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ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES

M. BONANZINGA, N. CARLSON, D. GIACOPELLO, AND F. MAESANO

ABSTRACT. In this paper we study n-Hausdorff homogeneous and n-Urysohn homogeneous spaces. We
give some upper bounds for the cardinality of these kind of spaces and give examples. Additionally we
show that for every n > 2, there is no n-Hausdorff non Hausdorff 2-homogeneous space. Finally, for
any n-Hausdorff space, where n≥ 2, we show X can be embedded in a homogeneous space that is the
countable union of n-H-closed spaces.
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1. Introduction

Thoughout the paper, n and m will always denote integers. Given a topological space X , the Hausdorff
number H(X) (finite or infinite) of X is the least cardinal number κ such that for every subset A⊆ X
with |A| ≥ κ there exist open neighbourhoods Ua, a ∈ A, such that

⋂
a∈AUa = /0. A space X is said

n-Hausdorff, n ≥ 2, if H(X) ≤ n. Of course, with |X | ≥ 2, X is Hausdorff iff H(X) = 2 [5]; the
Urysohn number U(X) (finite or infinite) of X is the least cardinal number κ such that for every
subset A⊆ X with |A| ≥ κ there exist open neighbourhoods Ua, a ∈ A, such that

⋂
a∈AUa = /0. A space

X is said n-Urysohn, n≥ 2, if U(X)≤ n. Of course, with |X | ≥ 2, X is Urysohn iff U(X)= 2 (see [6, 7]).

A space X is homogeneous if for every x,y ∈ X there exists a homeomorphism h : X → X such that
h(x) = y (see [1, 10] for surveys on homogeneous spaces).

Definition 1.1. [14] A space X is 2-homogeneous if for every x1,x2,y1,y2 ∈ X there exists a homeo-
morphism h : X → X such that h(x1) = y1 and h(x2) = y2.

In general one can give the definition of n-homogeneous space for any n. Notice that 1-homogeneity
coincides with the definition of homogeneity. Of course, if a space is (n+1)-homogeneous, then it is
m-homogeneous for every m = 1,2, . . . ,n+1.

In this paper we prove that n-Hausdorff (n > 2) non Hausdorff spaces are not m-homogeneous
(m > 1) and give an example (Example 2.7) of a 3-Urysohn homogeneous non Urysohn space. Also
we show that even in the class of homogeneous spaces (n+1)-Hausdorff ((n+1)-Urysohn) spaces
need not be n-Hausdorff (resp., n-Urysohn), with n≥ 2. Also we present some upper bounds on the
cardinality of n-Hausdorff homogeneous and n-Urysohn homogeneous spaces (see also [5, 8] for other
bounds on the cardinality of n-Hausdorff and n-Urysohn spaces). In particular, we prove the analogous
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version of the following result for n-Urysohn spaces and a variation of the same result for n-Hausdorff
spaces.

Theorem 1.2. [15] Let X be a homogeneous Hausdorff space. Then |X | ≤ 2c(X)πχ(X).

In the last section of the paper, for any n≥ 2 and for any n-Hausdorff space X , we show that X can
be embedded in a homogeneous space that is the countable union of n-H-closed spaces. Using this
result we give an example of n-Hausdorff homogeneous space which is not n-Urysohn, for every n≥ 2.

For a subset A of a topological space X we will denote by [A]<λ ([A]λ ) the family of all subsets of A
of cardinality < λ (= λ ).

We consider cardinal invariants of topological spaces (see [16, 20]) and all cardinal functions are
multiplied by ω . In particular, given a topological space X , we will denote with d(X) its density,
χ(X) its character, πχ(X) its π-character, πw(X) its π-weight, c(X) its cellularity and e(X) its extent.
Recall also that, for any space X , d(X)πχ(X) = πw(X).

Recall that a family U of open sets of a space X is point-finite if for every x ∈ X , the set {U ∈U :
x ∈U} is finite [16]. Tkachuck [26] defined p(X) = sup{|U | : U is a point-finite family in X}. In
[5], Bonanzinga introduced the following definition:

Definition 1.3. [5] A family U of open sets of a space X is point-(≤ n) finite, where n ∈ N, if for
every x ∈ X , the set {U ∈U : x ∈U} has cardinality ≤ n. For each n ∈ N, put

pn(X) = sup{|U | : U is a point-(≤ n) finite family in X}.

Proposition 1.4. [5] Let X be a topological space. Then pn(X) = c(X) for every n ∈ N.

2. Examples and positive results

In [5], examples of (n+ 1)-Hausdorff spaces which are not n-Hausdorff, for every n ≥ 2, and an
example of a space X such that H(X) = ω and H(X) ̸= n, for each n ≥ 2, are given. Also, in [6]
examples of Hausdorff (n+1)-Urysohn spaces which are not n-Urysohn were given for every n≥ 2.

Recall that a hyperconnected (or nowhere Hausdorff) space is a space such that the intersection of
any two nonempty open sets is nonempty; a space is nowhere Urysohn if there is no pair of nonempty
open sets with disjoint closures. Such spaces are also called “anti-Urysohn” spaces (see [23]).

Proposition 2.1. A non Hausdorff 2-homogeneous space is hyperconnected.

Proof. Let X be a non Hausdorff 2-homogeneous space. Suppose that there are two nonempty open
subset V1 and V2 of X such that V1 ∩V2 = /0. Fix two points y1 ∈ V1 and y2 ∈ V2. Since X is not
Hausdorff there exist two points x1,x2 ∈ X such that for every open neighbourhood U1 of x1 and U2
of x2, one has that U1 ∩U2 ̸= /0. Define the homeomorphism h : X → X such that h(x1) = y1 and
h(x2) = y2. Of course h←(V1)∩h←(V2) ̸= /0. Pick a point x ∈ h←(V1)∩h←(V2), then h(x) ∈V1∩V2, a
contradiction. □

Proposition 2.2. A non Urysohn 2-homogeneous space is nowhere Urysohn.

Proof. The proof is similar to the one of Proposition 2.1. One just needs to consider that if h : X → X
is a homeomorphism, then h(A) = h(A) for each A⊆ X . □
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The following proposition follows directly from the definition.

Proposition 2.3. A space X is hyperconnected if and only if for every finite A ⊆ X , |A| = n, n ≥ 2,
and for every choice of neighbourhoods Ua, a ∈ A,

⋂
a∈AUa ̸= /0.

By Proposition 2.3 one can easily show the following.

Proposition 2.4. Let n≥ 2. Any n-Hausdorff space is not hyperconnected.

Theorem 2.5. There is no n-Hausdorff non Hausdorff m-homogeneous space for every n > 2 and
every m > 1.

Proof. It follows directly from Propositions 2.4 and 2.1. □

The following example shows that there exist 3-Hausdorff homogeneous spaces.

Example 2.6. A countable 3-Hausdorff homogeneous space.

Consider the space X of non-negative integers with the topology generated by the base {{n,n+1} :
n is even}. X is a 3-Hausdorff homogeneous space. △

Note that the space in the previous example is a homogeneous space which is not 2-homogeneous.

The analogues of Proposition 2.4 and Theorem 2.5 for n-Urysohn spaces do not hold, as the
following example shows.

Example 2.7. A 3-Urysohn space that is n-homogeneous, for all n≥ 1, that is not Urysohn.

Consider the well known “irrational slope space”, also called Bing’s Tripod space (see [25, Example
75]). This space is n-homogeneous, n≥ 1 [2], and 3-Urysohn. △

Recall that for every n ≥ 2 there exist examples of (n+ 1)-Hausdorff spaces which are not n-
Hausdorff [5], and examples of (n+1)-Urysohn spaces which are not n-Urysohn [7]. Then it is natural
to pose the following Questions.

Question 2.8. Is every (n+1)-Hausdorff homogeneous space n-Hausdorff, for each n≥ 2?

Question 2.9. Is every (n+1)-Urysohn homogeneous space n-Urysohn, for each n≥ 2?

Examples 2.6 and 2.7 answer negatively Questions 2.8 and 2.9, respectively, for n = 2. Note that the
space in Example 2.6 is 3-Urysohn, and the construction can be generalized to obtain (n+1)-Urysohn
non n-Hausdorff spaces for each n≥ 2.

In [5], Bonanzinga gives an example of an ω-Hausdorff space which is not n-Hausdorff for every
n≥ 2. Now we give a countable ω-Hausdorff homogeneous space which is not n-Hausdorff for every
n≥ 2.

Example 2.10. There is a countable T1 hyperconnected (hence not n-Hausdorff for every n≥ 2) space,
which is ω-Hausdorff and homogeneous.
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In [9], the following space is constructed. Let X = Z×Z and B = {U j,k,Vj,k : j,k ∈ Z} is the
subbase for the topology, where

U j,k = {(x,y) ∈ Z2 : x > j or y > k}
Vj,k = {(x,y) ∈ Z2 : x < j or y < k}.

This is a T1 hyperconnected, hence not n-Hausdorff space for every n ≥ 2 which is ω-Hausdorff,
homogeneous, first countable, Lindelof. △

In [7], Bonanzinga, Cammaroto and Matveev constructed a Hausdorff space with extent equal to κ ,
κ ≥ ω , which is not κ-Urysohn (we give this example for sake of completeness, see Example 2.12
below). The construction of such a space may be considered a modification of the irrational slope space
[25, Example 75]. Since the irrational slope space is homogeneous, it is natural to ask the following.

Question 2.11. Is the space in Example 2.12 homogeneous?

Example 2.12. For every infinite cardinal κ there exists a Hausdorff space with extent equal to κ

which is not κ-Urysohn.

Let D̃ = {dα,n : α < κ,n ∈ ω} be a discrete space of cardinality κ , and D = D̃∪{p} be the one
point compactification of D̃. Put E = D∪{d∗} where d∗ is isolated in E and is not in D. Consider
κ+ with the order topology, D×κ+ with the Tychonoff product topology, and denote W = {p}×κ+;
then W is a subspace of D×κ+ homeomorphic to κ+. Also, for α < κ+ denote Wα = {p}× [α,κ+).
For α < κ , β < κ+, denote Dα = {dα,n : n ∈ ω}, and Tα,β = Dα × [β ,κ+) ⊂ D×κ+. Let p⃗ be the
point in Eκ+

with all coordinates equal to p. Let S = {x ∈ Eκ+
: |{α < κ+ : x(α) ̸= p}| ≤ κ} be

the Σk-product in Eκ+
with center at p⃗. It can be proved that there is a homeomorphic embedding

f : D×κ+→ Eκ+
such that

(1) f (D×κ+)∩S = f (W ).
(2) f (W ) is closed in S and homeomorphic to κ+ with the order topology.
(3) for every distinct α,γ < κ , the sets f (Tα,0) and f (Tγ,0) can be separated by open neighbour-

hoods in Eκ+
.

(4) f (Tα,β )∩S = f (Wβ ).

Finally, let L = {lα : α < κ} (where all points lα are distinct) be a set disjoint from Eκ+
and topologize

X = S∪L as follows: S, with the topology inherited from Eκ+
is open in X ; a basic neighbourhood

of lα takes the form {lα}∪ (U ∩S) where U is arbitrary neighbourhood (in Eκ+
) of f (Tα,β ) for some

β < κ+. We recall that L is closed discrete in this space, so e(X)≥ κ , and for every family {Ul : l ∈ L}
of neighbourhoods of points l ∈ L in X ,

⋂
{Ul : l ∈ L} ̸= /0, so it is not κ-Urysohn. △

3. On the cardinality of n-Hausdorff homogeneous and n-Urysohn homogeneous spaces.

In [19], Hajnal and Juhász proved that, for every Hausdorff space X , |X | ≤ 2c(X)χ(X). In [5] Bonanzinga
proved that |X | ≤ 22c(X)χ(X)

for every 3-Hausdorff space X and asked if |X | ≤ 2c(X)χ(X) holds for every
n-Hausdorff space X , with n≥ 2. In [18] Gotchev, using the cardinal function called “non Hausdorff
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ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES 5

number” introduced independently from [5], gave a positive answer to the previous question.

In [15], Carlson and Ridderbos proved the following result.

Theorem 3.1. [15] Let X be a homogeneous Hausdorff space. Then |X | ≤ 2c(X)πχ(X).

In fact, in [15] it is proved that the previous theorem holds for power homogeneous Hausdorff spaces.
Recall that a topological space X is power homogeneous if X µ is homogeneous for some cardinal
number µ . Clearly, if a space is homogeneous it is power homogeneous.

Then, it is natural to pose the following question.

Question 3.2. Is |X | ≤ 2c(X)πχ(X) true for every homogeneous space X such that H(X) is finite?

In the following we give partial answers to the previous question.

Given a set A and a cardinal κ , [X ]κ denotes the set of all subsets of A whose cardinality is κ .

Theorem 3.3. [17] Let κ be a cardinal number and f : [(22κ

)+]3→ κ be a function. Then there exists
a subset H ∈ [(22κ

)+]κ
+

such that f ↾ [H]3 is constant.

Theorem 3.4. Let X be a 3-Hausdorff homogeneous space. Then

|X | ≤ 22c(X)πχ(X)

Proof. Let c(X)πχ(X) = κ . Then, by Proposition 1.4, we have p2(X)≤ κ . Suppose that |X | ≥ (22κ

)+.
For every triple x1,x2,x3 ∈ X of distinct points select neighbouroods Ui(x1,x2,x3) of xi for i = 1,2,3
such that⋂3

i=1Ui(x1,x2,x3) = /0. Fix a point p ∈ X and a local π-base B for p with |B|= κ . Since the space is
homogeneous, there exists a family {hx}x∈X of homeomorphisms hx : X → X such that hx(p) = x for
every x ∈ X . Fix distinct points x1,x2,x3 ∈ X and observe that the set

⋂3
i=1 h←xi

(Ui(x1,x2,x3)) is an open
neighbourhood of p; since B is a π-base, there is a non empty B(x1,x2,x3) ∈B such that B(x1,x2,x3)
is contained in it. Consider now the function f : [X ]3→B defined by f ({x1,x2,x3}) = B(x1,x2,x3).
Then by Theorem 3.3 there is Z ∈ [X ]κ

+
and B ∈B such that f ↾ [Z]3 = {B}.

Now, the family {hz(B) : z∈Z} is point-(≤ 2) finite in X . To see this, suppose by way of contradiction
that there exists x0 ∈ X such that |{hz(B) : x0 ∈ hz(B)}| = 3. So there are z1,z2,z3 ∈ X such that

x0 ∈ hzi(B), i= 1,2,3. This implies x0 ∈ hzi(B)⊆ hzi(
3⋂

i=1
h←zi

(Ui(z1,z2,z3)))⊆ hzi(h
←
zi
(Ui(z1,z2,z3)))=

Ui(z1,z2,z3). Then, x0 ∈
3⋂

i=1
Ui(z1,z2,z3) ̸= /0, a contradiction.

Furthermore, {hz(B) : z ∈ Z} has cardinality exactly κ+. Otherwise there exists z0 ∈ Z s.t. |{z ∈
Z : hz(B) = hz0(B)}| = κ+. As before, from hz0(B) ⊆ Ui(z1,z2,z3) for every triple of elements in
{z ∈ Z : hz(B) = hz0(B)} we obtain a contradiction.

Thus p2(X) = κ+, a contradiction with p2(X)≤ κ . This concludes the proof. □

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES 6

We remark that Gotchev showed in [18] that if n ≥ 2 and X is an n-Hausdorff space, then |X | ≤
2c(X)χ(X).

Recall the following result (for further details, refer to [21]).

Theorem 3.5. Let κ be a cardinal number, n≥ 3 and f : [(22.
..

2κ

)+]n→ κ be a function (where the

power is made (n−1)-many times). Then there exists a subset H ∈ [(22.
..

2κ

)+]κ
+

such that f ↾ [H]n is
constant.

Theorem 3.6. Let X be an n-Hausdorff homogeneous space, with n≥ 2. Then

|X | ≤ 22.
..

2c(X)πχ(X)

where the power is made (n−1)-many times.

Proof. Similar to the proof of the previous theorem using Theorem 3.5 instead of Theorem 3.3. □

Next Theorem 3.12 shows that Question 3.2 has a positive answer if H(X) is replaced by U(X).

In [13], Carlson, Porter and Ridderbos proved the following result.

Theorem 3.7. [13] If X is an n-Hausdorff homogeneous space, with n≥ 2, then |X | ≤ d(X)πχ(X).

Also recall that a space is quasiregular if every nonempty open set contains a nonempty regular
closed set.

Theorem 3.8. If X is an n-Hausdorff quasiregular homogeneous space with n ≥ 2, then |X | ≤
2c(X)πχ(X).

Proof. It was shown in [11] that if X is quasiregular then d(X)≤ πχ(X)c(X). By Theorem 3.7 we have

|X | ≤ d(X)πχ(X) ≤
(

πχ(X)c(X)
)πχ(X)

= 2c(X)πχ(X). □

Definition 3.9. [28] Let X be a space. For A⊆ X , the θ -closure of A is defined by
clθ (A) = {x ∈ X : V ∩A ̸= /0 for every open set V containing x}.

A set A⊆ X is θ -dense if clθ (A) = X . The θ -density of X , dθ (X), is defined as the least cardinality of
a θ -dense subset of X .

Theorem 3.10. [13] Let X be an n-Urysohn homogeneous space, where n≥ 2. Then |X | ≤ dθ (X)πχ(X).

Theorem 3.11. [11] Let X be a space. Then dθ (X)≤ πχ(X)c(X).

By Theorems 3.10 and 3.11, we obtain the following result.

Theorem 3.12. Let X be an n-Urysohn homogeneous space, where n≥ 2. Then |X | ≤ 2c(X)πχ(X).

Proof. As X is n-Urysohn and homogeneous, we have |X | ≤ dθ (X)πχ(X) by Theorem 3.10. Thus, by

Theorem 3.11, we have |X | ≤ dθ (X)πχ(X) ≤
(

πχ(X)c(X)
)πχ(X)

= 2c(X)πχ(X). □
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ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES 7

4. An embedding into a homogeneous space

In [14] Carlson, Porter and Ridderbos proved the following result.

Theorem 4.1. [14] Let X be a Hausdorff space. Then X can be embedded in a homogeneous space
that is the countable union of H-closed spaces.

In Theorem 4.12 below we show that every n-Hausdorff space, n ≥ 2 can be embedded in a
homogeneous space that is the countable union of n-H-closed spaces.

Definition 4.2. [3] Let n ≥ 2. An n-Hausdorff space X is called n-H-closed if X is closed in every
n-Hausdorff space Y in which X is embedded.

Given a space X and an ultrafilter U on it, we put aU =
⋂
{U : U ∈U }. For an n-Hausdorff space

X , with n≥ 2, an open ultrafilter U on X is said to be full if |aU | = n−1.

Theorem 4.3. [3] Let n≥ 2, and X be a space. The following are equivalent:
(a) X is n-Hausdorff;
(b) if U is an open ultrafilter of X , then |aU | ≤ n−1.

Theorem 4.4. [3] Let n≥ 2, and X be an n-Hausdorff space. The following are equivalent:
(a) X is n-H-closed;
(b) every open ultrafilter on X is full.

Recall the following construction, made in [3]. Let n ≥ 2, X be an n-Hausdorff space and U =
{U : U is an open ultrafilter such that |aU |< n−1}. We index U by U= {Uα : α ∈ |U|}. For each
α ∈ |U|, let kα = (n−1)−|aUα | and {pαi : 1 ≤ i ≤ kα} be a set of distinct points disjoint from X .
Let Y = X ∪{pαi : 1≤ i≤ kα,α ∈ |U|}. A set V is defined to be open in Y if V ∩X is open in X and
if pαi ∈V for 1≤ i≤ kα , V ∩X ∈Uα . The space Y is an n-Hausdorff space.

In the following results we use the notation of the previous contruction.

Proposition 4.5. [3] For every α ∈ |U|,

Uα = {V ∩X : pαi ∈V ∈ τ(Y ) for some 1≤ i≤ kα},

where τ(Y ) is the topology on Y .

By the previous proposition the space Y has the property that every open ultrafilter on Y is full.
Indeed the points pαi, 1 ≤ i ≤ kα , added to the space X , are in the closure of each element of Uα .
Therefore the space Y is n-H-closed.

Definition 4.6. [3] Let n≥ 2, S and T be n-H-closed extensions of an n-Hausdorff space X . We say S
is projectively larger than T if there is a continuous surjection f : S→ T such that f (x) = x for x ∈ X .

This projectively larger function may not be unique [3].

Theorem 4.7. [3] Let n ≥ 2, X be an n-Hausdorff space and Y be the n-H-closed extension of X
constructed above. If Z is an n-H-closed extension of X , there is a continuous surjection f : Y → Z
such that f (x) = x for all x ∈ X .
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ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES 8

Theorem 4.7 shows that the n-H-closed extension Y of X is projectively larger than every n-H-closed
extension of X. Moreover, the space Y has an interesting unique property as it is noted in the next
result.

Theorem 4.8. [3] Let n ≥ 2, X be an n-Hausdorff space and Y be the n-H-closed extension of X
described above. Let f : Y →Y be a continuous surjection such that f (x) = x for all x ∈ X . Then f is a
homeomorphism.

Remark 4.9. In the class of Hausdorff spaces the function in Definition 4.6 is unique [3]. Sometimes
this is a problem in non-Hausdorff spaces. The n-H-closed space Y constructed before for an n-
Hausdorff space X is a projective maximum, that is Y is projectively larger than every n-H-closed
extention and given a continuous surjection f : Y → Y such that f (x) = x for every x ∈ X , then f is a
homeomorphism. For the future we denote this Y with n-kX and we call it the n-Katětov extension of
X .

Uspenskiǐ showed in [27] that for any space X there exists a cardinal κ and a nonempty subspace
Z ⊆ Xκ such that X × Z is homogeneous. The space Z is found by selecting a set A such that
κ = |A| ≥ |X | and letting Z = { f ∈ AX : for each x ∈ X , | f←(x)| = κ}, where AX is the space of all
functions from A to X . Both Z and X×Z are homogeneous and homeomorphic. For our construction
we write H(X) = X×Z and consider X as a subspace of H(X) [14].

Lemma 4.10. [14] Let X be a space and h : X → X be a homeomorphism and let idZ be the identity
function on Z . Then the function h× idZ : H(X)→H(X) is also a homeomorphism that extends h.

Lemma 4.11. Let n≥ 2, X be an n-Hausdorff space and h : X → X be a homeomorphism. Then there
is a homeomorphism n-kh : n-kX → n-kX that extends h.

Proof. Let p ∈ n-kX \X , then p = pαi for some α ∈ |U| and for some i = 1, ...,kα . The set V =
{h(U) : U ∈Uα} is an open ultrafilter on X and since |aUα | = |aV |, there exists β ∈ |U| such that
V = Uβ . Define n-kh(pαi) = pβ i for every i = 1, ...,kα = kβ . For x ∈ X , define n-kh(x) = h(x). The
function n-kh is clearly a homeomorphism that extends h. □

Theorem 4.12. Let n≥ 2, X be an n-Hausdorff space. Then X can be embedded in a homogeneous
space that is the countable union of n-H-closed spaces.

Proof. Let H1 = H(n-kX). If Hm is defined, let’s define Hm+1 = H(n-kHm) and H =
⋃

m∈N Hm. A
subset U ⊆ H is open in H if U ∩Hm ∈ τ(Hm) for every m ∈ N. The space H is the countable union
of n-H-closed spaces. We have to prove that H is homogeneous. Let p,q ∈ H. Since Hm ⊆ Hm+1,
there exists m ∈ N such that p,q ∈ Hm. Each Hm is homogeneous, then there exist a homeomorphism
h : Hm→Hm such that h(p) = q. By Lemma 4.11 there exists a homeomorphism n-kh : n-kHm→ n-kHm
that extends h. By Lemma 4.10 the function n-kh× idZ : Hm+1→ Hm+1 is a homeomorphism. Put
n-kh = h1. By induction h can be extended to hk : Hm+k → Hm+k for every k ∈ N. The function
g =

⋃
k∈N hk : H→ H extends h and it is a homeomorphism on H. Then H is homogeneous. □

Example 4.13. An example of an n-Hausdorff, homogeneous, not n-Urysohn space which is the
countable union of n-H-closed spaces, for every n≥ 2.
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Let’s take an n-Hausdorff, not n-Urysohn space X (for example see [5, Example 4]), n≥ 2. Then,
by Theorem 4.12, X can be embedded in an n-Hausdorff, homogeneous space Y which is the countable
union of n-H-closed spaces. Furthermore Y is not n-Urysohn, since X is a non-n-Urysohn subset of it.
△
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