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Abstract. Matrix valued asymmetric truncated Toeplitz opera-
tors are compressions of multiplication operators acting between
two possibly different model spaces. In this paper, we characterize
matrix valued asymmetric truncated Toeplitz operators by using
compressed shifts, modified compressed shifts and shift invariance.

1. Introduction

Let H2 be the classical Hardy space in the unit disk D = {λ ∈ C :
|λ| < 1}. Truncated Toeplitz operators (TTO’s) and asymmetric trun-
cated Toeplitz operators (ATTO’s) are compressions of multiplication
operator to the backward shift invariant subspaces of H2 (with two
possibly different underlying subspaces in the asymmetric case). Each
of these subspaces is of the form Kθ = (θH2)⊥ = H2 	 θH2, where θ
a complex-valued inner function: θ ∈ H∞ and |θ(z)| = 1 a.e. on the
unit circle T = ∂D = {z ∈ C : |z| = 1}. Since D. Sarason’s paper [27]
TTO’s, and later on ATTO’s [3,6,7], have been intensly studied (see
[1,9,11,13,15,28] and [5,16–19,23,24]).

It is natural to consider TTO’s and ATTO’s defined on subspaces of
vector valued Hardy space H2(H) withH a separable finite dimensional
complex Hilbert space (see Sections 2 and 3 for detailed definitions). A
vector valued model space KΘ ⊂ H2(H) is the orthogonal complement
of ΘH2(H), that is, KΘ = H2(H) 	 ΘH2(H). Here Θ is an operator
valued inner function: a function with values in L(H) (the algebra of all
bounded linear operators on H), analytic in D, bounded and such that
the boundary values Θ(z) are unitary operators a.e. on T. These spaces
appear in connection with model theory of Hilbert space contractions
(see [25]). Let PΘ be the orthogonal projection from L2(H) onto KΘ.
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For two operator valued inner functions Θ1,Θ2 ∈ H∞(L(H)) and
Φ ∈ L2(L(H)) (again, see Sections 2 and 3 for definitions) let

(1.1) AΘ1,Θ2

Φ f = PΘ2(Φf), f ∈ KΘ1 ∩H∞(H).

The operator AΘ1,Θ2

Φ is called a matrix valued asymmetric truncated

Toeplitz operator (MATTO), while AΘ1
Φ = AΘ1,Θ1

Φ is called a matrix
valued truncated Toeplitz operator (MTTO, see [22]). Both are densely
defined. LetMT (Θ1,Θ2) be the set of all MATTO’s of the form (1.1)
which can be extended boundedly to the whole space KΘ1 and for
Θ1 = Θ2 = Θ let MT (Θ) =MT (Θ,Θ).

Two important examples of operators from MT (Θ) are the model
operators

(1.2) SΘ = AΘ
z = AΘ

zIH
and S∗Θ = AΘ

z̄ = AΘ
z̄IH

.

It is known that each C0 contraction with finite defect indices is unitar-
ily equivalent to SΘ for some operator valued inner function Θ (see [25,
Chapter IV]). On the other hand, operators from MT (Θ1,Θ2) with
certain bounded analytic symbols appear as the operators intertwining
SΘ1 and SΘ2 (see [2, p. 238]).

Some algebraic properties of MTTO’s were studied in [22], while
the asymmetric case was investigated in [21]. Here we continue the
investigation started in [21].

Sections 2 and 3 contain preliminary material on spaces of vector
valued functions (Section 2), model spaces and MATTO’s (Section 3).
In Section 4 we consider some model space operators and their action
onMT (Θ1,Θ2). Section 5 is devoted to characterizations of MATTO’s
in terms of SΘ1 , SΘ2 and their adjoints. In Section 6 we consider the
notion of shift invariance of operators from MT (Θ1,Θ2). In section 7
we use modified compressed shift to characterize MATTO’s.

2. Spaces of vector valued functions and their operators

Let H be a complex separable Hilbert space. In what follows ‖ · ‖H
and 〈·, ·〉H will denote the norm and the inner product in H, respec-
tively. Moreover, we will assume that dimH < ∞. The space L2(H)
can be defined as

L2(H) = {f : T→ H : f is measurable and

∫
T
‖f(z)‖2

H dm(z) <∞}

(m being the normalized Lebesgue measure on T). As usual, each
f ∈ L2(H) is interpreted as a class of functions equal to the representing
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f a.e. on T with respect to m. The space L2(H) is a (separable) Hilbert
space with the inner product given by

〈f, g〉L2(H) =

∫
T
〈f(z), g(z)〉H dm(z), f, g ∈ L2(H).

Equivalently, L2(H) consists of elements f : T→ H of the form

(2.1)

f(z) =
∞∑

n=−∞
anz

n (a.e. on T)

with {an} ⊂ H such that
∞∑

n=−∞
‖an‖2

H <∞.

The n-th Fourier coefficient an of f ∈ L2(H) is determined by

(2.2) 〈an, x〉H =

∫
T
zn〈f(z), x〉Hdm(z) for all x ∈ H.

If f ∈ L2(H) is given by (2.1), then its Fourier series converges in the
L2(H) norm and

‖f‖2
L2(H) =

∫
T
‖f(z)‖2

H dm(z) =
∞∑

n=−∞

‖an‖2
H.

Moreover, for g(z) =
∞∑

n=−∞

bnz
n ∈ L2(H) we have

〈f, g〉L2(H) =
∞∑

n=−∞

〈an, bn〉H.

For H = C we denote L2 = L2(C).
The vector valued Hardy space H2(H) is defined as the set of all

the elements of L2(H) whose Fourier coefficients with negative indices
vanish, that is,

H2(H) =

{
f ∈ L2(H) : f(z) =

∞∑
n=0

anz
n

}
.

Each f ∈ H2(H), f(z) =
∞∑
n=0

anz
n, can also be identified with a func-

tion

f(λ) =
∞∑
n=0

anλ
n, λ ∈ D,

analytic in the unit disk D (the boundary values f(z) can be obtained
from the radial limits, which converge to the boundary function in the
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L2(H) norm). Denote by P+ the orthogonal projection P+ : L2(H)→
H2(H),

P+

(
∞∑

n=−∞

anz
n

)
=
∞∑
n=0

anz
n,

and let H2 = H2(C).
We can also consider the spaces

L∞(H) =

{
f : T→ H :

f is measurable and
‖f‖∞ = ess supz∈T ‖f(z)‖H <∞

}
(clearly, L∞(H) ⊂ L2(H)) and

H∞(H) = L∞(H) ∩H2(H),

the latter seen also as the space of all bounded H–valued functions
which are analytic in D.

Now let L(H) be the algebra of all bounded linear operators on H
equipped with the operator norm ‖ · ‖L(H). In the case dimH = d <∞
each element of L(H) can be identified with a d× d matrix. Denote

L∞(L(H)) =

{
F : T→ L(H) :

F is measurable and
‖F‖∞ = ess supz∈T ‖F(z)‖L(H) <∞

}
(a function F : T → L(H) is measurable if F(·)x : T → H is measur-
able for every x ∈ H). Each F ∈ L∞(L(H)) admits a formal Fourier
expansion (a.e. on T)

(2.3) F(z) =
∞∑

n=−∞

Fnz
n with {Fn} ⊂ L(H)

defined by

(2.4) Fnx =

∫
T
znF(z)x dm(z) for x ∈ H

(integrated in the strong sense). Let

H∞(L(H)) =

{
F ∈ L2(L(H)) : F(z) =

∞∑
n=0

Fnz
n

}
.

The space H∞(L(H)) can equivalently be defined as the space of all
analytic functions F : D→ L(H) such that

‖F‖∞ = sup
λ∈D
‖F(λ)‖L(H) <∞.
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Each such bounded analytic F is of the form

(2.5) F(λ) =
∞∑
n=0

Fnλ
n, λ ∈ D,

and can be identified with the boundary function

(2.6) F(z) =
∞∑
n=0

Fnz
n ∈ L∞(L(H)).

Conversely, each F ∈ L∞(L(H)) given by (2.6) can be extended by (2.5)
to a function bounded and analytic in D. In each case the coefficients
{Fn} can be obtained by (2.4) and the norms ‖ · ‖∞ of the boundary
function and its extension coincide (see [2, p. 232]).

Note that for each λ ∈ D the function kλ(z) = (1− λ̄z)−1IH belongs
to H∞(L(H)). Moreover, for every x ∈ H the function kλx : z 7→
kλ(z)x belongs to H∞(H) and has the following reproducing property

〈f,kλx〉L2(H) = 〈f(λ), x〉H, f ∈ H2(H).

To each F ∈ L∞(L(H)) there corresponds a multiplication operator
MF : L2(H)→ L2(H): for f ∈ L2(H),

(MFf)(z) = F(z)f(z) a.e. on T.
We will write Ff instead of MFf . For a constant F, that is, F(z) = F
a.e. on T for some F ∈ L(H), we will also write Ff instead of Ff .
By TF we will denote the compression of MF to the Hardy space: TF :
H2(H)→ H2(H),

TFf = P+MFf for f ∈ H2(H).

It is clear that (MF)∗ = MF∗ and (TF)∗ = TF∗ , where F∗(z) = F(z)∗

a.e. on T. It is also not difficult to verify that for F ∈ L∞(L(H)) we
have that F ∈ H∞(L(H)) if and only if MF(H2(H)) ⊂ H2(H). In par-
ticular, for Mz = MzIH we have M∗

z = Mz̄ = Mz̄IH and Mz(H
2(H)) ⊂

H2(H). The operator S = Tz = Mz|H2(H) is called the (forward) shift
operator. Its adjoint, the backward shift operator S∗ = Tz̄, is given by
the formula

S∗f(z) = z̄
(
f(z)− f(0)

)
.

Here we assume that dimH < ∞ so we can consider L(H) as a
Hilbert space with the Hilbert–Schmidt norm and we may also define
as above the spaces L2(L(H)) and H2(L(H)). Recall that the norm
and the corresponding inner product are defined as follows: for Hilbert-
Schmidt operators A,B ∈ L(H) we have

‖A‖2
2 = tr(A∗A) =

∑
e∈ε

〈Ae,Ae〉H
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and
〈A,B〉 = tr(B∗A) =

∑
e∈ε

〈Ae,Be〉H

ε being any orthonormal basis for H (see [13, Chapter 3]). Hence for
F,G ∈ L2(L(H))

〈F,G〉L2(L(H)) =

∫
T
〈F(z),G(z)〉2dm(z)

=

∫
T

∑
e∈ε

〈F(z)e,G(z)e〉Hdm(z).

Since 〈A,B〉2 = 〈B∗, A∗〉2, it follows that 〈F,G〉L2(L(H)) = 〈G∗,F∗〉L2(L(H)).
Since here the Hilbert–Schmidt norm and the operator norm are

equivalent, we have

L∞(L(H)) ⊂ L2(L(H)), H∞(L(H)) ⊂ H2(L(H)).

Moreover, it is not difficult to verify that if F ∈ L2(L(H)) is given by

F(z) =
∞∑

n=−∞

Fnz
n, Fn ∈ L(H),

where the series is convergent in the L2(L(H))-norm, then

F∗(z) = F(z)∗ =
∞∑

n=−∞

(F−n)∗zn.

We thus have

L2(L(H)) =
[
zH2(L(H))

]∗ ⊕H2(L(H)).

For F ∈ L2(L(H)) the operators MF and TF can be densely defined,
on L∞(H) and H∞(H), respectively. For more details on spaces of
vector valued functions we refer the reader to [2,25,26].

3. Model spaces and MATTO’s

An element Θ ∈ H∞(L(H)) is called an (operator valued) inner
function if its boundary values Θ(z) are unitary operators a.e. on T
(in general it is assumed that the boundary values are isometries, see
e.g. [2, p. 113], but here dimH < ∞). We will consider only pure
inner functions, that is Θ such that ‖Θ(0)‖L(H) < 1.

The model space

KΘ = H2(H)	ΘH2(H)

corresponding to an inner function Θ is invariant under the backward
shift S∗. Moreover, by the vector valued version of Beurling’s invariant

14 Jul 2023 10:54:08 PDT
230323-Khan Version 2 - Submitted to Rocky Mountain J. Math.



CHARACTERIZATIONS OF MATTO’S 7

subspace theorem, each closed (nontrivial) S∗–invariant subspace of
H2(H) is a model space ([2, Chapter 5, Theorem 1.10]). Let PΘ be the
orthogonal projection from L2(H) onto KΘ. Then

PΘ = P+ −MΘP+MΘ∗ .

Note that MΘP+MΘ∗ is the orthogonal projection from L2(H) onto
ΘH2(H).

For each λ ∈ D we can consider

kΘ
λ (z) = 1

1−λ̄z (IH −Θ(z)Θ(λ)∗) ∈ H∞(L(H)).

For x ∈ H we will denote the function z 7→ kΘ
λ (z)x simply by kΘ

λ x.
Then, for each x ∈ H and λ ∈ D, the function kΘ

λ x = PΘ(kλx) belongs
to K∞Θ = KΘ ∩H∞(H) and has the following reproducing property

〈f,kΘ
λ x〉L2(H) = 〈f(λ), x〉H for every f ∈ KΘ.

It follows in particular that K∞Θ = KΘ ∩ H∞(H) is a dense subset of
KΘ.

Now let Θ1,Θ2 ∈ H∞(L(H)) be two inner functions. For any Φ ∈
L2(L(H)) define

AΘ1,Θ2

Φ f = PΘ2MΦf = PΘ2(Φf), f ∈ K∞Θ1
.

The operator AΘ1,Θ2

Φ is called a matrix valued asymmetric truncated
Toeplitz operator (MATTO) with symbol Φ ∈ L2(L(H)). It is densely
defined and if bounded, it can be extended to a bounded linear operator
AΘ1,Θ2

Φ : KΘ1 → KΘ2 (in which case we simply say that AΘ1,Θ2

Φ is
bounded). Let us denote

MT (Θ1,Θ2) = {AΘ1,Θ2

Φ : Φ ∈ L2(L(H)) and AΘ1,Θ2

Φ is bounded}.

For Θ1 = Θ2 = Θ we put AΘ
Φ = AΘ,Θ

Φ (a matrix valued truncated
Toeplitz operator, MTTO) and MT (Θ) = MT (Θ,Θ). Observe that(
AΘ1,Θ2

Φ

)∗
= AΘ2,Θ1

Φ∗ , soA ∈MT (Θ1,Θ2) if and only ifA∗ ∈MT (Θ2,Θ1).
Two important examples of MTTO’s are the model operators: the

compressed shift SΘ and its adjoint S∗Θ, defined by (1.2). Clearly,
SΘf = PΘSf = PΘ(Mzf) and since KΘ is S∗–invariant, we have S∗Θf =
S∗f = P+(Mz̄f).

These operators are models for a class of Hilbert space contractions.
For example, each C0 contraction with finite defect indices is unitarily
equivalent to SΘ for some operator valued inner function Θ (see [25,
Chapter IV]).

Let

DΘ = {(IH −ΘΘ(0)∗)x : x ∈ H} = {kΘ
0 x : x ∈ H} ⊂ KΘ.
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Then for f ∈ KΘ we have f ⊥ DΘ if and only if f(0) = 0. Indeed,
f ⊥ DΘ if and only if

0 = 〈f,kΘ
0 x〉L2(H) = 〈f(0), x〉H for every x ∈ H.

It follows that

(S∗Θf)(z) =

{
z̄f(z) for f ⊥ DΘ,

−z̄
(
Θ(z)−Θ(0)

)
Θ(0)∗x for f = kΘ

0 x ∈ DΘ.

Now denote (the defect operator)

DΘ = IKΘ
− SΘS

∗
Θ.

Since for each f ∈ H2(H) we have (IH2(H)− SS∗)f = f(0) (a constant
function in H2(H)), it follows that for f ∈ KΘ,

DΘf = (IKΘ
− SΘS

∗
Θ)f = PΘ(IH2(H) − SS∗)f

= (IH −ΘΘ(0)∗)f(0) = kΘ
0 f(0) ∈ DΘ.

(3.1)

More precisely,

DΘf =

{
0 for f ⊥ DΘ,

kΘ
0 (IH −Θ(0)Θ(0)∗)x for f = kΘ

0 x ∈ DΘ.

Since kΘ
0 is invertible in H∞(L(H)), the formula

ΩΘ(kΘ
0 x) = x, x ∈ H,

gives a well defined operator ΩΘ : DΘ → H. Clearly, ΩΘ is bounded
(here for example as an operator acting between two finite dimensional
Hilbert spaces). Since H can be identified with a subspace of H2(H)
(the space of all constant H–valued functions), ΩΘ can be seen as an
operator from DΘ into H2(H). For each f ∈ KΘ we then have

(3.2) ΩΘDΘf = ΩΘ(kΘ
0 f(0)) = f(0) = (IH2(H) − SS∗)f.

4. MATTO’s and some model space operators

In this section we consider the action of some model space operators
on MT (Θ1,Θ2).

In [20] the author considers the generalized Crofoot transform. A
bounded linear operatorW ∈ L(H) is called a contraction if ‖W‖L(H) ≤
1 and a strict contraction if ‖W‖L(H) < 1. The operators DW =

(I − W ∗W )
1
2 and DW ∗ = (I − WW ∗)

1
2 are called the defect opera-

tors of W . For a pure inner function Θ ∈ H∞(L(H)) and W ∈ L(H)
such that ‖W‖L(H) < 1 define the generalized Crofoot transform JΘ

W :
L2(H)→ L2(H) by

JΘ
Wf = DW ∗(IL2(H) −ΘW ∗)−1f, f ∈ L2(H).
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Then JΘ
W is unitary and maps KΘ onto KΘW , where

ΘW (z) = −W +DW ∗(IL2(H) −Θ(z)W ∗)−1Θ(z)DW .

The following theorem describes the action of the Crofoot transform on
MT (Θ1,Θ2) (see [21] for asymmetric matrix valued truncated Toeplitz
operators and [17] for the scalar case):

Theorem 4.1. [21] Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner func-
tions and let W1,W2 ∈ L(H) be such that ‖W1‖L(H) < 1 and ‖W2‖L(H) <
1. A bounded linear operator A : KΘ1 → KΘ2 belongs to MT (Θ1,Θ2)
if and only if JΘ2

W2
A(JΘ1

W1
)∗ belongs to MT (ΘW1

1 ,ΘW2
2 ). More precisely,

A = AΘ1,Θ2

Φ ∈ MT (Θ1,Θ2) if and only if JΘ2
W2
A(JΘ1

W1
)∗ = A

Θ
W1
1 ,Θ

W2
2

Ψ ∈
MT (ΘW1

1 ,ΘW2
2 ) with

Ψ = DW ∗2
(IL(H) −Θ2W

∗
2 )−1ΦDW ∗1

(IL(H) + ΘW1
1 W ∗

1 )−1.

Recall that if Θ ∈ H∞(L(H)) is an inner function, then so is

Θ̃(z) = Θ(z̄)∗.

Let us now consider the map τΘ : L2(H) → L2(H) defined for f ∈
L2(H) by

(4.1) (τΘf)(z) = z̄Θ(z̄)∗f(z̄) = z̄Θ̃(z)f(z̄) a.e. on T.

The map τΘ is an isometry and its adjoint τ ∗Θ = τΘ̃ is also its inverse.
Hence τΘ is unitary. Moreover, it is easy to verify that

τΘ(ΘH2(H)) ⊂ H2(H)⊥ and τΘ(H2(H)⊥) ⊂ Θ̃H2(H),

which implies that

τΘ(KΘ) = KΘ̃.

Theorem 4.2. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions.
A bounded linear operator A : KΘ1 → KΘ2 belongs to MT (Θ1,Θ2)

if and only if τΘ2Aτ
∗
Θ1

belongs to MT (Θ̃1, Θ̃2). More precisely, A =

AΘ1,Θ2

Φ ∈MT (Θ1,Θ2) if and only if τΘ2Aτ
∗
Θ1

= AΘ̃1,Θ̃2

Ψ ∈MT (Θ̃1, Θ̃2)
with

Ψ(z) = Θ2(z̄)∗Φ(z̄)Θ1(z̄)

= Θ̃2(z)Φ(z̄)Θ̃1(z)∗ a.e. on T.
(4.2)

Proof. Let A : KΘ1 → KΘ2 be a bounded linear operator. Assume

that A = AΘ1,Θ2

Φ ∈ MT (Θ1,Θ2) with some Φ ∈ L2(L(H)), and take

14 Jul 2023 10:54:08 PDT
230323-Khan Version 2 - Submitted to Rocky Mountain J. Math.



10 R. KHAN, Y. AMEUR, AND J. KHAN

f ∈ K∞
Θ̃1

and g ∈ K∞
Θ̃2

. Note that τΘ̃1
f ∈ K∞Θ1

and τΘ̃2
g ∈ K∞Θ2

.

Therefore

〈τΘ2Aτ
∗
Θ1
f, g〉L2(H) = 〈AΘ1,Θ2

Φ τΘ̃1
f, τ ∗Θ2

g〉L2(H)

= 〈Φ τΘ̃1
f, τ ∗Θ2

g〉L2(H) = 〈τΘ2(Φ τΘ̃1
f), g〉L2(H)

=

∫
T
〈z̄Θ̃2(z)(Φ τΘ̃1

f)(z̄), g(z)〉H dm(z)

=

∫
T
〈z̄Θ̃2(z)Φ(z̄)zΘ1(z̄)f(z), g(z)〉H dm(z)

=

∫
T
〈Ψ(z)f(z), g(z)〉H dm(z) = 〈AΘ̃1,Θ̃2

Ψ f, g〉L2(H)

with Ψ ∈ L2(L(H)) given by (4.2).

Now, if τΘ2Aτ
∗
Θ1

= AΘ̃1,Θ̃2

Ψ ∈ MT (Θ̃1, Θ̃2) for some Ψ ∈ L2(L(H)),

then A = τΘ̃2
AΘ̃1,Θ̃2

Ψ τ ∗
Θ̃1

and by the first part of the proof A = AΘ1,Θ2

Φ ∈
MT (Θ1,Θ2) with

Φ(z) = Θ̃2(z̄)∗Ψ(z̄)Θ̃1(z̄) = Θ2(z)Ψ(z̄)Θ1(z)∗ a.e. on T.(4.3)

Hence Ψ(z) = Θ2(z̄)∗Φ(z̄)Θ1(z̄) and (4.2) is satisfied. �

Denote
D̃Θ = I − S∗ΘSΘ.

Applying Theorem 4.2 to the model operator SΘ (Θ1 = Θ2 = Θ) we
obtain

(4.4) τΘSΘτ
∗
Θ = τΘSΘτΘ̃ = S∗

Θ̃

(see [22, p. 1001]). It follows that

(4.5) D̃Θ = τΘ̃DΘ̃τΘ = τΘ̃DΘ̃τ
∗
Θ̃

and by (3.1),

D̃Θf = τΘ̃

(
kΘ̃

0 (τΘf)(0)
)

for all f ∈ KΘ.

For λ ∈ D let k̃Θ
λ x = τΘ̃(kΘ̃

λ̄
x), x ∈ H. Then (a.e. on T)

k̃Θ
λ (z)x = τΘ̃(kΘ̃

λ̄ (z)x) = z̄Θ(z)kΘ̃
λ̄ (z̄)x

= z̄
1−λz̄Θ(z)(IH − Θ̃(z̄)Θ̃(λ̄)∗)x

= 1
z−λΘ(z)(IH −Θ(z)∗Θ(λ))x

= 1
z−λ(Θ(z)−Θ(λ))x ∈ KΘ for each x ∈ H.

In particular,

k̃Θ
0 (z)x = z̄(Θ(z)−Θ(0))x
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and

D̃Θf = k̃Θ
0 (τΘf)(0) ∈ D̃Θ,

where

D̃Θ = τΘ̃DΘ̃ = {k̃Θ
0 x : x ∈ H} = {z̄(Θ(z)−Θ(0))x : x ∈ H}.

Observe that for f ∈ KΘ, x ∈ H,

〈f, k̃Θ
λ x〉L2(H) = 〈f, τΘ̃(kΘ̃

λ̄ x)〉L2(H)

= 〈τΘf,k
Θ̃
λ̄ x〉L2(H) = 〈(τΘf)(λ̄), x〉H.

It follows that for f ∈ KΘ we have Mzf ∈ KΘ if and only if f ⊥ D̃Θ.
Indeed, Mzf ∈ KΘ if and only if ΘP+(Θ∗Mzf)) = 0. Since

(Θ∗Mzf)(z) = Θ(z)∗zf(z) = (τΘf)(z),

we have P+(Θ∗Mzf)) = (τΘf)(0) and so Mzf ∈ KΘ if and only if

0 = 〈(τΘf)(0), x〉 = 〈f, k̃Θ
0 x〉L2(H) for every x ∈ H,

i.e, f ⊥ D̃Θ. Therefore

(SΘf)(z) =

{
zf(z) for f ⊥ D̃Θ,

−
(
IH −Θ(z)Θ(0)∗

)
Θ(0)x for f = k̃Θ

0 x ∈ D̃Θ.

Hence

D̃Θf =

{
0 for f ⊥ D̃Θ,

k̃Θ
0 (IH −Θ(0)Θ(0)∗)x for f = k̃Θ

0 x ∈ D̃Θ.

Let us now consider conjugations. A conjugation J in a Hilbert space
H is an antilinear map J : H −→ H such that J2 = IH and

〈Jf, Jg〉 = 〈g, f〉 for all f, g ∈ H

The importance of conjugations comes, for example, from their connec-
tion with complex symmetric operators. Recall that a bounded linear
operator T : H −→ H is said to be J-symmetric (J being a conjuga-
tion on H) if JTJ = T ∗. We say that T is complex symmetric if it
is J-symmetric with respect to some conjugation J (see, e.g., [14] for
more details on conjugations and complex symmetric operators).

In [4] the authors consider certain classes of conjugations in L2(H).
One such conjugation is J∗ : L2(H) → L2(H) defined for a fixed con-
jugation J in H by

(4.6) (J∗f)(z) = J(f(z)) a.e. on T.
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It is not difficult to verify that for f(z) =
∑∞

n=−∞ anz
n ∈ L2(L(H)) we

have

(J∗f)(z) =
∞∑

n=−∞

J(an)zn.

Hence, J∗ is an Mz-commuting conjugation, i.e, J∗Mz = MzJ
∗, and

J∗(H2(H)) = H2(H), J∗P+ = P+J
∗ (see [4, Section 4]).

For F ∈ L∞(L(H)) and an arbitrary conjugation J in H let

(4.7) FJ(z) = JF(z)J a.e on T.
Then FJ ∈ L∞(L(H)). As observed in [4], FJ ∈ H∞(L(H)) if and
only if F ∈ H∞(L(H)), and FJ is an inner function if and only if F is.
Clearly, (FJ)J = F. Let us also observe that if F is J-symmetric, that
is, JF(z)J = F(z)∗ a.e on T (or equivalently F(λ) is J-symmetric for

λ in D, see [4]), then FJ = F̃, where F̃(z) = F(z̄)∗.
For two conjugations J1 and J2 in H let J∗1 and J∗2 denote the cor-

responding conjugations in  L2(H) given by (4.6). For each f ∈ L2(H)
we have

(4.8) (J∗2MFf)(z) = J2(F(z)f(z)) = J2F(z)J1J1f(z) = (MGJ
∗
1f)(z)

where G(z) = J2F(z)J1 a.e. on T. In particular

(4.9) J∗MF = MFJ
∗

(see [4, Lemma 8.3]).
Note that FJ is also defined for F ∈ L2(L(H)). In that case (4.8)

and (4.9) hold for L∞(H).

Proposition 4.3. [4] Let Θ ∈ H∞(L(H)) be a pure inner function
and let J be a conjugation on H. Then

(a) J∗(ΘH2(H)) = ΘJH
2(H);

(b) J∗PΘ = PΘJ
J∗;

(c) J∗(KΘ) = KΘJ
;

(d) J∗(kΘ
λ x) = kΘJ

λ
Jx.

Proof. Clearly, (a) and (b) are consequences of (4.9), while (c) follows
from (b). To see (d) take λ ∈ D and x ∈ H. Then a.e. on T we have

(J∗(kΘ
λ x))(z) = J(kΘ

λ (z)x) = J(
1

1− λz
)(IH −Θ(z)Θ(λ)∗)x

=
1

1− λz
((IH − JΘ(z)JJΘ(λ)∗)Jx)

=
1

1− λz
((IH −ΘJ(z)ΘJ(λ)∗)Jx) = kΘJ

λ
Jx.

�
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CHARACTERIZATIONS OF MATTO’S 13

If Θ is J-symmetric we obtain [4, Proposition 7.7].

Theorem 4.4. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let J1, J2 be two conjugations on H. A bounded linear operator
A : KΘ1 → KΘ2 belongs to MT (Θ1,Θ2) if and only if J∗2AJ

∗
1 belongs

to MT ((Θ1)J1 , (Θ2)J2). More precisely, A = AΘ1,Θ2

Φ ∈ MT (Θ1,Θ2) if

and only if J∗2AJ
∗
1 = A

(Θ1)J1
,(Θ2)J2

Ψ ∈MT ((Θ1)J1 , (Θ2)J2) with

(4.10) Ψ(z) = J2Φ(z)J1 a.e. on T.

Proof. Assume that A = AΘ1,Θ2

Φ ∈ MT (Θ1,Θ2) with Φ ∈ L2(L(H)).
Let f ∈ K∞(Θ1)J1

. Note that J∗1f ∈ K∞Θ1
. Therefore, by Proposition

4.3(b) and (4.9),

J∗2AJ
∗
1f = J∗2PΘ2MΦJ

∗
1f = P(Θ2)J2

J∗2MΦJ
∗
1f

= P(Θ2)J2
MΨf = A

(Θ1)J1
,(Θ2)J2

Ψ f

with Ψ given by (4.10). Thus J∗2AJ
∗
1 ∈MT ((Θ1)J1 , (Θ2)J2).

On the other hand, if A = J∗2A
(Θ1)J1

,(Θ2)J2
Ψ J∗1 ∈ MT ((Θ1)J1 , (Θ2)J2)

with some Ψ ∈ L2(L(H)), then A = J∗2A
(Θ1)J1

,(Θ2)J2
Ψ J∗1 and as above,

A = AΘ1,Θ2

Φ with

Φ(z) = J2Ψ(z)J1 a.e. on T.

�

For the scalar case Theorem 4.4 can be found in [16] (see also [11]
for the symmetric case).

In the scalar case each model space Kθ is equipped with a natural
conjugation Cθ defined in terms of boundary functions by (Cθf)(z) =

θ(z)zf(z). If Θ ∈ H∞(L(H)) is an inner function and J is a conjugation
in H we can similarly define CJ

Θ : L2(H)→ L2(H) by

(CJ
Θf)(z) = Θ(z)zJ(f(z)) a.e. on T.

Although CJ
Θ is obviously an antilinear isometry, it is not in general

an involution. A simple computation shows that CJ
Θ is an involution

(and so a conjugation) if and only if Θ(z)JΘ(z)J = IH a.e. on T, i.e.,
if and only Θ is J-symmetric.

If Θ is J-symmetric, then CJ
Θ(ΘH2(H)) = H2(H)⊥ and so

CJ
Θ(KΘ) = KΘ.

Note that in that case

CJ
Θ = J∗τΘ.

By Theorem 4.2 and Theorem 4.4 we get the following.
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14 R. KHAN, Y. AMEUR, AND J. KHAN

Theorem 4.5. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let J1, J2 be two conjugations in H such that Θ1 is J1-symmetric
and Θ2 is J2-symmetric. A bounded linear operator A : KΘ1 → KΘ2 be-
longs to MT (Θ1,Θ2) if and only if CJ2

Θ2
ACJ1

Θ1
belongs to MT (Θ1,Θ2).

More precisely, A = AΘ1,Θ2

Φ ∈ MT (Θ1,Θ2) if and only if CJ2
Θ2
ACJ1

Θ1
=

AΘ1,Θ2

Ψ ∈MT (Θ1,Θ2) with
(4.11)

Ψ(z) = J2Θ2(z)∗Φ(z)Θ1(z)J1 = Θ2(z)J2Φ(z)J1Θ1(z)∗ a.e. on T

For the scalar version of Theorem 4.5 see [16].

Remark 4.6. Recall that in the scalar case H = C every TTO on the
model space Kθ is Cθ-symmetric, i.e.,

CθA
θ
ϕCθ = (Aθϕ)∗ = Aθϕ

(see, e.g., [27]). In that case however the only conjugation in H we
need to consider is J(z) = z (and each ϕ ∈ L2 is J-symmetric). In the
vector valued case, the equality

(4.12) CJ
ΘA

θ
ΦC

J
Θ = AΘ

Φ∗ .

is not necessarily true for an arbitrary Φ ∈ L2(L(H)) (even though
we assume here that Θ is J-symmetric). It is however satisfied if also
Φ is J-symmetric and commutes with Θ (see [22]). In general, using
Theorem 4.5 we have that (4.12) holds if and only if AΘ

ΘΦ̃∗JΘ∗ = AΘ
Φ∗ ,

that is, if and only if

ΘΦ̃∗JΘ∗ − Φ∗ ∈ ΘH2(L(H)) + (ΘH2(L(H)))∗.

5. Characterizations with compressed shift operators

In [22](see Theorem 5.2 and Remark 5.4) characterizations of matrix
valued truncated Toeplitz operators in MT (Θ) were given by using

the model operators SΘ, S∗Θ and the defect operators DΘ, D̃Θ. These
characterizations generalized D. Sarason’s results for the scalar case
[27]. Here we obtain analogous results for matrix valued asymmetric
truncated Toeplitz operators from MT (Θ1,Θ2). We use a reasoning
analogous to that from [22] (see [16] for the scalar case).

Lemma 5.1. If Φ ∈ H2((L(H)), then

AΘ1,Θ2

Φ − SΘ2A
Θ1,Θ2

Φ S∗Θ1
= PΘ2MΦ(IH2(H) − SS∗) on K∞Θ1

.

Proof. Recall that SΘ = PΘMz|KΘ
and S∗Θ = P+Mz̄|KΘ

. Hence, for
f ∈ K∞Θ1

,

AΘ1,Θ2

Φ f − SΘ2A
Θ1,Θ2

Φ S∗Θ1
f = PΘ2MΦf − PΘ2MzPΘ2MΦPΘ1Mz̄f
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CHARACTERIZATIONS OF MATTO’S 15

(note that S∗Θ1
f ∈ K∞Θ1

). Since PΘ2MzPΘ2 = PΘ2Mz on H2(H) (as
Mz(Θ2H

2(H)) ⊂ Θ2H
2(H)), we have

AΘ1,Θ2

Φ f − SΘ2A
Θ1,Θ2

Φ S∗Θ1
f = PΘ2MΦf − PΘ2MzMΦP+Mz̄f

= PΘ2(MΦ −MzMΦP+Mz̄)f

= PΘ2(MΦ −MΦMzP+Mz̄)f

= PΘ2MΦ(IH2(H) − SS∗)f.

�

Recall that

DΘ = IKΘ
− SΘS

∗
Θ, D̃Θ = IKΘ

− S∗ΘSΘ

and

DΘ = {(IH−Θ(z)Θ(0)∗)x : x ∈ H}, D̃Θ = {z̄(Θ(z)−Θ(0))x : x ∈ H},

while the operator ΩΘ : DΘ → H ⊂ H2(H) is defined by

ΩΘ(kΘ
0 x) = x.

Theorem 5.2. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let A : KΘ1 → KΘ2 be a bounded linear operator. Then A be-
longs toMT (Θ1,Θ2) if and only if there exist bounded linear operators
B1 : DΘ1 → KΘ2 and B2 : DΘ2 → KΘ1, such that

(5.1) A− SΘ2AS
∗
Θ1

= B1DΘ1 +DΘ2B
∗
2 .

Proof. The proof follows the same line of reasoning as the proof of
Theorem 5.2 in [22].

Assume first that A ∈ MT (Θ1,Θ2), A = AΘ1,Θ2

Ψ+Ξ∗ with Ψ,Ξ ∈
H2(L(H)). Then for each f ∈ K∞Θ1

(note that S∗Θ1
f ∈ K∞Θ1

) we have

(A− SΘ2AS
∗
Θ1

)f =

= (AΘ1,Θ2

Ψ − SΘ2A
Θ1,Θ2

Ψ S∗Θ1
)f + (AΘ1,Θ2

Ξ∗ − SΘ2A
Θ1,Θ2

Ξ∗ S∗Θ1
)f.

Since Ψ,Ξ ∈ H2(L(H)), it follows from Lemma 5.1 and (3.2) that

(AΘ1,Θ2

Ψ − SΘ2A
Θ1,Θ2

Ψ S∗Θ1
)f = PΘ2MΨ(IH2(H) − SS∗)f

= PΘ2MΨΩΘ1(IKΘ1
− SΘ1S

∗
Θ1

)f

= B1DΘ1f,

where B1 = PΘ2MΨΩΘ1 : DΘ1 → KΘ2 . Similarly, for each g ∈ K∞Θ2
,

(AΘ2,Θ1

Ξ − SΘ1A
Θ2,Θ1

Ξ S∗Θ2
)g = PΘ1MΞ(IH2(H) − SS∗)g

= B2DΘ2g,
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16 R. KHAN, Y. AMEUR, AND J. KHAN

where B2 = PΘ1MΞΩΘ2 : DΘ2 → KΘ1 . Note that both B1 and B2 are
bounded since ΩΘ1 and ΩΘ2 are bounded. Thus

(AΘ1,Θ2

Ξ∗ − SΘ2A
Θ1,Θ2

Ξ∗ S∗Θ1
)f = DΘ2B

∗
2f.

It follows that A satisfies (5.1).
Assume now that a bounded linear operator A : KΘ1 → KΘ2 satisfies

(5.1). Then

SnΘ2
AS∗nΘ1

− Sn+1
Θ2

AS
∗(n+1)
Θ1

= SnΘ2
B1DΘ1S

∗n
Θ1

+ SnΘ2
DΘ2B

∗
2S
∗n
Θ1

for n = 0, 1, .... We thus see that for each integer N ≥ 0,

A =
N∑
n=0

(
SnΘ2

B1DΘ1S
∗n
Θ1

+ SnΘ2
DΘ2B

∗
2S
∗n
Θ1

)
+ SN+1

Θ2
AS
∗(N+1)
Θ1

.

Hence, for for all f ∈ KΘ1 , and g ∈ KΘ2 we have

〈Af, g〉L2(H) =
N∑
n=0

(
〈SnΘ2

B1DΘ1S
∗n
Θ1
f, g〉L2(H) + 〈SnΘ2

DΘ2B
∗
2S
∗n
Θ1
f, g〉L2(H)

)
+ 〈AS∗(N+1)

Θ1
f, S

∗(N+1)
Θ2

g〉L2(H).

Since S∗NΘ1
f → 0 and S∗NΘ2

g → 0 as N →∞, we obtain

〈Af, g〉L2(H) =

=
∞∑
n=0

(
〈SnΘ2

B1DΘ1S
∗n
Θ1
f, g〉L2(H) + 〈f, SnΘ1

B2DΘ2S
∗n
Θ2
g〉L2(H)

)
.

(5.2)

Let us now define Ψ,Ξ ∈ H2(L(H)) a.e. on T by

Ψ(z)x =
(
B1k

Θ1
0 x
)
(z) and Ξ(z)x =

(
B2k

Θ2
0 x
)
(z), x ∈ H.

Take f(z) =
∞∑
k=0

anz
n ∈ K∞Θ1

and g(z) =
∞∑
k=0

bnz
n ∈ K∞Θ2

. We then

have

DΘ1S
∗n
Θ1
f = kΘ1

0 (S∗nΘ1
f)(0) = (IH −Θ1Θ1(0)∗)an = kΘ1

0 an

and

DΘ2S
∗n
Θ2
g = kΘ2

0 (S∗nΘ2
g)(0) = (IH −Θ2Θ2(0)∗)bn = kΘ2

0 bn.
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It follows from (5.2) that

〈AΘ1,Θ2

Ψ+Ξ∗f, g〉L2(H) =

= 〈Ψf, g〉L2(H) + 〈f,Ξg〉L2(H)

=
∞∑
n=0

(
〈znΨan, g〉L2(H) + 〈f, znΞbn〉L2(H)

)
=
∞∑
n=0

(
〈znB1k

Θ1
0 an, g〉L2(H) + 〈f, znB2k

Θ2
0 bn〉L2(H)

)
=
∞∑
n=0

(
〈SnΘ2

B1DΘ1S
∗n
Θ1
f, g〉L2(H) + 〈f, SnΘ1

B2DΘ2S
∗n
Θ2
g〉L2(H)

)
= 〈Af, g〉L2(H)

and so A = AΘ1,Θ2

Ψ+Ξ∗ ∈MT (Θ1,Θ2). �

If a bounded operator A : KΘ1 → KΘ2 satisfies (5.1), then A =

AΘ1,Θ2

Ψ+Ξ∗ ∈MT (Θ1,Θ2) with Ψ,Ξ ∈ H2(L(H)) given by the following:

Corollary 5.3. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let A : KΘ1 → KΘ2 be a bounded linear operator.

(a) If A = AΘ1,Θ2

Ψ+Ξ∗ ∈MT (Θ1,Θ2), then A satisfies (5.1) with

(5.3) B1 = PΘ2MΨΩΘ1 and B2 = PΘ1MΞΩΘ2 .

(b) If A satisfies (5.1), then A = AΘ1,Θ2

Ψ+Ξ∗ ∈MT (Θ1,Θ2) with

(5.4) Ψ(z)x =
(
B1k

Θ1
0 x
)
(z) and Ξ(z)x =

(
B2k

Θ2
0 x
)
(z), x ∈ H.

Remark 5.4. (a) Assume now that Ψ ∈ H2(L(H)) is given by (5.4).
Then, for each H ∈ H2(L(H)), we have

〈Ψ,Θ2H〉L2(H) =

∫
T
〈Ψ(z),Θ2(z)H(z)〉2dm(z)

=
∑
e∈ε

∫
T
〈Ψ(z)e,Θ2(z)H(z)e〉Hdm(z)

=
∑
e∈ε

〈B1k
Θ1
0 e,Θ2(H(z)e)〉L2(H) = 0

since B1k
Θ1
0 e ∈ KΘ2 and Θ2(He) ∈ Θ2H

2(H) (the function He :
z → H(z)e belongs to H2(H) since H ∈ H2(L(H))). Hence Ψ be-
longs to the orthogonal complement (inH2(L(H))) of Θ2H

2(L(H)).
Similarly, Ξ belongs to the orthogonal complement of Θ1H

2(L(H)).
For an inner function Θ ∈ H∞(L(H)) denote

MΘ = H2(L(H))	ΘH2(L(H)).
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18 R. KHAN, Y. AMEUR, AND J. KHAN

Therefore, if a bounded linear operator A : KΘ1 → KΘ2 satisfies

(5.1), then A = AΘ1,Θ2

Ψ+Ξ∗ ∈ MT (Θ1,Θ2) with Ψ ∈ MΘ2 and Ξ ∈
MΘ1 given by (5.4).

(b) Recall that AΘ1,Θ2

Φ = 0 if and only if

Φ ∈ Θ2H
2(L(H)) + (Θ1H

2(L(H)))∗

(see [21]). Clearly, if A = AΘ1,Θ2

Ψ+Ξ∗ with Ψ,Ξ ∈ H2(L(H)), then the
operators B1 and B2 given by (5.3) do not depend on the parts of Ψ
and Ξ that belong to Θ2H

2(L(H)) and Θ1H
2(L(H)), respectively.

As in [22] we can use the unitary operator τΘ defined by (4.1) and
obtain the following theorem.

Theorem 5.5. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let A : KΘ1 → KΘ2 be a bounded linear operator. Then A be-
longs toMT (Θ1,Θ2) if and only if there exist bounded linear operators

B̃1 : D̃Θ1 → KΘ2 and B̃2 : D̃Θ2 → KΘ1, such that

(5.5) A− S∗Θ2
ASΘ1 = B̃1D̃Θ1 + D̃Θ2B̃

∗
2 .

Proof. Let A : KΘ1 → KΘ2 be a bounded linear operator. By Theorem

4.2, A belongs to MT (Θ1,Θ2) if and only if Ã = τΘ2Aτ
∗
Θ1

belongs to

MT (Θ̃1, Θ̃2). By Theorem 5.2 the latter happens if and only if there
exist bounded linear operators B1 : DΘ̃1

→ KΘ̃2
and B2 : DΘ̃2

→ KΘ̃1
,

such that

(5.6) Ã−SΘ̃2
ÃS∗

Θ̃1
= τΘ2Aτ

∗
Θ1
−SΘ̃2

τΘ2Aτ
∗
Θ1
S∗

Θ̃1
= B1DΘ̃1

+DΘ̃2
B∗2 .

In other words,

A− τ ∗Θ2
SΘ̃2

τΘ2Aτ
∗
Θ1
S∗

Θ̃1
τΘ1 = τ ∗Θ2

B1DΘ̃1
τΘ1 + τ ∗Θ2

DΘ̃2
B∗2 τΘ1 .

By (4.4) we have

τ ∗Θ2
SΘ̃2

τΘ2 = τΘ̃2
SΘ̃2

τ ∗
Θ̃2

= S∗Θ2
and τ ∗Θ1

S∗
Θ̃1
τΘ1 = τΘ̃1

SΘ̃1
τ ∗

Θ̃1
= SΘ1 ,

while from (4.5) it follows that

DΘ̃1
τΘ1 = τΘ1D̃Θ1 and τ ∗Θ2

DΘ̃2
= D̃Θ2τ

∗
Θ2
.

Thus (5.6) is equivalent to

A− S∗Θ2
ASΘ1 = τ ∗Θ2

B1 τΘ1D̃Θ1 + D̃Θ2τ
∗
Θ2
B∗2 τΘ1 = B̃1D̃Θ1 + D̃Θ2B̃

∗
2 .

with
B̃1 = τ ∗Θ2

B1 τΘ1|D̃Θ1
, B̃1 : D̃Θ1 → KΘ2

and

B̃2 =
(
τ ∗Θ2

B∗2 τΘ1

)∗
= τ ∗Θ1

B2 τΘ2|D̃Θ2
, B̃2 : D̃Θ2 → KΘ1 .
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Note that τ ∗Θi
DΘ̃i

= D̃Θi
, i = 1, 2. This allows us to treat τ ∗Θ2

B∗2 τΘ1 as

an operator from KΘ1 to D̃Θ2 . Moreover, we have

(5.7) B1 = τΘ2B̃1τ
∗
Θ1|DΘ̃1

and B2 = τΘ1B̃2τ
∗
Θ2|DΘ̃2

.

�

Note from the proof of Theorem 5.5 that if A : KΘ1 → KΘ2 satisfies

(5.5) with some B̃1 : D̃Θ1 → KΘ2 and B̃2 : D̃Θ2 → KΘ1 , then Ã =
τΘ2Aτ

∗
Θ1

satisfies (5.6) with B1 and B2 given by (5.7). By Corollary

5.3, Ã = AΘ̃1,Θ̃2

Ψ+Ξ∗ with

Ψ(z)x = (B1k
Θ̃1
0 x)(z) = (τΘ2B̃1τ

∗
Θ1
kΘ̃1

0 x)(z) = (τΘ2B̃1k̃
Θ1
0 x)(z)

and

Ξ(z)x = (B2k
Θ̃1
0 x)(z) = (τΘ1B̃2τ

∗
Θ2
kΘ̃2

0 x)(z) = (τΘ1B̃2k̃
Θ2
0 x)(z).

Moreover (see Remark 5.4), Ψ ∈MΘ̃2
and Ξ ∈MΘ̃1

.

It follows from Theorem 4.2 (see (4.3)) that A = AΘ1,Θ2

Φ with

Φ(z) = Θ2(z)(Ψ(z) + Ξ(z)∗)Θ1(z)∗

= Θ2(z)Ψ(z)Θ1(z)∗ + Θ2(z)Ξ(z)∗Θ1(z)∗

= Θ2(z)Ξ̃(z)Θ1(z)∗ + (Θ1(z)Ψ̃(z)Θ2(z)∗)∗.

By Lemma 5.6 below, Φ = Ψ1 + Ξ1 with Ψ1 = Θ2Ξ̃Θ∗1 ∈ Θ2(zMΘ1)∗

and Ξ1 = Θ1Ψ̃Θ∗2 ∈ Θ1(zMΘ2)∗.

Lemma 5.6. Let Φ ∈ H2(L(H)). If Φ ∈MΘ, then Φ̃Θ̃∗ ∈ (zMΘ̃)∗.

Proof. We will show that if Φ ∈ MΘ, then Ψ(z) = Θ̃(z)zΦ(z) ∈ MΘ̃.
Let H ∈ H2(L(H)). Then

〈Ψ, (zH)∗〉L2(L(H)) =

∫
T

〈Ψ, zH(z)∗〉2dm(z)

=

∫
T

〈Θ̃(z)zΦ(z), zH(z)∗〉2dm(z)

=

∫
T

〈Θ(z)∗Φ(z), H̃(z)〉2dm(z)

=

∫
T

〈Φ(z),Θ(z)H̃(z)〉2dm(z)

= 〈Φ, zH̃〉L2(L(H)) = 0,

14 Jul 2023 10:54:08 PDT
230323-Khan Version 2 - Submitted to Rocky Mountain J. Math.



20 R. KHAN, Y. AMEUR, AND J. KHAN

Moreover,

〈Ψ, Θ̃H〉L2(L(H)) =

∫
T

〈Θ̃(z)zΦ(z), Θ̃H(z)〉2dm(z)

=

∫
T

〈Φ̃(z)∗, zH(z)〉2dm(z)

= 〈Φ̃∗, zH〉L2(L(H)) = 0,

which means that Ψ ∈MΘ̃. �

As in the scalar case, we can use Theorem 5.2 and Theorem 5.5 to
get the following.

Corollary 5.7. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let A : KΘ1 → KΘ2 be a bounded linear operator. Then A belongs
to MT (Θ1,Θ2) if and only if the following hold:

(a) there exist bounded linear operators B̂1 : DΘ1 → KΘ2 and B̂2 :

D̃Θ2 → KΘ1, such that

S∗Θ2
A− AS∗Θ1

= B̂1DΘ1 + D̃Θ2B̂
∗
2 .

(b) there exist bounded linear operators B̂1 : D̃Θ1 → KΘ2 and B̂1 :
DΘ2 → KΘ1, such that

SΘ2A− ASΘ1 = B̂1D̃Θ1 +DΘ2B̂
∗
2 .

Proof. The proof is similar to the scalar case (see [16]). To prove (a)
assume first that A ∈MT (Θ1,Θ2). Then, by Theorem 5.2, there exist
bounded linear operators B1 : DΘ1 → KΘ2 and B2 : DΘ2 → KΘ1 , such
that

A− SΘ2AS
∗
Θ1

= B1DΘ1 +DΘ2B
∗
2 .

Hence

S∗Θ2
A− S∗Θ2

SΘ2AS
∗
Θ1

= S∗Θ2
B1DΘ1 + S∗Θ2

DΘ2B
∗
2 ,

and since S∗ΘSΘ2 = IKΘ2
− D̃Θ2 , we get

A− SΘ2AS
∗
Θ1

= S∗Θ2
B1DΘ1 + S∗Θ2

DΘ2B
∗
2 −DΘ2AS

∗
Θ1
.

Observe now that S∗Θ2
DΘ2 = D̃Θ2S

∗
Θ2

and D̃Θ2 = D̃Θ2PD̃Θ2
, where PD̃Θ2

is the orthogonal projection from KΘ2 to D̃Θ2 (see the formula for D̃Θ2
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on page 11). It follows that

A− SΘ2AS
∗
Θ1

= S∗Θ2
B1DΘ1 + D̃Θ2(S∗Θ2

B∗2 − AS∗Θ1
)

= B̂1DΘ1 + D̂Θ2B̂
∗
2 ,

where

B̂1 = S∗Θ2
B1 : DΘ2 → KΘ1 .

and

B̂2 = (PD̃Θ2
(S∗Θ2

B∗2 − AS∗Θ1
))∗ : D̃Θ2 → KΘ1 .

The proof of the other implication is analogous.
To prove (b) one can apply the same reasoning together with Theo-

rem 5.5. Alternatively, one can use the fact that A ∈ MT (Θ1,Θ2) if

and only if τΘ2Aτ
∗
Θ1
∈ MT (Θ̃1, Θ̃2) to show that (b) is equivalent to

(a). �

6. Shift invariance and MATTO’s

In the scalar case the notion of shift invariance for TTO’s was in-
troduced in [27]. D. Sarason proved that a bounded linear operator
A : Kθ → Kθ is a TTO if and only if it is shift invariant, i.e.,

〈ASf, Sf〉L2 = 〈Af, f〉L2 for each f ∈ Kθ such that Sf ∈ Kθ.

In [22] we prove that the same is true for MTTO’s.
For ATTO’s the notion of shift invariance was introduced in [8] (

see also [24]). Here we consider shift invariance of MATTO’s. As in
the scalar case (see [16]), we characterize MATTO’s in term of four
(equivalent) types of shift invariance.

Recall that for an operator valued inner function Θ ∈ H∞(L(H))
and for f ∈ KΘ we have

Sf = Mzf ∈ KΘ if and only if f ⊥ D̃Θ (τΘf(0) = 0)

and

S∗f = Mzf ∈ KΘ if and only if f ⊥ DΘ (f(0) = 0).

Theorem 6.1. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions
and let A : KΘ1 → KΘ2 be a bounded linear operator. Then A belongs
to MT (Θ1,Θ2) if and only if it has one (and all) of the following
properties:

(a) 〈AS∗f, S∗g〉L2(H) = 〈Af, g〉L2(H) for all f ∈ KΘ1, g ∈ KΘ2 such
that f ⊥ DΘ1, g ⊥ DΘ2;

(b) 〈AS∗f, g〉L2(H) = 〈Af, Sg〉L2(H) for all f ∈ KΘ1, g ∈ KΘ2 such that

f ⊥ DΘ1, g ⊥ D̃Θ2;
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(c) 〈ASf, Sg〉L2(H) = 〈Af, g〉L2(H) for all f ∈ KΘ1, g ∈ KΘ2 such that

f ⊥ D̃Θ1, g ⊥ D̃Θ2;
(d) 〈ASf, g〉L2(H) = 〈Af, S∗g〉L2(H) for all f ∈ KΘ1, g ∈ KΘ2 such that

f ⊥ D̃Θ1, g ⊥ DΘ2;

Proof. (a) If A ∈MT (Θ1,Θ2), then by Theorem 5.2,

A− SΘ2AS
∗
Θ1

= B1DΘ1 +DΘ2B
∗
2

for some bounded linear operators B1 : DΘ1 → KΘ2 and B2 : DΘ2 →
KΘ1 . It follows that for all f ∈ KΘ1 , f ∈ KΘ2 such that f ⊥ DΘ1 ,
g ⊥ DΘ2 , we have

〈AS∗f, S∗g〉L2(H) = 〈AS∗Θ1
f, S∗Θ2

g〉L2(H) = 〈SΘ2AS
∗
Θ2
f, g〉L2(H)

= 〈Af, g〉L2(H) − 〈B1DΘ1f, g〉L2(H) − 〈DΘ2B
∗
2f, g〉L2(H).

Since DΘ1f = 0 and DΘ2B
∗
2f ∈ DΘ2 , we get

(6.1) 〈AS∗f, S∗g〉L2(H) = 〈Af, g〉L2(H)

On the other hand, if (6.1) holds for all f ∈ KΘ1 , g ∈ KΘ2 such that
f ⊥ DΘ1 , g ⊥ DΘ2 , we have

〈(A− SΘ2AS
∗
Θ1

)f, g〉L2(H) = 〈Af, g〉L2(H) − 〈AS∗f, S∗g〉L2(H) = 0.

This means that the operator TA = A−SΘ2AS
∗
Θ1

maps D⊥Θ1
into DΘ2 ,

or in other words,

(6.2) (IKΘ2
− PDΘ2

)TA(IKΘ1
− PDΘ1

) = 0,

where PDΘi
is the orthogonal projection from KΘi

onto DΘi
, i = 1, 2.

Recall now that

RangePDΘi
= DΘi

= RangeDΘi
, i = 1, 2,

and so there exist bounded linear operators Ri : KΘi
→ KΘi

, i = 1, 2,
such that

PDΘi
= DΘi

Ri = R∗iDΘi
, i = 1, 2

(the second equality follows from the fact that P ∗DΘi
= PDΘi

). Together

with (6.2) this gives

A− SΘ2AS
∗
Θ1

= TA = PDΘ2
TA + TAPDΘ2

− PDΘ2
TAPDΘ1

= DΘ2R2TA + (IKΘ2
− PDΘ2

)TAR
∗
1DΘ1

and so A satisfies (5.1) with

B1 = (IKΘ2
− PDΘ2

)TAR
∗
1|DΘ1

: DΘ1 → KΘ2

and
B2 = (PDΘ2

R2TA)∗ = T∗AR
∗
2|DΘ2

: DΘ2 → KΘ1 .
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By Theorem 5.2, A ∈MT (Θ1,Θ2).
(b) Here we show that (b) is equivalent to (a). Assume first that A

satisfies (a) and take f ∈ KΘ1 , g ∈ KΘ2 such that f ⊥ DΘ1 , g ∈ D̃Θ2 .
Clearly, g = S∗Sg and Sg ∈ KΘ2 , Sg ⊥ DΘ2 . Hence

〈AS∗f, g〉L2(H) = 〈AS∗f, S∗Sg〉L2(H) = 〈Af, Sg〉L2(H)

and A satisfies (b).
Similarly, if A satisfies (b), then for each f ∈ KΘ1 , g ∈ KΘ2 such

that f ⊥ DΘ1 , g ∈ DΘ2 we have

〈AS∗f, S∗g〉L2(H) = 〈Af, SS∗g〉L2(H) = 〈Af, g〉L2(H)

since here S∗f ⊥ D̃Θ2 and S∗Sg = g.
The proof of (c) and (d) is analogous to the proof of (a) and (b). �

7. Characterization with modified compressed shift
operators

Modified compressed shifts were introduced by Sarason in [27, section

10]. For any nonconstant inner function Θ, suppose that XΘ : D̃Θ →
DΘ, and consider X̂Θ ∈ L(KΘ) defined by X̂Θf = XΘPD̃Θ

f . The
operator modified shift is defined by

SΘ,XΘ
= SΘ + (X̂Θ − SΘ)PD̃Θ

,

or

SΘ,XΘ
= SΘ + PDΘ

YΘPD̃Θ
,

which implies that

SΘ = SΘ,XΘ
− PDΘ

YΘPD̃Θ

where YΘ = X̂Θ − SΘ.

Theorem 7.1. Let Θ1,Θ2 ∈ H∞(L(H)) be two pure inner functions.
Let A : KΘ1 → KΘ2 be a bounded operator. Then A ∈ MT (Θ1,Θ2) if
and only if

(7.1) A− SΘ2,XΘ2
AS∗Θ1,XΘ1

= BPDΘ1
+ PDΘ2

B
′∗.
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Proof. Consider

A− SΘ2AS
∗
Θ1

= A− (SΘ2,XΘ2
− PDΘ2

YΘ2PD̃Θ2
)A(S∗Θ1,XΘ1

− PD̃Θ1
Y ∗Θ1

PDΘ1
)

= A− SΘ2,XΘ2
AS∗Θ1,XΘ1

+ SΘ2,XΘ2
PD̃Θ1

Y ∗Θ1
PDΘ1

+ PDΘ2
YΘ2PD̃Θ2

AS∗Θ1,XΘ1

− PDΘ2
YΘ2PD̃Θ2

APD̃Θ1
Y ∗Θ1

PDΘ1

= A− SΘ2,XΘ2
AS∗Θ1,XΘ1

+ SΘ2,XΘ2
PD̃Θ1

Y ∗Θ1
PDΘ1

+ PDΘ2
[Y ∗Θ1

PD̃Θ2
AS∗Θ1,XΘ1

− Y ∗Θ2
PD̃Θ2

APD̃Θ1
Y ∗Θ1

PDΘ1
]

= BPDΘ1
+ PDΘ2

B′∗ + T1PDΘ1
+ PDΘ2

T2

= (B + T1)PDΘ1
+ PDΘ2

(B′∗ + T2),

where T1 = SΘ2,XΘ2
PD̃Θ1

Y ∗Θ1
and T2 = Y ∗Θ1

PD̃Θ2
AS∗Θ1,XΘ1

−Y ∗Θ2
PD̃Θ2

APD̃Θ1
Y ∗Θ1

PDΘ1
.

From equation (3.8) of [22] it follows that there is an operator JΘ1 ∈
L(KΘ1) such that

PDΘ1
= (I − SΘ1S

∗
Θ1

)JΘ1 = DΘ1JΘ1 = J∗Θ1
DΘ1 ,

and similarly there is JΘ2 ∈ L(KΘ2) such that

PDΘ2
= (I − SΘ2S

∗
Θ2

)JΘ2 = DΘ2JΘ2 = J∗Θ2
DΘ2 .

Then we have

A− SΘ2AS
∗
Θ1

= (B + T1)J∗Θ1
DΘ1 +DΘ2JΘ2(B′∗ + T2)

= (B + T1)J∗Θ1
DΘ1 +DΘ2 [(B′ + T ∗2 )J∗Θ2

]∗

= BDΘ1 +DΘ2B
′∗

where B = (B + T1)J∗Θ1
and B′ = (B′ + T ∗2 )J∗Θ2

. The required result
follows from this and Theorem 5.2. �
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[8] C. Câmara, K. Klís-Garlicka and M. Ptak, Shift invariance and reflixivity of
asymmetric truncated Toeplitz operators, preprint.

[9] I. Chalendar, E. Fricain, D. Timotin, A survey of some recent results on trun-
cated Toeplitz operators, in Recent progress on operator theory and approx-
imation in spaces of analytic functions, 59–77, Contemp. Math., 679, Amer.
Math. Soc., Providence, RI, 2016.

[10] N. Chevrot, E. Fricain, and D. Timotin, The characteristic function of a com-
plex symmetric contraction, Proc. Amer. Math. Soc. 135 (2007), 2877–2886.

[11] J. A. Cima, S. R. Garcia, W. T. Ross, W. R. Wogen, Truncated Toeplitz
operators: spatial isomorphism, unitary equivalence, and similarity, Indiana
Univ. Math. J. 59 (2010), no. 2, 595–620.

[12] J. B. Conway, A course in operator theory, Graduate studies in mathematics,
21. Amer. Math. Soc., Providence, RI, 2000.

[13] S. R. Garcia, J. E. Mashreghi, W. Ross, Introduction to model spaces and
their operators, Cambridge Studies in Advanced Mathematics, 148, Cambridge
University Press, 2016.

[14] S. R. Garcia and M. Putinar, Complex symmetric operators and applications,
Trans. Amer. Math. Soc., 358 (2006), 1285–1315.

[15] S. R. Garcia, W. T. Ross, Recent progress on truncated Toeplitz operators,
in: J. Mashreghi, E. Fricain (Eds.), Blaschke products and their applications,
Fields Inst. Commun., 65, Springer, New York, 2013, 275–319.

[16] C. Gu, B.  Lanucha, M. Michalska, Characterizations of asymmetric truncated
Toeplitz and Hankel operators, Complex Anal. Oper. Theory, 13, 673–684
(2019).

[17] J. Jurasik, B.  Lanucha, Asymmetric truncated Toeplitz operators equal to the
zero operator, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 70 (2016), no. 2,
51–62.

[18] J. Jurasik, B.  Lanucha, Asymmetric truncated Toeplitz operators on finite-
dimensional spaces, Operators and Matrices 11 (2017), no. 1, 245–262.

[19] J. Jurasik, B.  Lanucha, Matrix representations of asymmetric trun-
cated Toeplitz operators, Bull. Malays. Math. Sci. Soc. (2020),
https://doi.org/10.1007/s40840-020-01001-x

[20] R. Khan, The generalized Crofoot transform, Oper. Matrices 15 (1), 225-237
(2021).

[21] R. Khan, A. Farooq Generalized Crofoot transform and applications, Conc.
Operators 10, 2022138 (2023).

[22] R. Khan and D. Timotin, Matrix valued trancated Toeplitz operators: Basic
properties, Complex Anal. Oper. Theory 12 (2018), 997–1014.

[23] B.  Lanucha, Asymmetric truncated Toeplitz operators of rank one, Comput.
Methods Funct. Theory 18 (2018), no. 2, 259–267.

[24] B.  Lanucha, On rank one asymmetric truncated Toeplitz operators on finite-
dimensional spaces, J. Math. Anal. Appl. 454 (2017), no. 2, 961–980.

[25] B. Sz.-Nagy, C. F. Foias, H. Bercovici, L. Kérchy, Harmonic analysis of oper-
ators on a Hilbert space, second edition, Springer, London 2010.

[26] H. Radjavi, P. Rosenthal, Invariant subspaces, Springer, New York 1973.

14 Jul 2023 10:54:08 PDT
230323-Khan Version 2 - Submitted to Rocky Mountain J. Math.



26 R. KHAN, Y. AMEUR, AND J. KHAN

[27] D. Sarason Algebraic properties of truncated Toeplitz operators, Oper. Matrices
1 (2007), 491–526.

[28] N. A. Sedlock, Algebras of truncated Toeplitz operators, Oper. Matrices 5
(2011), 309–326.

R. Khan, Abbottabad University of Science and Technology, Pak-
istan

Email address: rewayat.khan@gmail.com

Y. Ameur, Laboratoire de mathematiques pures et appliques Univer-
site de Amar telidji Laghouat Algerie 03000

Email address: a.yagoub@lagh-univ.dz

J. Khan, Government College of Management Science II Peshawar,
Pakistan

Email address: jamroz.khan73@gmail.com

14 Jul 2023 10:54:08 PDT
230323-Khan Version 2 - Submitted to Rocky Mountain J. Math.




