{\infty} a_{i} x^{i}
$$

for x in \mathcal{C} and $a=\left(a_{1}, a_{2}, \ldots\right)$ any sequence in \mathcal{C} by

$$
\begin{equation*}
S(x, a)^{j}=\sum_{i=j}^{\infty} x^{i} \widehat{B}_{i, j}(a) \tag{6}
\end{equation*}
$$

for $j=0,1, \ldots$. They are tabled on page 309 of Comtet (1974) for $i \leq 10$. We drop the hat and write $B_{i, j}(a)$ or $B_{i, j}^{1,1}(a)$ for his $\widehat{B}_{i, j}(a)$.

We now extend (6) to $x \in \mathcal{C}^{p}$ and $i \in \mathcal{N}^{p}$. Set $I(A)=1$ or 0 for $A=0$ true or false. For $x \in \mathcal{C}^{p}$ and $a=\left\{a_{i} \in \mathcal{C}: i \in \mathcal{N}^{p}\right\}$ excluding $i=0_{p}$, or with $a_{0_{p}}=0$, set

$$
x^{i}=\prod_{k=1}^{p} x_{k}^{i_{k}}, S^{p, 1}(x, a)=\sum_{i}^{p} a_{i} x^{i} \in \mathcal{C} .
$$

Define the $(p, 1)$-Bell polynomial $B_{i, j}^{p, 1}(a)$ on $a_{i}: \mathcal{N}^{p} \rightarrow \mathcal{C}$ by

$$
\begin{equation*}
S^{p, 1}(x, a)^{j}=\sum_{i}^{p} B_{i, j}^{p, 1}(a) x^{i} \tag{7}
\end{equation*}
$$

for $j=0,1, \ldots$. We now show that

$$
\begin{equation*}
B_{i, j}^{p, 1}(a)=0 \text { if } j>|i|=i_{1}+\cdots+i_{p} . \tag{8}
\end{equation*}
$$

To see this, take $p=2$ and set $B_{i}=B_{i, 3}^{p, 1}(a)$. Then

$$
\begin{aligned}
& S(x, a)=x_{1} a_{1,0}+x_{2} a_{0,1}+x_{1}^{2} a_{2,0}+x_{1} x_{2} a_{1,1}+x_{2}^{2} a_{0,2}+\cdots, \\
& S(x, a)^{3}=x_{1} B_{1,0}+x_{2} B_{0,1}+x_{1}^{2} B_{2,0}+x_{1} x_{2} B_{1,1}+x_{2}^{2} B_{0,2}+\cdots .
\end{aligned}
$$

So, $B_{i}=0$ for $|i|<3$. By (8), we can replace \sum_{i}^{p} in (7) by $\sum_{|i| \geq j}^{p}$. This form of multivariate Bell polynomial was introduced by Withers and Nadarajah (2010). See also Withers and Nadarajah (2013a, 2013b).

Now suppose that $a_{i} \in \mathcal{C}^{q}$, not \mathcal{C}, where again $i \in \mathcal{N}^{p}$ excluding $i=0_{p}$, or equivalently with $a_{i}=0_{q}$ for $i=0_{p}$. Then we can extend (7) to the (p, q)-Bell polynomial $B_{i, j}^{p, q}(a)$ on $a_{i}: \mathcal{N}^{p} \rightarrow \mathcal{C}^{q}$ by noting that for $j \in \mathcal{N}^{q}$

$$
S^{p, q}(x, a)=\sum_{i}^{p} a_{i} x^{i}
$$

implies

$$
\begin{equation*}
\left[S^{p, q}(x, a)\right]^{j}=\prod_{k=1}^{q}\left[S^{p, 1}\left(x, a_{. k}\right)\right]^{j_{k}}=\sum_{i}^{q} B_{i, j}^{p, q}(a) x^{i}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i, j}^{p, q}(a)=\sum_{i_{1}+\cdots+i_{q}=i}^{p} \prod_{k=1}^{q} B_{i_{k}, j_{k}}^{p, 1}\left(a_{. k}\right), a_{. k}=\left(a_{i, k}, i \in \mathcal{N}^{p}\right) . \tag{10}
\end{equation*}
$$

By (8), $j_{k} \leq\left|i_{k}\right|$ for $k=1, \ldots, q$ implies $|j|=j_{1}+\cdots+j_{q} \leq|i|$. So,

$$
B_{i, j}^{p, q}(a)=0 \text { if }|j|>|i| .
$$

So, \sum_{i}^{p} in (9) can be replaced by $\sum_{|i| \geq|j|}^{p}$. A recurrence equation for $B_{i, j}^{p, q}(a)$ is given in terms of $e_{k, q}$, the k th unit vector in \mathcal{N}^{q}, by

$$
B_{i, j+e_{k, q}}^{p, q}(a)=\left[\text { coefficient of } x^{i} \text { in } S^{p, q}(x, a)^{j} S^{p, 1}\left(x, a_{. k}\right)\right]=\sum_{i_{1}+i_{2}=i} B_{i_{1}, j}^{p, q}(a) a_{i_{2}, k}
$$

for $1 \leq k \leq p$ and $j \in \mathcal{N}^{q}$. For example,

$$
\begin{equation*}
B_{0_{p}, j}^{p, q}(a)=I\left(j=0_{q}\right), B_{i, 0_{p}}^{p, q}(a)=I\left(i=0_{p}\right), B_{i, e_{b, q}}^{p, q}(a)=a_{i, b} \tag{11}
\end{equation*}
$$

and $j=e_{b_{1}, q}+\cdots+e_{b_{k}, q}$ implies

$$
B_{i, j}^{p, q}(a)=\sum_{i_{1}+\cdots+i_{k}=i}^{p} a_{i_{1}, b_{1}} \cdots a_{i_{k}, b_{k}}
$$

$B_{i, j}^{p, q}(a)$ is a new type of Bell polynomial. A different type of multivariate Bell polynomial was used in Section 5 of Withers and Nadarajah (2012).

3 Main results

Let $e_{k, q}$ be the k th unit row vector in $\mathcal{N}^{1 \times q}$. Set $I_{q}=\operatorname{diag}(1, \ldots, 1) \in \mathcal{C}^{q \times q}$. Given $w=F(w)$, we seek a solution of (1) of the form (2). Define the order of a_{i} as $|i|=i_{1}+\cdots+i_{p}$. We now give a_{i} of order 1 , then a_{i} of order $|i| \geq 2$ in terms of a_{i} of lower order. We switch to the notation of (5). Set $B_{i, j}=B_{i, j}^{p, q}(a), a(i)=a_{i}, a_{k}(i)=a_{i, k}$.

Theorem 3.1 Let w be any solution of $F(w)=w$. Let F be analytic at w. Fix $p \in\{1,2, \ldots, q\}$. Let r_{1}, \ldots, r_{p} be any distinct eigenvalues of

$$
\dot{F}=\dot{F}(w)=\left(f\left(e_{1, q}\right), \ldots, f\left(e_{q, q}\right)\right)
$$

of (4). For $1 \leq k \leq p$, let $a\left(e_{k, p}\right)$ be a right eigenvector of \dot{F} with eigenvalue r_{k}. Assume that for $i \notin\left\{e_{1, p}, \ldots, e_{p, p}\right\}$,

$$
\begin{equation*}
r^{i}=\prod_{k=1}^{p} r_{k}^{i_{k}} \text { is not an eigenvalue of } \dot{F} \tag{12}
\end{equation*}
$$

Then for all $\alpha \in \mathcal{C}^{p}$, a solution of (1) is given by (2), where for $|i| \geq 2$,

$$
\begin{gathered}
a(i)=\left(r^{i} I_{q}-\dot{F}\right)^{-1} E_{i}, E_{i}=\sum_{2 \leq|j| \leq|i|}^{q} B_{i, j} f(j)=\sum_{k=2}^{|i|} C_{i, k}, \\
C_{i, k}=\sum_{b / k}\left[B_{i, j} f(j)\right] \\
\text { at } j=e_{b_{1}, q}+\cdots+e_{b_{k}, q},
\end{gathered}
$$

(12) implies that roots of 1 are not eigenvalues of \dot{F}. For, if $1^{1 / I}, r_{2}, \ldots, r_{p}$ are eigenvalues, then $1^{1 / I}=\left(1^{1 / I}\right)^{I+1} r_{2}^{0} \cdots r_{p}^{0}$ is not an eigenvalue.
Proof Note that

$$
d_{n, k}=S\left(\alpha r^{n}, a_{. k}\right)=\sum_{i}^{p} a_{i, k}\left(\alpha r^{n}\right)^{i}
$$

for $\left(\alpha r^{n}\right)^{i}$ of (3) and $a_{. k}$ of (10). The Taylor series expansion gives

$$
\begin{equation*}
z_{n+1}-w=d_{n+1}=F\left(z_{n}\right)-F(w)=\sum_{j}^{q} d_{n}^{j} f(j), \tag{14}
\end{equation*}
$$

where

$$
d_{n}^{j}=\prod_{k=1}^{q} d_{n, k}^{j_{k}}=\sum_{|i| \geq|j|} B_{i, j}\left(\alpha r^{n}\right)^{i}
$$

by (9). For $i \in \mathcal{N}^{p}$ the coefficient of $\left(\alpha r^{n}\right)^{i}$ in (14) is $r^{i} a(i)=C_{i}$, where

$$
\begin{equation*}
C_{i}=\sum_{|j| \leq|i|}^{q} B_{i, j} f(j)=\sum_{k=1}^{|i|} C_{i, k} . \tag{15}
\end{equation*}
$$

Consider the case $i=e_{m}$, where $1 \leq m \leq p$. By (11) and (15),

$$
r_{m} a\left(e_{m, p}\right)=C_{e_{m, p}}=\sum_{k=1}^{q} B_{e_{m, p}, e_{k, q}} f\left(e_{k, q}\right)=\sum_{k=1}^{q} a_{k}\left(e_{m, p}\right) f\left(e_{k, q}\right)=\dot{F} a\left(e_{m, p}\right) .
$$

So, for $m=1, \ldots, q, a\left(e_{m, p}\right)$ is a right eigenvector of \dot{F} with eigenvalue r_{m}. Now take $|i| \geq 2$. Then $C_{1, k}=\dot{F} a(i)$. So, (15) implies (13). The proof is complete.

We now illustrate how $B_{i, j}$ can be calculated as needed using the fact that $j=e_{b_{1}, q}+\cdots+e_{b_{k}, q}$ implies

$$
B_{i, j}=\sum_{i_{1}+\cdots+i_{k}=i}^{p} a_{b_{1}}\left(i_{1}\right) \cdots a_{b_{k}}\left(i_{k}\right) .
$$

For $|i|=r$, we write $i=I_{1}+\cdots+I_{r}$, where $I_{k}=e_{D_{k}, p}, 1 \leq D_{1} \cdots \leq D_{r} \leq p$.
Consider the case $|i|=2$. The partitions of 2 are 2 and 11. So, $a(i)=\left(r^{i} I_{q}-\dot{F}\right)^{-1} E_{2}$, where, for $j=e_{b, q}+e_{c, q}$,

$$
E_{2}=C_{i, 2}=\sum_{b \leq c} B_{i, j} f(j), B_{2 I_{1}, j}=a_{b}\left(I_{1}\right) a_{c}\left(I_{1}\right), B_{I_{1}+I_{2}, j}=\sum_{b, c}^{2} a_{b}\left(I_{1}\right) a_{c}\left(I_{2}\right),
$$

where

$$
\sum_{b, c}^{2} A_{b, c}=A_{b, c}+A_{c, b}
$$

For example, if $i=2 e_{1, p}, a(i)=\left(r_{1}^{2} I_{q}-\dot{F}\right)^{-1} C_{i, 2}$, where

$$
\begin{equation*}
C_{i, 2}=\sum_{1 \leq b \leq c \leq q} a_{b}\left(e_{1, p}\right) a_{c}\left(e_{1, p}\right) f\left(e_{b, q}+e_{c, q}\right) . \tag{16}
\end{equation*}
$$

If $i=e_{1, p}+e_{2, p}, a(i)=\left(r_{1} r_{2} I_{q}-\dot{F}\right)^{-1} C_{i, 2}$, where

$$
\begin{equation*}
C_{i, 2}=\sum_{1 \leq b \leq c \leq q}\left[\sum_{b, c}^{2} a_{b}\left(e_{1, p}\right) a_{c}\left(e_{2, p}\right)\right] f\left(e_{b, q}+e_{c, q}\right) . \tag{17}
\end{equation*}
$$

Consider the case $|i|=3$. The partitions of 3 are 3,21 and 111. So, $a(i)=\left(r^{i} I_{q}-\dot{F}\right)^{-1}\left(C_{i, 2}+C_{i, 3}\right)$, where, for $j=e_{b, q}+e_{c, q}$,

$$
\begin{aligned}
& C_{i, 2}=\sum_{b \leq c} B_{i, j} f(j), \\
& B_{3 I_{1}, j}=\sum_{b, c}^{2} a_{b}\left(I_{1}\right) a_{c}\left(2 I_{1}\right), B_{2 I_{1}+I_{2}, j}=\sum_{b, c}^{2}\left[a_{b}\left(2 I_{1}\right) a_{c}\left(I_{2}\right)+a_{b}\left(I_{1}\right) a_{c}\left(I_{1}+I_{2}\right)\right], \\
& B_{I_{1}+I_{2}+I_{3}, j}=\sum_{b, c}^{2} \sum_{1,2,3}^{3} a_{b}\left(I_{1}\right) a_{c}\left(I_{2}+I_{3}\right),
\end{aligned}
$$

and, for $j=e_{b, q}+e_{c, q}+e_{d, q}$,

$$
\begin{aligned}
& C_{i, 3}=\sum_{b \leq c \leq d} B_{i, j} f(j), B_{3 I_{1}, j}=a_{b}\left(I_{1}\right) a_{c}\left(I_{1}\right) a_{d}\left(I_{1}\right), \\
& B_{2 I_{1}+I_{2}, j}=\sum_{b, c, d}^{3} a_{b}\left(I_{1}\right) a_{c}\left(I_{1}\right) a_{d}\left(I_{2}\right), B_{I_{1}+I_{2}+I_{3}, j}=\sum_{b, c, d}^{6} a_{b}\left(I_{1}\right) a_{c}\left(I_{2}\right) a_{d}\left(I_{3}\right),
\end{aligned}
$$

and $\sum_{b, c, d}^{N}$ sums over all permutations of b, c, d giving N distinct terms. N is the multinomial coefficient.

Consider the case $|i|=4$. The partitions of 4 are $4,31,22,211$ and 1111. So, $a(i)=\left(r^{i} I_{q}-\dot{F}\right)^{-1} \sum_{k=2}^{4} C_{i, k}$, where, for $j=e_{b, q}+e_{c, q}$,

$$
\begin{aligned}
& C_{i, 2}=\sum_{b \leq c} B_{i, j} f(j), \\
& B_{4 I_{1}, j}=\sum_{b, c}^{2} a_{b}\left(I_{1}\right) a_{c}\left(3 I_{1}\right)+a_{b}\left(2 I_{1}\right) a_{c}\left(2 I_{1}\right), \\
& B_{3 I_{1}+I_{2}, j}=\sum_{b, c}^{2}\left[a_{b}\left(3 I_{1}\right) a_{c}\left(I_{2}\right)+a_{b}\left(2 I_{1}\right) a_{c}\left(I_{1}+I_{2}\right)+a_{b}\left(I_{1}\right) a_{c}\left(I_{1}+I_{2}\right)\right], \\
& B_{2 I_{1}+2 I_{2}, j}=\sum_{b, c}^{2}\left[a_{b}\left(2 I_{1}+I_{2}\right) a_{c}\left(I_{2}\right)+a_{b}\left(2 I_{1}\right) a_{c}\left(2 I_{2}\right)+a_{b}\left(I_{1}\right) a_{c}\left(I_{1}+2 I_{2}\right)\right], \\
& B_{2 I_{1}+I_{2}+I_{3}, j}=\sum_{b, c}^{2}\left[a_{b}\left(2 I_{1}\right) a_{c}\left(I_{2}+I_{3}\right)+\sum_{1,2,3}^{6} a_{b}\left(2 I_{1}+I_{2}\right) a_{c}\left(I_{3}\right)\right], \\
& B_{I_{1}+I_{2}+I_{3}+I_{4}, j}=\sum_{b, c}^{2}\left[\sum_{1,2,3}^{4} a_{b}\left(I_{1}\right) a_{c}\left(I_{2}+I_{3}+I_{4}\right)+\sum_{1,2,3}^{6} a_{b}\left(I_{1}+I_{2}\right) a_{c}\left(I_{3}+I_{4}\right)\right],
\end{aligned}
$$

and, for $j=e_{b, q}+e_{c, q}+e_{d, q}$,

$$
\begin{aligned}
& C_{i, 3}=\sum_{b \leq c \leq d} B_{i, j} f(j), B_{4 I_{1}, j}=\sum_{b, c, d}^{3} a_{b}\left(2 I_{1}\right) a_{c}\left(I_{1}\right) a_{d}\left(I_{1}\right), \\
& B_{3 I_{1}+I_{2}, j}=\sum_{b, c, d}^{6} a_{b}\left(2 I_{1}\right) a_{c}\left(I_{1}\right) a_{d}\left(I_{2}\right), \\
& B_{2 I_{1}+2 I_{2}, j}=\sum_{b, c, d}^{3}\left[a_{b}\left(2 I_{1}\right) a_{c}\left(I_{2}\right) a_{d}\left(I_{2}\right)+a_{b}\left(I_{1}\right) a_{c}\left(I_{1}\right) a_{d}\left(2 I_{2}\right)\right], \\
& B_{2 I_{1}+I_{2}+I_{3}, j}=\sum_{b, c, d}^{6}\left[a_{b}\left(2 I_{1}\right) a_{c}\left(I_{2}\right) a_{d}\left(I_{3}\right)+a_{b}\left(I_{1}\right) a_{c}\left(I_{1}+I_{2}\right) a_{d}\left(I_{3}\right)\right], \\
& B_{I_{1}+I_{2}+I_{3}+I_{4}, j}=\sum_{b, c, d}^{12}\left[a_{b}\left(I_{1}+I_{2}\right) a_{c}\left(I_{3}\right) a_{d}\left(I_{4}\right)\right],
\end{aligned}
$$

and, for $j=e_{b_{1}}+e_{b_{2}}+e_{b_{3}}+e_{b_{4}}$,

$$
\begin{aligned}
& C_{i, 4}=\sum_{b_{1} \leq \cdots \leq b_{4}} B_{i, j} f(j), B_{4 I_{1}, j}=\prod_{k=1}^{4} a_{b_{k}}\left(I_{k}\right), \\
& B_{3 I_{1}+I_{2}, j}=\sum_{b_{1} \cdots b_{4}}^{6} a_{b_{1}}\left(I_{1}\right) a_{b_{2}}\left(I_{1}\right) a_{b_{3}}\left(I_{1}\right) a_{b_{4}}\left(I_{2}\right), \\
& B_{2 I_{1}+2 I_{2}, j}=\sum_{b_{1} \cdots b_{4}}^{6} a_{b_{1}}\left(I_{1}\right) a_{b_{2}}\left(I_{1}\right) a_{b_{3}}\left(I_{2}\right) a_{b_{4}}\left(I_{2}\right), \\
& B_{2 I_{1}+I_{2}+I_{3}, j}=\sum_{b_{1} \cdots b_{4}}^{12} a_{b_{1}}\left(I_{1}\right) a_{b_{2}}\left(I_{1}\right) a_{b_{3}}\left(I_{2}\right) a_{b_{4}}\left(I_{3}\right), \\
& B_{I_{1}+I_{2}+I_{3}+I_{4}, j}=\sum_{b_{1} \cdots b_{4}}^{24} \prod_{k=1}^{4} a_{b_{k}}\left(I_{k}\right) .
\end{aligned}
$$

4 The case $p=1$

We now show that the solution with $p=1$ reduces to that of Withers and Nadarajah (2023b), since E_{i} of (13) agrees with that given there by two methods, the second being (2.7) there. Withers and Nadarajah (2023b) gave many examples. We now give some values of $B_{i, j}=B_{i, j}^{1, q}$.

Set $\delta_{r, s}=I(r=s)$. Then $e_{1,1}=1, r_{1}$ is any eigenvalue of \dot{F} with right eigenvector $a_{1} \in \mathcal{C}^{q}$.
$j=e_{b_{1}, q}+\cdots+e_{b_{k}, q}$ implies that

$$
\begin{aligned}
& B_{i, j}=\sum_{i_{1}+\cdots+i_{k}=i}^{1} a_{b_{1}}\left(i_{1}\right) \cdots a_{b_{k}}\left(i_{k}\right), \\
& B_{1, j}=\delta_{k, 1} a_{b_{1}}(1), B_{2, j}=\delta_{k, 1} a_{b_{1}}(2)+\delta_{k, 2} a_{b_{1}}(1) a_{b_{2}}(1), \\
& B_{3, j}=\delta_{k, 1} a_{b_{1}}(3)+\delta_{k, 2} \sum_{b_{1}, b_{2}}^{2} a_{b_{1}}(1) a_{b_{2}}(2)+\delta_{k, 3} a_{b_{1}}(1) a_{b_{2}}(1) a_{b_{3}}(1), \\
& B_{4, j}=\delta_{k, 1} a_{b_{1}}(4)+\delta_{k, 2}\left[\sum_{b_{1}, b_{2}}^{2} a_{b_{1}}(1) a_{b_{2}}(3)+a_{b_{1}}(2) a_{b_{2}}(2)\right] \\
&+\delta_{k, 3} \sum_{b_{1}, b_{2}, b_{3}}^{3} a_{b_{1}}(1) a_{b_{2}}(1) a_{b_{3}}(2)+\delta_{k, 4} a_{b_{1}}(1) a_{b_{2}}(1) a_{b_{3}}(1) a_{b_{4}}(1),
\end{aligned}
$$

and in general, $B_{i, j}^{1, q}$ can be read off the expression for $B_{i, j}^{1,1}$ tabled on page 309 of Comtet (1974). By (16) and (17),

$$
\begin{aligned}
C_{2,2} & =\sum_{b \leq c} a_{b}(1) a_{c}(1) f\left(e_{b, q}+e_{c, q}\right), \\
C_{3,2} & =\sum_{b \leq c}\left[\sum_{b, c}^{2} a_{b}(1) a_{c}(2)\right] f\left(e_{b, q}+e_{c, q}\right), \\
C_{3,3} & =\sum_{b \leq c \leq d} a_{b}(1) a_{c}(1) a_{d}(1) f\left(e_{b, q}+e_{c, q}+e_{d, q}\right) .
\end{aligned}
$$

This gives $C_{i, k}$ needed in (13) for $a(2), a(3)$.

5 Examples with $p=q=2, \dot{F}=(f(10), f(01))$

Consider the case $|i|=2$.

$$
\begin{align*}
& a_{20}=\left(r_{1}^{2} I_{2}-\dot{F}\right)^{-1} C_{20,2}, \tag{18}\\
& a_{02}=\left(r_{2}^{2}-\dot{F}\right)^{-1} C_{02,2}, \tag{19}\\
& a_{11}=\left(r_{1} r_{2} I_{2}-\dot{F}\right)^{-1} C_{11,2}, \tag{20}
\end{align*}
$$

where

$$
\begin{aligned}
& C_{20,2}=a_{10,1}^{2} f(20)+a_{10,2}^{2} f(02)+a_{10,1} a_{10,2} f(11), \\
& C_{02,2}=a_{01,2}^{2} f(20)+a_{01,1}^{2} f(02)+a_{01,1} a_{01,2} f(11), \\
& C_{11,2}=2 a_{10,1} a_{01,1} f(20)+\left(a_{10,1} a_{01,2}+a_{01,1} a_{10,2}\right) f(11)+2 a_{10,2} a_{01,2} f(02) .
\end{aligned}
$$

Consider the case $|i|=3$.

$$
\begin{align*}
& a_{30}=\left(r_{1}^{3} I_{2}-\dot{F}\right)^{-1}\left(C_{30,2}+C_{30,3}\right), \\
& a_{21}=\left(r_{1}^{2} r_{2} I_{2}-\dot{F}\right)^{-1}\left(C_{21,2}+C_{21,3}\right), \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& C_{30,2}=2 a_{10,1} a_{20,1} f(20)+\left(a_{10,1} a_{20,2}+a_{10,2} a_{20,1}\right) f(11)+2 a_{10,2} a_{20,2} f(02), \\
& C_{30,3}=a_{10,1}^{3} f(30)+a_{10,2}^{3} f(03)+a_{10,1}^{2} a_{10,2} f(21)+a_{10,1} a_{10,2}^{2} f(12), \\
& C_{21,2}=2 a_{10,1} a_{11,1} f(20)+\left(a_{10,1} a_{11,2}+a_{11,1} a_{01,2}\right) f(11)+2 a_{10,2} a_{11,2} f(02), \\
& C_{21,3}=3 a_{10,1}^{2} a_{01,1} f(30)+\left(a_{10,1}^{2} a_{01,2}+2 a_{10,1} a_{01,1} a_{10,2}\right) f(21) \\
& +\left(a_{10,2}^{2} a_{01,1}+2 a_{10,2} a_{01,2} a_{10,1}\right) f(12)+3 a_{10,2}^{2} a_{01,2} f(03) .
\end{aligned}
$$

a_{03} and a_{12} can be written down from a_{30} and a_{21}.
Example 5.1 Take $F(z)=\left(G\left(z_{1}\right), z_{1} z_{2}\right)^{\prime}$, where $\dot{F}: \mathcal{C} \rightarrow \mathcal{C}$ is analytic. For $j=0,1, \ldots$, set $g_{j}=G_{. j}\left(w_{1}\right) / j$!. Then $\dot{F}=(f(10), f(01))$, where $f(10)=\left(g_{1}, w_{1}\right)^{\prime}, f(01)=\left(0, w_{1}\right)^{\prime}$. Other $f(j)$ are 0_{2} except for $f(11)=(0,1)^{\prime}, f\left(j_{1} 0\right)=g_{j_{1}}(1,0)^{\prime}$ for $j_{1} \geq 2$. The fixed points w are given by $w_{1}=G\left(w_{1}\right)$ and $w_{2}=w_{1} w_{2}$, that is, $w_{1}=1$ or $w_{2}=0$. The eigenvalues are $r_{1}=g_{1}$ and $r_{2}=w_{1}$.

Consider the case $w_{1} \neq 1, w_{2}=0$. Then $\dot{F}=\operatorname{diag}\left(g_{1}, w_{1}\right)$ and we can take $r_{1}=g_{1}, a_{0}=(1,0)^{\prime}$, or $r_{2}=w_{1}, a_{0}=(0,1)^{\prime}$. That is, $(1,0)^{\prime}$ and $(0,1)^{\prime}$ are right eigenvectors of \dot{F} with respective eigenvalues g_{1} and w_{1}. For $|i|=2,3, a_{i}$ are given by (18)-(21) with $f(j)$ as above. A refined form of this solution is given by Corollary 2.4 and Theorem 2.2 of Withers and Nadarajah (2023a): for $g_{1} \neq 0$ or $1, x_{n+1}=G\left(x_{n}\right)$ has a solution

$$
x_{n}=w_{1}+\sum_{i=1}^{\infty} s_{i} g_{1}^{1-i}\left(\alpha g_{1}^{n}\right)^{i},
$$

where $s_{1}=1$, and for $i \geq 2, s_{i}$ is given by the recurrence formula

$$
s_{i}=U_{i}^{-1} s_{i}^{\prime}=N_{i} / D_{i}, s_{i}^{\prime}=\sum_{j=2}^{i} \widehat{B}_{i, j}(s) v_{j},
$$

where

$$
\begin{aligned}
& U_{i}=g_{1}^{i-1}-1, \quad D_{i}=\prod_{j=2}^{i} U_{j}, v_{j}=g_{1}^{j-2} g_{j}, \\
& N_{2}=v_{2}, \quad N_{3}=2 v_{2}^{2}+U_{2} v_{3}, \quad N_{4}=(r+5) v_{2}^{3}+U_{2}(3 r+5) v_{2} v_{3}+D_{3} v_{4}
\end{aligned}
$$

and $N_{5}, N_{6}, s_{2}, \ldots, s_{6}$ are given in Withers and Nadarajah (2023a) explicitly. An equivalent result is given by Theorem 3.1 of Withers and Nadarajah (2022). Note that $y_{n+1}=x_{n} y_{n}$ implies that

$$
y_{n}=y_{0} \prod_{N=0}^{n-1} x_{N}
$$

for $n \geq 1$.
Consider the case $w_{1}=1$, that is, $G(1)=1$. Then w_{2} is arbitrary. Examples of this are $G(x)=$ $x^{d}, G(x)=1+b(x+c)^{d}-b(1+c)^{d}, G(x)=\exp \left[-a(x-1)^{d}\right], G(x)=1+b \ln [(x+c) /(1+c)]$. The eigenvalues are $r=r_{1}=g_{1}$ and $r=r_{2}=1$.

Consider the case $w_{1}=1, r=r_{1}=g_{1}$. A right eigenvector is $\left(g_{1}-1, w_{2}\right)^{\prime}$.
Consider the case $w_{1}=1, r=r_{2}=1$. A right eigenvector is $(0,1)^{\prime}$.

Example 5.2 Take $F(z)=\left(z_{2}+c_{1}, z_{1} z_{2}+c_{2}\right)^{\prime}$. So, $w_{1}=w_{2}+c_{1}$, $w_{2}=w_{1} w_{2}+c_{2}$, $w_{2}^{2}+$ $\left(c_{1}-1\right) w_{2}+c_{2}=0, w_{2}=\left(1-c_{1} \pm \delta^{1 / 2}\right) / 2=w_{2,1}, w_{2,2}$ say, where $\delta=\left(c_{1}-1\right)^{2}-4 c_{2}$, giving two fixed points $w_{i}=\left(w_{2, i}+c_{1}, w_{2, i}\right)^{\prime}$ for $i=1,2$. The non-zero $f(j)$ are $f(10)=\left(0, w_{2}\right)^{\prime}, f(01)=$ $\left(1, w_{1}\right)^{\prime}$ and $f(11)=(0,1)^{\prime}$.

Example 5.3 An extension of the Mandelbrot equation $z_{n+1}=z_{n}^{2}+c$ to \mathcal{C}^{2} is

$$
x_{n+1}=y_{n}^{2}+c_{2}, y_{n+1}=x_{n}^{2}+c_{1}
$$

that is,

$$
F(z)=\binom{z_{2}^{2}+c_{2}}{z_{1}^{2}+c_{1}}
$$

implying that

$$
\dot{F}=(f(10), f(01))=2\left(\begin{array}{cc}
0 & w_{2} \\
w_{1} & 0
\end{array}\right)
$$

and $w_{1}=w_{2}^{2}+c_{2}$, $w_{2}=w_{1}^{2}+c_{1}, w_{1}-c_{2}=\left(w_{1}^{2}+c_{1}\right)^{2}, w_{1}^{4}+2 c_{1} w_{1}^{2}-w_{1}+c_{1}^{2}+c_{2}=0$. Its four roots (and so the four fixed points w), can be computed by Section 3.8.3 of Abramowitz and Stegun (1964). For a given fixed point w, the eigenvalues are $r_{1}, r_{2}= \pm 2 \nu$, where $\nu=\left(w_{1} w_{2}\right)^{1 / 2}$. The non-zero $f(j)$ are $f(10)=2 w_{1} e_{2}^{\prime}, f(01)=2 w_{2} e_{1}^{\prime}, f(20)=e_{2}^{\prime}, f(02)=e_{1}^{\prime}$.

Example 5.4 An extension of the logistic map $z_{n+1}=c z_{n}\left(1-z_{n}\right)$ to \mathcal{C}^{2} is

$$
x_{n+1}=c_{1} x_{n}\left(1-y_{n}\right), y_{n+1}=c_{2} y_{n}\left(1-x_{n}\right),
$$

that is,

$$
F(z)=\binom{c_{1} z_{1}\left(1-z_{2}\right)}{c_{2} z_{2}\left(1-z_{1}\right)}
$$

implying

$$
\dot{F}=(f(10), f(01))=\left(\begin{array}{cc}
c_{1}\left(1-w_{2}\right) & -c_{1} w_{1} \\
-c_{2} w_{2} & c_{2}\left(1-w_{1}\right)
\end{array}\right)
$$

with four fixed points given by $w_{1}=0$ or $1-c_{2}^{-1}$ and $w_{2}=0$ or $1-c_{1}^{-1}$. The eigenvalues of \dot{F} are the roots of $r^{2}-r T+D$, that is,

$$
r_{1}, r_{2}=\left(T \pm \delta^{1 / 2}\right) / 2
$$

for

$$
\begin{aligned}
& T=\operatorname{trace}(\dot{F})=c_{1}\left(1-w_{2}\right)+c_{2}\left(1-w_{1}\right), \\
& \delta=T^{2}-4 D=c_{1}^{2}\left(1-w_{2}\right)^{2}+2 \gamma c_{1} c_{2}+c_{2}^{2}\left(1-w_{2}\right)^{2}, \gamma=\left(1+w_{1}\right)\left(1+w_{2}\right)-2, \\
& D=\operatorname{det} \dot{F}=c_{1} c_{2}\left(1-w_{1}-w_{2}\right) .
\end{aligned}
$$

The only other non-zero $f(j)$ is $f(11)=\left(-c_{1}, c_{2}\right)^{\prime}$.

References

[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions. U.S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series volume 55.
[2] Comtet, L. (1974). Advanced Combinatorics. Reidel, Dordrecht.
[3] Gessel, I. M. (1987). A combinatorial proof of the multivariable lagrange inversion formula. Journal Combinatorial Theory, A, 45, 178-195.
[4] Withers, C. S. and Nadarajah, S. (2010). Multivariate Bell polynomials. International Journal of Computer Mathematics, 87, 2607-2611.
[5] Withers, C. S. and Nadarajah, S. (2012). Moments and cumulants for the complex Wishart. Journal of Multivariate Analysis, 112, 242-247.
[6] Withers, C. S. and Nadarajah, S. (2013a). Relations between multivariate moments and cumulants via Bell polynomials. Utilitas Mathematica, 91, 365-376.
[7] Withers, C. S. and Nadarajah, S. (2013b). Multivariate Bell polynomials, series, chain rules, moments and inversion. Utilitas Mathematica.
[8] Withers, C. S. and Nadarajah, S. (2022). Solutions to nonlinear recurrence equations. Rocky Mountain Journal of Mathematics, 52, 2153-2163.
[9] Withers, C. S. and Nadarajah, S. (2023a). More solutions to nonlinear recurrence equations. Rocky Mountain Journal of Mathematics, 53, 579-587.
[10] Withers, C. S. and Nadarajah, S. (2023b). Some solutions to vector nonlinear recurrence equations. Rocky Mountain Journal of Mathematics, in press.

Appendix

Take $p=2$ and $q=3$. In this case, $\dot{F}=(f(100), f(010), f(001))$. By (16) and (17),

$$
\begin{aligned}
& C_{20,2}=a_{1}(10)^{2} f(200)+a_{2}(10)^{2} f(020)+a_{3}(10)^{2} f(002) \\
& +a_{1}(10) a_{2}(10) f(110)+a_{1}(10) a_{3}(10) f(101)+a_{2}(10) a_{3}(10) f(011), \\
& C_{11,2}=2 a_{1}(10) a_{1}(01) f(200)+2 a_{2}(10) a_{2}(01) f(020)+2 a_{3}(10) a_{3}(01) f(002) \\
& +\left[a_{1}(10) a_{2}(01)+a_{2}(10) a_{1}(01)\right] f(110)+\left[a_{1}(10) a_{3}(01)+a_{3}(10) a_{1}(01)\right] f(101) \\
& +\left[a_{2}(10) a_{3}(01)+a_{3}(10) a_{2}(01)\right] f(011) .
\end{aligned}
$$

Similarly, we can obtain $a(i)$ for $|i|=3$.
Take $p=q=3$. In this case, $\dot{F}=(f(100), f(010), f(001))$. We spell out $C_{i, k}$ needed for $a(i)$, $|i|=2,3$. If $|i|=2$, by (16) and (17),

$$
\begin{aligned}
& i=(200): C_{i, 2}=a_{1}(100)^{2} f(200)+a_{2}(100)^{2} f(020)+a_{3}(100)^{2} f(002) \\
& +a_{1}(100) a_{2}(100) f(110)+a_{1}(100) a_{3}(100) f(101)+a_{2}(100) a_{3}(100) f(011) \\
& i=110: C_{i, 2}=2 a_{1}(100) a_{1}(010) f(200)+2 a_{2}(100) a_{2}(010) f(020) \\
& +2 a_{3}(100) a_{3}(010) f(002)+\left[a_{1}(100) a_{2}(010)+a_{2}(100) a_{1}(010)\right] f(110) \\
& +\left[a_{1}(100) a_{3}(010)+a_{3}(100) a_{1}(010)\right] f(101)+\left[a_{2}(100) a_{3}(010)+a_{3}(100) a_{2}(010)\right] f(011)
\end{aligned}
$$

$$
\begin{aligned}
& \text { If }|i|=3 \text { then } \\
& i=(300): C_{i, 2}=2 a_{1}(100) a_{1}(200) f(200)+2 a_{2}(100) a_{2}(200) f(020) \\
& +2 a_{3}(100) a_{3}(200) f(002)+\left[a_{1}(100) a_{2}(200)+a_{2}(100) a_{1}(200)\right] f(110) \\
& +\left[a_{1}(100) a_{3}(200)+a_{3}(100) a_{1}(200)\right] f(101) \\
& +\left[a_{2}(100) a_{3}(200)+a_{3}(100) a_{2}(200)\right] f(011) \\
& i=(300): C_{i 2}=a_{1}(100)^{3} f(300)+a_{2}(100)^{3} f(030)+a_{3}(100)^{3} f(003) \\
& +a_{1}(100)^{2} a_{2}(100) f(210)+a_{1}(100) a_{2}(100)^{2} f(120)+a_{1}(100)^{2} a_{3}(100) f(201) \\
& +a_{1}(100) a_{3}(100)^{2} f(102)+a_{2}(100)^{2} a_{3}(100) f(021)+a_{2}(100) a_{3}(100)^{2} f(012) \\
& +a_{1}(100) a_{2}(100) a_{3}(100) f(111) \\
& i=(210): C_{i 2}=2 a_{1}(200) a_{1}(010) f(200)+2 a_{2}(200) a_{2}(010) f(020) \\
& +2 a_{3}(200) a_{3}(010) f(002) \\
& +\left[a_{1}(200) a_{2}(010)+a_{1}(100) a_{2}(110)+a_{2}(200) a_{1}(010)+a_{2}(100) a_{1}(110)\right] f(110) \\
& +\left[a_{1}(200) a_{3}(010)+a_{1}(100) a_{3}(110)+a_{3}(200) a_{1}(010)+a_{3}(100) a_{1}(110)\right] f(101) \\
& +\left[a_{2}(200) a_{3}(010)+a_{2}(100) a_{3}(110)+a_{3}(200) a_{2}(010)+a_{3}(100) a_{2}(110)\right] f(011) . \\
& i=(210): C_{i, 3}=3 a_{1}(100)^{2} a_{1}(010) f(300)+3 a_{2}(100)^{2} a_{2}(010) f(030) \\
& +3 a_{3}(100)^{2} a_{3}(010) f(003)+\left[a_{1}(100)^{2} a_{2}(010)+2 a_{1}(100) a_{2}(100) a_{1}(010)\right] f(210) \\
& +\left[a_{1}(100)^{2} a_{3}(010)+2 a_{1}(100) a_{3}(100) a_{1}(010)\right] f(201)+\left[a_{2}(100)^{2} a_{1}(010)+2 a_{2}(100) a_{1}(100) a_{2}(010)\right] f(120) \\
& +\left[a_{3}(100)^{2} a_{1}(010)+2 a_{3}(100) a_{1}(100) a_{3}(010)\right] f(102) \\
& +\left[a_{2}(100)^{2} a_{3}(010)+2 a_{2}(100) a_{3}(100) a_{2}(010)\right] f(021) \\
& +\left[a_{3}(100)^{2} a_{2}(010)+2 a_{3}(100) a_{2}(100) a_{3}(010)\right] f(012) \\
& +\left[a_{1}(100) a_{2}(100) a_{3}(010)+a_{2}(100) a_{3}(100) a_{1}(010)+a_{3}(100) a_{1}(100) a_{2}(010)\right] f(111) . \\
& i=(111): C_{i, 2}=2\left[a_{1}(100) a_{1}(011)+a_{1}(010) a_{1}(101)+a_{1}(001) a_{1}(110)\right] f(200) \\
& +2\left[a_{2}(100) a_{2}(011)+a_{2}(010) a_{2}(101)+a_{2}(001) a_{2}(110)\right] f(020) \\
& +2\left[a_{3}(100) a_{3}(011)+a_{3}(010) a_{3}(101)+a_{3}(001) a_{3}(110)\right] f(002) \\
& +\left[a_{1}(100) a_{2}(011)+a_{2}(100) a_{1}(011)+a_{1}(010) a_{2}(101)+a_{2}(010) a_{1}(101)+a_{1}(001) a_{2}(110)+a_{2}(001) a_{1}(110)\right] f(110) \\
& +\left[a_{1}(100) a_{3}(011)+a_{3}(100) a_{1}(011)+a_{1}(010) a_{3}(101)+a_{3}(010) a_{1}(101)+a_{1}(001) a_{3}(110)+a_{3}(001) a_{1}(110)\right] f(101) \\
& +\left[a_{2}(100) a_{3}(011)+a_{3}(100) a_{2}(011)+a_{2}(010) a_{3}(101)+a_{3}(010) a_{2}(101)+a_{2}(001) a_{3}(110)+a_{3}(001) a_{2}(110)\right] f(011) . \\
& i=(111): C_{i, 3}=6 a_{1}(100) a_{1}(010) a_{1}(001) f(300)+6 a_{2}(100) a_{2}(010) a_{3}(001) f(030)+6 a_{3}(100) a_{3}(010) a_{3}(001) f(003) \\
& +2\left[a_{1}(100) a_{1}(010) a_{2}(001)+a_{1}(100) a_{1}(001) a_{2}(010)+a_{1}(010) a_{1}(001) a_{2}(100)\right] f(210) \\
& +2\left[a_{1}(100) a_{1}(010) a_{3}(001)+a_{1}(100) a_{1}(001) a_{3}(010)+a_{1}(010) a_{1}(001) a_{3}(100)\right] f(201) \\
& +2\left[a_{1}(100) a_{3}(010) a_{3}(001)+a_{1}(100) a_{3}(001) a_{3}(010)+a_{1}(010) a_{3}(001) a_{3}(100)\right] f(102) \\
& +2\left[a_{2}(100) a_{2}(010) a_{3}(001)+a_{2}(100) a_{2}(001) a_{3}(010)+a_{2}(010) a_{2}(001) a_{3}(100)\right] f(021) \\
& +2\left[a_{2}(100) a_{3}(010) a_{3}(001)+a_{2}(100) a_{3}(001) a_{3}(010)+a_{2}(010) a_{3}(001) a_{3}(100)\right] f(012)
\end{aligned}
$$

