ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

(2 + 1)

https://doi.org/rmj.YEAR..PAGE

GLOBAL STRONG SOLUTIONS TO THE 3D COMPRESSIBLE NAVIER-STOKES-KORTEWEG EQUATIONS WITH LARGE INITIAL DATA

YANGHAI YU, ZHAOYANG QIU, AND WEIJIE TANG

ABSTRACT. In this paper, we consider the Cauchy problem for the compressible Navier-Stokes-Korteweg equations in \mathbb{R}^3 and construct the global strong solutions to the equations with a class of large initial data satisfying some special conditions.

1. Introduction

¹⁵ In this paper, we investigate the Cauchy problem for the Navier–Stokes–Korteweg (NSK for short) 16 system which was first rigorously derived by Dunn–Serrin in [11]. From a physical viewpoint, it 17 allows to describe the motion of compressible fluids with capillarity effect of material [1, 3, 12]. The conservation of mass and of momentum writes: 18

19 20

(1.1)

14

21 22 23

24

29

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) - \operatorname{div}(2\mu(\rho)\mathbb{D}u) - \nabla(\lambda(\rho)\operatorname{div}u) + \nabla P(\rho) = \operatorname{div}\mathbb{K}, \\ (u, \rho)|_{t=0} = (u_0, \rho_0), \\ \lim_{|x| \to \infty} (u(t, x), \rho(t, x)) = (0, 1). \end{cases}$$

Here $u = u(t,x) = (u_1(t,x), u_2(t,x), u_3(t,x)) \in \mathbb{R}^3$ denotes the velocity field and $\rho = \rho(t,x) \in \mathbb{R}^+$ $\overline{26}$ is the density. The density-dependent functions $\mu(\rho)$ and $\lambda(\rho)$ (the shear and bulk viscosity coeffi-27 cients of the flow) are supposed to be smooth enough and to fulfill the standard strong parabolicity 28 assumption:

 $\mu > 0$ and $2\mu + \lambda > 0$.

³⁰ The strain tensor $\mathbb{D}u = (\nabla u + \nabla^{\top} u)/2$ is the symmetric part of the velocity gradient. The barotropic 31 assumption means that the pressure $P(\rho)$ depends only upon the density ρ of fluid and the function $\frac{32}{2}$ P is suitably smooth in what follows. The Korteweg tensor div K allows to describe the variation of 33 density at the interfaces between two phases, generally a mixture liquid-vapor, which can be written 34 as follows:

$$\dim \mathbb{K} = \nabla \left(\rho \kappa(\rho) \Delta \rho + \frac{\kappa(\rho) + \rho \kappa'(\rho)}{2} |\nabla \rho|^2 \right) - \operatorname{div} \left(\kappa(\rho) \nabla \rho \otimes \nabla \rho \right),$$

where the regular function $\kappa(\rho)$ denotes the capillary coefficient. 38

There have been huge amount of literature on the study of NSK by many physicists and mathe-39 maticians due to its physical importance, complexity, rich phenomena and mathematical challenges. 40

⁴¹ 2020 Mathematics Subject Classification. 35Q35; 35A01.

⁴² Key words and phrases. Navier-Stokes-Kortewe equations; Large solutions.

Bresch-Desjardins-Lin [2] proved the existence of global weak solution and then Haspot [19] improved their result. Hattori-Li [13, 14] obtained the local existence and global existence of classical solutions to the Cauchy problem for the initial data belong to $H^{s+1}(\mathbb{R}^d) \times H^s(\mathbb{R}^d)$ with $s > \lfloor d/2 \rfloor + 3$. 3 Danchin-Desjardins [10] improved this result by working with small initial data in the framework of critical Besov spaces. Hou-Peng-Zhu [20] showed the global well-posedness of classical solutions to the 3D compressible fluid models of Korteweg type when the initial total energy is small 6 and improved the results obtained by Hattori-Li [13, 14]. Kotschote [22] proved the local existence of strong solutions in a bounded domain. Haspot [17] considered the cases where the viscosity coefficients $\mu(\rho), \lambda(\rho)$ and the pressure $P(\rho)$ linearly depends on the density for System (1.1)-(1.2) with $\kappa(\rho) = \frac{\kappa}{\rho}$, and obtained global solutions with suitable small initial data in the L^2 framework. 10 Subsequently, Haspot [18] continued to investigate the Cauchy problem for System (1.1)-(1.2) with 11 $(\mu(\rho), \lambda(\rho), P(\rho)) = (\mu\rho, 0, \rho)$, and established global existence under the setting of slightly subcrit-12 ical L^p type initial data, where the specific choice of the pressure is crucial since it provides a gain of 13 integrability on the effective velocity. Following the assumptions on the viscosity coefficients of [18], 14 Yu-Wu [27] established the global well-posedness of strong solutions to 2D NSK with nonvacuum 15 and general pressure laws in the framework of Sobolev spaces. Chikami-Kobayashi [9] obtained glob-16 al solutions to NSK under linear stability conditions in critical Besov spaces and the optimal decay 17 rates of the global solutions in the $L^2(\mathbb{R}^d)$ -framework. Kobayashi-Tsuda [21] proved the existence 18 of global L^2 solutions for the NSK around a constant state and obtained parabolic type decay rate 19 of the solutions. Murata-Shibata [25] proved that NSK admits a unique, global strong solutions for 20 small initial data in \mathbb{R}^d with $3 \le d \le 7$ by the maximal $L^p - L^q$ regularity and $L^p - L^q$ decay properties 21 of solutions to the linearized equations. For results on non-local capillary terms and convergence to 22 various models, we refer to the works by Charve and Haspot [5, 6, 7, 15] 23 To motivate our results, we briefly review some examples of large initial data generating global 24

strong solutions. Lei-Lin-Zhou [23] obtained the global well-posedness for incompressible Navier-25 Stokes equation in energy space with a class of large initial data which includes the Beltrami flow. 26 When the Korteweg tensor div \mathbb{K} is neglected, System (1.1) reduces to the classical compressible 27 Navier-Stokes (CNS) equations. Charve-Danchin [4] and Chen-Miao-Zhang [8] constructed global 28 solutions of CNS equations with such kind of the highly oscillating initial data. Recently, Li et al. [24] 29 constructed global smooth solutions to 3D CNS equations with a class of special initial data, where 30 the initial velocity u_0 in $\dot{B}_{\infty,\infty}^{-1}$ can be arbitrarily large while the initial density $\rho_0 - 1$ is small in H^3 . 31 Following the assumptions on the viscosity coefficients of [18], Zhai-Li [31] proved global solutions 32 to System (1.1) without smallness condition imposed on the vertical component of the incompressible 33 part of the velocity by using the weighted Chemin-Lerner-norm technique. Zhang [30] constructed 34 a class of global large solutions to the compressible NSK system with constant viscosity coefficients 35 in critical Besov spaces. Recently, by assuming $\mu(\rho) = \mu \rho^2$ and $\lambda(\rho) = (\lambda - 2\mu)\rho^2 + \frac{\kappa}{2}\rho$ and 36 introducing "the effective velocity" which was successfully used in Haspot's works [16, 18], Yu-Li-37 Wu [28] constructed global smooth solutions to NSK with a class of special initial data, where the 38 initial velocity in $L^{\infty}(\mathbb{R}^3)$ can be arbitrarily large while the initial data $\rho_0 - 1$ is small in $H^3(\mathbb{R}^3)$. 39 Subsequently, Yu-Yang-Wu [29] proved that both large initial data $(\rho_0 - 1, u_0)$ in $L^2(\mathbb{R}^3)$ can generate 40 global classical solutions to NSK with the above assumption. We should mention that the special 41 choice of $\lambda(\rho)$ in [28, 29] makes both the new density and velocity equations parabolic. Question 42

1 appears: For general smooth functions $\mu(\rho)$ and $\lambda(\rho)$, does NSK possess global solutions with both large initial data $(\rho_0 - 1, u_0)$? In this paper, we shall construct the global strong solutions to NSK $\frac{1}{3}$ with a class of large initial data. Here the "large" means that both the L^{∞}-norm of initial velocity u_0 and the L^1 -norm of initial data $\rho_0 - 1$ can be arbitrarily large (see Remark 1.4), or both the L^2 -norm of initial data $(\rho_0 - 1, u_0)$ can be arbitrarily large (see Remark 1.5). Our main idea is splitting the 5 linearized equations from NSK and exploring the damping effect of the linearized system with initial data whose Fourier frequency is supported in the small annulus. 7

1.1. Reformulation of System. The main difficulties in the study of the compressible fluid flows when dealing with vacuum is that the momentum equation loses its parabolic regularizing effect, that 10 is why in the present paper we suppose that the initial data ρ_0 is a small perturbation of an equilibrium 11 state $\bar{\rho} = 1$ (just for convenience). In this paper, we take the specific choice on the coefficient (assume 12 that μ , λ , κ are positive constant) 13

(1.3)
$$\mu(\rho) = \mu \rho^2, \quad \lambda(\rho) = \lambda \rho^2 \text{ and } \kappa(\rho) = \kappa.$$

15 16 We obtain from (1.2) that

17

div
$$\mathbb{K} = \kappa \rho \nabla \Delta \rho$$
.

Due to the momentum equations $(1.1)_2$, one has 18

$$\rho\left(\partial_{t}u+u\cdot\nabla u-\mu\rho(\Delta u+\nabla \operatorname{div} u)-4\mu\nabla\rho\cdot\mathbb{D} u\right)-\lambda\rho^{2}\nabla\operatorname{div} u-2\lambda\rho\nabla\rho\operatorname{div} u+\nabla P(\rho)=\kappa\rho\nabla\Delta\rho,$$

20 21 hence, as long as ρ does not vanish, which reduces to

$$\partial_t u + u \cdot \nabla u - \mu \rho \Delta u - (\mu + \lambda) \rho \nabla \operatorname{div} u - 4\mu \nabla \rho \cdot \mathbb{D} u - 2\lambda \nabla \rho \operatorname{div} u + \rho^{-1} \nabla P(\rho) = \kappa \nabla \Delta \rho.$$

22 23 24 Denoting $\tilde{\rho} := \rho - 1$, we can reformulate system (1.1) equivalently as follows

$$\begin{cases} 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{cases} \left\{ \begin{aligned} \partial_t \widetilde{\rho} + \operatorname{div} u &= -\operatorname{div}(\widetilde{\rho} u), \\ \partial_t u + u \cdot \nabla u - \mu \Delta u - (\mu + \lambda) \nabla \operatorname{div} u - \kappa \nabla \Delta \widetilde{\rho} + \nabla \widetilde{\rho} &= \mathbf{S}(\widetilde{\rho}, u) + K(\widetilde{\rho}) \nabla \widetilde{\rho}, \\ (\widetilde{\rho}, u)|_{t=0} &= (\widetilde{\rho}_0, u_0), \\ \lim_{|x| \to \infty} (\widetilde{\rho}(t, x), u(t, x)) &= (0, 0), \end{aligned} \right.$$

here and in what follows, for notational simplicity, we denote 31

$$K(s) = 1 - \frac{P'(1+s)}{1+s} \quad \text{and} \quad \mathbf{S}(\widetilde{\rho}, u) = 4\mu\nabla\widetilde{\rho} \cdot \mathbb{D}u + 2\lambda\nabla\widetilde{\rho}\operatorname{div}u + \mu\widetilde{\rho}\Delta u + (\mu+\lambda)\widetilde{\rho}\nabla\operatorname{div}u.$$

34 In this paper, we assume that P'(1) = 1 without loss of generality.

35 The investigation with the linearization of (1.4) is given by 36

$$\begin{cases} \partial_t \Theta + \operatorname{div} U = 0, \\ \partial_t U - \mu \Delta U - (\mu + \lambda) \nabla \operatorname{div} U - \kappa \nabla \Delta \Theta + \nabla \Theta = 0, \\ (\Theta, U)|_{t=0} = (\Theta_0, u_0). \end{cases}$$

Introducing the new unknowns 41

42

32 33

$$\phi := \widetilde{\rho} - \Theta$$
 and $w := u - U$,

 $_{1}$ then System (1.4) can be rewritten as follows

$$\begin{cases} \frac{2}{3} \\ \frac{3}{4} \\ \frac{5}{6} \\ \frac{6}{6} \end{cases} (1.6) \qquad \begin{cases} \partial_t \phi + \operatorname{div} w = -\operatorname{div}((\phi + \Theta)(w + U)), \\ \partial_t w - \mu \Delta w - (\lambda + \mu) \nabla \operatorname{div} w - \kappa \nabla \Delta \phi + \nabla \phi = K(\widetilde{\rho}) \nabla \phi + K(\widetilde{\rho}) \nabla \Theta + \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3}, \\ (\phi, w)|_{t=0} = (0, 0), \end{cases}$$

 $\frac{1}{7}$ where $\frac{7}{8}$ $\frac{9}{10}$

11

18

$$\begin{aligned} \mathbf{F_1} &= -w \cdot \nabla w + \mathbf{S}(\phi, w), \\ \mathbf{F_2} &= -U \cdot \nabla w - w \cdot \nabla U + \mathbf{S}(\phi, U) + \mathbf{S}(\Theta, w), \\ \mathbf{F_3} &= -U \cdot \nabla U + \mathbf{S}(\Theta, U). \end{aligned}$$

12 1.2. *Statement of Main Result.* Our main goal is to establish the global strong solutions to (1.1) for 13 a class of large initial data. Throughout the paper, when no vacuum is considered, we focus on the 14 new system (1.6) since it is equivalent to the original system (1.1) under the assumptions (1.3). The 15 main result of our paper reads as follows:

¹⁶/₁₇ **Theorem 1.1.** Let $\mu, \kappa > 0$ and $\nu := \mu + \lambda/2 > 0$. Assume that (Θ_0, U_0) satisfies

$$U_0 = (\partial_2 a, -\partial_1 a, 0)$$
 with supp Θ_0 , supp $\widehat{a} \subset \mathscr{C}$,

where a is scalar functions and

there exists a sufficiently small positive constant $\varepsilon_0 = \varepsilon_0(\mu, \kappa, \varepsilon)$ such that if

(1.8)
$$\left(\|\widehat{\Theta}_0\|_{L^1}^2 + \|\widehat{\Theta}_0, \widehat{a}\|_{L^1} \|\Theta_0\|_{L^2} + \varepsilon \|\widehat{a}\|_{L^1} \|a\|_{L^2} \right) \exp\left(C\left(\|\widehat{\Theta}_0, \widehat{a}\|_{L^1} + \|\Theta_0\|_{L^2}^2 \right) \right) \le \varepsilon_0,$$

then system (1.6) has a unique global strong solution (w, ϕ) in $\mathbb{R}^3 \times (0, \infty)$ satisfying that for any $0 < T < \infty$

$$\begin{cases} 30\\ 31\\ 32 \end{cases} (1.9) \qquad \qquad \begin{cases} w \in L^{\infty}([0,T];H^1), \quad \nabla w \in L^2([0,T];H^1), \\ \phi \in L^{\infty}([0,T];H^2), \quad \nabla \phi \in L^2([0,T];H^2). \end{cases}$$

³³ **Remark 1.1.** We can also have a version of Theorem 1.1 for any smooth functions $\mu(\rho)$ and $\lambda(\rho)$. ³⁴ Just for a clear presentation, we choose to work in the special case $\mu(\rho) = \mu \rho^2$ and $\lambda(\rho) = \lambda \rho^2$ and ³⁵ the divergence-free initial data in the present paper. Furthermore, the solution obtained in Theorem ³⁶ 1.1 indeed possess more high regularity and can be smooth.

Remark 1.2. We should mention that, Theorem 1.1 is different from our previous one in [29]. On the one hand, we do not require the strong restriction on the coefficient $\kappa \neq \lambda^2$. On the other hand, to $\frac{10}{40}$ "kill" the third-order derivative term $\nabla \Delta \rho$ in [29], we have to assume the algebraic relation $\lambda ((2\mu - \frac{1}{41} \lambda)\rho + \rho^{-1}\lambda(\rho)) = \kappa$, here we drop this special relation and prove Theorem 1.1 holds for general smooth functions $\mu(\rho)$ and $\lambda(\rho)$.

Remark 1.3. Compared with the previous result in [29] where the initial data both can be arbitrarily a large in L^2 , Theorem 1.1 also allows that, both initial velocity with $||u_0||_{L^{\infty}} \gg 1$ and density with $||\tilde{\rho}_0||_{L^1} \gg 1$, generates a unique global solution to the 3D compressible Navier–Stokes–Korteweg equations. We refer to Remark 1.4 below for the new construction of initial data.

For Remark 1.4. Theorem 1.1 implies that some initial data with $||U_0||_{L^{\infty}} \gg 1$ and $||\Theta_0||_{L^1} \gg 1$ can generate a unique global solution to (1.6). We just consider the case $v^2 \leq \kappa$ since the case $v^2 > \kappa$ can be done by the construction in [29]. This kind of initial data can be constructed as follows. We set

$$\Theta_0 = \varepsilon^{\frac{1}{p}}a$$
 and $U_0 = (\partial_2 a, -\partial_1 a, 0)$

 $\frac{9}{10} = \frac{11}{12}$ with $1 and <math>\widehat{a}(\xi_1, \xi_1, \xi_2) = 0$

$$\widehat{a}(\xi_1,\xi_2,\xi_3) = \varepsilon^{-1} \left(\log \log \frac{1}{\varepsilon} \right)^{\frac{1}{2}} \widehat{\varphi}(\xi_1,\xi_2) \widehat{\psi}(\xi_3).$$

here two even functions $\widehat{\varphi} \in \mathscr{C}_0^{\infty}(\mathbb{R}^2)$ and $\widehat{\psi} \in \mathscr{C}_0^{\infty}(\mathbb{R})$ both taking values in [0,1] such that supp $\widehat{\varphi} \subset \left\{ \xi_h = (\xi_1, \xi_2) : |\xi_1 - \xi_2| \le \varepsilon \ll 1, \frac{8}{9} \le |\xi_h|^2 \le \frac{9}{8} \right\},$

$$\sup \widehat{\varphi} \subset \left\{ \xi_{h} = (\xi_{1}, \xi_{2}) : |\xi_{1} - \xi_{2}| \le \varepsilon \ll 1, \frac{8}{9} \le |\xi_{h}|^{2} \le \frac{9}{8} \right\},$$
$$\widehat{\varphi}(\xi_{h}) \equiv 1 \quad \text{for} \quad \xi_{h} \in \left\{ |\xi_{1} - \xi_{2}| \le \frac{\varepsilon}{2}, \frac{17}{18} \le |\xi_{h}|^{2} \le \frac{17}{16} \right\},$$
$$\sup \widehat{\psi} \subset \left\{ \xi_{3} : \frac{8}{9} \le |\xi_{3}|^{2} \le \frac{9}{8} \right\} \quad \text{and} \quad \widehat{\psi}(\xi_{3}) \equiv 1, |\xi_{3}|^{2} \in \left[\frac{17}{18}, \frac{17}{16} \right].$$

 $\frac{23}{24}$ By simple calculations, one has

$$\int_{\mathbb{R}^2} \widehat{\varphi}(\xi_1, \xi_2) \mathrm{d}\xi_h \approx \varepsilon \quad \text{and} \quad \int_{\mathbb{R}} \widehat{\psi}(\xi_3) \mathrm{d}\xi_3 \approx 1,$$

27 which in turn gives that

$$\|\widehat{U}_0\|_{L^1} \approx \|\widehat{a}\|_{L^1} \approx \left(\log\log\frac{1}{\varepsilon}\right)^{\frac{1}{2}} \quad \text{and} \quad \|U_0\|_{L^2} \approx \|a\|_{L^2} \approx \varepsilon^{-\frac{1}{2}} \left(\log\log\frac{1}{\varepsilon}\right)^{\frac{1}{2}}.$$

31 Equivalently,

25 26

28 29 30

32 33 34

36 37 38

$$\|\widehat{\Theta}_0\|_{L^1} \approx \varepsilon^{\frac{1}{p}} \left(\log\log\frac{1}{\varepsilon}\right)^{\frac{1}{2}} \quad \text{and} \quad \|\Theta_0\|_{L^2} \approx \varepsilon^{\frac{2-p}{2p}} \left(\log\log\frac{1}{\varepsilon}\right)^{\frac{1}{2}}.$$

35 Also, by Hausdorff-Young's inequality, we have

$$\|\Theta_0\|_{L^p}\gtrsim \|\widehat{\Theta}_0\|_{L^{rac{p}{p-1}}}\gtrsim \left(\log\lograc{1}{arepsilon}
ight)^{rac{p-1}{2p}}$$

³⁹ and (for more details see [24])

$$\|U_0\|_{L^{\infty}} \gtrsim \left(\log\log\frac{1}{\varepsilon}\right)^{\frac{1}{2}}.$$

 $\frac{1}{3}$ By the classical interpolation inequality $\|\Theta_0\|_{L^p}^p \lesssim \|\Theta_0\|_{L^1}^{2-p} \|\Theta_0\|_{L^2}^{2(p-1)}$ for $p \in (1,2)$, we have $\|\Theta_0\|_{L^1} \ge \varepsilon^{\frac{1-p}{p}} \left(\log\log\frac{1}{2}\right)^{\frac{p-1}{2(p-2)}} \to +\infty \quad as \quad \varepsilon \to 0^+$

$$\|\Theta_0\|_{L^1}\gtrsim arepsilon rac{1-p}{p}\left(\log\lograc{1}{arepsilon}
ight)^{rac{1}{2(p-2)}}
ightarrow+\infty \quad as \quad arepsilon
ightarrow 0^+.$$

5 Furthermore, we have
6
7 LHS of e

LHS of (1.8)
$$\approx \left(\varepsilon^{\frac{2}{p}} + \varepsilon^{\frac{1}{p} - \frac{1}{2}} + \varepsilon^{\frac{1}{2}}\right) \left(\log\log\frac{1}{\varepsilon}\right) \exp\left(C\left(\log\log\frac{1}{\varepsilon}\right)^{\frac{1}{2}}\right)$$

⁹ Therefore, choosing ε small enough, we deduce that the 3D compressible Navier–Stokes–Korteweg ¹⁰ equations (1.6) has a unique global solution.

Remark 1.5. Theorem 1.1 also implies that some initial data with $||U_0||_{L^2} \gg 1$ and $||\Theta_0||_{L^2} \gg 1$ can generate a unique global solution to (1.6). We set

$$\Theta_0 = a \quad and \quad U_0 = (\partial_2 a, -\partial_1 a, 0) \quad with \quad \widehat{a}(\xi_1, \xi_2, \xi_3) = \varepsilon^{-\frac{1}{2}} \left(\log \log \frac{1}{\varepsilon} \right)^{\frac{1}{2}} \widehat{\varphi}(\xi_1, \xi_2) \widehat{\psi}(\xi_3)$$

here two even functions $\widehat{\varphi} \in \mathscr{C}_0^{\infty}(\mathbb{R}^2)$ and $\widehat{\psi} \in \mathscr{C}_0^{\infty}(\mathbb{R})$ are defined as above. Following the above argument, then one has

$$\|\widehat{\Theta}_0\|_{L^1} pprox \|\widehat{U}_0\|_{L^1} pprox \|\widehat{a}\|_{L^1} pprox \varepsilon^{rac{1}{2}} \left(\log\lograc{1}{arepsilon}
ight)^{rac{1}{2}}$$

 $\frac{21}{22}_{23}$ and

4

8

14 15

19 20

24

26 27

$$\|\Theta_0\|_{L^2} \approx \|U_0\|_{L^2} \approx \|a\|_{L^2} \approx \left(\log\log \frac{1}{\epsilon}\right)^{\frac{1}{2}}$$

25 Furthermore, we have

LHS of (1.8)
$$\approx \varepsilon^{\frac{1}{2}} \left(\log \log \frac{1}{\varepsilon} \right) \exp \left(C \log \log \frac{1}{\varepsilon} \right)$$

Therefore, choosing ε small enough, we deduce that the 3D compressible Navier–Stokes–Korteweg equations (1.6) has a unique global solution.

Remark 1.6. We also emphasize that Theorem 1.1 holds for the case $\kappa = 0$, that is, div $\mathbb{K} = 0$. As mentioned above, (1.1) with $\kappa = 0$ becomes the CNS equations, thus Theorem 1.1 with minor modifications holds for the 3D compressible Navier-Stokes equations.

Remark 1.7. When assuming that $\kappa \neq 0$ and P'(1) = 0, we still can explore the damping effect for the Θ -equation by following this present method. However, we will encounter some difficulties. Particularly, to establish the desired a prior bounds, we have no way to cancel the term divw in the $\frac{37}{38}$ ϕ -equation. Thus, we have to leave it as an interesting problem and consider it in the future.

1.3. Organization of the Paper. The rest of this paper is organized as follows: In Section 2, we establish the key exponential decay in time for (U, Θ) which will play a crucial role in the proof of our main theorem. In Section 3, we obtain the global-in-time a priori estimates which are sufficient to prove Theorem 1.1.

7

2. Preliminaries

2.1. Notation. Firstly, we introduce some notations and conventions which will be used throughout this paper. $a \approx b$ means $C^{-1}b \leq a \leq Cb$ for some positive harmless constants C. We will use the simplified notation $||f_1, \dots, f_n||_X = ||f_1||_X + \dots + ||f_n||_X$ for some Banach space X. $\langle f, g \rangle$ denotes the inner product in $L^2(\mathbb{R}^3)$, namely, $\langle f,g \rangle = \int_{\mathbb{R}^3} f \cdot g dx$. The Fourier transform of f with respect to the space variable is given by $\mathscr{F}f(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}^3} e^{-ix\cdot\xi} f(x) dx$. Let $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{N}^3$ be a multi-index and $D^{\alpha} = \partial^{|\alpha|} / \partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} \partial_{x_3}^{\alpha_3}$ with $|\alpha| = \alpha_1 + \alpha_2 + \alpha_3$. For $m \in \mathbb{N}$, the norms of the integer order Sobolev space $H^m(\mathbb{R}^3)$ and $W^{m,\infty}(\mathbb{R}^3)$ are defined by $||f||_{H^m(\mathbb{R}^3)} \approx ||f||_{\dot{H}^m(\mathbb{R}^3)} + ||f||_{L^2(\mathbb{R}^3)}$ and 9 $\|f\|_{W^{m,\infty}(\mathbb{R}^3)} := \sum_{0 \le i \le m} \|\nabla^i f\|_{L^{\infty}(\mathbb{R}^3)}.$ 10

11 12 2.2. Exponential decay. Setting

1

13

25 26 27

$$W := \operatorname{div} U$$
 with $W_0 = \operatorname{div} U_0 = 0$.

14 then we deduce from (1.5) that

$$\begin{cases} \Theta_t + W = 0, \\ W_t - 2\nu\Delta W - \kappa\Delta^2\Theta + \Delta\Theta = 0, \\ (\Theta, W)|_{t=0} = (\Theta_0, 0). \end{cases}$$

Next, motivated the idea from [8], we shall give the explicit expression of $(\widehat{W}, \widehat{\Theta})$. 20

21 **Lemma 2.1.** Assume that (Θ, W) solves (2.1), for $\xi \in \mathscr{C}$ given by (1.7), we have 22 23 24

$$\begin{split} \widehat{\Theta}(\xi,t) &= \left(\frac{\lambda_{+}e^{\lambda_{-}t} - \lambda_{-}e^{\lambda_{+}t}}{\lambda_{+} - \lambda_{-}}\right)\widehat{\Theta}_{0}(\xi), \\ \widehat{W}(\xi,t) &= (\kappa|\xi|^{4} + |\xi|^{2})\left(\frac{e^{\lambda_{+}t} - e^{\lambda_{-}t}}{\lambda_{+} - \lambda_{-}}\right)\widehat{\Theta}_{0}(\xi), \end{split}$$

28 29 30 where λ_+ are given by (2.5) below.

Proof. Applying the operator Δ to $(2.1)_1$ gives

$$(\Delta \Theta)_t = -\Delta W.$$

32 33 From (2.2) and $(2.1)_1$, we get

$$\begin{cases} \Theta_{tt} - 2\nu(\Delta\Theta)_t + \kappa\Delta^2\Theta - \Delta\Theta = 0, \\ W_{tt} - 2\nu(\Delta W)_t + \kappa\Delta^2W - \Delta W = 0. \end{cases}$$

Taking the Fourier transform of $(2.3)_1$ and $(2.3)_2$, we have

$$\begin{cases} \widehat{\Theta}_{tt} + 2\nu|\xi|^{2}\widehat{\Theta}_{t} + (\kappa|\xi|^{4} + |\xi|^{2})\widehat{\Theta} = 0, \\ \widehat{W}_{tt} + 2\nu|\xi|^{2}\widehat{W}_{t} + (\kappa|\xi|^{4} + |\xi|^{2})\widehat{W} = 0, \\ \widehat{\Theta}(\xi, 0) = \widehat{\Theta}_{0}(\xi), \quad \widehat{\Theta}_{t}(\xi, 0) = 0, \\ \widehat{W}(\xi, 0) = 0, \quad \widehat{W}_{t}(\xi, 0) = (\kappa|\xi|^{4} + |\xi|^{2})\widehat{\Theta}_{0}(\xi). \end{cases}$$

Straightforward calculations give two roots of the corresponding characteristic equations as follows 2 3 4 5 6 7 8 9 10 11 12 13 $\lambda_{\pm} = -\nu |\xi|^2 \pm i |\xi| \alpha(\xi),$ (2.5)where $\alpha(\xi) := \begin{cases} \sqrt{1 - (v^2 - \kappa)} |\xi|^2, & \text{if } v^2 < \kappa, \\ 1, & \text{if } v^2 = \kappa, \\ \sqrt{(v^2 - \kappa)} |\xi|^2 - 1, & \text{if } v^2 > \kappa \end{cases}$ We should mention that $\alpha(\xi)$ may not be real if $v^2 > \kappa$, which is the reason why we require that $|\xi| > \frac{1}{\sqrt{\nu^2 - \kappa}}.$ Thus, the solution of (2.4) has the form $\begin{cases} \widehat{\Theta}(\xi,t) = A_1(\xi)e^{\lambda_- t} + B_1(\xi)e^{\lambda_+ t}, \\ \widehat{W}(\xi,t) = A_2(\xi)e^{\lambda_- t} + B_2(\xi)e^{\lambda_+ t}. \end{cases}$ (2.6)14 15 Using the initial conditions, we obtain 16 17 18 19 20 21 22 23 $A_1 = \frac{\lambda_+}{\lambda_+ - \lambda} \widehat{\Theta}_0$ and $B_1 = -\frac{\lambda_-}{\lambda_+ - \lambda} \widehat{\Theta}_0$, $A_2=-rac{\kappa|\xi|^4+|\xi|^2}{\lambda_+-\lambda}\widehat{\Theta}_0 \quad ext{and} \quad B_2=rac{\kappa|\xi|^4+|\xi|^2}{\lambda_+-\lambda}\widehat{\Theta}_0.$ Plugging the above into (2.6) yields the desired results of Lemma 2.1. Applying the operator curl to $(1.5)_2$, we also have $\partial_t \operatorname{curl} U - \mu \Delta \operatorname{curl} U = 0$, 24 which gives that 25 $\operatorname{curl} U = e^{\mu t \Delta} \operatorname{curl} U_0$ (2.7)26 27 Due to the basic vector identity 28 $\Delta U = \nabla \mathrm{div} U - \mathrm{curlcurl} U = \nabla W - e^{\mu t \Delta} \mathrm{curlcurl} U_0,$ 29 this gives 30 $U = -(-\Delta)^{-1}\nabla W + (-\Delta)^{-1}e^{\mu t\Delta} \operatorname{curlcurl} U_0 = -(-\Delta)^{-1}\nabla W + e^{\mu t\Delta}U_0.$ 31 (2.8)32 Therefore, we deduce 33 ³⁴ Lemma 2.2. Let λ_{\pm} be given by (2.5). Assume that (U, Θ) solves (1.5) with div $U_0 = 0$, for $\xi \in \mathscr{C}$ 35 given by (1.7), we have 36 $\widehat{U}(t,\xi) = -(\kappa|\xi|^2 + 1) \left(\frac{e^{\lambda_+ t} - e^{\lambda_- t}}{\lambda_+ - \lambda_-}\right) \widehat{\nabla \Theta}_0(\xi) + \widehat{V}(t,\xi),$ 37 (2.9)38 39 $\widehat{\Theta}(t,\xi) = \left(rac{\lambda_+ e^{\lambda_- t} - \lambda_- e^{\lambda_+ t}}{\lambda_+ - \lambda_-}
ight) \widehat{\Theta}_0(\xi),$ 40 (2.10)42 here and in what follows we denote $V(t,x) := e^{\mu \Delta t} U_0(x)$.

By restricting the Fourier frequency to the annulus given by (1.7), we can obtain 1 $\begin{array}{c}
2\\
3\\
4\\
5\\
6\\
7\\
8\\
9\\
10\\
11\\
12
\end{array}$ **Lemma 2.3.** Let λ_{\pm} be given by (2.5) and $\xi \in \mathscr{C}$ be given by (1.7). Then $\left|\frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right|+\left|\frac{\lambda_+e^{\lambda_-t}-\lambda_-e^{\lambda_+t}}{\lambda_+-\lambda_-}\right|\leq C(1+t)e^{-c_0t},$ where C and c_0 are two positive constants which depend on κ and ν . **Proof.** Straightforward calculations yields $\left|\frac{e^{\lambda_+t}-e^{\lambda_-t}}{\lambda_+-\lambda_-}\right|=e^{-\nu t|\xi|^2}\cdot\left|\frac{\sin\left(t|\xi|\alpha(\xi)\right)}{2|\xi|\alpha(\xi)}\right|\leq te^{-\nu t|\xi|^2}\leq Cte^{-c_0t}.$ 13 Due to (2.5), one has 14 $|\lambda_{-}|^{2} = v^{2}|\xi|^{4} + |\xi|^{2}\alpha^{2}(\xi).$ 15 16 Thus if v² ≤ κ and ξ ∈ C₁, then |λ₋|² = |ξ|² + κ|ξ|⁴ ≤ C(κ);
if v² > κ and ξ ∈ C₂, then |λ₋|² = (2v² - κ)|ξ|⁴ - |ξ|² ≤ C(κ, ν). 17 18 19 In summary, in either case above, we obtain 20 $\left| rac{\lambda_+ e^{\lambda_- t} - \lambda_- e^{\lambda_+ t}}{\lambda_+ - \lambda_-}
ight| \leq \left| e^{\lambda_- t}
ight| + \left| \lambda_-
ight| \left| rac{e^{\lambda_+ t} - e^{\lambda_- t}}{\lambda_+ - \lambda_-}
ight|$ 21 22 23 24 $< e^{-vt}|\xi|^2 + Cte^{-vt}|\xi|^2$ $< C(1+t)e^{-c_0t}$. 25 26 This ends the proof of Lemma 2.3. 27 We should emphasize that, although the Θ -equation has no dissipation, we still can explore the 28 damping effect for the Θ -equation. Based on the above Lemma, we can establish the exponential 29 decay in time for (U, Θ) which will play a crucial role in the proof of Theorem 1.1. 30 31 **Lemma 2.4.** Under the assumptions of Theorem 1.1, for all $m \in \mathbb{N}$, there exists positive constants 32 C, c_0, μ_0 such that 33 $\|\nabla^m U\|_{L^{\infty}} < C \|\widehat{U}\|_{L^1} < C(1+t)(e^{-c_0 t} + e^{-\mu_0 t}) \|\widehat{\Theta}_{0,\hat{a}}\|_{L^1}.$ 34 $\|\nabla^m \Theta\|_{L^{\infty}} < C \|\widehat{\Theta}\|_{L^1} < C(1+t)e^{-c_0 t} \|\widehat{\Theta}_0\|_{L^1},$ 35 36 $\|\nabla^m U\|_{L^2} \leq C \|U\|_{L^2} \leq C(1+t)(e^{-c_0 t} + e^{-\mu_0 t}) \|\Theta_0, a\|_{L^2}.$ 37 $\|\nabla^m \Theta\|_{L^2} \leq C \|\Theta\|_{L^2} \leq C(1+t)e^{-c_0 t} \|\Theta_0\|_{L^2},$ 38 39 40 where $\mu_0 = \begin{cases} \frac{\mu}{\nu^2 - \kappa}, & \text{if } \nu^2 > \kappa, \\ \mu, & \text{if } \nu^2 \le \kappa. \end{cases}$ 41 42

Proof. Due to (2.9), then using the fact $\|\mathbf{f}\|_{L^{\infty}} \leq C \|\widehat{\mathbf{f}}\|_{L^{1}}$ and the support condition of $(\widehat{\Theta}_{0}, \widehat{a}_{0})$, by 2 Lemma 2.3 we have

$$\|\nabla^{m}U\|_{L^{\infty}} \lesssim \||\xi|^{m}\widehat{U}(t,\xi)\|_{L^{1}} \lesssim \|\widehat{U}(t,\xi)\|_{L^{1}}$$

$$\lesssim \left\|\frac{e^{\lambda+t} - e^{\lambda-t}}{\lambda_{+} - \lambda_{-}}\widehat{\Theta}_{0}\right\|_{L^{1}} + \left\|e^{-\mu|\xi|^{2}t}\widehat{U}_{0}\right\|_{L^{1}}$$

$$\lesssim (1+t)(e^{-c_{0}t} + e^{-\mu_{0}t})\|\widehat{\Theta}_{0},\widehat{a}\|_{L^{1}}.$$

 $\frac{9}{10}$ Thanks to similar argument, we obtain the rest of the estimates and end the proof of Lemma 2.4.

Lemma 2.5. Under the assumptions of Theorem 1.1, we have

$$\|U \cdot \nabla U\|_{H^3} \le C\varepsilon e^{-\mu_0 t} \|\widehat{a}\|_{L^1} \|a\|_{L^2} + C(1+t) e^{-\mu_0 t} \|\widehat{a}, \widehat{\Theta}_0\|_{L^1} \|\Theta_0\|_{L^2}$$

Proof. Direct calculations show that

26 27 28

31 32

34 35 36

39

40

12 13

14 15

$$U \cdot \nabla U = V \cdot \nabla V + V \cdot \nabla (U - V) + (U - V) \cdot \nabla U,$$

$$V \cdot \nabla V^{1} = V^{1} \partial_{1} V^{1} + V^{2} \partial_{2} V^{1} = (V^{1} + V^{2}) \partial_{1} V^{1} - V^{2} (\partial_{1} - \partial_{2}) V^{1},$$

$$V \cdot \nabla V^{2} = V^{1} \partial_{1} V^{2} + V^{2} \partial_{2} V^{2} = (V^{1} + V^{2}) \partial_{2} V^{2} + V^{1} (\partial_{1} - \partial_{2}) V^{2},$$

$$V \cdot \nabla V^{3} = 0.$$

21 22 23 24 25 Note that $U_0 = (\partial_2 a, -\partial_1 a, 0)$ and $V = e^{\mu \Delta t} U_0$, using Hölder's inequality yields

$$\begin{split} \|V \cdot \nabla V\|_{H^{3}} &\leq \left\| (V^{1} + V^{2})\partial_{1}V^{1}, (V^{1} + V^{2})\partial_{2}V^{2} \right\|_{H^{3}} + \left\| V^{2}(\partial_{1} - \partial_{2})V^{1}, V^{1}(\partial_{1} - \partial_{2})V^{2} \right\|_{H^{3}} \\ &\leq \|V^{1} + V^{2}\|_{W^{3,\infty}} \|\partial_{1}V^{1}, \partial_{2}V^{2}\|_{H^{3}} + \|(\partial_{1} - \partial_{2})(V^{1}, V^{2})\|_{W^{3,\infty}} \|V^{1}, V^{2}\|_{H^{3}} \\ &\leq C \big\| |\xi_{1} - \xi_{2}|e^{-\mu|\xi|^{2}t}\widehat{a}(\xi) \big\|_{L^{1}} \big\| e^{-\mu|\xi|^{2}t}\widehat{a}(\xi) \big\|_{L^{2}} \\ &\leq C\varepsilon e^{-\mu_{0}t} \|\widehat{a}\|_{L^{1}} \|a\|_{L^{2}}, \end{split}$$

29 where we have used the condition (1.7) in the last step.

By Lemmas 2.2-2.4, we have 30

$$\|V \cdot \nabla (U - V)\|_{H^3} + \|(U - V) \cdot \nabla U\|_{H^3} \le C(1 + t)e^{-\mu_0 t} \|\widehat{a}\|_{L^1} \|\Theta_0\|_{L^2},$$

³³ where we have used that

$$\sum_{i=0}^{4} \|\nabla^{i}(U-V)\|_{L^{2}} \leq C \left\| \left(\frac{e^{\lambda_{+}t} - e^{\lambda_{-}t}}{\lambda_{+} - \lambda_{-}} \right) \widehat{\nabla \Theta}_{0} \right\|_{L^{2}} \leq C(1+t) \|\Theta_{0}\|_{L^{2}}.$$

37 Thus, we end the proof of Lemma 2.5. 38

3. Proof of Theorem 1.1

⁴¹ By the standard local well-posedness theory (see [22, 13, 14] for example), we can obtain that there 42 exists a unique strong solution to (1.6) on some time interval $[0, T^*)$, where T^* is the lifespan of solution. We shall prove $T^* = \infty$, which is enough to prove Theorem 1.1. For the sake of implicity, $A(t) := \|w(t)\|_{H^1}^2 + \|\phi(t)\|_{H^2}^2 \text{ and } B(t) := \|\nabla w(t)\|_{H^1}^2 + \|\nabla \phi(t)\|_{H^2}^2$

1

24

28

29

$$\Gamma := \sup \Big\{ t \in [0, T^*) : \sup_{\tau \in [0, t]} A(\tau) \le \eta \ll 1 \Big\},$$

which together with Sobolev's inequality imply that

we will introduce the following notations

10 (3.12)
$$\sup_{\tau \in [0,\Gamma]} \|\phi(\tau)\|_{L^{\infty}} \le C\eta \le \frac{1}{4}$$

¹² Using Lemma 2.4 tells us that

(3.13)
$$\sup_{\tau \in [0,\Gamma]} \|\Theta(\tau)\|_{L^{\infty}} \le C \|\widehat{\Theta}_0\|_{L^1} \le C\varepsilon_0 \le \frac{1}{4}.$$

16 We should notice that ε_0 and η are two small enough positive constants which will be determined 17 later on. Thus we have

$$\sup_{\tau \in [0,\Gamma]} \|\widetilde{\rho}(\tau)\|_{L^{\infty}} \leq \frac{1}{2}.$$

20 21

We recall the following composition estimate (see [26]): Let $m \in \mathbb{N}$. Assume that $f \in \dot{H}^m \cap L^\infty$ and $F \in W_{\text{loc}}^{m+2,\infty}$ with F(0) = 0, we have, for some constant 22 C(M) depending on $M = \sup_{k \le m+2, |t| \le ||f||_{L^{\infty}}} ||F^{(k)}(t)||_{L^{\infty}}$ that 23

$$|F(f)||_{\dot{H}^m} \leq C(M) ||f||_{\dot{H}^m},$$

25 Combing this composition estimate, we emphasize that this fact shall be used in the sequel: for 26 $p \in [1, \infty]$ and $m \in \mathbb{N}$ 27

 $\|K(\widetilde{\rho})\|_{L^p} \leq C \|\widetilde{\rho}\|_{L^p}$ and $\|K(\widetilde{\rho})\|_{\dot{H}^m} \leq C \|\widetilde{\rho}\|_{\dot{H}^m}$.

Step 1: Estimation of $\|\phi\|_{H^2}$.

30 Taking the inner product of Eqs.(1.6)₁ with ϕ yields 31

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\phi\|_{L^2}^2 + \langle \operatorname{div} w, \phi \rangle = -\langle w \cdot \nabla \phi, \phi \rangle - \langle \phi \operatorname{div} w, \phi \rangle$$

$$(3.16) \qquad \qquad + \langle \Theta w + \phi U, \nabla \phi \rangle$$

$$\frac{35}{2} (3.17) \qquad -\langle \Theta \operatorname{div} U + U \cdot \nabla \Theta, \phi \rangle.$$

36 37 By Hölder's inequality and Lemma 2.4, we obtain

$$\begin{aligned} &|(3.15)| \lesssim \left(\|w\|_{L^3} \|\nabla \phi\|_{L^2} + \|\phi\|_{L^3} \|\nabla \phi\|_{L^2} \right) \|\phi\|_{L^6} \lesssim A^{\frac{1}{2}}(t) B(t), \\ &|(3.16)| \lesssim \left(\|\Theta\|_{L^{\infty}} \|w\|_{L^2} + \|U\|_{L^{\infty}} \|\phi\|_{L^2} \right) \|\nabla \phi\|_{L^2} \lesssim \|\widehat{U}, \widehat{\Theta}\|_{L^1} A(t), \\ &|(3.17)| \lesssim \|\Theta \operatorname{div} U + U \cdot \nabla \Theta\|_{L^2} \|\phi\|_{L^2} \lesssim \|\Theta\|_{L^2} \|\widehat{U}\|_{L^1} A^{\frac{1}{2}}(t). \end{aligned}$$

Thus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (3.18) $\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\phi\|_{L^2}^2 + \langle \operatorname{div} w, \phi \rangle \lesssim A^{\frac{1}{2}}(t) B(t) + \|\widehat{U}, \widehat{\Theta}\|_{L^1} A(t) + \|\Theta\|_{L^2} \|\widehat{U}\|_{L^1} A^{\frac{1}{2}}(t).$ Applying $-\Delta$ to both sides of Eqs.(1.6)₁, taking the inner product with $-\Delta \phi$ yields $\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\Delta\phi\|_{L^2}^2 + \langle\Delta\mathrm{div}w,\Delta\phi\rangle := I_1 + \dots + I_4,$ (3.19)where $I_1 = -\langle \Delta(w \cdot \nabla \phi), \Delta \phi \rangle - \langle \Delta(\phi \operatorname{div} w), \Delta \phi \rangle,$ $I_2 = -\langle \Delta(U \cdot \nabla \phi), \Delta \phi \rangle,$ $I_3 = -\langle \Delta(w \cdot \nabla \Theta), \Delta \phi \rangle - \langle \Delta(\Theta \operatorname{div} w), \Delta \phi \rangle - \langle \Delta(\phi \operatorname{div} U), \Delta \phi \rangle,$ $I_4 = -\langle \Delta(\Theta \operatorname{div} U + U \cdot \nabla \Theta), \Delta \phi \rangle.$ Integrating by parts, we can rewrite first three terms as follows 16 17 $I_{1} = \langle \partial_{i}w \cdot \nabla\phi, \partial_{i}\Delta\phi \rangle + \langle w \cdot \nabla\partial_{i}\phi, \partial_{i}\Delta\phi \rangle + \langle \partial_{i}\phi \operatorname{div} w, \partial_{i}\Delta\phi \rangle + \langle \phi \partial_{i}\operatorname{div} w, \partial_{i}\Delta\phi \rangle,$ $I_2 = -2\langle \partial_i U \cdot \nabla \partial_i \phi, \Delta \phi \rangle - \langle \Delta U \cdot \nabla \phi, \Delta \phi \rangle - \langle U \cdot \nabla \Delta \phi, \Delta \phi \rangle,$ 18 $I_{3} = -\langle \partial_{i}(\partial_{i}w \cdot \nabla\Theta + w \cdot \nabla\partial_{i}\Theta), \Delta\phi \rangle + \langle \partial_{i}(\Theta \operatorname{div} w), \partial_{i}\Delta\phi \rangle - \langle \Delta(\phi \operatorname{div} U), \Delta\phi \rangle.$ 19 By Hölder's inequality, the facts $\|\mathbf{f}\|_{L^6} \lesssim \|\nabla \mathbf{f}\|_{L^2}$, $\|\mathbf{f}\|_{L^{\infty}} \lesssim \|\nabla \mathbf{f}\|_{H^1}$ and $\|\nabla^m \Theta\|_{L^{\infty}} \lesssim \|\Theta\|_{L^{\infty}}$, we obtain 20 21 $|I_1| \lesssim \left(\|\nabla \phi\|_{L^3} \|\nabla w\|_{L^6} + \|w\|_{L^3} \|\nabla^2 \phi\|_{L^6} + \|\phi\|_{L^{\infty}} \|\nabla \operatorname{div} w\|_{L^2} \right) \|\nabla \Delta \phi\|_{L^2} \lesssim A^{\frac{1}{2}}(t) B(t),$ 22 23 24 $|I_2| \lesssim \left(\|\nabla U\|_{L^{\infty}} + \|\Delta U\|_{L^{\infty}} + \|\operatorname{div} U\|_{L^{\infty}} \right) \|\nabla \phi\|_{H^1}^2 \lesssim \|\widehat{U}\|_{L^1} A(t),$ 25 $|I_3| \lesssim \|\Theta\|_{L^{\infty}} (\|\nabla w\|_{H^1} \|\Delta \phi\|_{L^2} + \|w\|_{L^2} \|\Delta \phi\|_{L^2} + \|\operatorname{div} w\|_{H^1} \|\nabla \Delta \phi\|_{L^2}) + \|\operatorname{div} U\|_{W^{2,\infty}} \|\phi\|_{H^2}^2$ 26 $\leq \|\widehat{U},\widehat{\Theta}\|_{L^{1}}A(t) + \|\widehat{\Theta}\|_{L^{1}}B(t),$ 27 28 $|I_4| \lesssim \|\Theta \operatorname{div} U + U \cdot \nabla \Theta\|_{H^2} \|\Delta \phi\|_{L^2} \lesssim \|\Theta\|_{L^2} \|\widehat{U}\|_{L^1} A^{\frac{1}{2}}(t).$ 29 30 Inserting the above into (3.19) yields 31 $(3.20) \quad \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\Delta\phi\|_{L^2}^2 + \langle\Delta\mathrm{div}w, \Delta\phi\rangle \lesssim \left(A^{\frac{1}{2}}(t) + \|\widehat{\Theta}\|_{L^1}\right) B(t) + \|\widehat{U}, \widehat{\Theta}\|_{L^1} A(t) + \|\Theta\|_{L^2} \|\widehat{U}\|_{L^1} A^{\frac{1}{2}}(t).$ 32 33 **Step 2: Estimation of** $||w||_{H^1}$. Due to $(1.6)_1$, that is, $-\operatorname{div} w = \partial_t \phi + \operatorname{div}((\phi + \Theta)(w + U))$, then integrating by parts yields 34 35 $\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\nabla\phi\|_{L^{2}}^{2}+\langle\nabla\Delta\phi,w\rangle=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\nabla\phi\|_{L^{2}}^{2}-\langle\Delta\phi,\mathrm{div}w\rangle$ 36 37 $= \langle \Delta \phi, \operatorname{div}((\phi + \Theta)(w + U)) \rangle$ 38 $= - \langle \nabla \Delta \phi, \phi w \rangle + \langle \Delta \phi, U \cdot \nabla \phi + w \cdot \nabla \Theta + \phi \operatorname{div} U + \Theta \operatorname{div} u + \Theta \operatorname{div} U + U \cdot \nabla \Theta \rangle$ 39 40 $\leq \|\nabla \Delta \phi\|_{L^{2}} \|\phi\|_{L^{6}} \|w\|_{L^{3}} + \|\Delta \phi\|_{L^{2}} \left(\|\widehat{U},\widehat{\Theta}\|_{L^{1}} \|\phi,w,\nabla \phi,\nabla w\|_{L^{2}} + \|\Theta \mathrm{div}U,U \cdot \nabla \Theta\|_{L^{2}}\right)$ 41 $\leq A^{\frac{1}{2}}(t)B(t) + \|\widehat{U},\widehat{\Theta}\|_{L^{1}}A(t) + \|\Theta\|_{L^{2}}\|\widehat{U}\|_{L^{1}}A^{\frac{1}{2}}(t).$ (3.21)42

1	Doting Eqs.(1.6) ₂ with $w - \Delta w$ gives
2	$1 d_{11} + 2 d_{12} $
3	$\frac{1}{2} \frac{1}{dt} \ w\ _{H^1}^2 + \mu \ \nabla w\ _{H^1}^2 + (\mu + \lambda) \ dvw\ _{H^1}^2$
4 5 6	(3.22) $-(\kappa+1)\langle \nabla \Delta \phi, w \rangle + \langle \nabla \phi, w \rangle + \kappa \langle \nabla \Delta \phi, \Delta w \rangle := \sum_{i=1}^{4} J_i,$
7	where
8	where
9	$J_1 = -\langle w \cdot abla w, w angle + \langle w \cdot abla w, \Delta w angle + \langle \mathbf{S}(\phi, w), w angle - \langle \mathbf{S}(\phi, w), \Delta w angle,$
10	$J_2 = - \langle U \cdot \nabla w, w \rangle - \langle w \cdot \nabla U, w \rangle + \langle U \cdot \nabla w, \Delta w \rangle + \langle w \cdot \nabla U, \Delta w \rangle$
11	$+\langle \mathbf{S}(oldsymbol{\phi},U),w angle -\langle \mathbf{S}(oldsymbol{\phi},U),\Delta w angle +\langle \mathbf{S}(\Theta,w),w angle -\langle \mathbf{S}(\Theta,w),\Delta w angle,$
12	$J_3 = -\langle U \cdot abla U, w angle + \langle U \cdot abla U, \Delta w angle + \langle \mathbf{S}(\mathbf{\Theta}, U), w angle - \langle \mathbf{S}(\mathbf{\Theta}, U), \Delta w angle,$
13 14	$J_4 = \langle K(\widetilde{ ho}) abla \phi, w angle + \langle K(\widetilde{ ho}) abla \Theta, w angle - \langle K(\widetilde{ ho}) abla \phi, \Delta w angle - \langle K(\widetilde{ ho}) abla \Theta, \Delta w angle.$
15	Taking similar arguments as for $I_1 = I_2$, we obtain
16	Taking similar arguments as for 1 13, we obtain
17	$ J_1 \lesssim A^{rac{1}{2}}(t)B(t),$
18	$ J_2 \lesssim \ \widehat{U}, \widehat{\Theta}\ _{L^1} A(t) + \ \widehat{\Theta}\ _{L^1} B(t),$
19	$ \mathbf{U} < \left(\ \mathbf{U} - \nabla \mathbf{U}\ + \ \mathbf{O}\ + \ \mathbf{O}\ \right) \mathbf{A}_{1}^{\frac{1}{2}}(\mathbf{x})$
20	$ J_3 \gtrsim \left(\ U \cdot \nabla U\ _{H^1} + \ \Theta\ _{L^2} \ U\ _{L^1} \right) A^2(t).$
22	For the term J_4 , we rewrite it as
23	$L = \langle \mathcal{K}(\widetilde{a}) \nabla \phi \rangle + \langle \mathcal{K}(\widetilde{a}) \nabla \partial \phi \rangle + \langle \partial \mathcal{K}(\widetilde{a}) \nabla \phi$
24	$J_4 = \underbrace{\langle \mathbf{K}(\boldsymbol{\rho}) \mathbf{v} \boldsymbol{\psi}, \boldsymbol{w} \rangle + \langle \mathbf{K}(\boldsymbol{\rho}) \mathbf{v} \boldsymbol{\partial}_i \boldsymbol{\psi} \rangle + \langle \boldsymbol{\partial}_i \mathbf{K}(\boldsymbol{\rho}) \mathbf{v} \boldsymbol{\psi}, \boldsymbol{\partial}_i \boldsymbol{w} \rangle}_{\mathbf{v}}$
25	$=J_{4,1}$
26	$+ \langle K(\widetilde{\rho}) \nabla \Theta, w \rangle + \langle K(\widetilde{\rho}) \nabla \partial_i \Theta, \partial_i w \rangle + \langle \partial_i K(\widetilde{\rho}) \nabla \Theta, \partial_i w \rangle.$
27	$=J_{4,2}$
20 29	By the Hölder inequality, ε -Young inequality (ε shall be fixed later) and Lemma 2.4, we have
30	$ \mathbf{r} < \ \mathbf{r}(\mathbf{x})\ \ \nabla + \nabla^2 + \ \ \nabla \ + \ \mathbf{r}(\mathbf{x})\ \ \nabla + \ \nabla \ $
31	$ J_{4,1} \gtrsim \ K(\rho)\ _{L^{\infty}} \ \nabla \varphi, \nabla^{2} \varphi\ _{L^{2}} \ w, \nabla w\ _{L^{2}} + \ K(\rho)\ _{\dot{H}^{1}} \ \nabla \varphi\ _{L^{6}} \ \nabla w\ _{L^{3}}$
32	$\lesssim \ oldsymbol{\phi}, \Theta \ _{L^\infty} A(t) + \ abla oldsymbol{\phi}, \Theta \ _{L^2} \ abla^2 oldsymbol{\phi} \ _{L^2} \ abla w \ _{H^1}$
33	$\leq A^{\frac{1}{2}}(t)B(t) + \left(\ \widehat{\Theta}\ _{t^{1}} + \ \Theta\ _{t^{2}}^{2}\right)A(t) + \varepsilon B(t).$
34	$\sim - (\gamma) - (\gamma) + (1 - 1L^2) - (\gamma) + (- (\gamma))$
35	$ J_{4,2} \gtrsim \ K(\rho)\ _{L^2} \ \Theta\ _{L^{\infty}} \ w, \forall w\ _{L^2} + \ K(\rho)\ _{\dot{H}^1} \ \Theta\ _{W^{1,\infty}} \ \forall w\ _{L^2}$
37	$\lesssim \ \widehat{\Theta}\ _{L^1} A(t) + \ \widehat{\Theta}\ _{L^1} \ \Theta\ _{L^2} A^{rac{1}{2}}(t)$
38	$\lesssim \left(\ \widehat{\mathbf{\Theta}}\ _{L^1} + \ \mathbf{\Theta}\ _{L^2}^2 ight) A(t) + \ \widehat{\mathbf{\Theta}}\ _{L^1}^2,$
39	
40	then we can deduce that

$$|J_4| \le C \left(\|\widehat{\Theta}\|_{L^1} + \|\Theta\|_{L^2}^2 \right) A(t) + C \|\widehat{\Theta}\|_{L^1}^2 + \left(CA^{\frac{1}{2}}(t) + \varepsilon \right) B(t).$$

Gathering the above estimations together, we deduce that 1

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|w\|_{H^{1}}^{2} + \min(\mu, \nu) \|\nabla w\|_{H^{1}}^{2} - (\kappa + 1) \langle \nabla \Delta \phi, w \rangle + \langle \nabla \phi, w \rangle + \kappa \langle \nabla \Delta \phi, \Delta w \rangle$$

$$\leq C \left(\|\widehat{U}, \widehat{\Theta}\|_{L^{1}} + \|\Theta\|_{L^{2}}^{2} \right) A(t) + C \left(\|U \cdot \nabla U\|_{H^{2}} + \|\Theta\|_{L^{2}} \|\widehat{U}\|_{L^{1}} \right) A^{\frac{1}{2}}(t)$$

$$= (3.24)$$

 $+C\|\widehat{\Theta}\|_{L^{1}}^{2}+\left(CA^{\frac{1}{2}}(t)+C\|\widehat{\Theta}\|_{L^{1}}+\varepsilon\right)B(t).$ (3.24)

2 3 4 5 6 7 8 9 10 11 12 Performing $(3.18) + \kappa \times (3.20) + (\kappa + 1) \times (3.21) + (3.24)$ yields

$$\begin{split} &\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left(\|w\|_{H^{1}}^{2}+\|\phi\|_{L^{2}}^{2}+(\kappa+1)\|\nabla\phi\|_{L^{2}}^{2}+\kappa\|\Delta\phi\|_{L^{2}}^{2}\right)+\min\left(\mu,\nu\right)\|\nabla w\|_{H^{1}}^{2}\\ &\leq C\left(\|\widehat{U},\widehat{\Theta}\|_{L^{1}}+\|\Theta\|_{L^{2}}^{2}\right)A(t)+C\left(\|U\cdot\nabla U\|_{H^{2}}+\|\Theta\|_{L^{2}}\|\widehat{U}\|_{L^{1}}\right)A^{\frac{1}{2}}(t)\\ &+C\|\widehat{\Theta}\|_{L^{1}}^{2}+\left(CA^{\frac{1}{2}}(t)+C\|\widehat{\Theta}\|_{L^{1}}+\varepsilon\right)B(t). \end{split}$$

13 14 (3.25)15

Step 3: Estimation of $\sum_{|\alpha| \leq 1} \langle D^{\alpha} w, D^{\alpha} \nabla \phi \rangle$.

16 Next, we will find the dissipation of ϕ via the estimation of the crossing term $\sum_{|\alpha|\leq 1} \langle D^{\alpha}w, D^{\alpha}\nabla\phi \rangle$. 17 To achieve this goal, performing direct calculations gives 18

$$\frac{\frac{19}{20}}{\frac{21}{21}} (3.26) \quad \frac{d}{dt} \sum_{|\alpha| \le 1} \langle D^{\alpha} w, D^{\alpha} \nabla \phi \rangle + \kappa \|\Delta \phi\|_{H^{1}}^{2} + \|\nabla \phi\|_{H^{1}}^{2} - \|\operatorname{div} w\|_{H^{1}}^{2} + v \sum_{|\alpha| \le 1} \langle D^{\alpha} \nabla w, D^{\alpha} \Delta \phi \rangle := \sum_{i=1}^{4} K_{i},$$

22 23 where

24

32 33 34

35

36 37

$$\begin{split} K_{1} &= \sum_{|\alpha| \leq 1} \langle D^{\alpha}(w \cdot \nabla \phi), D^{\alpha} \operatorname{div} w \rangle + \sum_{|\alpha| \leq 1} \langle D^{\alpha}(\phi \operatorname{div} w), D^{\alpha} \operatorname{div} w \rangle - \sum_{|\alpha| \leq 1} \langle D^{\alpha}(w \cdot \nabla w), D^{\alpha} \nabla \phi \rangle \\ &+ \langle \mathbf{S}(\phi, w), \nabla \phi \rangle + \sum_{0 < |\alpha| \leq 1} \langle D^{\alpha - e_{i}} \mathbf{S}(\phi, w), D^{\alpha} \partial_{x_{i}} \nabla \phi \rangle, \\ K_{2} &= -\sum_{|\alpha| \leq 1} \langle D^{\alpha} \nabla (U \cdot \nabla \phi), D^{\alpha} w \rangle - \sum_{|\alpha| \leq 1} \langle D^{\alpha} (U \cdot \nabla w), D^{\alpha} \nabla \phi \rangle - \sum_{|\alpha| \leq 1} \langle D^{\alpha}(w \cdot \nabla U), D^{\alpha} \nabla \phi \rangle \\ &- \sum_{|\alpha| \leq 1} \langle D^{\alpha} \nabla (w \cdot \nabla \Theta), D^{\alpha} w \rangle - \sum_{|\alpha| \leq 1} \langle D^{\alpha} \nabla (\phi \operatorname{div} U), D^{\alpha} w \rangle + \sum_{|\alpha| \leq 1} \langle D^{\alpha} (\Theta \operatorname{div} w), D^{\alpha} \operatorname{div} w \rangle \\ &+ \sum_{|\alpha| \leq 1} \langle D^{\alpha} \mathbf{S}(\phi, U), D^{\alpha} \nabla \phi \rangle + \langle \mathbf{S}(\Theta, w), \nabla \phi \rangle + \sum_{0 < |\alpha| \leq 1} \langle D^{\alpha} \nabla (0 \operatorname{div} w), D^{\alpha} \partial_{x_{i}} \nabla \phi \rangle, \\ K_{3} &= -\sum_{|\alpha| \leq 1} \langle D^{\alpha} (U \cdot \nabla U), D^{\alpha} \nabla \phi \rangle - \sum_{|\alpha| \leq 1} \langle D^{\alpha} \nabla (\Theta \operatorname{div} U), D^{\alpha} w \rangle - \sum_{|\alpha| \leq 1} \langle D^{\alpha} \nabla (U \cdot \nabla \Theta), D^{\alpha} w \rangle \\ &+ \sum_{|\alpha| \leq 1} \langle D^{\alpha} \mathbf{S}(\Theta, U), D^{\alpha} \nabla \phi \rangle, \\ K_{4} &= \langle K(\widetilde{\rho}) \nabla \Theta, \nabla \phi \rangle + \langle K(\widetilde{\rho}) \nabla \phi, \nabla \phi \rangle + \sum_{0 < |\alpha| \leq 1} \langle D^{\alpha} (K(\widetilde{\rho}) \nabla \Theta), D^{\alpha} \nabla \phi \rangle \\ &+ \sum_{0 < |\alpha| \leq 1} \langle D^{\alpha} (K(\widetilde{\rho}) \nabla \phi), D^{\alpha} \nabla \phi \rangle. \end{split}$$

1 By Hölder's inequality, we get

$$|K_1| \lesssim A^{\frac{1}{2}}(t)B(t),$$

$$|K_2| \lesssim \|\widehat{U}, \widehat{\Theta}\|_{L^1} A(t) + \|\widehat{\Theta}\|_{L^1} B(t),$$

$$|K_3| \lesssim (\|U \cdot \nabla U\|_{H^2} + \|\Theta\|_{L^2} \|\widehat{U}\|_{L^1}) A^{\frac{1}{2}}(t).$$

Taking similar arguments as for J_4 , we obtain

$$|K_4| \le C \left(\|\widehat{\Theta}\|_{L^1} + \|\Theta\|_{L^2}^2 \right) A(t) + C \|\widehat{\Theta}\|_{L^1}^2 + \left(CA^{\frac{1}{2}}(t) + \varepsilon \right) B(t).$$

 $\overline{10}$ Putting (3.27)-(3.30) together with (3.26) implies

$$\frac{\frac{11}{12}}{\frac{12}{13}} \qquad \qquad \frac{d}{dt} \sum_{|\alpha| \le 1} \langle D^{\alpha} w, D^{\alpha} \nabla \phi \rangle + \kappa \|\Delta \phi\|_{H^{1}}^{2} + \|\nabla \phi\|_{H^{1}}^{2} - \|\operatorname{div} w\|_{H^{1}}^{2} + v \sum_{|\alpha| \le 1} \langle D^{\alpha} \nabla w, D^{\alpha} \Delta \phi \rangle \\ \lesssim \left(A^{\frac{1}{2}}(t) + \|\widehat{\Theta}\|_{L^{1}} + \varepsilon \right) B(t) + \left(\|\widehat{U}, \widehat{\Theta}\|_{L^{1}} + \|\Theta\|_{L^{2}}^{2} \right) A(t) \\ + \left(\|U \cdot \nabla U\|_{H^{2}} + \|\Theta\|_{L^{2}} \|\widehat{U}\|_{L^{1}} \right) A^{\frac{1}{2}}(t) + \|\widehat{\Theta}\|_{L^{1}}^{2}.$$

Step 4: Closure of The A Priori Estimates.

17

21 22

41 42

¹⁸ Now, we need to close the above all estimates from **Step 1-Step 3**.

Fundamental observations give that for some suitable positive constant γ

$$\|\phi\|_{H^2}^2 + \|w\|_{H^1}^2 + \gamma \langle \Delta w, \nabla \phi \rangle \approx A(t),$$

$$\frac{\gamma}{2} \|\nabla \phi\|_{H^2}^2 + \min(\mu, \nu) \|\nabla w\|_{H^1}^2 - \gamma \|\nabla \operatorname{div} w\|_{L^2}^2 - \gamma \nu \langle \Delta w, \nabla \Delta \phi \rangle \approx B(t).$$

Performing $\gamma \times (3.31) + (3.25)$, then integrating the resulting in time yields

$$A(t) + \int_{0}^{t} B(s) ds \lesssim \int_{0}^{t} \left(A^{\frac{1}{2}}(s) + \|\widehat{\Theta}\|_{L^{1}} + \varepsilon \right) B(s) ds + \int_{0}^{t} \left(\|\widehat{\Theta}\|_{L^{1}}^{2} + (\|U \cdot \nabla U\|_{H^{3}} + \|\widehat{U}\|_{L^{1}} \|\Theta\|_{L^{2}}) A^{\frac{1}{2}}(s) \right) ds + \int_{0}^{t} \left(\|\widehat{\Theta}, \widehat{U}\|_{L^{1}} + \|\Theta\|_{L^{2}}^{2} \right) A(s) ds.$$
(3.32)

³¹ Taking η and ε small enough and absorbing the first term of RHS of (3.32), then for all $t \in [0, \Gamma]$, ³² from (3.32), using Gronwall's inequality and Lemmas 2.4-2.5, we obtain that

$$\begin{array}{l}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
A(t) \leq C \int_{0}^{t} \left(\|\widehat{\Theta}\|_{L^{1}}^{2} + \|\widehat{U}\|_{L^{1}} \|\Theta\|_{L^{2}} + \|U \cdot \nabla U\|_{H^{3}} \right) \mathrm{d}s \exp\left(C \int_{0}^{t} \left(\|\widehat{\Theta}, \widehat{U}\|_{L^{1}} + \|\Theta\|_{L^{2}}^{2} \right) \mathrm{d}s \right) \\
\end{array} \\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\left\|\widehat{\Theta}_{0}\|_{L^{1}}^{2} + \|\widehat{\Theta}_{0}\|_{L^{1}}^{2} + \|\widehat{\Theta}_{0}\|_{L^{2}} + \varepsilon \|\widehat{a}\|_{L^{1}} \|a\|_{L^{2}} \right) \\
\end{array} \\
\end{array} \\
\end{array} \\
\left(\left\{ C \int_{0}^{t} \left(\|\widehat{\Theta}_{0}, \widehat{a}\|_{L^{1}} + \|\Theta\|_{L^{2}}^{2} \right) \\
\end{array} \\
\left(\left\{ S \\ \\
\end{array} \\
\left\{ S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
\end{array} \right) \\
\left\{ S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
S \\ \\
S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
S \\ \\
\end{array} \right\right) \\
\left\{ S \\ \\
\end{array}$$
\left\{ S \\ \\
S \\ \\
S \\ \\
S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\ \\
\end{array} \\
\left\{ S \\ \\
S \\

 $\frac{38}{39}$ where we have used the smallness condition (1.8) in the last step.

Choosing $\eta = 2C\varepsilon_0$, thus we can get

$$\sup_{ au\in[0,t]}A(au)\leq rac{\eta}{2} \quad ext{for} \quad t\leq \Gamma.$$

1 Hence, if $\Gamma < T^*$, due to the continuity of the solutions, we can obtain that there exists $0 < \varepsilon \ll 1$ 2 3 4 5 6 such that

$$\sup_{\tau \in [0,t]} A(\tau) \le \eta \quad \text{for} \quad t \le \Gamma + \varepsilon < T^*,$$

which is contradiction with the definition of Γ . Thus, we can conclude $\Gamma = T^*$ and

$$\sup_{\tau\in[0,t]}A(\tau)\leq C<\infty\quad\text{for all}\quad t\in(0,T^*),$$

7 8 9 10 which implies that $T^* = +\infty$. This completes the proof of Theorem 1.1.

11

12

16 17

18

20

21 22

23

Acknowledgements

¹³ The authors want to thank the anonymous referee for his/her useful suggestions which greatly im-14 proved the presentation of this paper. Y. Yu is supported by the National Natural Science Foundation 15 of China (12101011) and the Natural Science Foundation of Anhui Province (2108085MA03).

Declarations

Data Availability No data was used for the research described in the article. 19

Conflict of interest The authors declare that they have no conflict of interest.

References

- 24 [1] Anderson D.M., McFadden G.B., Wheller A.A. Diffuse-interface methods in fluid mech. Annal Review of Fluid 25 Mechanics, 1998;30: 139-165.
- [2] Bresch D, Desjardins B, Lin C. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. 26 Comm. Part. Diffe. Equ. 2003;28:843-868. 27
- [3] Cahn J, Hilliard J. Free energy of a nonuniform system, I. Interfacial free energy. J Chem Phys. 1998;28:258-267.
- 28 [4] Charve F, Danchin R. A global existence result for the compressible NavierCS tokes equations in the critical L^p frame-29 work. Arch. Ration. Mech. Anal. 2010;198(1): 233-271.
- 30 [5] Charve F, Haspot B. Convergence of capillary fluid models: from the non-local to the local Korteweg model. Indiana Univ. Math. J. 2011;60(6): 2021-2059. 31
- [6] Charve F, Haspot B. On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid 32 model. J. Funct. Anal. 2013;265(7): 1264-1323. 33
- [7] Charve F. Local in time results for local and non-local capillary NavierCStokes systems with large data. J. Differ. Equ. 34 2014;256(7): 2152C2193.
- 35 [8] Chen Q, Miao C, Zhang Z. Global well-posedness for compressible Navier-Stokes equations with highly oscillating 36 initial velocity. Comm. Pure Appl. Math. 2010;63(9): 1173-1224.
- 37 [9] Chikami N, Kobayashi T. Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces. J. Math. Fluid Mech. 2019;21:31. 38
- [10] Danchin R, Desjardins B. Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. H. 39 Poincaré Anal. NonLinéaire. 2001;18: 97-133.
- 40 [11] Dunn J, Serrin J. On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 1985;88:95-133.
- 41 [12] Gurtin M, Poligone D, Vinals J. Two-phases binary fluids and immiscible fluids described by an order parameter. Math.
- 42 Models Methods Appl. Sci. 1996;6:815-831.

- [13] Hattori H, Li D. Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 1994;
 25:85-98.
- [14] Hattori H, Li D. Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 1996;198:84-97.
 [4] Hattori P. Caucha archiver abelian material constitution with a term of accillation. Math. Madela Math. Acc.
- [15] Haspot B. Cauchy problem for viscous shallow water equations with a term of capillarity. Math. Models Methods
 Appl. Sci. 2010;20(7):1049-1087.
- [16] Haspot B. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech.
 7 Anal. 2011;202: 427-460.
- 8 [17] Haspot B. Existence of global strong solution for Korteweg system with large infinite energy initial data. J. Math. Anal.
 9 Appl. 2016; 438:395-443.
- [18] Haspot B. Global strong solution for the Korteweg system with quantum pressure in dimension $N \ge 2$. Mathematische Annalen. 2017; 367:667-700.
- [19] Haspot B. Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech.
 2011; 13: 223-249.
- [20] Hou X, Peng H, Zhu C. Global classical solutions to the 3D Navier–Stokes–Korteweg equations with small initial energy. Analysis and Applications. 2018;16(1):55-84.
- [21] Kobayashi T, Tsuda K. Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition. Asymptotic Analysis. 2021;121(2):195-217.
 [22] Kotashota M. Strang solutions for a compressible fluid model of Kortunes time. Ann. Inst. II. Beingeré Angl. Nep.
- [22] Kotschote M. Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2008; 25:679-696.
- [23] Lei Z, Lin F, Zhou Y. Structure of helicity and global solutions of incompressible Navier-Stokes equation. Arch.
 Ration. Mech. Anal. 2015;218:1417-1430.
- [24] Li J, Yu Y, Zhu W, Yin Z. Global large solutions to the compressible Navier-Stokes equations in critical Besov space $\dot{B}_{\infty,\infty}^{-1}$. J. Math. Fluid Mech. 2022; 24(22): 16pp
- [25] Murata M, Shibata Y. The global well-posedness for the compressible fluid model of Korteweg type. SIAM J. Math. Anal. 2020; 52(6):6313-6337.
- ²³ [26] Triebel H. Theory of Function Spaces, Monographs in Mathematics. Basel: Birkhäuser; 1983.
- [27] Yu Y, Wu X. Global strong solution of 2D Navier–Stokes–Korteweg system. Math Meth Appl Sci. 2021;44:11231-11244.
- [28] Yu Y, Li J, Wu X. A class of global large solutions to 3-D Navier–Stokes–Korteweg equations. Acta Mathematica Scientia. 2021; 41A(3):629-641.
- [29] Yu Y, Yang X, Wu X. Global smooth solutions of 3-D Navier–Stokes–Korteweg equations with large initial data. Math Meth Appl Sci. 2022;45: 6165C6180.
- [30] Zhang S. A class of global large solutions to the compressible Navier–Stokes–Korteweg system in critical Besov spaces. J. Evol. Equ. 2020;20:1531-1561.
- [31] Zhai X, Li Y. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete Contin. Dyn.
 32 Syst. 2021;41 (3):1387-1413.
- School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China
- 34 E-mail address: yuyanghai214@sina.com
- School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046,
 China
 China

E-mail address: zhqmath@163.com

- 39 SCHOOL OF MATHEMATICS AND STATISTICS, ANHUI NORMAL UNIVERSITY, WUHU 241002, CHINA
 40 E-mail address: eijiewgnat@163.com
- 41 42