13 14 15

16

17

25

27

30

31

34

41

42

https://doi.org/rmj.YEAR..PAGE

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Vol., No., YEAR

ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES

M. BONANZINGA, N. CARLSON, D. GIACOPELLO, AND F. MAESANO

ABSTRACT. In this paper we study n-Hausdorff homogeneous and n-Urysohn homogeneous spaces. We give some upper bounds for the cardinality of these kind of spaces and give examples. Additionally we show that for every n > 2, there is no n-Hausdorff non Hausdorff 2-homogeneous space. Finally, for any n-Hausdorff space, where $n \ge 2$, we show X can be embedded in a homogeneous space that is the countable union of *n*-H-closed spaces.

Keywords: *n*-Hausdorff spaces, *n*-Urysohn spaces, homogeneous extensions, *n*-Katetov extensions. AMS Subject Classification: 54A25, 54D10, 54D20, 54D35, 54D80.

1. Introduction

Thoughout the paper, n and m will always denote integers. Given a topological space X, the Hausdorff number H(X) (finite or infinite) of X is the least cardinal number κ such that for every subset $A \subseteq X$ with $|A| \ge \kappa$ there exist open neighbourhoods U_a , $a \in A$, such that $\bigcap_{a \in A} U_a = \emptyset$. A space X is said *n-Hausdorff*, $n \ge 2$, if $H(X) \le n$. Of course, with $|X| \ge 2$, X is Hausdorff iff H(X) = 2 [5]; the Urysohn number U(X) (finite or infinite) of X is the least cardinal number κ such that for every subset $A \subseteq X$ with $|A| \ge \kappa$ there exist open neighbourhoods U_a , $a \in A$, such that $\bigcap_{a \in A} \overline{U_a} = \emptyset$. A space *X* is said *n*-*Urysohn*, $n \ge 2$, if $U(X) \le n$. Of course, with $|X| \ge 2$, *X* is Urysohn iff U(X) = 2 (see [6, 7]).

A space X is homogeneous if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y (see [1, 10] for surveys on homogeneous spaces).

Definition 1.1. [14] A space X is 2-homogeneous if for every $x_1, x_2, y_1, y_2 \in X$ there exists a homeomorphism $h: X \to X$ such that $h(x_1) = y_1$ and $h(x_2) = y_2$.

In general one can give the definition of n-homogeneous space for any n. Notice that 1-homogeneity coincides with the definition of homogeneity. Of course, if a space is (n+1)-homogeneous, then it is *m*-homogeneous for every m = 1, 2, ..., n + 1.

In this paper we prove that n-Hausdorff (n > 2) non Hausdorff spaces are not m-homogeneous (m > 1) and give an example (Example 2.7) of a 3-Urysohn homogeneous non Urysohn space. Also we show that even in the class of homogeneous spaces (n+1)-Hausdorff ((n+1)-Urysohn) spaces need not be n-Hausdorff (resp., n-Urysohn), with $n \ge 2$. Also we present some upper bounds on the cardinality of n-Hausdorff homogeneous and n-Urysohn homogeneous spaces (see also [5, 8] for other bounds on the cardinality of n-Hausdorff and n-Urysohn spaces). In particular, we prove the analogous

 $^{2020\ \}textit{Mathematics Subject Classification.}\ 54A25, 54D10, 54D20, 54D35, 54D80.$

Key words and phrases. n-Hausdorff spaces, n-Urysohn spaces, homogeneous extensions, n-Katetov extensions.

version of the following result for n-Urysohn spaces and a variation of the same result for n-Hausdorff spaces.

Theorem 1.2. [15] Let X be a homogeneous Hausdorff space. Then $|X| \leq 2^{c(X)\pi\chi(X)}$.

In the last section of the paper, for any $n \ge 2$ and for any n-Hausdorff space X, we show that X can be embedded in a homogeneous space that is the countable union of n-H-closed spaces. Using this result we give an example of n-Hausdorff homogeneous space which is not n-Urysohn, for every $n \ge 2$. For a subset A of a topological space X we will denote by $[A]^{<\lambda}$ ($[A]^{\lambda}$) the family of all subsets of A of cardinality $<\lambda(=\lambda)$.

We consider cardinal invariants of topological spaces (see [16, 20]) and all cardinal functions are multiplied by ω . In particular, given a topological space X, we will denote with d(X) its density, $\chi(X)$ its character, $\chi(X)$ its π -character, $\chi(X)$ its π -weight, $\chi(X)$ its cellularity and $\chi(X)$ its extent. Recall also that, for any space $\chi(X)$ its $\chi(X)$ $\chi(X)$

Recall that a family $\mathscr U$ of open sets of a space X is *point-finite* if for every $x \in X$, the set $\{U \in \mathscr U : x \in U\}$ is finite [16]. Tkachuck [26] defined $p(X) = \sup\{|\mathscr U| : \mathscr U \text{ is a point-finite family in } X\}$. In [5], Bonanzinga introduced the following definition:

Definition 1.3. [5] A family \mathscr{U} of open sets of a space X is *point-*($\leq n$) *finite*, where $n \in \mathbb{N}$, if for every $x \in X$, the set $\{U \in \mathscr{U} : x \in U\}$ has cardinality $\leq n$. For each $n \in \mathbb{N}$, put

$$p_n(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a point-}(\leq n) \text{ finite family in } X\}.$$

Proposition 1.4. [5] Let X be a topological space. Then $p_n(X) = c(X)$ for every $n \in \mathbb{N}$.

20

22

27 28

31

2. Examples and positive results

In [5], examples of (n+1)-Hausdorff spaces which are not n-Hausdorff, for every $n \ge 2$, and an example of a space X such that $H(X) = \omega$ and $H(X) \ne n$, for each $n \ge 2$, are given. Also, in [6] examples of Hausdorff (n+1)-Urysohn spaces which are not n-Urysohn were given for every $n \ge 2$.

Recall that a hyperconnected (or nowhere Hausdorff) space is a space such that the intersection of any two nonempty open sets is nonempty; a space is nowhere Urysohn if there is no pair of nonempty open sets with disjoint closures. Such spaces are also called "anti-Urysohn" spaces (see [23]).

Proposition 2.1. A non Hausdorff 2-homogeneous space is hyperconnected.

33 *Proof.* Let X be a non Hausdorff 2-homogeneous space. Suppose that there are two nonempty open 34 subset V_1 and V_2 of X such that $V_1 \cap V_2 = \emptyset$. Fix two points $y_1 \in V_1$ and $y_2 \in V_2$. Since X is not 35 Hausdorff there exist two points $x_1, x_2 \in X$ such that for every open neighbourhood U_1 of x_1 and U_2 36 of x_2 , one has that $U_1 \cap U_2 \neq \emptyset$. Define the homeomorphism $h: X \to X$ such that $h(x_1) = y_1$ and 37 $h(x_2) = y_2$. Of course $h^{\leftarrow}(V_1) \cap h^{\leftarrow}(V_2) \neq \emptyset$. Pick a point $x \in h^{\leftarrow}(V_1) \cap h^{\leftarrow}(V_2)$, then $h(x) \in V_1 \cap V_2$, a 38 contradiction.

Proposition 2.2. A non Urysohn 2-homogeneous space is nowhere Urysohn.

Proof. The proof is similar to the one of Proposition 2.1. One just needs to consider that if $h: X \to X$ is a homeomorphism, then $h(\overline{A}) = \overline{h(A)}$ for each $A \subseteq X$.

- 1 The following proposition follows directly from the definition.
- **Proposition 2.3.** A space *X* is hyperconnected if and only if for every finite $A \subseteq X$, |A| = n, $n \ge 2$, and for every choice of neighbourhoods U_a , $a \in A$, $\bigcap_{a \in A} U_a \ne \emptyset$.
- By Proposition 2.3 one can easily show the following.
- Proposition 2.4. Let $n \ge 2$. Any n-Hausdorff space is not hyperconnected.
- **Theorem 2.5.** There is no *n*-Hausdorff non Hausdorff *m*-homogeneous space for every n > 2 and every m > 1.
- $\frac{10}{11}$ *Proof.* It follows directly from Propositions 2.4 and 2.1.
- The following example shows that there exist 3-Hausdorff homogeneous spaces.
- Example 2.6. A countable 3-Hausdorff homogeneous space.

17

19

26

- Consider the space X of non-negative integers with the topology generated by the base $\{\{n, n+1\}: n \text{ is even}\}$. X is a 3-Hausdorff homogeneous space.
- Note that the space in the previous example is a homogeneous space which is not 2-homogeneous.
- The analogues of Proposition 2.4 and Theorem 2.5 for n-Urysohn spaces do not hold, as the following example shows.
- Example 2.7. A 3-Urysohn space that is *n*-homogeneous, for all $n \ge 1$, that is not Urysohn.
- Consider the well known "irrational slope space", also called Bing's Tripod space (see [25, Example 75]). This space is *n*-homogeneous, $n \ge 1$ [2], and 3-Urysohn.
- Recall that for every $n \ge 2$ there exist examples of (n+1)-Hausdorff spaces which are not nHausdorff [5], and examples of (n+1)-Urysohn spaces which are not n-Urysohn [7]. Then it is natural to pose the following Questions.
- $\frac{30}{31}$ Question 2.8. Is every (n+1)-Hausdorff homogeneous space n-Hausdorff, for each $n \ge 2$?
- Question 2.9. Is every (n+1)-Urysohn homogeneous space n-Urysohn, for each $n \ge 2$?
- Examples 2.6 and 2.7 answer negatively Questions 2.8 and 2.9, respectively, for n = 2. Note that the space in Example 2.6 is 3-Urysohn, and the construction can be generalized to obtain (n+1)-Urysohn non n-Hausdorff spaces for each $n \ge 2$.
- In [5], Bonanzinga gives an example of an ω -Hausdorff space which is not n-Hausdorff for every $n \ge 2$. Now we give a countable ω -Hausdorff homogeneous space which is not n-Hausdorff for every $n \ge 2$.
- Example 2.10. There is a countable T_1 hyperconnected (hence not n-Hausdorff for every $n \ge 2$) space, which is ω -Hausdorff and homogeneous.

In [9], the following space is constructed. Let $X = \mathbb{Z} \times \mathbb{Z}$ and $\mathscr{B} = \{U_{j,k}, V_{j,k} : j,k \in \mathbb{Z}\}$ is the subbase for the topology, where

```
U_{j,k} = \{(x,y) \in \mathbb{Z}^2 : x > j \text{ or } y > k\}
V_{j,k} = \{(x,y) \in \mathbb{Z}^2 : x < j \text{ or } y < k\}.
```

This is a T_1 hyperconnected, hence not n-Hausdorff space for every $n \ge 2$ which is ω-Hausdorff, homogeneous, first countable, Lindelof.

In [7], Bonanzinga, Cammaroto and Matveev constructed a Hausdorff space with extent equal to κ , $\kappa \ge \omega$, which is not κ -Urysohn (we give this example for sake of completeness, see Example 2.12 below). The construction of such a space may be considered a modification of the irrational slope space [25, Example 75]. Since the irrational slope space is homogeneous, it is natural to ask the following.

Question 2.11. Is the space in Example 2.12 homogeneous?

Example 2.12. For every infinite cardinal κ there exists a Hausdorff space with extent equal to κ which is not κ -Urysohn.

Let $\tilde{D}=\{d_{\alpha,n}:\alpha<\kappa,n\in\omega\}$ be a discrete space of cardinality κ , and $D=\tilde{D}\cup\{p\}$ be the one point compactification of \tilde{D} . Put $E=D\cup\{d^*\}$ where d^* is isolated in E and is not in D. Consider κ^+ with the order topology, $D\times\kappa^+$ with the Tychonoff product topology, and denote $W=\{p\}\times\kappa^+$; then W is a subspace of $D\times\kappa^+$ homeomorphic to κ^+ . Also, for $\alpha<\kappa^+$ denote $W_\alpha=\{p\}\times[\alpha,\kappa^+)$. For $\alpha<\kappa$, $\beta<\kappa^+$, denote $D_\alpha=\{d_{\alpha,n}:n\in\omega\}$, and $T_{\alpha,\beta}=D_\alpha\times[\beta,\kappa^+)\subset D\times\kappa^+$. Let \vec{p} be the point in E^{κ^+} with all coordinates equal to p. Let $S=\{x\in E^{\kappa^+}:|\{\alpha<\kappa^+:x(\alpha)\neq p\}|\leq\kappa\}$ be the Σ_k -product in E^{κ^+} with center at \vec{p} . It can be proved that there is a homeomorphic embedding $f:D\times\kappa^+\to E^{\kappa^+}$ such that

 $(1) \ f(D \times \kappa^+) \cap S = f(W).$

17

29

37 38

- (2) f(W) is closed in S and homeomorphic to κ^+ with the order topology.
- (3) for every distinct $\alpha, \gamma < \kappa$, the sets $f(T_{\alpha,0})$ and $f(T_{\gamma,0})$ can be separated by open neighbourhoods in E^{κ^+} .
- (4) $\overline{f(T_{\alpha,\beta})} \cap S = f(W_{\beta}).$

Finally, let $L = \{l_{\alpha} : \alpha < \kappa\}$ (where all points l_{α} are distinct) be a set disjoint from E^{κ^+} and topologize $X = S \cup L$ as follows: S, with the topology inherited from E^{κ^+} is open in X; a basic neighbourhood of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and topologize I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} are distinct of I_{α} are distinct of I_{α} and I_{α} ar

3. On the cardinality of n-Hausdorff homogeneous and n-Urysohn homogeneous spaces.

In [19], Hajnal and Juhász proved that, for every Hausdorff space X, $|X| \le 2^{c(X)\chi(X)}$. In [5] Bonanzinga proved that $|X| \le 2^{2^{c(X)\chi(X)}}$ for every 3-Hausdorff space X and asked if $|X| \le 2^{c(X)\chi(X)}$ holds for every n-Hausdorff space X, with $n \ge 2$. In [18] Gotchev, using the cardinal function called "non Hausdorff

number" introduced independently from [5], gave a positive answer to the previous question.

In [15], Carlson and Ridderbos proved the following result.

Theorem 3.1. [15] Let X be a homogeneous Hausdorff space. Then $|X| \leq 2^{c(X)\pi\chi(X)}$.

In fact, in [15] it is proved that the previous theorem holds for power homogeneous Hausdorff spaces. Recall that a topological space X is power homogeneous if X^{μ} is homogeneous for some cardinal number μ . Clearly, if a space is homogeneous it is power homogeneous.

Then, it is natural to pose the following question.

10

15

16 17

21

22

Question 3.2. Is $|X| \le 2^{c(X)\pi\chi(X)}$ true for every homogeneous space X such that H(X) is finite?

In the following we give partial answers to the previous question.

Given a set A and a cardinal κ , $[X]^{\kappa}$ denotes the set of all subsets of A whose cardinality is κ .

Theorem 3.3. [17] Let κ be a cardinal number and $f:[(2^{2^{\kappa}})^+]^3 \to \kappa$ be a function. Then there exists a subset $H \in [(2^{2^{\kappa}})^+]^{\kappa^+}$ such that $f \upharpoonright [H]^3$ is constant.

Theorem 3.4. Let *X* be a 3-Hausdorff homogeneous space. Then

$$|X| \le 2^{2^{c(X)\pi\chi(X)}}$$

Proof. Let $c(X)\pi\chi(X) = \kappa$. Then, by Proposition 1.4, we have $p_2(X) \le \kappa$. Suppose that $|X| \ge (2^{2^{\kappa}})^+$. For every triple $x_1, x_2, x_3 \in X$ of distinct points select neighbouroods $U_i(x_1, x_2, x_3)$ of x_i for i = 1, 2, 3 such that

 $\bigcap_{i=1}^{3} U_i(x_1, x_2, x_3) = \emptyset$. Fix a point $p \in X$ and a local π -base \mathscr{B} for p with $|\mathscr{B}| = \kappa$. Since the space is homogeneous, there exists a family $\{h_x\}_{x \in X}$ of homogeneous $h_x : X \to X$ such that $h_x(p) = x$ for every $x \in X$. Fix distinct points $x_1, x_2, x_3 \in X$ and observe that the set $\bigcap_{i=1}^{3} h_{x_i}^{\leftarrow}(U_i(x_1, x_2, x_3))$ is an open neighbourhood of p; since \mathscr{B} is a π -base, there is a non empty $B(x_1, x_2, x_3) \in \mathscr{B}$ such that $B(x_1, x_2, x_3)$ is contained in it. Consider now the function $f: [X]^3 \to \mathscr{B}$ defined by $f(\{x_1, x_2, x_3\}) = B(x_1, x_2, x_3)$. Then by Theorem 3.3 there is $Z \in [X]^{\kappa^+}$ and $B \in \mathscr{B}$ such that $f \upharpoonright [Z]^3 = \{B\}$.

Now, the family $\{h_z(B): z \in Z\}$ is point- (≤ 2) finite in X. To see this, suppose by way of contradiction that there exists $x_0 \in X$ such that $|\{h_z(B): x_0 \in h_z(B)\}| = 3$. So there are $z_1, z_2, z_3 \in X$ such that

$$x_0 \in h_{z_i}(B), \ i = 1, 2, 3. \text{ This implies } x_0 \in h_{z_i}(B) \subseteq h_{z_i}(\bigcap_{i=1}^3 h_{z_i}^{\leftarrow}(U_i(z_1, z_2, z_3))) \subseteq h_{z_i}(h_{z_i}^{\leftarrow}(U_i(z_1, z_2, z_3))) = 0$$

 $\frac{37}{38}$ $U_i(z_1, z_2, z_3)$. Then, $x_0 \in \bigcap_{i=1}^3 U_i(z_1, z_2, z_3) \neq \emptyset$, a contradiction.

Furthermore, $\{h_z(B): z \in Z\}$ has cardinality exactly κ^+ . Otherwise there exists $z_0 \in Z$ s.t. $|\{z \in D\}| = |z_0(B)| = |z_0(B)| = |z_0(B)| = |z_0(B)| = |z_0(B)|$ we obtain a contradiction.

Thus $p_2(X) = \kappa^+$, a contradiction with $p_2(X) \le \kappa$. This concludes the proof.

- We remark that Gotchev showed in [18] that if $n \ge 2$ and X is an n-Hausdorff space, then $|X| \le 2^{c(X)\chi(X)}$.
- Recall the following result (for further details, refer to [21]).
- **Theorem 3.5.** Let κ be a cardinal number, $n \ge 3$ and $f: [(2^{2^{k-1}})^+]^n \to \kappa$ be a function (where the
- power is made (n-1)-many times). Then there exists a subset $H \in [(2^{2^{n-1}})^+]^{\kappa^+}$ such that $f \upharpoonright [H]^n$ is constant.
- Theorem 3.6. Let X be an n-Hausdorff homogeneous space, with $n \ge 2$. Then

$$|X| \le 2^{2^{\sum_{i=1}^{2^{c(X)}} \pi \chi(X)}}$$

- where the power is made (n-1)-many times.
- $\frac{14}{15}$ *Proof.* Similar to the proof of the previous theorem using Theorem 3.5 instead of Theorem 3.3.
- Next Theorem 3.12 shows that Question 3.2 has a positive answer if H(X) is replaced by U(X).
- In [13], Carlson, Porter and Ridderbos proved the following result.
- Theorem 3.7. [13] If X is an n-Hausdorff homogeneous space, with $n \ge 2$, then $|X| \le d(X)^{\pi \chi(X)}$.
- Also recall that a space is quasiregular if every nonempty open set contains a nonempty regular closed set.
- Theorem 3.8. If X is an n-Hausdorff quasiregular homogeneous space with $n \ge 2$, then $|X| \le \frac{24}{15} 2^{c(X)\pi\chi(X)}$.
- Proof. It was shown in [11] that if X is quasiregular then $d(X) \le \pi \chi(X)^{c(X)}$. By Theorem 3.7 we have

$$\frac{27}{28} |X| \le d(X)^{\pi \chi(X)} \le \left(\pi \chi(X)^{c(X)}\right)^{\pi \chi(X)} = 2^{c(X)\pi \chi(X)}.$$

- **Definition 3.9.** [28] Let X be a space. For $A \subseteq X$, the θ -closure of A is defined by
 - $cl_{\theta}(A) = \{x \in X : \overline{V} \cap A \neq \emptyset \text{ for every open set } V \text{containing } x\}.$
- A set $A \subseteq X$ is θ -dense if $cl_{\theta}(A) = X$. The θ -density of X, $d_{\theta}(X)$, is defined as the least cardinality of a θ -dense subset of X.
- **Theorem 3.10.** [13] Let X be an n-Urysohn homogeneous space, where $n \ge 2$. Then $|X| \le d_{\theta}(X)^{\pi \chi(X)}$.
- Theorem 3.11. [11] Let X be a space. Then $d_{\theta}(X) \leq \pi \chi(X)^{c(X)}$.
- 37 By Theorems 3.10 and 3.11, we obtain the following result.
- Theorem 3.12. Let X be an n-Urysohn homogeneous space, where $n \ge 2$. Then $|X| \le 2^{c(X)\pi\chi(X)}$.
- $\frac{40}{10}$ *Proof.* As X is n-Urysohn and homogeneous, we have $|X| \le d_{\theta}(X)^{\pi \chi(X)}$ by Theorem 3.10. Thus, by
- Theorem 3.11, we have $|X| \le d_{\theta}(X)^{\pi \chi(X)} \le \left(\pi \chi(X)^{c(X)}\right)^{\pi \chi(X)} = 2^{c(X)\pi \chi(X)}$.

4. An embedding into a homogeneous space

- In [14] Carlson, Porter and Ridderbos proved the following result.
- Theorem 4.1. [14] Let X be a Hausdorff space. Then X can be embedded in a homogeneous space that is the countable union of *H*-closed spaces.
- In Theorem 4.12 below we show that every n-Hausdorff space, $n \ge 2$ can be embedded in a homogeneous space that is the countable union of n-H-closed spaces.
- **Definition 4.2.** [3] Let $n \ge 2$. An *n*-Hausdorff space *X* is called *n*-*H*-closed if *X* is closed in every 10 *n*-Hausdorff space *Y* in which *X* is embedded.
- Given a space X and an ultrafilter \mathscr{U} on it, we put $a\mathscr{U} = \bigcap \{\overline{U} : U \in \mathscr{U}\}$. For an n-Hausdorff space X, with $n \ge 2$, an open ultrafilter \mathscr{U} on X is said to be *full* if $|a\mathscr{U}| = n - 1$.
- **Theorem 4.3.** [3] Let $n \ge 2$, and X be a space. The following are equivalent: 15
 - (a) *X* is *n*-Hausdorff;

16

17

19

20

27

29

30

38

39

- (b) if \mathscr{U} is an open ultrafilter of X, then $|a\mathscr{U}| \leq n-1$.
- **Theorem 4.4.** [3] Let n > 2, and X be an n-Hausdorff space. The following are equivalent:
 - (a) X is n-H-closed;
 - (b) every open ultrafilter on *X* is full.

Recall the following construction, made in [3]. Let $n \ge 2$, X be an n-Hausdorff space and $\mathfrak{U} =$ $\{\mathscr{U} : \mathscr{U} \text{ is an open ultrafilter such that } |a\mathscr{U}| < n-1\}.$ We index \mathfrak{U} by $\mathfrak{U} = \{\mathscr{U}_{\alpha} : \alpha \in |\mathfrak{U}|\}.$ For each $\alpha \in |\mathfrak{U}|$, let $k\alpha = (n-1) - |a\mathcal{U}_{\alpha}|$ and $\{p_{\alpha i} : 1 \le i \le k\alpha\}$ be a set of distinct points disjoint from X. Let $Y = X \cup \{p_{\alpha i} : 1 \le i \le k\alpha, \alpha \in |\mathfrak{U}|\}$. A set V is defined to be open in Y if $V \cap X$ is open in X and if $p_{\alpha i} \in V$ for $1 \le i \le k\alpha$, $V \cap X \in \mathcal{U}_{\alpha}$. The space Y is an n-Hausdorff space.

In the following results we use the notation of the previous contruction.

Proposition 4.5. [3] For every $\alpha \in |\mathfrak{U}|$,

$$\mathscr{U}_{\alpha} = \{ V \cap X : p_{\alpha i} \in V \in \tau(Y) \text{ for some } 1 \leq i \leq k\alpha \},$$

where $\tau(Y)$ is the topology on Y.

By the previous proposition the space Y has the property that every open ultrafilter on Y is full. Indeed the points $p_{\alpha i}$, $1 \le i \le k\alpha$, added to the space X, are in the closure of each element of \mathcal{U}_{α} . Therefore the space Y is n-H-closed.

Definition 4.6. [3] Let n > 2, S and T be n-H-closed extensions of an n-Hausdorff space X. We say S 37 is projectively larger than T if there is a continuous surjection $f: S \to T$ such that f(x) = x for $x \in X$.

This projectively larger function may not be unique [3].

40 **Theorem 4.7.** [3] Let $n \ge 2$, X be an n-Hausdorff space and Y be the n-H-closed extension of X constructed above. If Z is an n-H-closed extension of X, there is a continuous surjection $f: Y \to Z$ such that f(x) = x for all $x \in X$.

- Theorem 4.7 shows that the n-H-closed extension Y of X is projectively larger than every n-H-closed extension of X. Moreover, the space Y has an interesting unique property as it is noted in the next result.
- Theorem 4.8. [3] Let $n \ge 2$, X be an n-Hausdorff space and Y be the n-H-closed extension of X described above. Let $f: Y \to Y$ be a continuous surjection such that f(x) = x for all $x \in X$. Then f is a homeomorphism.
- **Remark 4.9.** In the class of Hausdorff spaces the function in Definition 4.6 is unique [3]. Sometimes this is a problem in non-Hausdorff spaces. The n-H-closed space Y constructed before for an n-Hausdorff space X is a projective maximum, that is Y is projectively larger than every n-H-closed extention and given a continuous surjection $f: Y \to Y$ such that f(x) = x for every $x \in X$, then f is a homeomorphism. For the future we denote this Y with n-kX and we call it the n-Katětov extension of X.
- Uspenskii showed in [27] that for any space X there exists a cardinal κ and a nonempty subspace $Z \subseteq X^{\kappa}$ such that $X \times Z$ is homogeneous. The space Z is found by selecting a set X such that $X \times Z$ is homogeneous. The space X is found by selecting a set X such that $X \times Z$ and letting $X = \{f \in {}^{A}X : \text{for each } x \in X, |f^{\leftarrow}(x)| = \kappa\}$, where X is the space of all functions from X to X. Both X and $X \times Z$ are homogeneous and homeomorphic. For our construction we write X we write X and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and $X \times Z$ and consider X as a subspace of X such that $X \times Z$ and $X \times Z$ and $X \times Z$ and $X \times Z$ are homogeneous and homeomorphic.
- **Lemma 4.10.** [14] Let X be a space and $h: X \to X$ be a homeomorphism and let id_Z be the identity function on Z. Then the function $h \times id_Z : \mathbf{H}(X) \to \mathbf{H}(X)$ is also a homeomorphism that extends h.
- **Lemma 4.11.** Let $n \ge 2$, X be an n-Hausdorff space and $h: X \to X$ be a homeomorphism. Then there is a homeomorphism n-kh: n- $kX \to n$ -kX that extends h.
- Proof. Let $p \in n-kX \setminus X$, then $p = p_{\alpha i}$ for some $\alpha \in |\mathfrak{U}|$ and for some $i = 1,...,k\alpha$. The set $\mathscr{V} = \{h(U) : U \in \mathscr{U}_{\alpha}\}$ is an open ultrafilter on X and since $|a\mathscr{U}_{\alpha}| = |a\mathscr{V}|$, there exists $\beta \in |\mathfrak{U}|$ such that $\mathscr{V} = \mathscr{V}_{\beta}$. Define $n-kh(p_{\alpha i}) = p_{\beta i}$ for every $i = 1,...,k\alpha = k\beta$. For $x \in X$, define n-kh(x) = h(x). The function n-kh is clearly a homeomorphism that extends h.
- Theorem 4.12. Let $n \ge 2$, X be an n-Hausdorff space. Then X can be embedded in a homogeneous space that is the countable union of n-H-closed spaces.
- 41 Example 4.13. An example of an *n*-Hausdorff, homogeneous, not *n*-Urysohn space which is the countable union of *n*-H-closed spaces, for every $n \ge 2$.

Let's take an n-Hausdorff, not n-Urysohn space X (for example see [5, Example 4]), $n \ge 2$. Then, by Theorem 4.12, X can be embedded in an n-Hausdorff, homogeneous space Y which is the countable union of n-H-closed spaces. Furthermore Y is not n-Urysohn, since X is a non-n-Urysohn subset of it. \triangle

4 5 6

Acknowledgement: The research was supported by "National Group for Algebric and Geometric Structures, and their Applications" (GNSAGA-INdAM).

9

References

- 11 [1] A.V. Arhangel'skii, J. van Mill, *Topological Homogeneity*, in *Recent Progress in General Topology III*, K. Hart, J. van Mill, P. Simon, Atlantis Press (2014).
- [2] I. Banakh, T. Banakh, O. Hryniv and Y. Stelmakh, *The connected countable spaces of Bing and Ritter are topologically homogeneous*, Top. Proc. **57** (2021), 149-158.
- [3] F. A. Basile, M. Bonanzinga, N. Carlson, J. Porter, n-H-closed spaces, Topol. Appl. 254 (2019), 59-68.
- [4] F. A. Basile, M. Bonanzinga, N. Carlson, J. Porter, *Absolutes and n-H-closed spaces*, Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat **99:2** (2021).
- ¹⁷ [5] M. Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. **39:3** (2013), 1013-1030.
- 18 [6] M. Bonanzinga, F. Cammaroto and M. Matveev, *On a weaker form of countable compactness*, Quaest. Math. 30:4 (2007), 407-415.
- [7] M. Bonanzinga, F. Cammaroto and M. Matveev, *On the Urysohn number of a topological space*, Quaest. Math. **34:4** (2011), 441-446.
- [8] M. Bonanzinga, N. Carlson, D. Giacopello, *New bounds on the cardinality of n-Hausdorff and n-Urysohn spaces*, https://arxiv.org/abs/2302.13060.
- [9] M. Bonanzinga, D. Stavrova and P. Staynova, Separation and cardinality-Some new results and old questions, Topol.
 Appl. 221 (2017), 556-569.
- [10] N. Carlson, *A survey of cardinality bounds on homogeneous topological spaces*, Top. Proc. **57** (2021), pp. 259-278. (E-published on October 18, 2020)
- [11] N. Carlson, Non-regular power homogeneous spaces, Topol. Appl. 154 (2007), pp. 302-308.
- [12] N. Carlson and J. Porter, *On the cardinality of Hausdorff spaces and H-closed spaces*, Topol. Appl. **241** (2018), 377-395.
- [13] N. Carlson, J. Porter and G. J. Ridderbos, On cardinality bounds for homogeneous spaces and the G_{κ} -modification of a space, Topol. Appl. **159** (2012), 2932-2941.
- [14] N. Carlson, J. Porter and G. J. Ridderbos, On homogeneity and the H-closed property, Top. Proc. 49 (2017), 153-164.
- [15] N. Carlson and G. J. Ridderbos, Partition relations and power homogeneity, Top. Proc. 32 (2008), pp. 115-124.
- [16] R. Engelking, General Topology, 2nd Edition, Sigma Ser. Pure Math., Vol. 6 Heldermann, Berlin (1989).
- [17] P. Erdös, R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956) 427-489.
- [18] I. Gotchev, Generalization of two cardinal inequalities of Hajnal and Juhász, Topology Appl. 221 (2017), 425–431.
- 35 [19] A. Hajnal, I Juhász, *Discrete subspaces of topological spaces*, Proc. of Nederl. Akad., Series, A **70** (1967), pp. 343-356.
- 36 [20] R.E. Hodel, Arhangelskii's solution to Alexandroff problem: A survey, Topol. Appl. 153 (2006), pp. 2199-2217.
- 37 [21] T. Jech, Set Theory, 3rd Millenium Edition, Springer-Verlag, 1997.
- [22] I. Juhász, *Cardinal functions in topology-ten years later*, Math. Centre Tracts, Vol. **123**, Math. Centrum, Amsterdam (1980).
- [23] I. Juhász, L. Soukup, and Z. Szentmiklóssy, Anti-Urysohn spaces, Top. Appl. 213 (2016), pp. 8-23.
- [24] G.J.Ridderbos, On the cardinality of power homogeneous Hausdorff spaces, Fund. Math. 192 (2006), pp. 255-266.
- 41 [25] L.A. Steen and J.A. Seebach, *Counterexamples in Topology*, Springer-Verlag, New York (1978).
- 42 [26] V.V. Tkachuck, On cardinal invariants of Suslin number type, Soviet Math. Dokl. 27:3 (1983), pp. 681-684.

ON N-HAUSDORFF HOMOGENEOUS AND N-URYSOHN HOMOGENEOUS SPACES

1 [27] V.V. Uspenskii, For any X, the product $X \times Y$ is homogeneous for some Y, Proc. Amer. Math Soc. 87 (1983), pp. [28] N.V. Velichko, *H-Closed Topological Spaces*, Mat. Sb. (N.S.) **70** (1966), pp. 98-112.

MIFT DEPARTMENT, UNIVERSITY OF MESSINA, ITALY

Email address: mbonanzinga@unime.it

MATHEMATICS DEPARTMENT, CALIFORNIA LUTHERAN UNIVERSITY, USA

Email address: ncarlson@callutheran.edu

MIFT DEPARTMENT, UNIVERSITY OF MESSINA, ITALY

Email address: dagiacopello@unime.it

12 MIFT DEPARTMENT, UNIVERSITY OF MESSINA, ITALY

Email address: fomaesano@unime.it

14 15

17 18

20

26 27