THE LEVINSON FORMULA FOR INVERSE SCATTERING
PROBLEM OF QUADRATIC EIGENPARAMETER DEPENDENT
DISCRETE STURM-LIOUVILLE EQUATION
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ABSTRACT. In this paper, the uniqueness of the kernel and the continuity of the
scattering function for inverse discrete Sturm-Liouville problem with quadratic
eigenparameter dependent boundary condition is studied by finding the main
equation. Also, on the basis of the continuity of the scattering function an
appropriate formula of the Levinson type has been derived.

1. Introduction

In Quantum Mechanics, Geo-Physics and Engineering ([1-8]), there has been
considerable study of inverse scattering theory for differential equations. To study
inverse problems, there has been considerable use of Fourier Analysis ([9-15]).

The nonhomogeneous boundary value problem (BVP)

{ —y”—i—/q(x)y—)?y:f(x), 0<z <00, (11)

y (0) — hy(0) =0 '
has been considered in [16], where ¢ and f are complex valued functions, h € C
and A is a spectral parameter. The authors of [16] have investigated the eigenvalues
and spectral singularities of the BVP (1.1) using the boundary uniqueness theorems
of analytic functions, and they have also proved that the finiteness of numbers
and multiplicities of the eigenvalues and spectral singularities of the BVP (1.1).
Furthermore, spectral and scattering analysis of some difference equations with
principal functions have been investigated in [17-26]. Examining the properties of
scattering data by using potential function is called a direct problem for scattering
theory. On the other hand, the inverse scattering problem deals with obtaining
the potential function according to the scattering data and kernel function. In this
sense, the inverse scattering theory has been considered in [27]. Also, some inverse
Sturm-Liouville scattering problems with uniqueness of the solution and continuity
of scattering function have been studied in [28-37].

Spectral theory of Sturm-Liouville problems with a spectral parameter occurs not
only in differential equation but also in boundary conditions. The study of spectral
theory plays an important role in many physical and technical studies such as heat
conduction problems, vibrating string problems, and some problems in mechanical

Keywords. Discrete equation, Sturm-Liouville problem, Eigenparameter, Scattering function,
Levinson formula
AMS Mathematics Subject Classification [2010]. 34B24, 34125, 34140, 39A70, 47A40, 81U40
(D tkoprubasi@kastamonu.edu.tr (Corresponding author), ()ram.mohapatra@ucf.edu
(1)Department of Mathematics, Kastamonu University, 37100 Kastamonu, TURKEY
(1,2) Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA.

1

26 Jun 2023 20:13:08 PDT
230208-Koprubasi Version 3 - Submitted to Rocky Mountain J. Math.



2 TURHAN KOPRUBASI™, R. N. MOHAPATRA (®

engineering ([38-40]). Many researchers have studied the inverse scattering theory
for the Sturm-Liouville operators with eigenparameter in boundary condition, or
the Sturm-Liouville difference equations with eigenparameter independent bound-
ary condition. Nevertheless the absence of a study for an inverse discrete Sturm-
Liouville problem involving a quadratic spectral parameter dependent boundary
condition stands out as a deficiency that motivated us to do this study. We begin
description of our problem and its solution from the next paragraph.

Let L) denote the discrete operator of the BVP in /5 (N) given by

Gn—1Yn—1 + bnyn + anYn+1 = Ayna neN= {17 2,.. -}7 (12)

(Yo + 11 A + 722791 + (Bo + BiA + B2A")yo = 0 (1.3)
for X = 2cos z where {an}, cy; {bn},cn are real sequences, a, # 0 for all n € Ny =
NU {0} with ag > 0. Also, v, f; € Rt U{0} for i =0,1,2 with ~,,3,, — 3,,7, >0
where (m,n) € Nx Ny and n < m < 2. Eq. (1.2) can be expressed in the
Sturm-Liouville form

V(anAyn) + hnyn = Ay’ru n c Na

where A and V are respectively forward and backward difference operators with
hy, = ap_1 +an, + b,.

This paper is designed to study the inverse scattering theory of discrete operator
L which has quadratic spectral parameter in the boundary condition according to
the continuity of the scattering function, main equation, and Levinson type formula

under the condition
o0

> (1= an| + |ba]) < oo (1.4)
n=1
The contribution of our study to the inverse scattering theory of difference equations
is in finding the solution of the inverse problem uniquely when the spectral para-
meter in the discrete Dirac system is also in the boundary conditions at quadratic
form.
In this paper we will use many of the notations and concepts used in our paper
[41], but for the sake of completeness, we will mention them for our readers.

2. Preliminaries

Let (1.4) be satisfied for a,,b, € R. The Eq. (1.2) has the Jost solution e(z) =
{en(2)} as

oo
en(2) = ane™? (1 + Z Anmeimz> , n € Np,
m=1

for A = 2cosz in Cy := {z:2€C, Imz >0} where a,,, A, are expressed in
terms of {a,}, .y and {b,},cn With a1 = apao ([23,24]). We also assume the
following conditions: _ -
lim e,(2)e”™* =1, z€ Ct (2.1)
and
o0
|Anm| <a Z (|1 - ak| + ‘ka ) (22)
k=n+[| 2]

where ¢; > 0 is constant and [|Z2|] is the integer part of 2 . Thus, e,(z) is
analytic with respect to z in C; := {z:2 € C, Imz > 0} and continuous on R.
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~

If p(N) = {wn()\)}, n € Ny be another solution of (1.2) which has the initial

conditions

o~

DoN) = = (Yo + A +7222) |, D1 (N) = By + BiA + )%,
then

(2) = {1, (2)} 1= D(2c082) = {I,(2c052) |
is a 27 periodic entire function ([26]).
Let the semi-strips be defined by By :={2 € C: z =z + iy, -7 <z <7, y > 0}
and B := By U [—m, 7). In (—m,7)\ {0}, the wronskian of e(z) and e(—=z) is

Wle(z),e(—2)] = anlen(2)ent1(—2) — ent1(2)en(—2)]
= nh_)ngo |:an (einze—i(n-‘rl)z _ ei(n+1)ze—inz):|
= —2isinz #0. (2.3)

So, e(z) and e(—z) are fundamental solutions of Ly where e(—z) is analytic in C_
:={z:2€C, Imz < 0} and continuous on the real axis. Furthermore, the Jost
function of L) can be defined by

F(z) = Wle(2),9%(2)]
= an [Duia2eos2)en(z) = enia (), (2 cos 2)]
= ao ['@7}1(2 cos 2)eq(z) — e1(2)thy (2 cos z)] (2.4)
where F is analytic in C,, continuous in C; and F(z) = F(z+2). The open form
of F(z) is
F(z) = ao { [Yo + 71 (€7 +77) +72(2 + % + 77)]

X laleiz (1 + Z Almeimz>]
m=1

+ [Bo + By (€ + 7)) 4 Bo(2 4+ €% + 7))

e e

= @ {040526_%Z + (041'72 + 040/81) e+ a1Y; + Qo (50 + 2ﬁ2)
+ [a1 (70 + 272) + @0B1] €7 + (17 + aoBa)e®™ + aryye”

+ Z 04052A0m6i(m—2)z + Z (041’)/2Alm + OfOﬂlAOm) ei(m—l)z

m=1 m=1

+ Z [Ollr}ﬁAlm + Qo (ﬁo + 262) AOm] eim,z

m=1

+ Z [ (70 +275) Arm + a1 Aom] ellm+1)z

m=1

A Z (0171 A1m + aoBoAgm) €7 + Z anAlmei(erS)Z} )

m=1 m=1
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and clearly F'(z) = F(—=z) in (—m,7) \ {0} because of e(z) = e(—z). When |z| — oo,
F(2) has the following asymptotic behavior:
a1526_2iz ) ﬁ2 7& Oa zZ e B7
F(z) =~ , 2.5
(Z) { a1 (0/0’}/2+ﬁ1) ) ﬂQZOa Z€B7 ( )

and so F(z) has finite number of zeros in B for

Supee”é(\l—an|+|bn|) < oo (2.6)
neN

where e > 0 and § € [, 1] ([26]).

3. The Scattering Function and Main Equation of L,
Definition 3.1. For z € (—m, )\ {0}, the scattering function of Ly is defined by

(3.1)

Using (2.4) and (3.1), it can be easily found that
S(z)=14+0Q1); z€ (—m,m\{0}, |z2| >
and
S(z)=[S()]"" ,ie |S(z)]=1.
The next theorem uses a different form of F(z) and we show the results that one
can get for this choice of F'

Theorem 3.1. Under the condition (1.4),
F(z) = ag [(vo + 271 cos 2 + 4y, cos” 2) e1(2) + (By + 28, cos z + 48, cos® z) eg(2)]
is nonzero in (—m,m)\ {0} .
Proof. Let F(z1) =0 for any z; € (—m, )\ {0}. Since ag # 0,
2 4 2
By + 2B, cos z1 + 45, cos Zleo(zl). (3.2)

Yo + 271 cos z1 + 4y, cos? 21
By using (2.3), (3.2), C0S5z1 = cos 21 and e(z1) = e(—z1) for z; € (—m, )\ {0}, it is
obtained that 2¢sin z; = 0 but this is a contradiction. [l

61(21) =

We use the two lemmas which are mentioned below for to construce the main
equation for Lemma 3.4.

Lemma 3.2. The equation
2151;(23}(2) — S(2)e(2) — e(—2) (3.3)
is satisfied in (—m, )\ {0}.

Proof. First of all, it can be written that

Y(2) = cae(z) + cse(—2) (3.4)
for constants ¢y and c3. Then,
1710(2 cosz) = caep(2) + csep(—2),
1711(2 cosz) = caeq(z) + cser(—2)
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and
_ P F(z)
27 2isinz @7 " 2ising
So, (3.1) and (3.4) indicates the Eq. (3.3). O

Lemma 3.3. All of the zeros of the Jost function F(z) are simple on the positive
imaginary axis and they lie in By :={z € C: z =ir,7 > 0}.

Proof. Assume that F(z1) = 0 for an arbitrary z; € B. If \y = 2cos 21, then

{ an—len—l(zl) + bnen(zl) + anen-i-l(zl) = ﬁen('zl)
Ap—16n—1(21) + bnen(21) + anenti(z1) = Aien(21)

So,

M=) len(z))? = an {en_l(zl)en(zl)fen_l(zl)en(zl)]

—

+CLn |:€n+1(zl)en(zl) - en-‘rl(zl)en(zl)

= W [en-a(z1)eni(en)| — W [enan), ener)]

using the usual definition of the wronskian. Also, (2.1) and (3.2) says that

(A = Xy) [Zfn<zl>|2+aofo<zl>|2<<m] =0

n=1

- +2Re A1 (7280 =7082) A1 1% (7281 =71 85)
where C(\;) = (¥180=7081) 2P0~ YoP2 2P1 7 Y1P2 . Thus
A1) 3+27071 Re A +73 A2 +27072 [(Re A1) —(Im A1) ? 47172 A [P A +93 A |* ’

it must be Ay = 0 and \; = )\71, i.e. A\ = 2cosz; € R. Moreover, for z; =
Rez; +iIm 2z,
2cosz; = cos (Rezp) (e7 '™ +e™*1) 4+ isin (Rezy) (e7 ™ — ™)

and hence sin (Rez;) (e7™# —¢e™#) = 0. It means that, sin (Rez) = 0 or
e~ Im=1 — ¢Im21 From this result and Theorem 3.1, it can be found that Rez; =0
or z; =0, i.e. 21 € By.

Additionally, the proof will be completed if it is shown that z; is simple on the
positive imaginary axis. From (1.2), it is obtained that

an—len—l(zl) + bnen(zl) + Ap€n+1 (Zl) = 2cos Zlen(zl)v
an—1€y,_1(21) + b€}, (21) + ane), 1 (21) = —2sin z1e,(21) + 2 cos 2167, (21).

Then, the last system reveals that
2sinziep(21) = ap—1 [en—1(21)€),(21) — €),_1(21)en(21)]
+an [ent1(21)er,(21) = €1 (21)en(21)]

and

k
2sin 21 Z e2(z1) = agleo(z1)€y(z1) — ep(z1)e1(21)]
n=1

+ay, [err1(z1)e(21) = ey ()en(z1)] . (3.5)

From (2.1) and (3.5),

oo

25sin 21 Z e2(z1) = ag [eo(21)e] (21) — eh(21)e1(21)] (3.6)

n=1
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Since
1 By + 2/, cos z 4 43, cos® z
“ie 2 = 5—¢0(2)
ap (7o + 271 cos z + 4y, cos? z) Yo + 271 cos z 4 4ry4 cOs? z
and F(z1) =0,
o0 F/
QSinzlzei(zl) — eo(z1)F'(=1) .
n=1 Yo + 277 cos z + 4y, cos® 2

[aoed(21)2sin 2 |

N (Yo + 27, cos z 4 47y, cos? z)°

X {(7180 — B170) +4cos 21

X [(v2B1 —11B2) cosz1 + (7280 — B2vo)l}  (3.7)
can be found by using (3.6). Therefore,

)(’7150 — B170) +4cos 21 [(7281 — 71B3) cos 21 + (v280 — Bao)]
(v + 27, €os z 4 47, cos? z)°

oo

ey (21)+aoeg (21

n=1

Eo(Zl)F/(Zl)

(7o + 271 cos z + 4, cos? z) 2sin 27
from (3.7). In here, the function e, (z1) is real and cosz; > 0 since z; is on the
positive imaginary axis. In addition, if ep(z1) = 0 in (3.8), then e, (21) = 0 but this
is not possible. Hence, F'(z1) # 0 because sin z; # 0 and the left side of (3.8) is
positive. ([l

(3.8)

Remark 3.1. It can be easily shown that
1-8(z)~0(1), |z| —m,

and for this reason, the Fourier transform of 1 — S(z) is given by

Fs(n) = % / 1 §(2)] e*dz. (3.9)

Fs(n) belongs to Lo (—m,m) for all n € Ny. For the real numbers
0 2
-1 2 aoep(2k)
mys = en(2k) +
g ,L; (7o + 27, €08 2, + 47, cos? z;,)°
x{(1Bo — B170) + 4 cos 2,
% [(v2B1 — 7182) cos z + (V280 — B2v0)]} (3.10)

we have the following lemma, where z, (k = 1,2, ...,p) are zeros of the Jost function
F(z) on the positive imaginary axis.

Lemma 3.4. The main equation of L)

T(n+N)+ Apiny + > ApmT(m+n+N) =0, n <N (3.11)
m=1

is satisfied for the kernel A, where

T(n) = Fs(n)+ > mge™*. (3.12)
k=1
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Proof. From e(z) and (3.3),

—2isin z1)(2) . pinz - eilmtn)z
704,LF(Z) +2isin (nz) = [1-— + mz::l
+ Z Anme—i(m-‘rn z Z Apm 7(7n+n Z
m=1
and then

1 24 8in 21)(2) GiNz i . iN
2 1INz
an27r/ F02) dz + 727r isin (nz) e *dz

s

1

_ _ i(n+N)z _ i(m+n+N)z
277 [1 S(z)]e dz + o m§:1 / [1—S(2)] Anme dz

Z / 1 (m+n+N)z _ e—i(m+n+N)z:| dz.

Taking into account the Riemann-Lebesgue Theorem and properties of Fourier se-
ries related to Delta function, we can say that

—14 7Tsinzi/x(z)eiNz
anw/ F(z)

—T

dz = Fs(n+N)+Aunany+ Y AnmFs(m+n+N). (3.13)

m=1

So, from the Residue Theorem and (3.10), the left side of (3.13) is

p e’}
_ Z Mg [ei(n+N)zk (1 + Z A7lm€imzk>‘|
k=1 m=1
because ¥ (z;) and e(zg) are linearly dependent with

€n (Zk)
eo(zrk)
since F'(z) = 0. Therefore, the main equation (3.11) is obtained from (3.12). O

U (z1) = — (70 + 271 €08 2z, + 4y, cos® z;)

The main equation can be formed when the function T'(n) is known. Conversely,
the function T'(n) and the unknown kernel A,,,, can be found through the scattering
data set {S(z), (-7 <z <m); zx; mg, k=1,2,...,p} and (3.12). The uniqueness
of the main equation is considered in the next theorem.

Theorem 3.5. The main equation (3.11) has a unique solution Ay, in £y (N).
Proof. Tt needs to be proven that the homogeneous equation

Vain + > VT(m+n+N) =0 (3.14)

m=1
has only zero solution in ¢; (N) for n < N.
Let (3.14) has a nonzero solution. So,

DVREY VN Y VuT(m+N)=0
N=1 N=1 m=1
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for n =01in (3.14), and

0o P 00 ‘ 2 1 T 50 ' 2
O:Nz::l‘/]%—&—kz:lm mz::leelmzk —|—§/[1—Sz ;Vme”m] dz

is satisfied from (3.9) and (3.12). Also, using Parseval equation of Fourier transfor-
mation

:217T/‘I)(Z)zdz—kkz_:lmkq)?(zk)+;W/[I_S(Z)] @Z(Z)dz (3.15)

m=1

can be attained where Y. V2 = ;L [ |®(z)|?dz is Parseval equation of ®(z) =

> Vinei™#. Then the real part of the polar form of (3.15) yields
1

m=
p

Z | [ (2) | cos 01 (zk) + 202 (21)]

+%/|¢(z)|2+{1+\1—S(z)|cos[292(z)+93(z)]}dz7 (3.16)

since arg my, = 01(zx), arg ®(z) = 02(z) and arg |1 — S(z)| = 03(z). However, (3.16)
is obtained only

®(z) =0, and so V,,, =
Therefore, the main equation (3.11) has a unique solution. O

4. The Levinson Type Formula of L)

Since a1 = agag # 0, the equation

(Yo + 271 +472) a (1 + Z A1m> (Bo + 281 +48,) (1 + Y Aom> =0
m=1

(4.1)
is satisfied by using (2.4) when F'(0) = 0.
Lemma 4.1. Let F(0) =0. If
D.(q) = Z [ (7o + 2, cos z + 4y, cos® 2) ag A1y
N=q
+ (By + 28, cos 2 + 48, cos =) Aon] | (4.2)
then Do(q) belongs to £1 (N) space and it is bounded.
Proof. Dy(q) is in ¢ (N) providing from (1.4) and (2.2).
If n =0 and n = 1 in the main equation (3.11), then
T+ N)+ Ay + Y AmT(1+m+N) = 0, (4.3)
m=1
T(N)+ Aoy + Y AgmT(m+N) = 0. (4.4)
m=1
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Also, the equations

0 = ¢€* (fyo + 27, cos z + 4y, cos? z) ag
X Z 1+N +A1(N+l)+ZA1”L 1—|—m—|—N)
N=qg—1 m=1
and
0= (By + 2B, cos z + 453, cos? z) Z T(N)+ Aon + Z Ao T (m + N)
N=q m=1

can be written from (4.3) and (4.4). By summing the last two equation,

0 = D.(q)+ [€” (o + 271 cos z + 4y, cos® z) ag

+ (B + 2B cos z + 43, cos® z) | Z T(N)
N=q

+ Z Z [eiz (70 + 27, cos z + 4y, cos? z) aoAim
m=1 N=q

+ (B + 28B4 cos z + 483, cos® z) Aoy ] T(m + N).
Additionally, if
G(z) = €' (vg + 27, cos z + 4y, cos® 2) ag + (By + 28, cosz + 4By cos® z)  (4.5)
where G(0) = —Dy(1), then

o0

0 = D.(¢)+G(x)T(q) +[G(2) + D=()] Y T(q+N)
N=1
S DN 4 )T+ ),
N=1
and so.
= > Do(m+1)T(q+m) = -G(0)T(q)
by using (4.1) and (4.2). };";067 Dy(q) is bounded. O

Theorem 4.2. The scattering function S(z) is continuous on (—m, 7).

Proof. It can be easily said that S(z) is continuous for z € (—m,7)\ {0} from
Theorem 3.1. Moreover,

F(z) = apap K (z)
by using (2.4) where

K(z) = (50 + 25, cosz+ 40, cos? z) (1 + Z Aomeimz>

+ag ('yo + 2, cos z + 4, cos? z (1 + Z Agme™ )

and K (0) = K(0).
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Let F(0) # 0. Then K(0) # 0 and

_F(0)  auK(0)
O =56 = mr©) ~ -

Now, suppose that F'(0) = 0. Considering the definition of F'(z), (4.2) and (4.5), it
is obtained that

F(z) = 1 [G(2) + /1] (4.6)
where
J = Dz(l) i {eimz _ ei(mfl)z} _ i Dz(m—l— 1) [eimz _ ei(mfl)z}
m=1 m=1
- (m—-1) S )
_ imz i(m—1)z _ i(m—1)z
= Dz(l)klingcz_:l[e ] Tnz::lDzm—i—l [ e }
— Dz(l) khm zkz i Dz m+ 1 [ imz i(m 1)z:| (4 7)
m=1

Becatse G(0) = (vo + 27, + 472) a0 + (B + 28, + 48,) # 0 and G(0) = —Dy(1) €
R, it can be found that

0 - FO_ a1 [G(0) - 2Do (1)
F(0) — a1[G(0) —2Do(1)]
_ 3G(0) _1
~ 3G(0)
by using (4.6) and (4.7). Thus, S(z) is continuous at z = 0. O

Let F(z) = re®®) where n(z) = arg F(z). Therefore 7(z) is an odd function in
(—m, )\ {0}, because re~ ") = F(z) = F(—2) = re"(~%) ie. n(—2) = —n(2).

Theorem 4.3. The Levinson type formula of Ly

% {2n0(m) + [ (=) = 02 (M) + [0 (M) = N (M)} + C(61) =p  (4.8)

can be written where

nr(z) = n(z+iR),
_ ]2 B#0
C(ﬁ2) - {1 : /6220

and p is the number of zeros of the Jost function F(z) in By.

Proof. Let r1 > 0 and 9 > 0 be in the neighborhood of 0 and 7, respectively. Also,
let 11 <ry <mwand rs >m>ry +re. We consider the following path

Lh Oy UCUC; UCLUCT UCsUCT UCs
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stated in Figure 4.1, where

C7 is half circle with radius 7, and center 0,
(5 is line segment oriented the points (r1,0) to (r2,0),

C5 is quarter circle with radius 7 — ro and center ,

C} is line segment oriented the points (m,72) to <7r, r3 — 7T2> ,
C’5+ is piece of half circle inside B with radius r3 and center 0,

Cg is line segment oriented the points <—7T, r3 — 71'2) to (—m,rs),

C~ is quarter circle with radius m — r» and center — m,

Cj is line segment oriented the points (—r2,0) to (—7r1,0).

Imz
B
iry
e
¥ A
o cr G 3
\ . f\ . K .v“:
-ry  -m -7y > -7 2 > 2 T r3 Rez
Figure 4.1
The Jost function F(z) is analytic inside the curve I'f . . and continuous on
the boundary of it. Moreover, I}, . does not include the zeros of F(z). By using
the argument principle, it can be found that
1 1
p = %Ar;rl,rg,rg arg F(Z) = %Arx,rz,mn(z)

1 _ 1 _ 1 1 _
= 5 A0 n(z) + 5. ACs n(z) + ﬂAC;ﬁ(Z) + 5 AC n(z)
1 1
+%A (CsUCs) m(z) + %A (C2UCs)n(z) (4.9)

where AT is the argument change on I'. From (2.5), it is obtained that

wgF () =) ={ s 70
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and for the last equality,

C(By) = 5 lm ACEn(2)

L[ dr; By 40
o2 | 27 By=0
{ f gzﬁg : (4.10)
On the other hand, it can be written that
F(z)’rti{ F(0) ; F(0) #0
3o [(v0 + 271 +4v2) a0 + (B + 26, +458,)] 3 F(0) =0
from (4.6) and (4.7) for z € B and |z| — 0. For this reason,
1. _ _ i F(2) #0
o m ACTn(z) = { 0; F(2)=0
= 0. (4.11)
In addition,
F(z)=F(r) 5 [zl =7
and then
gTthA(C UCy)n(z) = —(0+0)=0 (4.12)
Finally,
+ |:77(7T +irg) — 1 <7r +iy/r2 — 7T2):| }
= o ([l + o) — (-~ + ioo)]
+ (=1 + @) m) —n((L+ ) m)]}
1
= 5 Unoe(m) = noo(=)]
+ [0 (=m) = 0 ()]} (4.13)
and
% }211?2 A(CsUCo)n(z) = % }lef:ng {In(=r1) = n(=r2)] + [n(r2) —n(r1)]}
= i)
1
= Lnm (4.14)
because n(—mn) = —n(m). Thus, we reach to (4.8) from (4.9)-(4.14). O
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28, —B,—4
Let ag # 04% and

1 ; F(m)#0
S(m) =
g F(m) =0
1+ 3 (1=m)Agm (-1
where ¢4 = —25 and S(mw) = S(—m) since F(r) = F(—n). There-
> mA(—1)™

m=1
fore, the scattering function S(z) is also continuous in {—m, 7} and the following
corollary can be obtained:

Corollary 4.4. Under the condition (2.6),

= 1250(m) + [S2(=7) = Sa(m)] + [Soa(m) ~ Sou ()]} = C(B) ~p  (415)
is another representation of the Levinson type formula of Ly where
Sr(z) =InS(z 4+ iR).
Proof. From the definition of F(z), it is clear that
F(z) re ™M)

S(z) = — = e2in(),
(2) F(2) rein(z) €
So,
InS(z
a(z) = -0 (4.16)
and then (4.15) is obtained by using Theorem 4.3 and (4.16). O
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