
Stepanov type pseudo Bloch periodic functions and

applications to some evolution equations

in Banach spaces

Yanyan Wei∗, Sanyang Liu, Yong-Kui Chang†

School of Mathematics and Statistics, Xidian University, Xi’an 710071, China.

Abstract

The main purpose of this paper is to investigate some quasi-Bloch periodic functions in
Stepanov sense and their applications in abstract spaces. We introduce quasi-Bloch periodic
functions such as Stepanov type Bloch periodic functions and Stepanov type pseudo Bloch
periodic functions, and establish some properties of these functions including completeness,
composition and convolution theorems. We also apply the obtained results to investigate the
existence and uniqueness of pseudo Bloch periodic solutions to some semi-linear evolutionary
equations in Banach spaces.
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1 Introduction

The periodicity is a natural and important phenomenon in the real word, and evolution
equations are usually expected to have periodic solutions [1–4]. As it is known, when a peri-
odic function or an anti-periodic function carries different perturbations, it is not necessarily a
periodic function or an anti-periodic function, but may have other recurrence, such as pseudo
periodicity or pseudo anti-periodicity, which was pointed out in [5] as generalizations of period-
icity or anti-periodicity. However the aforementioned functions are usually studied in a bounded
continuous space. If the continuity is weaken to the measurability and integrability in the sense
of Lebesgue, a new generalized periodic function can be obtained [6, 7]. With the support of
these theories in [6, 7], a large number of studies in abstract spaces have emerged, see for in-
stance [8–18]. Particularly, Xia [17] and Alvarez [18] introduced some new concepts, and further
generalized pseudo periodic functions and pseudo anti-periodic functions from the perspective
of Stepanov boundedness, respectively.

∗Corresponding author.
†E-mail addresses: yywei@stu.xidian.edu.cn(Y. Wei), liusanyang@126.com(S. Liu), lzchangyk@163.com(Y.-K.

Chang).

1

23 Oct 2023 08:42:54 PDT
230521-WeiYanyan Version 2 - Submitted to Rocky Mountain J. Math.



2 Y. Wei, S. Liu, Y.-K. Chang

On the other hand, the Bloch periodic function widely exists in the condensed matter and
solid state physics [20, 21], which includes periodic functions and anti-periodic functions. Similar
to cases for the usual periodic functions, various quasi-Bloch periodic functions under different
perturbations in abstract spaces have been studied [22]. For instance, Hasler and N’Guérékata
[23] considered the perturbation that disappears at infinity and initiated the concept of asymp-
totic Bloch periodic functions. Wei and Chang [25] introduced pseudo Bloch periodic functions.
Salah, Miraoui and Khemili [26] further presented measure pseudo S-asymptotically Bloch pe-
riodic functions in Banach spaces. However the pseudo Bloch periodic function [25] in Stepanov
sense has not been considered yet. Thus we introduce some quasi-Blcoh periodic functions in
Banach spaces called Stepanov type Bloch periodic functions and Stepanov type pseudo Bloch
periodic functions, and establish the completeness, composition and convolution theorems for
such functions. It can be shown that the Stepanov type Bloch periodic function extends the
Bloch periodic function (see Remark 3.1) and the Stepanov type pseudo Bloch periodic function
generalizes the pseudo Bloch periodic function [25] (see Lemma 3.6). In addition, it is easy to
see that Stepanov type pseudo periodic functions [17] and Stepanov type pseudo antiperiodic
functions [18] are special cases of Stepanov type pseudo Bloch periodic functions at kω = 2π
and kω = π, respectively. Finally, we investigate the existence and uniqueness of pseudo Bloch
periodic solutions to evolution equations with Stepanov force term in Banach spaces.

The paper is organized as follows. In Section 2, some notations and preliminary results are
presented. In Section 3, we introduce notions of Stepanov type Bloch periodic functions and
Stepanov type pseudo Bloch periodic functions, and explore some further properties. Section
4 is devoted to applications to some evolution equations in Banach spaces. A conclusion is
summarized in Section 5.

2 Preliminaries

Let R and C be the set of all real numbers and complex numbers, respectively. Let (X, ‖·‖) be
a Banach space and BC(R, X) be the Banach space formed by all bounded continuous functions
f : R → X with sup-norm ‖f‖∞ = supt∈R ‖f(t)‖. The set C0(R, X) consists of all functions
f : R→ X with limt→∞ ‖f(t)‖ = 0. The space Lp(R, X) denotes the Banach space of p-Bochner
integrable functions defined on R with values in X. The notation Lploc(R, X) stands for the
set of all measurable functions f : R → X such that the restriction of f to every bounded
subinterval I of R is in Lp(I,X). Furthermore, we denote by BC(R × X,X) the set of all
functions f : R × X → X such that f(·, x) ∈ BC(R, X) uniformly for each x in any bounded
subset of X, B(X) the space of all bounded linear operators from X into itself.

The following Definition 2.1 and Lemma 2.1 can be found in [23] for details.

Definition 2.1 For given ω, k ∈ R, a function f ∈ BC(R, X) is called be Bloch periodic if
for all t ∈ R, f(t + ω) = eikωf(t). We denote by BPω,k(R, X) the space of all Bloch periodic
functions from R to X.

Lemma 2.1 Let g ∈ BPω,k(R, X) and ε > 0 be given. Then there exist s1, ..., sm ∈ R such that

R =
⋃i=1
m (si + Cε), where Cε := {t ∈ R : ‖g(t)− g(0)‖ < ε}.
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Next, to facilitate the definition of new concepts, we introduce the following spaces.

E (R, X) :=
{
h ∈ BC(R, X) : lim

T→∞

1

2T

∫ T

−T
‖h(t)‖dt = 0

}
;

E (R×X,X) :=
{
h ∈ BC(R×X,X) : lim

T→∞

1

2T

∫ T

−T
‖h(t, x)‖dt = 0

uniformly for x in any compact subset of X
}
.

Definition 2.2 [25] A function f ∈ BC(R, X) is called to be a pseudo Bloch periodic function,
if there exists g ∈ BPω,k(R, X) and h ∈ E (R, X) such that

f = g + h.

We denote the set of all such functions by PBPω,k(R, X).

The following contents are specified in [9, 28].

Definition 2.3 The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function f : R → X is
defined by f b(t, s) = f(t+ s).

Remark 2.1 (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1] is the Bochner transform of a certain
function f ,

ϕ(t, s) = f b(t, s),

if and only if
ϕ(t+ τ, s− τ) = ϕ(s, t),

for all t ∈ R, s ∈ [0, 1], and τ ∈ [s− 1, s].
(ii) Note that if f = g + h, then f b = gb + hb. Moreover, (λf)b = λf b for any λ ∈ R.

Definition 2.4 The Bochner transform F b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a a function
F (t, u) on R×X, with values in X, is defined by

F b(t, s, u) = F (t+ s, u),

for each u ∈ X.

We always let p ∈ [1,∞) throughout this paper.

Definition 2.5 The space BSp(R, X) of all Stepanov bounded functions, with the exponent
p, consists of all measurable functions f : R → X such that f b ∈ L∞(R, Lp([0, 1], X)). It is a
Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t
‖f(s)‖pds

) 1
p
.
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The notation BSp(R × X,X) represents all functions f : R × X → X, which is Stepanov
bounded uniformly in x ∈ X.

Lemma 2.2 [29] Let f ∈ BSp(R, X), then f b ∈ E (R, Lp([0, 1], X)) if and only if for every ε > 0,

lim
T→∞

1

2T

∫
MT,ε(f)

dt = 0,

where MT,ε(f) =
{
t ∈ [−T, T ] :

( ∫ t+1
t ‖f(s)‖pds

) 1
p ≥ ε

}
.

3 Generalized Bloch periodic functions in Stepanov sense

In this section, we introduce two kinds of functions which are Stepanov generalizations of
the functions in [25], and explore their properties.

3.1 Stepanov type Bloch periodic functions

Definition 3.1 A function f ∈ BSp(R, X) is called Stepanov type Bloch periodic (or Sp-Bloch
periodic) if f b ∈ BPω,k(R, Lp([0, 1], X)).

In other words, a function f ∈ Lploc(R, X) is said to be Stepanov type Bloch periodic if its
Bochner transform f b : R→ Lp([0, 1], X) is Bloch periodic in the sense that for given ω, k ∈ R,

sup
t∈R

(∫ t+1

t

∥∥f(s+ ω)− eikωf(s)
∥∥pds) 1

p
= 0.

The collection of all such functions will be denoted by SpBPω,k(R, X).

Remark 3.1 It is clear that if f ∈ BPω,k(R, X), then f ∈ SpBPω,k(R, X) for each 1 ≤ p <∞.

Lemma 3.1 Assume that 1 ≤ q < p <∞ and f ∈ SpBPω,k(R, X). Then f ∈ SqBPω,k(R, X).

Proof: Since ‖f‖Sq = supt∈R
( ∫ t+1

t ‖f(s)‖qds
) 1
q ≤ supt∈R

( ∫ t+1
t ‖f(s)‖pds

) 1
p = ‖f‖Sp for q ∈

[1, p), we have f ∈ BSq(R, X). Similarly, by the definition of Sp-Bloch periodic functions, it is
easy to see that(∫ t+1

t

∥∥f(s+ ω)− eikωf(s)
∥∥qds) 1

q ≤
(∫ t+1

t

∥∥f(s+ ω)− eikωf(s)
∥∥pds) 1

p
,

which implies that f b ∈ BPω,k(R, Lq([0, 1], X)). The proof is complete.

Lemma 3.2 Let f1, f2, f ∈ SpBPω,k(R, X). Then the following holds:

(1) f1 + f2 ∈ SpBPω,k(R, X), and cf ∈ SpBPω,k(R, X) for each c ∈ C.
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(2) The translated fa := f(t+ a) ∈ SpBPω,k(R, X) for any a ∈ R.

(3) The space (SpBPω,k(R, X), ‖ · ‖Sp) is a Banach space.

Proof: (1) By the Minkowski’s Lemma, we get

‖f1 + f2‖Sp = sup
t∈R

(∫ t+1

t
‖f1(s) + f2(s)‖pds

) 1
p

≤ sup
t∈R

(∫ t+1

t
‖f1(s)‖pds

) 1
p

+ sup
t∈R

(∫ t+1

t
‖f2(s)‖pds

) 1
p

≤ ‖f1‖Sp + ‖f2‖Sp ,

and

‖cf‖Sp = sup
t∈R

(∫ t+1

t
‖cf(s)‖pds

) 1
p

≤ |c| sup
t∈R

(∫ t+1

t
‖f(s)‖pds

) 1
p

≤ |c|‖f‖Sp ,

which indicates that f1 + f2, cf ∈ BSp(R, X). Similarly, by Remark 2.1 and Definition 3.1, we
have (f1 + f2)b, (cf)b ∈ BPω,k(R, Lp([0, 1], X)).

(2) Obviously, for any a ∈ R,

‖fa‖Sp = sup
t∈R

(∫ t+1

t
‖f(s+ a)‖pds

) 1
p

= sup
t∈R

(∫ t+a+1

t+a
‖f(s)‖pds

) 1
p

= ‖f‖Sp ,

and (∫ t+1

t
‖fa(s+ ω)− eikωfa(s)‖pds

) 1
p

=

(∫ t+1

t
‖f(s+ a+ ω)− eikωf(s+ a)‖pds

) 1
p

=

(∫ t+a+1

t+a
‖f(s+ ω)− eikωf(s)‖pds

) 1
p

=

(∫ t1+1

t1

‖f(s+ ω)− eikωf(s)‖pds
) 1
p

,

it is obvious that fa ∈ SpBPω,k(R, X) by f ∈ SpBPω,k(R, X). Thus SpBPω,k(R, X) is transla-
tion invariant.

23 Oct 2023 08:42:54 PDT
230521-WeiYanyan Version 2 - Submitted to Rocky Mountain J. Math.



6 Y. Wei, S. Liu, Y.-K. Chang

(3) We can deduce that SpBPω,k(R, X) is a closed subspace of BSp(R, X). Let {fn}n ⊂
SpBPω,k(R, X) be a Cauchy sequence for the norm ‖ · ‖Sp and fn → f as n→∞. Then for any
ε > 0, there exists a constant N > 0 such that(∫ t+1

t
‖fn(s)− f(s)‖pds

) 1
p

<
ε

2
,

for every n > N and t ∈ R. Notice that

‖f‖Sp ≤ ‖f − fn‖Sp + ‖fn‖Sp <
ε

2
+ ‖fn‖Sp ,

then f ∈ BSp(R, X). Next, we show that f b ∈ BPω,k(R, Lp([0, 1], X)), i.e.,(∫ t+1

t
‖f(s+ ω)− eikωf(s)‖pds

) 1
p

≤
(∫ t+1

t
‖f(s+ ω)− fn(s+ ω)‖pds

) 1
p

+

(∫ t+1

t
‖fn(s+ ω)− eikωfn(s)‖pds

) 1
p

+

(∫ t+1

t
‖eikωfn(s)− eikωf(s)‖pds

) 1
p

≤
(∫ t+1

t
‖f(s+ ω)− fn(s+ ω)‖pds

) 1
p

+

(∫ t+1

t
‖fn(s+ ω)− eikωfn(s)‖pds

) 1
p

+

(∫ t+1

t
‖fn(s)− f(s)‖pds

) 1
p

≤
(∫ t+1

t
‖f(s+ ω)− fn(s+ ω)‖pds

) 1
p

+

(∫ t+1

t
‖fn(s)− f(s)‖pds

) 1
p

< ε,

as n → ∞. Therefore f ∈ SpBPω,k(R, X), which implies that the space SpBPω,k(R, X) is a
closed subspace of BSp(R, X). Thus SpBPω,k(R, X) is a Banach space with the norm ‖ · ‖Sp .

Theorem 3.1 Let f ∈ BSp(R×X,X). Assume that the following conditions hold:

(I) f(t+ ω, eikωx) = eikωf(t, x) a.e. t ∈ R and each x ∈ X,

(II) There exists a constant L > 0 such that for all x, y ∈ X and t ∈ R,

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖.

Then for each ϕ ∈ SpBPω,k(R, X), f(·, ϕ(·)) ∈ SpBPω,k(R, X).

Proof: For each ϕ ∈ SpBPω,k(R, X) and all t ∈ R, we have(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− eikωf(s, ϕ(s))
∥∥∥p ds) 1

p
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≤
(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− f(s+ ω, eikωϕ(s))
∥∥∥p ds) 1

p

+

(∫ t+1

t

∥∥∥f(s+ ω, eikωϕ(s))− eikωf(s, ϕ(s))
∥∥∥p ds) 1

p

≤ L
(∫ t+1

t

∥∥∥ϕ(s+ ω)− eikωϕ(s)
∥∥∥p ds) 1

p

+

(∫ t+1

t

∥∥∥f(s+ ω, eikωϕ(s))− eikωf(s, ϕ(s))
∥∥∥p ds) 1

p

= 0,

that is to say that f(t + ω, ϕ(t + ω)) = eikωf(t, ϕ(t)) a.e. t ∈ R and consequently f(·, ϕ(·)) ∈
SpBPω,k(R, X).

From the above proof, we can see that (II) can be simplified to the condition (III).

(III): there exists a constant L∗ > 0 such that for all z1, z2 ∈ BSp(R, X) and t ∈ R,

(∫ t+1

t
‖f(s, z1(s))− f(s, z2(s))‖p ds

) 1
p

≤ L∗
(∫ t+1

t
‖z1(s)− z2(s)‖p ds

) 1
p

.

Thus, we get the following corollary.

Corollary 3.1 Let f ∈ BSp(R×X,X). If (I) and (III) hold, then for each ϕ ∈ SpBPω,k(R, X),
f(·, ϕ(·)) ∈ SpBPω,k(R, X).

Theorem 3.2 Let p ∈ (1,+∞). Assume that f ∈ BSp(R × X,X) and verifies (I) and the
following condition:

(IV) There exists a function l(t) ∈ BSr(R,R+) with r ≥ max{p, p
p−1} such that for all x, y ∈ X

and t ∈ R,

‖f(t, x)− f(t, y)‖ ≤ l(t)‖x− y‖.

Then for each ϕ ∈ SpBPω,k(R, X), there exists q ∈ [1, p) such that f(·, ϕ(·)) ∈ SqBPω,k(R, X).

Proof: It is easy to get that f ∈ BSq(R × X,X). Next, since r ≥ p/(p − 1), we can find a
constant q ∈ [1, p) such that r = pq/(p− q). Let p′ = p/(p− q), q′ = p/q, there are p′ > 1, q′ > 1
and 1/p′ + 1/q′ = 1. Then for each ϕ ∈ SpBPω,k(R, X), we have

(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− eikωf(s, ϕ(s))
∥∥∥q ds) 1

q

≤
(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− f(s+ ω, eikωϕ(s))
∥∥∥q ds) 1

q
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+

(∫ t+1

t

∥∥∥f(s+ ω, eikωϕ(s))− eikωf(s, ϕ(s))
∥∥∥q ds) 1

q

≤
(∫ t+1

t
lq(s+ ω)

∥∥∥ϕ(s+ ω)− eikωϕ(s)
∥∥∥q ds) 1

q

≤
(∫ t+1

t
lqp
′
(s+ ω)ds

) 1
qp′
(∫ t+1

t

∥∥∥ϕ(s+ ω)− eikωϕ(t)
∥∥∥qq′ ds) 1

qq′

≤
(∫ t+1

t
lr(s+ ω)ds

) 1
r
(∫ t+1

t

∥∥∥ϕ(s+ ω)− eikωϕ(t)
∥∥∥p ds) 1

p

≤
(∫ t+ω+1

t+ω
lr(s)ds

) 1
r
(∫ t+1

t

∥∥∥ϕ(s+ ω)− eikωϕ(t)
∥∥∥p ds) 1

p

≤ ‖l‖Sr
(∫ t+1

t

∥∥∥ϕ(s+ ω)− eikωϕ(t)
∥∥∥p ds) 1

p

≤ 0,

which implies that f(·, ϕ(·)) ∈ SqBPω,k(R, X).

Theorem 3.3 Let f ∈ BSp(R×X,X) satisfying (I) and the following condition:

(V) For each ε > 0, there exists a constant δ > 0 such that for all t ∈ R and z1, z2 ∈ BSp(R, X)

with
(∫ t+1

t ‖z1(s)− z2(s)‖p ds
) 1
p
< δ,

(∫ t+1

t
‖f(s, z1(s))− f(s, z2(s))‖p ds

) 1
p

< ε.

Then for each ϕ ∈ SpBPω,k(R, X), f(·, ϕ(·)) ∈ SpBPω,k(R, X).

Proof: From the condition (V), we get that for any ϕ ∈ SpBPω,k(R, X),

(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− f(s+ ω, eikωϕ(s))
∥∥∥p ds) 1

p

< ε

holds for all t ∈ R. Next, by the Minkowski’s inequality, we have(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− eikωf(s, ϕ(s))
∥∥∥p ds) 1

p

≤
(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− f(s+ ω, eikωϕ(s))
∥∥∥p ds) 1

p

+

(∫ t+1

t

∥∥∥f(s+ ω, eikωϕ(s))− eikωf(s, ϕ(s))
∥∥∥p ds) 1

p
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≤
(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− f(s+ ω, eikωϕ(s))
∥∥∥p ds) 1

p

< ε,

for ϕ ∈ SpBPω,k(R, X). Thus, f(·, ϕ(·)) ∈ SpBPω,k(R, X).

Theorem 3.4 Assume that f ∈ BSp(R×X,X) satisfying (I) and the following condition:

(VI) For each ε > 0, there exists a constant δ > 0 such that for all t ∈ R and any z1, z2 ∈

BSp(R, X) with
(∫ t+1

t ‖z1(s)− z2(s)‖p ds
) 1
p
< δ,

(∫ t+1

t
‖f(s, z1(s))− f(s, z2(s))‖p ds

) 1
p

< `(t)ε,

where ` : R→ R+ is bounded.

Then for each ϕ ∈ SpBPω,k(R, X), f(·, ϕ(·)) ∈ SpBPω,k(R, X).

Proof: Similar to Theorem 3.3, we can easily get that(∫ t+1

t

∥∥∥f(s+ ω, ϕ(s+ ω))− eikωf(s, ϕ(s))
∥∥∥p ds) 1

p

< `(t)ε

via the condition (VI). This show that f(·, ϕ(·)) ∈ SpBPω,k(R, X) by the boundedness of `.

Remark 3.2 As can be seen from the proofs in Theorems 3.1, 3.2, 3.3 and 3.4, the condition
(I) can be weakened by

sup
t∈R

(∫ t+1

t

∥∥f(t+ ω, eikωx)− eikωf(t, x)
∥∥pds) 1

p
= 0,

uniformly in x ∈ X.

We give the following assumptions:

(H1) For strongly continuous functions T : [0,∞) → B(X), there exists φ ∈ L1(R+) such that
‖T (t)‖ ≤ φ(t) for all t ∈ R.

Theorem 3.5 Let p > 1. Assume that (T (t))t≥0 be a strongly continuous family of bounded
linear operators satisfying the assumption (H1), where φ is nonincreasing. If f ∈ SpBPω,k(R, X),
then

u(t) =

∫ t

−∞
T (t− s)f(s)ds ∈ BPω,k(R, X).
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Proof: Let

un(t) =

∫ t−n+1

t−n
T (t− s)f(s)ds.

It follows from f ∈ Lploc(R, X) that for each n ∈ N and t ∈ R,

‖un(t+ h)− un(t)‖ ≤
∫ t−n+1

t−n
φ(t− s)‖f(s+ h)− f(s)‖ds

≤ φ(n− 1)

(∫ t−n+1

t−n
‖f(s+ h)− f(s)‖pds

) 1
p

→ 0, as h→ 0.

This shows that un(t) is continuous. By the Hölder inequality, we have

‖un(t)‖ ≤
∫ t−n+1

t−n
‖T (t− s)f(s)‖ ds

≤ φ(n− 1)

(∫ t−n+1

t−n
‖f(s)‖pds

) 1
p

≤ φ(n− 1)‖f‖Sp ,

since

∞∑
n=1

φ(n− 1)‖f‖Sp ≤

(
φ(0) +

∞∑
n=2

∫ n−1

n−2
φ(t)dt

)
‖f‖Sp

≤ (φ(0) + ‖φ‖L1) ‖f‖Sp <∞,

then
∑∞

n=1 un(t) is uniformly convergent on R. Thus u(t) :=
∫ t
−∞ T (t−s)f(s)ds =

∑∞
n=1 un(t) ∈

BC(R, X). In addition,

‖u(t+ ω)− eikωu(t)‖ =

∥∥∥∥∫ t+ω

−∞
T (t+ ω − s)f(s)ds− eikω

∫ t

−∞
T (t− s)f(s)ds

∥∥∥∥
=

∥∥∥∥∫ t

−∞
T (t− s)

[
f(s+ ω)− eikωf(s)

]
ds

∥∥∥∥ .
Let Yn(t) =

∫ t−n+1
t−n T (t− s)

[
f(s+ ω)− eikωf(s)

]
ds, we know that

‖Yn(t)‖ =

∥∥∥∥∫ t−n+1

t−n
T (t− s)

[
f(s+ ω)− eikωf(s)

]
ds

∥∥∥∥
≤
∫ t−n+1

t−n

∥∥T (t− s)
∥∥∥∥f(s+ ω)− eikωf(s)

∥∥ds
≤ φ(0)

∫ t−n+1

t−n

∥∥f(s+ ω)− eikωf(s)
∥∥ds

≤ φ(0)

(∫ t−n+1

t−n

∥∥f(s+ ω)− eikωf(s)
∥∥pds) 1

p
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≤ φ(0)

(∫ t+1

t

∥∥f(s+ n+ ω)− eikωf(s+ n)
∥∥pds) 1

p

≤ 0

by Lemma 3.2 and f ∈ SpBPω,k(R, X). It follows that
∑∞

n=1 Yn(t) is uniform convergent to∫ t
−∞ T (t− s)

[
f(s+ ω)− eikωf(s)

]
ds on R and

∑∞
n=1 Yn(t) = 0. Thus, u(t) ∈ BPω,k(R, X).

3.2 Stepanov type pseudo Bloch periodic functions

Definition 3.2 A function f ∈ BSp(R, X) is said to be Stepanov type pseudo Bloch pe-
riodic (or Sp-pseudo Bloch periodic) if it can be decomposed as f = g + h, where gb ∈
BPω,k(R, Lp([0, 1], X)) and hb ∈ E (R, Lp([0, 1], X)).

In other words, a function f ∈ Lploc(R, X) is said to be Stepanov type pseudo Bloch periodic
if its Bochner transform f b : R→ Lp([0, 1], X) is pseudo Bloch periodic in the sense that there
exist two functions g, h : R → X such that f = g + h, where gb ∈ BPω,k(R, Lp([0, 1], X)) and
hb ∈ E (R, Lp([0, 1], X)), i.e.,

lim
T→∞

1

2T

∫ T

−T

(∫ t+1

t
‖h(s)‖pds

) 1
p

dt = 0.

The set of all such functions is denoted by SpPBPω,k(R, X).

Remark 3.3 Especially, when hb in Definition 3.2 belongs to C0(R, Lp([0, 1], X)), we can get
the concept of Stepanov type asymptotically Bloch periodicity (or Sp-asymptotically Bloch
periodicity).

Lemma 3.3 Let f ∈ SpPBPω,k(R, X) be such that f = g+h, where gb ∈ BPω,k(R, Lp([0, 1], X))
and hb ∈ E (R, Lp([0, 1], X)), then

{g(t+ ·) : t ∈ R} ⊆ {f(t+ ·) : t ∈ R} in Lp([0, 1], X).

Proof: If the assertion is not true, then there exists a constant t0 ∈ R such that g(t0 + ·) /∈
{f(t+ ·) : t ∈ R}. Without losing generality, let t0 = 0, we can get that there exists ε > 0, such
that

‖g(·)− f(t+ ·)‖p ≥ 2ε, for all t ∈ R.

By Lemma 2.1, we obtain

‖h(t+ ·)‖p = ‖f(t+ ·)− g(t+ ·)‖p ≥ ‖f(t+ ·)− g(·)‖p − ‖g(·)− g(t+ ·)‖p > ε,

for all t ∈ Dε, where Dε := {t ∈ R : ‖g(·)− g(t+ ·)‖p < ε}, R =
⋃i=1
m (s∗i +Dε). Hence,

‖h(t+ · − s∗i )‖p > ε,
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12 Y. Wei, S. Liu, Y.-K. Chang

for each i ∈ 1, ...,m and t ∈ s∗i +Dε. Now, we define the function Q by

Q(t+ ·) =
m∑
i=1

‖h(t+ · − s∗i )‖p.

From the above inequality, we can see that

Q(t+ ·) > ε,

for all t ∈ R. On the other hand, by the translation invariance of E (R, Lp([0, 1], X)) which has
been proved in Theorem 3.2 of Ref. [11], we conclude that hb(t − si) ∈ E (R, Lp([0, 1], X)) for
all i ∈ 1, ...,m, and thus Qb ∈ E (R, Lp([0, 1], X)), which is contradiction to Qb(t) > ε. So, the
conclusion is true.

Proposition 3.1 The decomposition of a Stepanov type pseudo Bloch periodic function in
Definition 3.2 is unique.

Proof: Assume that f = g1 + h1 = g2 + h2 with gbi ∈ BPω,k(R, Lp([0, 1], X)) and hbi ∈
E (R, Lp([0, 1], X)) for i = 1, 2. Then we have 0 = (g1 − g2) + (h1 − h2) ∈ SpPBPω,k(R, X)
with (g1− g2)b ∈ BPω,k(R, Lp([0, 1], X)) and (h1− h2)b ∈ E (R, Lp([0, 1], X)). From Lemma 3.3,
we obtain (g1 − g2)(R + ·) ⊆ 0. Hence, we have g1 = g2 and h1 = h2.

Lemma 3.4 Assume that f , f1, f2 ∈ SpPBPω,k(R, X). Then the following holds:

(1) f1 + f2 ∈ SpPBPω,k(R, X).

(2) cf ∈ SpPBPω,k(R, X) for any c ∈ C.

(3) The translated fa ∈ SpPBPω,k(R, X) for each a ∈ R.

Proof: Let f1 = g1 + h1, f2 = g2 + h2, f = g + h where g1, g2, g ∈ SpBPω,k(R, X), hb1, hb2,
hb ∈ E (R, Lp([0, 1], X)). It is easy to get that f1 + f2, cf ∈ BSp(R, X) and obtain that g1 + g2,
cg ∈ SpBPω,k(R, X) by Lemma 3.2. Similarly, we have

1

2T

∫ T

−T

(∫ t+1

t
‖h1(s) + h2(s)‖pds

) 1
p

dt

≤ 1

2T

∫ T

−T

(∫ t+1

t
‖h1(s)‖pds

) 1
p

dt+
1

2T

∫ T

−T

(∫ t+1

t
‖h2(s)‖pds

) 1
p

dt

→ 0 as T →∞,

and

1

2T

∫ T

−T

(∫ t+1

t
‖ch(s)‖pds

) 1
p

dt =
|c|
2T

∫ T

−T

(∫ t+1

t
‖h(s)‖pds

) 1
p

dt→ 0 as T →∞,

that is (h1 + h2)b, (ch)b ∈ E (R, Lp([0, 1], X)). Therefore, f1 + f2, cf ∈ SpPBPω,k(R, X).
(3) It follows from Lemma 3.2 that ga ∈ SpBPω,k(R, X). In addition, hba ∈ E (R, Lp([0, 1], X))

can be deduced by the proof of Theorem 3.2 in [11]. Thus, the conclusion is obtained.
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Lemma 3.5 The space
(
SpPBPω,k(R, X), ‖ · ‖Sp

)
is a Banach space.

Proof: Let {fn} be a Cauchy sequence in SpPBPω,k(R, X). We write fn = gn + hn with
gbn ∈ BPω,k(R, Lp([0, 1], X)), hbn ∈ E (R, Lp([0, 1], X)). From Lemma 3.3, we have

‖(gm1 − gm2)(t+ ·)‖p ≤ ‖(fm1 − fm2)(t+ ·)‖p,

that is

‖gm1 − gm2‖Sp ≤ ‖fm1 − fm2‖Sp ,

therefore {gn} is a Cauchy sequence in the Banach space (SpBPω,k(R, X), ‖ · ‖Sp). There exists
a function g ∈ SpBPω,k(R, X), that is gb ∈ BPω,k(R, Lp([0, 1], X), such that ‖gn − g‖Sp → 0 as
n→∞. Based on the above facts, there exists a function h ∈ BSp(R, X) such that ‖hn−h‖Sp →
0 as n→∞.

Next, we prove that hb ∈ E (R, Lp([0, 1], X)), i.e.,

1

2T

∫ T

−T

(∫ t+1

t
‖h(s)‖pds

) 1
p

dt

≤ 1

2T

∫ T

−T

(∫ t+1

t
‖hn(s)− h(s)‖pds

) 1
p

dt+
1

2T

∫ T

−T

(∫ t+1

t
‖hn(s)‖pds

) 1
p

dt

≤ ‖hn − h‖Sp +
1

2T

∫ T

−T

(∫ t+1

t
‖hn(s)‖pds

) 1
p

dt.

Let n → ∞, we get that hb ∈ E (R, Lp([0, 1], X)) with the help of hbn ∈ E (R, Lp([0, 1], X)),
and conclude lim

n→∞
fn = g + h ∈ SpPBPω,k(R, X). These arguments imply that the space

SpPBPω,k(R, X) is a closed subspace of BSp(R, X). Therefore, SpPBPω,k(R, X) is a Banach
space equipped with the norm ‖ · ‖Sp .

Lemma 3.6 Assume that f ∈ PBPω,k(R, X), then f ∈ SpPBPω,k(R, X). Further, if there is a
constant q satisfying 1 ≤ q < p, then f ∈ SqPBPω,k(R, X).

Proof: Let f = g + h where g ∈ BPω,k(R, X) and h ∈ E (R, X). First of all, it is obvious that
f ∈ BSp(R, X). And from Remark 3.1, we have that gb ∈ BPω,k(R, Lp([0, 1], X)). To prove
this lemma, it suffices to show that hb ∈ E (R, Lp([0, 1], X)). For T > 0, we have the following
inequality

∫ T

−T

(∫ 1

0
‖h(t+ s)‖pds

) 1
p

dt ≤
∫ T

−T

(∫ 1

0
sup
s∈[0,1]

‖h(t+ s)‖pds

) 1
p

dt

≤
∫ T

−T

(
sup
s∈[0,1]

‖h(t+ s)‖p
) 1

p

dt.
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14 Y. Wei, S. Liu, Y.-K. Chang

Let s0 ∈ [0, 1] such that sup
s∈[0,1]

‖h(t + s)‖ = ‖h(t + s0)‖. Using the above inequality, it follows

that

lim
T→∞

1

2T

∫ T

−T

(∫ 1

0
‖h(t+ s)‖pds

) 1
p

dt ≤ lim
T→∞

1

2T

∫ T

−T

(
sup
s∈[0,1]

‖h(t+ s)‖p
) 1

p

dt

≤ lim
T→∞

1

2T

∫ T

−T
‖h(t+ s0)‖dt

= 0

by using the fact that E (R, X) is translation invariant. Thus, f ∈ SpPBPω,k(R, X).
Finally, the proof of f ∈ SqPBPω,k(R, X) is similar to that of Lemma 3.1 and the details

are omitted here.

We also assume that the following condition hold:

(A1) g ∈ BSp(R×X,X) and g(t+ ω, eikωx) = eikωg(t, x) a.e. t ∈ R and each x ∈ X.

Theorem 3.6 Let f = g + h ∈ BSp(R × X,X), where g satisfies (A1) and hb ∈ E (R ×
X,Lp([0, 1], X)). Assume that u = α + β ∈ SpPBPω,k(R, X) with I := α([−T, T ]) compact. If
the following condition holds:

(C1) There exists constants L1 > 0 and L2 > 0 such that for all x, y ∈ X and t ∈ R,

‖f(t, x)− f(t, y)‖ ≤ L1‖x− y‖, ‖g(t, x)− g(t, y)‖ ≤ L2‖x− y‖.

Then f(·, u(·)) ∈ SpPBPω,k(R, X).

Proof: The function f can be re-written as

f(t, u(t)) = g(t, α(t)) + f(t, u(t))− g(t, α(t))

= g(t, α(t)) + f(t, u(t))− f(t, α(t)) + h(t, α(t)).

Set
F (t) := g(t, α(t)), G(t) := f(t, u(t))− f(t, α(t)), H(t) := h(t, α(t)).

It is easy to see that F b(·) = gb(·, ub(·)) : R→ Lp([0, 1], X), where gb(t, ub(t)) = g(t+s, u(t+s)),
t ∈ R, s ∈ [0, 1]. Similarly,

Gb(t) = f b(t, ub(t))− f b(t, αb(t)), Hb(t) = hb(t, αb(t)).

To complete the proof, it is enough to show F (t) ∈ SpBPω,k(R, X), Gb(t) ∈ E (R, Lp([0, 1], X))
and Hb(t) ∈ E (R, Lp([0, 1], X)). According to (A1) and Theorem 3.1, we have g(t, α(t)) ∈
SpBPω,k(R, X), that is F b(t) = gb(t, αb(t)) ∈ BPω,k(R, Lp([0, 1], X)).

Next, we will prove that Gb(t) ∈ E (R, Lp([0, 1], X)). In fact, G(t) ∈ BSp(R, X) and

1

2T

∫ T

−T

(∫ t+1

t
‖G(s)‖pds

) 1
p

dt
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=
1

2T

∫ T

−T

(∫ t+1

t
‖f(s, u(s))− f(s, α(s))‖pds

) 1
p

dt

≤ L1

2T

∫ T

−T

(∫ t+1

t
‖β(s)‖pds

) 1
p

dt.

Since βb ∈ E (R, Lp([0, 1], X)), Gb(t) ∈ E (R, Lp([0, 1], X)) is true. In the end, we will show that
Hb(t) = hb(t, αb(t)) ∈ E (R, Lp([0, 1], X)). From hb ∈ E (R ×X,Lp([0, 1], X)), it is obvious that
for any ε > 0, there exists T0 > 0 such that

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, x)‖pds

) 1
p

dt < ε, (3.1)

for each T > T0 and x ∈ X. Secondly, due to the compactness of set I, one can find finite open
balls Bk (k = 1, 2, · · · ,m) with center xk ∈ I and radius δ < ε such that I ⊆

⋃m
k=1 Bk. Set

Ok = {t ∈ [−T, T ] : α(t) ∈ Bk}, then [−T, T ] =
⋃m
k=1Ok. Let

E1 = O1, Ek = Ok\
k−1⋃
j=1

Oj , 2 ≤ k ≤ m,

then Ei ∩ Ej = ∅ if i 6= j, 1 ≤ i, j ≤ m. Define a function x̄ : [−T, T ] → X by x̄(t) = xk for
t ∈ Ek, k = 1, 2, ...m, then we have

‖α(t)− x̄(t)‖ < δ, t ∈ [−T, T ]. (3.2)

It follows from the Minkowski inequality that

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))‖pds

) 1
p

dt

≤ 1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))− h(s, x̄(s))‖p ds

) 1
p

dt+
1

2T

∫ T

−T

(∫ t+1

t
‖h(s, x̄(s))‖p ds

) 1
p

dt

: = I1(T ) + I2(T ), (3.3)

where

I1(T ) =
1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))− h(s, x̄(s))‖p ds

) 1
p

dt, (3.4)

I2(T ) =
1

2T

∫ T

−T

(∫ t+1

t
‖h(s, x̄(s))‖p ds

) 1
p

dt. (3.5)

Finally, we estimate I1 and I2, respectively. It follows from the inequality (3.2) that

I1(T ) =
1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))− h(s, x̄(s))‖pds

) 1
p

dt
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≤ 1

2T

∫ T

−T

(∫ t+1

t
‖f(s, α(s))− f(s, x̄(s))‖pds

) 1
p

dt

+
1

2T

∫ T

−T

(∫ t+1

t
‖g(s, α(s))− g(s, x̄(s))‖pds

) 1
p

dt

≤L1

2T

∫ T

−T

(∫ t+1

t
‖α(s)− x̄(s)‖pds

) 1
p

dt

+
L2

2T

∫ T

−T

(∫ t+1

t
‖α(s)− x̄(s)‖pds

) 1
p

dt

≤L1 · δ + L2 · δ
<(L1 + L2)ε, (3.6)

for all T > T0. And by (3.1), we get

I2(T ) =
1

2T

∫ T

−T

(∫ t+1

t
‖h(s, x̄(s))‖p ds

) 1
p

dt

=
1

2T

∫ T

−T

[
m∑
k=1

(∫
(t,t+1)

⋂
Ek

‖h(s, xk)‖pds

)] 1
p

dt

≤m
1
p

1

2T

∫ T

−T

m∑
k=1

(∫
(t,t+1)

⋂
Ek

‖h(s, xk)‖pds

) 1
p

dt

≤m
1
p

m∑
k=1

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, xk)‖pds

) 1
p

dt

<m
1+ 1

p · ε. (3.7)

Therefore,

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))‖pds

) 1
p

dt < (L1 + L2)ε+m
1+ 1

p · ε,

which means that Hb(t) = hb(t, αb(t)) ∈ E (R, Lp([0, 1], X)). The conclusion is proved.

From the above proof, we get that when f and g satisfy condition (III) with f and g instead
of F , respectively, Theorem 3.6 is still true.

Theorem 3.7 Let p > 1. Assume that f = g + h ∈ BSp(R × X,X) with g satisfying (A1)
and hb ∈ E (R × X,Lp([0, 1], X)). Suppose further that u = α + β ∈ SpPBPω,k(R, X) with I
compact. If the following condition holds:

(C2) There exists two functions lf (t) and lg(t) ∈ BSr(R,R+) with r ≥ max{p, p
p−1} such that

for all x, y ∈ X and t ∈ R,

‖f(t, x)− f(t, y)‖ ≤ lf (t)‖x− y‖, ‖g(t, x)− g(t, y)‖ ≤ lg(t)‖x− y‖.
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Stepanov type pseudo Bloch periodic functions 17

Then there exists q ∈ [1, p) such that f(·, u(·)) ∈ SqPBPω,k(R, X).

Proof: The proof follows a similar procedure in Theorem 3.6. Do the same decomposition
of f , we can get that g(t, α(t)) ∈ SpBPω,k(R, X) ⊂ SqBPω,k(R, X) by Lemma 3.1 and The-
orem 3.2, i.e. F b(t) = gb(t, αb(t)) ∈ BPω,k(R, Lq([0, 1], X)). Next, we show that Gb(t) ∈
E (R, Lq([0, 1], X)). It is obvious that Gb(t) ∈ BSp(R, X). We have by the Hölder inequality
that (∫ t+1

t
‖G(s)‖qds

) 1
q

=

(∫ t+1

t
‖f(s, u(s))− f(s, α(s))‖qds

) 1
q

≤
(∫ t+1

t
lqf (s)‖β(s)‖qds

) 1
q

≤
(∫ t+1

t
lqp
′

f (s)ds

) 1

qp
′ (∫ t+1

t
‖β(s)‖qq

′
ds

) 1

qq
′

≤
(∫ t+1

t
lrf (s)ds

) 1
r
(∫ t+1

t
‖β(s)‖pds

) 1
p

≤ ‖lf‖Sr
(∫ t+1

t
‖β(s)‖pds

) 1
p

,

where the parameters p′ and q′ here come from the proof of Theorem 3.2, then

1

2T

∫ T

−T

(∫ t+1

t
‖G(s)‖qds

) 1
q

dt ≤
‖lf‖Sr

2T

∫ T

−T

(∫ t+1

t
‖β(s)‖pds

) 1
p

dt→ 0,

as T →∞ by βb ∈ E (R, Lp([0, 1], X)). Therefore, Gb(t) ∈ E (R, Lq([0, 1], X)). Finally, we prove
that Hb(t) = hb(t, αb(t)) ∈ E (R, Lq([0, 1], X)). As can be seen from the proof of Theorem 3.6,
we just need to re-estimate I1(T ) here. lf ∈ BSp(R,R+) and lg ∈ BSp(R,R+) can be obtained
by r ≥ p. According to this conclusion and the condition (C2), it is further deduced that for all
T > T0,

I1(T ) =
1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))− h(s, x̄(s))‖pds

) 1
p

dt

≤ 1

2T

∫ T

−T

(∫ t+1

t
‖f(s, α(s))− f(s, x̄(s))‖pds

) 1
p

dt

+
1

2T

∫ T

−T

(∫ t+1

t
‖g(s, α(s))− g(s, x̄(s))‖pds

) 1
p

dt

≤ 1

2T

∫ T

−T

(∫ t+1

t
(lf (s)‖α(s)− x̄(s)‖)pds

) 1
p

dt

+
1

2T

∫ T

−T

(∫ t+1

t
(lg(s)‖α(s)− x̄(s)‖)pds

) 1
p

dt
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≤ δ

2T

∫ T

−T

(∫ t+1

t
(lf (s))pds

) 1
p

dt+
δ

2T

∫ T

−T

(∫ t+1

t
(lg(s))

pds

) 1
p

dt

≤(‖lf‖Sp + ‖lg‖Sp)δ < (‖lf‖Sp + ‖lg‖Sp)ε.

Thus, combining the above estimate with (3.7), we get

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))‖qds

) 1
q

dt

≤ 1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))‖pds

) 1
p

dt

≤I1(T ) + I2(T ) < (‖lf‖Sp + ‖lg‖Sp)ε+m
1+ 1

p · ε,

that is Hb(t) = hb(t, αb(t)) ∈ E (R, Lq([0, 1], X)). The proof is complete.

Theorem 3.8 Let f = g + h ∈ BSp(R × X,X), where g satisfies the condition (A1) and
hb ∈ E (R×X,Lp([0, 1], X)). Assume that u = α+β ∈ SpPBPω,k(R, X) with I compact. If the
following condition holds:

(C3) For each ε > 0, there exists a constant δ > 0 such that(∫ t+1

t
‖f(s, z1(s))− f(s, z2(s))‖p ds

) 1
p

< ε,

(∫ t+1

t
‖g(s, z1(s))− g(s, z2(s))‖p ds

) 1
p

< ε,

for all t ∈ R, and any z1, z2 ∈ BSp(R, X) with
(∫ t+1

t ‖z1(s)− z2(s)‖p ds
) 1
p
< δ.

Then f(·, u(·)) ∈ SpPBPω,k(R, X).

Proof: Do the same decomposition for f as in Theorem 3.6. By Theorem 3.3 and condition (C3),
we can get that F b(t) ∈ BPω,k(R, Lp([0, 1], X)). Next, we prove that Gb(t) ∈ E (R, Lp([0, 1], X)).

In fact, for each t ∈ R,
(∫ t+1

t ‖β(s)‖p ds
) 1
p

=
(∫ t+1

t ‖u(s)− α(s)‖p ds
) 1
p
< δ, s ∈ [t, t+1] implies

that for all t ∈ R,(∫ t+1

t
‖G(s)‖pds

) 1
p

=

(∫ t+1

t
‖f(s, u(s))− f(s, α(s))‖pds

) 1
p

< ε.

So we get MT,ε(G) = MT,ε(f(·, u(·))− f(·, α(·))) ⊆MT,δ(β). It follows form Lemma 2.2 that

lim
T→∞

1

2T

∫
MT,δ(β)

dt = 0.

Thus

lim
T→∞

1

2T

∫
MT,ε(G)

dt = 0,
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Stepanov type pseudo Bloch periodic functions 19

which show that Gb(t) ∈ E (R, Lp([0, 1], X)).

Next, we deduce that Hb(t) = hb(t, αb(t)) ∈ E (R, Lp([0, 1], X)). Similar to the proof in
Theorem 3.6, from the compactness of set I and hb ∈ E (R × X,Lp([0, 1], X)), we can obtain
(3.2) and (3.7). Here the radius δ is given in condition (C3). It is obvious that (3.2) implies

that
(∫ t+1

t ‖α(s)− x̄(s)‖p ds
) 1
p
< δ, so

I1(T ) ≤ 1

2T

∫ T

−T

(∫ t+1

t
‖f(s, α(s))− f(s, x̄(s))‖pds

) 1
p

dt

+
1

2T

∫ T

−T

(∫ t+1

t
‖g(s, α(s))− g(s, x̄(s))‖pds

) 1
p

dt

<ε
1

2T

∫ T

−T
dt+ ε

1

2T

∫ T

−T
dt

<2ε.

Therefore, for all T > T0,

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))‖pds

) 1
p

dt ≤ I1(T ) + I2(T ) < 2ε+m
1+ 1

p · ε,

which implies that Hb(t) = hb(t, αb(t)) ∈ E (R, Lp([0, 1], X)). Thus the conclusion is proved.

Theorem 3.9 Let f = g + h ∈ BSp(R × X,X) with g satisfying (A1) and hb ∈ E (R ×
X,Lp([0, 1], X)). Suppose that u = α + β ∈ SpPBPω,k(R, X) with I compact. If the following
condition holds:

(C4) For each ε > 0, there exists a constant δ > 0, such that for all t ∈ R and any z1,

z2 ∈ BSp(R, X) with
(∫ t+1

t ‖z1(s)− z2(s)‖p ds
) 1
p
< δ,

(∫ t+1

t
‖f(s, z1(s))− f(s, z2(s))‖p ds

) 1
p

< `1(t)ε,

(∫ t+1

t
‖g(s, z1(s))− g(s, z2(s))‖p ds

) 1
p

< `2(t)ε,

where `1 : R→ R+ satisfies 1
2T

∫ T
−T `1(t)dt <∞ and `2 : R→ R+ is bounded.

Then f(·, u(·)) ∈ SpPBPω,k(R, X).

Proof: Decompose the function f(·, u(·)) similar to that in Theorem 3.6, we can get that F b(t) ∈
BPω,k(R, Lp([0, 1], X)) by Theorem 3.4 and (C4). Next, we prove thatGb(t) ∈ E (R, Lp([0, 1], X)).
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20 Y. Wei, S. Liu, Y.-K. Chang

It is known from the condition (C4) that for each t ∈ R,
(∫ t+1

t ‖u(s)− α(s)‖p ds
) 1
p
< δ,

s ∈ [t, t+ 1] implies that(∫ t+1

t
‖G(s)‖pds

) 1
p

=

(∫ t+1

t
‖f(s, u(s))− f(s, α(s))‖pds

) 1
p

< `1(t)ε.

So MT,`1(t)ε(G) = MT,`1(t)ε(f(·, u(·)) − f(·, α(·))) ⊆ MT,δ(β) is hold. Combine Lemma 2.2 and

βb ∈ E (R, Lp([0, 1], X)), we have that

lim
T→∞

1

2T

∫
MT,`1(t)ε

(G)
dt = 0. (3.8)

Therefore,

1

2T

∫ T

−T

(∫ t+1

t
‖G(s)‖pds

) 1
p

dt

=
1

2T

∫
MT,`1(t)ε

(G)

(∫ t+1

t
‖G(s)‖pds

) 1
p

dt+
1

2T

∫
[−T,T ]\MT,`1(t)ε

(G)

(∫ t+1

t
‖G(s)‖pds

) 1
p

dt

<
‖G‖Sp

2T

∫
MT,`1(t)ε

(G)
dt+

ε

2T

∫
[−T,T ]\MT,`1(t)ε

(G)
`1(t)dt

<
‖G‖Sp

2T

∫
MT,`1(t)ε

(G)
dt+

ε

2T

∫ T

−T
`1(t)dt,

which show that Gb(t) ∈ E (R, Lp([0, 1], X)) by the condition (C4) and the equation (3.8). In the
end, we use techniques in Theorem 3.6 to show that Hb(t) = hb(t, αb(t)) ∈ E (R, Lp([0, 1], X)).

For α(t) and x̄(t) satisfying (3.2),
(∫ t+1

t ‖α(s)− x̄(s)‖p ds
) 1
p
< δ is also true. Let the radius δ

be given in (C4), then we get that

I1(T ) ≤ 1

2T

∫ T

−T

(∫ t+1

t
‖f(s, α(s))− f(s, x̄(s))‖pds

) 1
p

dt

+
1

2T

∫ T

−T

(∫ t+1

t
‖g(s, α(s))− g(s, x̄(s))‖pds

) 1
p

dt

≤ ε

2T

∫ T

−T
(`1(t) + `2(t)) dt.

It follows from (3.7) and (3.3) that for all T > T0,

1

2T

∫ T

−T

(∫ t+1

t
‖h(s, α(s))‖pds

) 1
p

dt ≤ I1(T ) + I2(T ) <
ε

2T

∫ T

−T
(`1(t) + `2(t)) dt+m

1+ 1
p · ε.

Therefore, Hb(t) = hb(t, αb(t)) ∈ E (R, Lp([0, 1], X)) is true under the condition (C4). This
completes the proof.
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Remark 3.4 It is easy to get that the condition (A1) in Theorems 3.6, 3.7, 3.8 and 3.9 can be
replaced by g ∈ BSp(R×X,X) and

sup
t∈R

(∫ t+1

t

∥∥g(t+ ω, eikωx)− eikωg(t, x)
∥∥pds) 1

p
= 0,

uniformly in x ∈ X.

Theorem 3.10 Let (T (t))t≥0 be a strongly continuous family of bounded linear operators sat-
isfying the assumption (H1), where φ is nonincreasing. If f ∈ SpPBPω,k(R, X), then

u(t) =

∫ t

−∞
T (t− s)f(s)ds ∈ PBPω,k(R, X).

Proof: Let f(t) = g(t) + h(t) ∈ SpPBPω,k(R, X) with gb ∈ BPω,k(R, Lp([0, 1], X)) and hb ∈
E (R, Lp([0, 1], X)), then

u(t) =

∫ t

−∞
T (t− s)g(s)ds+

∫ t

−∞
T (t− s)h(s)ds := K(t) + E(t).

From Theorem 3.5, we can get that K(t) ∈ BPω,k(R, X). E(t) ∈ BC(R, X) can be conducted
similarly. Next, we show that

lim
T→∞

1

2T

∫ T

−T
‖E(t)‖dt = 0.

Consider the integrals

En(t) =

∫ t−n+1

t−n
T (t− s)h(s)ds,

it follows that

‖En(t)‖ ≤ φ(n− 1)

(∫ t−n+1

t−n
‖h(s)‖pds

) 1
p

≤ φ(0)

(∫ t−n+1

t−n
‖h(s)‖pds

) 1
p

≤ φ(0)

(∫ t+1

t
‖h(s− n)‖pds

) 1
p

,

then

1

2T

∫ T

−T
‖En(t)‖dt ≤ φ(0)

2T

∫ T

−T

(∫ t+1

t
‖h(s− n)‖pds

) 1
p

dt→ 0, as T →∞,

by the translation invariance of E (R, Lp([0, 1], X)). Hence, En ∈ E(R, X), their uniform limit
E ∈ E(R, X). The proof is complete.
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4 Bloch periodic solutions

In this section, we mainly investigate the existence and uniqueness of (pseudo) Bloch periodic
mild solutions to a semi-linear evolution equation and a fractional integro-differential equation
with Stepanov type force term respectively.

We first consider the existence and uniqueness of Bloch periodic mild solutions to the fol-
lowing well-known semi-linear evolution equation

u′(t) = Au(t) + f(t, u(t)), t ∈ R, (4.1)

where the nonlinearity f ∈ BSp(R × X,X) is a given function with suitable properties and
A : D(A) ⊂ X 7→ X is a densely closed linear operator which generates an exponentially stable
C0-semigroup {T(t)}t≥0, i.e. there exist constants M , σ > 0 such that

‖T(t)‖ ≤Me−σt, for each t ≥ 0.

Definition 4.1 A function u : R→ X is called a mild solution of (4.1), if it verifies

u(t) =

∫ t

−∞
T(t− s)f(s, u(s))ds, t ∈ R.

Theorem 4.1 Assume that f ∈ BSp(R×X,X) and satisfies (I) and (II) in Theorem 3.1 with
ML
σ < 1. Then the equation (4.1) has a unique mild solution in BPω,k(R, X).

Proof: Define the operator P : BPω,k(R, X)→ BPω,k(R, X) by

(Pu)(t) =

∫ t

−∞
T(t− s)f(s, u(s))ds. (4.2)

If u ∈ BPω,k(R, X) ⊂ SpBPω,k(R, X), from Theorem 3.1, it is not difficult to see that f(·, u(·)) ∈
SpBPω,k(R, X). And by Theorem 3.5, we get that Pu ∈ BPω,k(R, X), so P is well defined.

For any u, v ∈ BPω,k(R, X)

‖(Pu)(t)− (Pv)(t)‖ ≤
∫ t

−∞
‖T(t− s) (f(s, u(s))− f(s, v(s))‖ ds

≤ML

∫ t

−∞
e−σ(t−s) ‖u(s)− v(s)‖ ds

≤ML

∫ ∞
0

e−σs ‖u(t− s)− v(t− s)‖ ds

≤ ML

σ
‖u− v‖

by the Banach contraction mapping principle, P has a unique fixed point in BPω,k(R, X), which
is the unique mild solution to the equation (4.1).
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Theorem 4.2 Let f ∈ BSp(R × X,X) satisfy (I) in Theorem 3.1 and (IV) in Theorem 3.2.
Then the equation (4.1) has a unique mild solution in BPω,k(R, X) provided that ‖l‖Sr ≤
1−e−σ
M

(
r0σ

1−e−r0σ

) 1
r0 , where 1

r0
+ 1

r = 1.

Proof: Define the operator P as in (4.2). If u ∈ BPω,k(R, X) ⊂ SpBPω,k(R, X), from Theorem
3.2, it is not difficult to see that f(·, u(·)) ∈ SpBPω,k(R, X). And by Theorem 3.5, we get that
Pu ∈ BPω,k(R, X), so P is well defined.

For any u, v ∈ BPω,k(R, X), we have

‖(Pu)(t)− (Pv)(t)‖ ≤
∫ t

−∞
‖T(t− s) (f(s, u(s))− f(s, v(s))‖ ds

≤M
∫ t

−∞
e−σ(t−s)l(s) ‖u(s)− v(s)‖ ds

≤M
∞∑
k=1

(∫ t−k+1

t−k
e−r0σ(t−s)ds

) 1
r0

‖l‖Sr‖u− v‖

≤M r0

√
er0σ − 1

r0σ

∞∑
k=1

e−σk‖l‖Sr‖u− v‖

≤M r0

√
1− e−r0σ
r0σ

∞∑
k=0

e−σk‖l‖Sr‖u− v‖

≤ M

1− e−σ

(
1− e−r0σ

r0σ

) 1
r0

‖l‖Sr‖u− v‖,

where 1
r0

+ 1
r = 1. By the Banach contraction mapping principle, P has a unique fixed point in

BPω,k(R, X), which was the unique mild solution to the equation (4.1).

Next we investigate the existence and uniqueness of pseudo Bloch periodic mild solutions to
the following fractional integro-differential equation, which was initially studied in [32]

Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s)ds+ f(t, u(t)), (4.3)

where f ∈ BSp(R×X,X) satisfies some additional conditions, A generates an α-resolvent family
{Sα(t)}t≥0 on a Banach space X, a ∈ L1

loc(R+), α > 0 and the fractional derivative is understood
in the sense of Weyl.

Given a function f : R → X, the Weyl fractional integral of order α > 0 is defined by
D−αf(t) := 1

Γ(α)

∫ t
−∞(t − s)α−1f(s)ds, t ∈ R, when this integral is convergent. The Weyl

fractional derivative Dαf of order α > 0 is defined by Dαf(t) := dn

dtnD
−(n−α)f(t), t ∈ R, where

n = [α] + 1. It is known that DαD−αg = g for any α > 0, and Dn = dn

dtn holds with n ∈ N. We
can see more details in [30].
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Definition 4.2 [32] Let A be a closed and linear operator with domain D(A) defined on a
Banach space X, and α > 0. Given a ∈ L1

loc(R+), we say that A is the generator of an α-
resolvent family, if there exist ω ≥ 0 and a strongly continuous function Sα : [0,∞) → B(X)

such that
{

λα

1+â(λ) : Reλ > ω
}
⊂ ρ(A), the resolvent set of A, and for all x ∈ X,

(λα − (1 + â(λ))A)−1 x =
1

1 + â(λ)

( λα

1 + â(λ)
−A

)−1
x =

∫ ∞
0

e−λtSα(t)xdt, Reλ > ω,

where â denotes the Laplace transform of a. In this case, {Sα(t)}t≥0 is called the α-resolvent
family generated by A.

Definition 4.3 A function u : R→ X is said to be a mild solution of (4.3) if

u(t) =

∫ t

−∞
Sα(t− s)f(s, u(s))ds, t ∈ R,

where {Sα(t)}t≥0 is the α-resolvent family generated by A, whenever it exists.

Theorem 4.3 Assume that f = g + h ∈ BSp(R ×X,X) where g satisfies the condition (A1)
and hb ∈ E (R×X,Lp([0, 1], X)). If (C1) in Theorem 3.6 and the following condition hold:

(H2) the operator A generates an α-resolvent family {Sα(t)}t≥0 such that ‖Sα(t)‖ ≤ φα(t) for
all t ∈ R, where φα(·) ∈ L1(R+) is nonincreasing.

then the equation (4.3) has a unique mild solution in PBPω,k(R, X) provided that L1‖φα‖1 < 1.

Proof: Define the operator F : PBPω,k(R, X)→ PBPω,k(R, X) by

(Fu)(t) =

∫ t

−∞
Sα(t− s)f(s, u(s))ds, t ∈ R. (4.4)

Let u = α + β ∈ PBPω,k(R, X), where α ∈ BPω,k(R, X) and h ∈ E (R, X). By Definition
2.1, α is continuous, then α([−T, T ]) is compact. So, I is a compact set. In addition, u ∈
PBPω,k(R, X) ⊂ SpPBPω,k(R, X), from Theorem 3.6, it is not difficult to see that f(·, u(·)) ∈
SpPBPω,k(R, X). By Theorem 3.10, Fu ∈ PBPω,k(R, X), so F is well defined.

Now for u, v ∈ PBPω,k(R, X), we have

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα(t− s) (f(s, u(s))− f(s, v(s))‖ ds

≤ L1

∫ t

−∞
φα(t− s) ‖u(s)− v(s)‖ ds

≤ L1

∫ ∞
0

φα(s) ‖u(t− s)− v(t− s)‖ ds

≤ L1‖u− v‖
∫ ∞

0
φα(s)ds

≤ L1‖φα‖1‖u− v‖.

This prove that F is a contraction, so by the Banach fixed point theorem there exists a unique
u ∈ PBPω,k(R, X) such that Fu = u.
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Theorem 4.4 Let f = g + h ∈ BSp(R × X,X), where g satisfies the condition (A1) and
hb ∈ E (R×X,Lp([0, 1], X)). Assume that conditions (C2) in Theorem 3.7 and (H2) in Theorem
4.3 hold. Further suppose that φ0 :=

∑∞
n=0 φα(n) < ∞, then equation (4.3) has a unique mild

solution in PBPω,k(R, X) whenever φ0 <
1

‖lf‖Sr
.

Proof: Define the operator F as in (4.4). It is followed by Theorem 3.7 and 3.10 that F is well
defined. Let u, v ∈ PBPω,k(R, X), we have

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα(t− s) (f(s, u(s))− f(s, v(s))‖ ds

≤
∫ t

−∞
φα(t− s)lf (s) ‖u(s)− v(s)‖ ds

≤
∞∑
k=1

∫ t−k+1

t−k
φα(t− s)lf (s)ds‖u− v‖

≤
∞∑
k=1

(∫ t−k+1

t−k
φr0α (t− s)ds

) 1
r0

‖lf‖Sr ‖u− v‖

≤
∞∑
k=1

(∫ k

k−1
φr0α (s)ds

) 1
r0

‖lf‖Sr ‖u− v‖

≤

(
φα(0) +

∞∑
k=1

φα(k)

)
‖lf‖Sr ‖u− v‖

≤

( ∞∑
k=0

φα(k)

)
‖lf‖Sr ‖u− v‖

≤ φ0 ‖lf‖Sr ‖u− v‖,

where 1
r0

+ 1
r = 1, which shows that F is a contraction, so by the Banach fixed point theorem

there exists a unique u ∈ PBPω,k(R, X) such that Fu = u.

Theorem 4.5 Let p > 1 and f = g + h ∈ BSp(R×X,X), where g satisfies the condition (A1)
and hb ∈ E (R×X,Lp([0, 1], X)). Assume that (C2) in Theorem 3.7 and the following condition
(H3) are satisfied:

(H3) The operator A generates an α-resolvent family {Sα(t)}t≥0, and there exist C > 0, ξ > 0
such that ‖Sα(t)‖ ≤ Ce−ξt for all t ∈ R.

Then equation (4.3) has a unique mild solution in PBPω,k(R, X).

Proof: F is well defined as in (4.4). Let u, v ∈ PBPω,k(R, X), we have

‖(Fu)(t)− (Fv)(t)‖ ≤
∫ t

−∞
‖Sα(t− s) (f(s, u(s))− f(s, v(s))‖ ds
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≤
∫ t

−∞
Ce−ξ(t−s)lf (s) ‖u(s)− v(s)‖ ds

≤ C‖u− v‖
∫ t

−∞
lf (s)ds.

Similarly,

∥∥F2u−F2v
∥∥ ≤ C ∫ t

−∞
lf (s) ‖(Fu)(s)− (Fv)(s)‖ ds

≤ C2‖u− v‖
∫ t

−∞
lf (s)

∫ s

−∞
lf (θ)dθds

≤ C2

2!
‖u− v‖

(∫ t

−∞
lf (s)ds

)2

.

By induction, we have

‖Fnu−Fnv‖ ≤ Cn

n!
‖u− v‖

(∫ t

−∞
lf (s)ds

)n
≤

(C‖lf‖1)n

n!
‖u− v‖.

For sufficiently large n, we have
(C‖lf‖1)

n

n! < 1. Thus F has a unique fixed point in PBPω,k(R, X)
by the Banach contraction mapping principle.

Theorem 4.6 Assume that f = g + h ∈ BSp(R × X,X), where g satisfies (A1) and hb ∈
E (R ×X,Lp([0, 1], X)), and conditions (C2) in Theorem 3.7 and (H3) in Theorem 4.5 hold. If
the integral

∫ t
−∞ lf (s)ds exists for all t ∈ R, then equation (4.3) has a unique mild solution in

PBPω,k(R, X).

Proof: Define an equivalent norm on PBPω,k(R, X) as ‖f‖h = supt∈R{e−hγ(t)‖f‖∞}, where

h > C and γ(t) =
∫ t
−∞ lf (s)ds. The operator F has the same definition as before. Let u,

v ∈ PBPω,k(R, X), we have

‖Fu−Fv‖∞ ≤ sup
t∈R

∫ t

−∞
‖Sα(t− s) (f(s, u(s))− f(s, v(s))‖ ds

≤ C sup
t∈R

∫ t

−∞
e−δ(t−s)lf (s) ‖u(s)− v(s)‖ ds

≤ C‖u− v‖h
∫ t

−∞
e−ξ(t−s)lf (s)ehγ(s)ds

≤ C‖u− v‖h
∫ t

−∞
lf (s)ehγ(s)ds

≤ C‖u− v‖h
∫ t

−∞
γ′(s)ehγ(s)ds

≤ C

h
‖u− v‖hehγ(t),
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therefore,

‖Fu−Fv‖h ≤
C

h
‖u− v‖h,

we get that F is a contraction mapping by h > C. So equation (4.3) has a unique mild solution
in PBPω,k(R, X).

Example 4.1 We put A = −%I in X = R, a(t) = %
4
tα−1

Γ(α) , % > 0, 0 < α < 1, and f(t, u) =

g(t, u) + h(t, u) ∈ BSp(R×X,X) where g(t, u) = γ(t)ς(u), h(t, u) = 1
1+t2

cosu. Assume that γ

and ς are bounded (not necessarily continuous) functions and satisfy γ(t+ω) = γ(t), ς(eikωu) =
eikως(u) and ‖ς(u)− ς(v)‖ ≤ lς‖u− v‖ with lς > 0. Then, we have that g ∈ BSp(R×X,X) and

g(t+ ω, eikωu) = γ(t+ ω)ς(eikωu) = eikωγ(t)ς(u) = eikωg(t, u),

‖g(t, u)− g(t, v)‖ = ‖γ(t)ς(u)− γ(t)ς(v)‖ ≤ lς‖γ‖‖u− v‖.

On the other hand, by Proposition 3.6, hb ∈ E (R × X,Lp([0, 1], X)) is easy to get because
h ∈ E (R×X,X). Thus we have that

‖f(t, u)− f(t, v)‖ ≤ (‖γ‖lς + 1) ‖u− v‖.

Now equation (4.3) takes the form

Dαu(t) = −%u(t)− %2

4

∫ t

−∞

(t− s)α−1

Γ(α)
u(s)ds+ f(t, u(t)), t ∈ R. (4.5)

From Example 4.17 in [32], we get that A generates an α-resolvent family such that its Laplace
transform satisfying

Ŝα(λ) =
λα

(λα + 2/%)2
=

λα−α/2

(λα + 2/%)
· λα−α/2

(λα + 2/%)
,

and

Sα(t) = (κ ∗ κ)(t), t > 0,

with κ(t) = t
α
2
−1Eα,α

2
(−%

2 t
α), and where Eα,α

2
(·) is the Mittag-Leffler function. The Mittag-

Leffler function [31] is defined as follows:

Eα,β(z) :=
∑ zk

Γ(αk + β)
=

1

2πi

∫
Ha

eη
ηα−β

ηα − z
ds, α, β > 0, z ∈ Z,

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the disc
|η| ≤ |z|1/α counterclockwise. Then, by Theorem 4.3, equation (4.5) has a unique mild solution
u(·) ∈ PBPω,k(R, X) provided ‖Sα‖ ≤ 1

(‖γ‖lς+1) .
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5 Conclusions

In this paper, we have introduced notions of the Stepanov type Bloch periodic function
and the Stepanov type pseudo Bloch periodic function, and shown some basic properties on
the completeness, the composition theorems and the convolution theorem of such functions. In
addition, we have applied some theorems including composition and convolution theorems to
investigate the existence and uniqueness of (pseudo) Bloch periodic mild solutions to a semi-
linear evolution equation and a fractional integro-differential equation with Stepanov type force
term. Recently, Salah, Miraoui and Khemili [26] revisited the pseudo S-asymptotically Bloch
periodic function [19] via the measure ergodic function. We can further discuss the Stepanov
type pseudo Bloch periodic function in Definition 3.2 via the measure ergodic function as does
in [26].
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