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Abstract. Using completely elementary methods, we find all powers of 3 that

can be written as the sum of at most twenty-two distinct powers of 2, as well
as all powers of 2 that can be written as the sum of at most twenty-five distinct

powers of 3. The latter result is connected to a conjecture of Erdős, namely,

that 1, 4, and 256 are the only powers of 2 that can be written as a sum of
distinct powers of 3.

We present this work partly as a reminder that for certain exponential

Diophantine equations, elementary techniques based on congruences can yield
results that would be difficult or impossible to obtain with more advanced

techniques involving, for example, linear forms in logarithms.

1. Introduction

To introduce our topic, we begin with some numerical observations. For an
integer x ≥ 0, consider the binary representation of 3x. In Table 1 we give this
representation for x ≤ 25, and we tabulate the number of bits in the binary repre-
sentation together with the number of those bits that are equal to 1.

Based on this limited data, it looks like about half of the bits of the binary
representation of 3x are equal to 1, which is what you would expect if 3x were to
behave like a random integer of the appropriate size. Computations with larger
values of x seem to indicate that the fraction of 1s does tend toward 1/2 as x
increases to infinity, but proving that this is the case seems far beyond the reach of
existing techniques.

A much weaker observation is that as x goes to infinity, the number of 1s in the
binary representation of 3x tends to infinity as well; that is, one would certainly
be tempted to guess that there are only finitely many x such that the binary
representation of 3x contains fewer than ten 1s, or a hundred 1s, or any given finite
number of 1s. This observation is in fact true, and was proven by Senge and Straus
in 1973; their result [19, Theorem 3, p. 100] implies that for any given n, there are
only finitely many x such that the binary representation of 3x has n or fewer bits
equal to 1. In 1980 Cameron Stewart proved an effective version of this result [20,
Theorem 1, p. 64] — which means that given a value of n, Stewart’s arguments
produce a bound B(n) so that if x > B(n), then 3x has more than n bits equal
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2 DIMITROV AND HOWE

Table 1. For each x between 0 and 25 we give the binary rep-
resentation of x, together with the total number of bits in the
representation and the number of those bits that are equal to 1.

x Binary representation of 3x #Bits #Ones

0 1 1 1
1 11 2 2
2 1001 4 2
3 11011 5 4
4 1010001 7 3
5 11110011 8 6
6 1011011001 10 6
7 100010001011 12 5
8 1100110100001 13 6
9 100110011100011 15 8
10 1110011010101001 16 9
11 101011001111111011 18 13
12 10000001101111110001 20 10
13 110000101001111010011 21 11
14 10010001111101101111001 23 14
15 110110101111001001101011 24 15
16 10100100001101011101000001 26 11
17 111101100101000010111000011 27 14
18 10111000101111001000101001001 29 14
19 1000101010001101011001111011011 31 17
20 11001111110101000001101110010001 32 17
21 1001101111011111000101001010110011 34 20
22 11101001110011101001111100000011001 35 19
23 1010111101011010111101110100001001011 37 22
24 100000111000010000111001011100011100001 39 16
25 1100010101000110010101100010101010100011 40 18

to 1. Unfortunately, the values of B(n) produced by Stewart’s method grow very
quickly; for example, we can show1 that B(22) > 4.9×1046.

In this paper, we use completely elementary techniques to find all powers of 3
whose binary representations have at most twenty-two bits equal to 1. In fact, these
powers of 3 are exactly the ones displayed in Table 1.

Theorem 1.1. The only powers of 3 that can be written as the sum of twenty-two
or fewer distinct powers of 2 are 3x, where 0 ≤ x ≤ 25.

In other words, there are more than twenty-two 1s in the binary representation of
3x exactly when x > 25. Clearly, this bound is much smaller than the one obtained
from Stewart’s theorem!

We also look at the complementary problem of finding powers of 2 whose base-3
representations contain no 2s and at most twenty-five 1s. Stewart’s theorem applies

1Stewart’s Theorem 1 shows that the largest x for which 3x has at most 22 bits equal to 1
satisfies 23 > (log log 3x)/(C +log log log 3x) for some positive constant C. We only get a stronger

upper bound on x if we solve for x when C = 0, and this is how we get our lower bound for B(22).
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POWERS OF 3 WITH FEW NONZERO BITS 3

here as well, and says that if 2x can be expressed in this manner, then x is less
than a computable bound that is larger than 5.4×1054. Our result shows that in
fact x ≤ 8.

Theorem 1.2. The only powers of 2 that can be written as the sum of twenty-five
or fewer distinct powers of 3 are:

20 = 30

22 = 30 + 31

28 = 30 + 31 + 32 + 35.

Put differently, if x ̸∈ {0, 2, 8} then the base-3 representation of 2x will contain
either at least one 2, or at least twenty-six 1s. This provides a tiny bit of con-
firmation for a conjecture of Erdős [14, Problem 1, p. 67], which states that the
only powers of 2 whose base-3 representations contain only 0s and 1s are the three
examples given in Theorem 1.2. (For work on Erdős’s conjecture and closely related
problems, see for example [5, 13, 16, 17] and the papers these articles cite.)

Theorems 1.1 and 1.2 can be expressed in terms of exponential Diophantine
equations. In particular, Theorem 1.1 gives us all solutions of

(1) 3x = 2a1 + · · ·+ 2an , x ≥ 0, 0 ≤ a1 < · · · < an

for n ≤ 22, and Theorem 1.2 gives us all solutions to

(2) 2x = 3a1 + · · ·+ 3an , x ≥ 0, 0 ≤ a1 < · · · < an

for n ≤ 25.
Our method for solving equations (1) and (2) involves considering the equations

modulo M for a sequence of well-chosen moduli M , each one dividing the next.
We will postpone our discussion of what “well-chosen” means, and for now we will
simply illustrate our method with an example.

Let us look at the case n = 3 of equation (1). We start by considering the related
problem of writing a power of 3 as the sum of three powers of 2 in the finite ring
Z/M1Z for M1 = 5440 = 26 · 5 · 17, where we no longer insist that the powers of 2
be distinct. The following diagram enumerates the powers of 2 in modulo M1; here
the arrows indicate multiplication by 2.

(3)

1 2 4 8 16 32 64

128

256

512

1024

2048

4096

2752

// // // // // //
$$

��

~~

pp
ee

QQ

>>

..

We see there are 14 distinct powers of 2 modulo M1, and likewise we find that there
are 16 distinct powers of 3. Using a computer to enumerate sums of three powers
of 2 in Z/M1Z, we find that (up to the order of the summands) there are only three
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4 DIMITROV AND HOWE

ways to write a power of 3 in Z/M1Z as a sum of three powers of 2:

31 ≡ 20 + 20 + 20 mod M1(4)

32 ≡ 20 + 22 + 22 mod M1(5)

34 ≡ 20 + 24 + 26 mod M1.(6)

For each of the summands 2i on the right-hand side of one of these equations,
we can ask for the exponents b such that 2b ≡ 2i mod M1. Looking at diagram (3),
we see that for i = 0, 2, and 4, the only exponent b with 2b ≡ 2i mod M1 is i itself,
because 1, 4, and 16 are all on the “tail” of the diagram. On the other hand, the
exponents b with 2b ≡ 26 mod M1 are {6, 14, 22, 30, . . .} = {6 + 8j : j ≥ 0}, because
the “loop” part of diagram (3) goes around in a cycle of 8 steps.

Every solution to equation (1) with n = 3 must reduce modulo M1 to one of the
three equations (4), (5), or (6). However, no solution to equation (1) can reduce
to (4), because the summands in (1) would have to be 20, 20, and 20, which are
not distinct. Likewise, no solution to equation (1) can reduce modulo M1 to (5),
because two of the summands in (1) would have to be 22. Therefore, every solution
to equation (1) with n = 3 reduces modulo M1 to (6), and we see that two of the
summands in (1) must be 20 and 24.

Now we consider information modulo M2 = 27 · 5 · 17 · 257. If a solution to equa-
tion (1) reduces modulo M1 to (6), what can it reduce to modulo M2? There are 16
powers of 3 in Z/M2Z that reduce to 34 in Z/M1Z, namely 34, 34+16, . . . , 34+15·16,
and there are 3 powers of 2 in Z/M2Z that reduce to 26 in Z/M1Z, namely 26, 214,
and 222. We check that in Z/M2Z neither 20 + 24 + 214 nor 20 + 24 + 222 is equal
to any of the possible powers of 3. However, 34 ≡ 20 + 24 + 26 in Z/M2Z.

Therefore, every solution to equation (1) with n = 3 must reduce modulo M2

to the congruence 34 ≡ 20 + 24 + 26 mod M2. But we check that 20, 24, and 26

lie on the tail of the analog of diagram (3) for M2, so the only powers of 2 in the
integers that reduce to 20, 24, and 26 modulo M2 are 20, 24, and 26 themselves.
We see that if there is a solution to equation (1) with n = 3, the right-hand side
must be 20 + 24 + 26. As it happens, in the integers this sum is equal to 34, so
34 = 20 + 24 + 26 is the unique solution to equation (1) with n = 3.

This simple example displays the basic idea that we use to prove Theorem 1.1.
For such a small example we could have started by considering the equation mod-
ulo M2, instead of first looking modulo M1, but for larger examples it is much
more efficient to cut down the solution space by looking first at small moduli be-
fore building up to larger ones.

Solving exponential Diophantine equations using congruence arguments is not a
new technique. In 1976, for example, Alex [2] used congruences to find all solutions
to x + y = z, where x, y, and z are mutually coprime integers divisible by no
prime larger than 7. In 1982, Brenner and Foster [10] presented a whole bestiary of
exponential Diophantine equations that can be solved in this way. (They mention
in particular that Alex found all solutions to our example 3x = 2a1 +2a2 +2a3 using
“a few small moduli,” although this had been solved earlier by Pillai, as we discuss
below.) In 2009, Ádám, Hajdu, and Luca [1] used a result of Erdős, Pomerance,
and Schmutz [15] to show that for every finite set S of primes and finite set A ⊂ Z
of coefficients, the number of integers less than x that can be written as the sum of a
fixed number of terms of the form as, where a ∈ A and s ∈ Z is a product of powers
of primes in S, grows more slowly than a specific power of log x. Independently,
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POWERS OF 3 WITH FEW NONZERO BITS 5

in a 2011 paper [12] we studied representations of integers as sums of terms of the
form ±2a3b, which is the case A = {±1}, S = {2, 3} of the problem studied in [1].
We presented one way of finding moduli m that could be used to prove that certain
integers cannot be represented by a given number of such terms, and we used the
same result of Erdős, Pomerance, and Schmutz to show that there is a positive
constant c such that infinitely many integers n cannot be written as a sum of fewer
than c log n/(log log n log log log n) such terms.

In 2016 Bertók and Hajdu [7] studied exponential Diophantine equations in gen-
eral, again using arguments based on [15], and they conjectured that if an expo-
nential Diophantine equation has a finite number of solutions2 and satisfies some
other natural restrictions, then there is an integer M such that the solutions to
the equation modulo M lift uniquely to the solutions in Z. In a later paper [8] the
same authors generalized this conjecture to number fields. One can view our work
in this paper as providing evidence in support of the Bertók–Hajdu conjectures.

Our main contribution in this paper is the method we describe for choosing a
sequence of moduli that allows us to refine the collection of solutions modulo M ,
for larger and larger M , until every solution modulo M can be lifted to at most one
solution in the integers. Our moduli are chosen in a careful order that makes each
refinement step computationally feasible. The closest predecessor to our technique
seems to be the method used by Bertók and Hajdu in [7], in which they choose
a modulus M and then piece together information gleaned from solutions to the
original Diophantine equation modulo the prime power divisors of M . Another new
observation in this paper appears in Section 3, where we show that any modulus M
that provides us with all solutions to equation (1) or (2) must satisfy an unexpected
condition.

We study the problem of writing powers of 2 as sums of distinct powers of 3,
as well as the complementary problem of writing powers of 3 as sums of distinct
powers of 2, for several reasons. First, these problems are simply-stated and natural.
Second, we wanted to see what we could say about Erdős’s conjecture. Third,
we were curious how far the modular methods discussed by Brenner and Foster
can be pushed, since even modest laptop computers are much more powerful than
anything available at the time their paper was written. And finally, we hope to
bring these straightforward modular techniques to the attention of the community
of mathematicians who are interested in exponential Diophantine equations.

As a historical note, we observe that the solutions to the case n = 2 of equa-
tions (1) and (2) were determined nearly seven centuries ago by Levi ben Gerson [4],
who showed that the only pairs of integers of the form 2r3s that differ by 1 are
(1, 2), (2, 3), (3, 4), and (8, 9). A paraphrase of ben Gerson’s argument, more leg-
ible3 than [4], is given in [11, Appendice, pp. 183–191]. One way to prove ben
Gerson’s theorem is to observe that every solution to ben Gerson’s problem is a so-
lution to the case n = 2 of either equation (1) or equation (2), and then to consider
those two equations modulo 80.

In 1945, Pillai [18] found all solutions to ±(2x − 3y) = 2X + 3Y ; taking either
x or y to be 0 leads to the solutions for the case n = 3 of equations (1) and (2).

2The statement of the conjecture [7, p. 849] only applies to Diophantine equations with no

solutions, but later in the paper the authors show how the conjecture, if true, can be applied to

equations that have finitely many solutions.
3The adjective is chosen with intention. Follow the link in the bibliography to understand why.
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6 DIMITROV AND HOWE

Between 2011 and 2013, Bennett, Bugeaud, and Mignotte [5, 6] used linear forms in
two logarithms to find all perfect powers whose binary representations have at most
four bits equal to 1 (extending a result of Szalay [21] that gives all perfect squares
with at most three bits equal to 1), and this solves the case n = 4 of equation (1).
These are all of the previous solutions to cases of equations (1) and (2) that we
are aware of; however, the paper of Bertók and Hajdu [7] discussed earlier includes
solutions to many very similar equations, including, for example, finding all powers
of 17 that can be expressed as the sum of nine distinct powers of 5. Surely their
methods could have been used to solve some more instances of equations (1) and (2).

The structure of this paper is as follows: In Section 2 we briefly review some
notation. In Section 3 we observe that in some situations there will necessarily
be solutions to equations (1) or (2) modulo M that are not reductions of solu-
tions in the integers, unless some specific conditions on M hold. These conditions
shape our strategy of choosing a specific sequence of moduli to use in the proofs
of Theorems 1.1 and 1.2. In Section 4 we give examples of two different ways of
lifting solutions to (1) modulo M1 to solutions modulo M2, suitable for two dif-
ferent circumstances. These examples help clarify the process by which we proved
Theorems 1.1 and 1.2. We present the proofs of these theorem in Sections 5 and 6.

The programs we used to complete our calculations were written in Magma [9]
and are available as supplementary material attached to the ArXiv version of this
paper. They are also available on the second author’s web site.

Acknowledgments. We are grateful to Lajos Hajdu for his comments on an earlier
version of this paper, and to the anonymous referees for their helpful suggestions.

2. Notation and conventions

In this paper we will often want to count or enumerate the number of solutions
to an exponential Diophantine equation modulo M , but there is some natural am-
biguity as to what this might mean. For instance, there are infinitely many pairs
of integers x ≥ 0 and y ≥ 0 for which the congruence 3x ≡ 2y + 5 mod 28 holds,
but for every such x and y we have 3x ≡ 9 mod 28 and 2y ≡ 1 mod 28, so it might
not be unreasonable to say that there is only one solution. In order to avoid any
confusion, we remove this ambiguity by adopting the following convention.

Convention 2.1. When we count or enumerate solutions to an exponential Dio-
phantine equation modulo M , we will consider two solutions to be the same if the
corresponding terms in the equation are congruent modulo M .

This means, for example, that for the congruence 3x ≡ 2y+5 mod 28 we consider
the solutions (x, y) = (2, 2), (x, y) = (8, 2), and (x, y) = (8, 5) to be the same,
because in each case 3x ≡ 9 mod 28 and 2y ≡ 4 mod 28.

This convention does have one drawback, which is that for some exponential Dio-
phantine equation modulo M , there truly are only finitely many integer solutions.
For example, the only integers x ≥ 0 and y ≥ 0 such that 3x ≡ 2y + 5 mod 216 are
x = 2 and y = 2. This distinction will in fact be important to us, so we make the
following definition.

Definition 2.2. Let M > 0 be an integer and p a prime. We say that a power of p,
say pi, is determinate modulo M if the only integer b ≥ 0 with pb ≡ pi mod M is
b = i; otherwise, we say that pi is an indeterminate power of p modulo M .
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POWERS OF 3 WITH FEW NONZERO BITS 7

Thus, we will say that the congruence 3x ≡ 2y + 5 mod 28 has one solution,
namely 32 ≡ 22 + 5 mod 28, but that 32 is an indeterminate power of 3 mod-
ulo 28 and 22 is an indeterminate power of 2 modulo 28. On the other hand,
3x ≡ 2y + 5 mod 216 also has only one solution, but the power of 3 and the power
of 2 involved are both determinate.

Given a prime p and an integer M > 0, we can construct a diagram like di-
agram (3) of the powers of p modulo M . Note that a determinate power of p
modulo M is exactly a power of p that lies on the tail of this diagram, and a
straightforward argument shows that for i ≥ 0, the integer pi is a determinate
power of p modulo M if and only if M is divisible by pi+1.

Recall that if M is a positive integer then the group of units in the ring Z/MZ
has order φ(M), where φ is the Euler φ-function, which can be computed using
the formula φ(n) = n

∏
p|n(1− 1/p); see [3, §2.3, §2.5]. Also, if M is an odd prime

power then the group of units in Z/MZ is cyclic [3, Theorem 10.4, p. 207].
For every prime p, we let vp be the p-adic valuation function, so that vp(M) is

the largest x such that px divides M . And lastly, we set some notation related to
the behavior of the numbers 2 and 3 in finite rings.

Notation 2.3. Let M be a positive integer and write M = 2u3vM ′, where u =
v2(M) and v = v3(M), so that M ′ is coprime to 6.

• We let O2(M) be the multiplicative order of 2 in the ring Z/3vM ′Z.
• We let O′

2(M) be the multiplicative order of 2 in the ring Z/M ′Z.
• We let O3(M) be the multiplicative order of 3 in the ring Z/2uM ′Z.
• We let O′

3(M) be the multiplicative order of 3 in the ring Z/M ′Z.

We see, for example, that there are v2(M)+O2(M) elements in the tail-and-loop
diagram of the powers of 2 modulo M , with v2(M) in the tail and O2(M) in the
loop. Similarly, there are v3(M) +O3(M) elements in the tail-and-loop diagram of
the powers of 3 modulo M .

3. Extraneous solutions to congruences

The basic heuristic behind our strategy for solving instances of equations (1)
and (2) is that if M is large and there are very few powers of 2 in Z/MZ and very
few powers of 3 in Z/MZ, then there should be very few “extraneous” solutions
to equations (1) or (2) modulo M — that is, solutions that are not the reduction
modulo M of a solution in the integers. If M is divisible by sufficiently high powers
of 2 and/or 3, we can hope that every solution modulo M to equation (1) or (2)
will involve only determinate powers of 2 or of 3 modulo M (where determinate
is as defined in Section 2). If this is the case, then each solution will lift uniquely
to the integers, if it lifts at all. However, it turns out that for many moduli M , if
there is any solution to one of these equations, then there is also a solution that
includes indeterminate powers of 2 and of 3.

For example, we saw in the introduction that if M1 = 5440 = 26 · 5 · 17 then the
equation 3x ≡ 2a1 + 2a2 + 2a3 mod M1 has the three solutions given by (4), (5),
and (6), and we see that (6) involves an indeterminate power of 2 (and of 3). If
we look at the same equation modulo M2, where M2 = 2M1 = 27 · 5 · 17, then we
find four solutions, including 320 ≡ 20 + 24 + 214, and this involves indeterminate
powers of 2 and of 3 modulo M2. When we look at the same equation modulo M3,
where M3 = 41M2 = 27 ·5 ·17 ·41, there is once again a solution with indeterminate
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8 DIMITROV AND HOWE

powers of 2 and 3, namely 320 ≡ 20 + 24 + 246. And the same happens yet again
when we work modulo M4, where M4 = 193M3 = 27 · 5 · 17 · 41 · 193.

And yet in the introduction, when we considered solutions to 3x ≡ 2a1+2a2+2a3

modulo 27 · 5 · 17 · 257, we did not wind up with extraneous solutions. What is the
difference between 27 · 5 · 17 · 257 and 27 · 5 · 17 · 41 · 193?

The following proposition, which uses Notation 2.3, explains one way in which
solutions with indeterminate powers of 2 or 3 can arise, and suggests a condition
that we will want to impose on the moduli we use.

Lemma 3.1. Let M be a positive integer. Suppose x > 2, y > 0, and c are integers
such that 3y ≡ c+2x mod M . If O′

3(M) is not divisible by 2x−1 and O′
2(M) is not

divisible by 3y, then there are integers x′ ≥ 0 and y′ ≥ 0 such that

(a) 3y
′ ≡ c+ 2x

′
mod M ,

(b) 2x
′
is an indeterminate power of 2 modulo M , and

(c) 3y
′
is an indeterminate power of 3 modulo M .

Lemma 3.1 shows that in the example we presented in the introduction, it was
necessary for us to use a modulus divisible by a prime (in our case, 257) for which
either the order of 3 is divisible by 25 or the order of 2 is divisible by 34. Since
34 = 20 + 24 + 26, if we use a modulus M that is divisible by 27 (so that 20, 24,
and 26 are determinate powers of 2 modulo M), Lemma 3.1 shows that there will
be other, extraneous, solutions modulo M unless M is divisible by such a prime.

Proof of Lemma 3.1. Write M = 2u3vM ′ where M ′ is coprime to 6, and set o2 =
O′

2(M) and o3 = O′
3(M). First we claim that there is an integer s such that

y + so3 > v and 3y+so3 ≡ c mod 2u.
Suppose u ≤ x, so that 3y ≡ c mod 2u. We know that 3s ≡ 1 mod 2u if s is a

multiple of φ(2u), so we can simply take s to be a large enough multiple φ(2u) so
that y + so3 > v, and this s meets the conditions of our claim.

Suppose u > x. Then M is even, and since c differs from 3y by a multiple of
the even number M , c must be odd. Therefore there is an integer d such that
cd ≡ 1 mod 2u. Choose such a d and consider the integer z = 1 + 2xd, which is
congruent to 1 mod 8 since x > 2. If we apply part 1 of Lemma 3.2 (below) to
this z, we find that there is an integer e0, divisible by 2x−2, such that every integer
e with e ≡ e0 mod 2u−2 satisfies 3e ≡ 1 + 2xd mod 2u. By assumption, the highest
power of 2 that divides o3 is at most 2x−2. Therefore there is an integer s such
that so3 ≡ −e0 mod 2u−2, and we can choose such an s that is large enough so that
y + so3 > v.

We have 3−so3 ≡ 1 + 2xd mod 2u. Multiplying both sides of this congruence by
c 3so3 gives c ≡ (c+ 2x)3so3 mod 2u, and since c+ 2x ≡ 3y mod M and hence also
modulo 2u, we find that c ≡ 3y+so3 mod 2u. Thus, this s has the properties we
desire, and we have proven our claim.

Similarly, using part 2 of Lemma 3.2, we can show that there is an integer r such
that x+ ro2 > u and 2x+ro2 ≡ −c mod 3v.

Let x′ = x + ro2 and let y′ = y + so3. We claim that this x′ and y′ satisfy
conditions (a), (b), and (c) from the lemma. It is easy to check conditions (b) and
(c) because x′ > u and y′ > v by construction. To check condition (a), we use the

Chinese Remainder Theorem: It suffices to check that 3y
′ ≡ c + 2x

′
modulo M ′,

modulo 2u, and modulo 3v.
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POWERS OF 3 WITH FEW NONZERO BITS 9

We have 2o2 ≡ 1 mod M ′ and 3o3 ≡ 1 mod M ′ by the definitions of o2 and o3,
so 3y

′ ≡ 3y mod M ′ and 2x
′ ≡ 2x mod M ′, and we have 3y

′ ≡ c+ 2x
′
mod M ′.

We have 2x
′ ≡ 0 mod 2u because x + ro2 > u by construction. Since 3y

′ ≡
3y+so3 ≡ c mod 2u, we have 3y

′ ≡ c+ 2x
′
mod 2u.

Likewise, we have 3y
′ ≡ 0 mod 3v, and since 2x

′ ≡ 2x+ro2 ≡ −c mod 3v, we have
3y

′ ≡ c + 2x
′
mod 3v. This shows that condition (a) holds for this x′ and y′, and

completes the proof of the lemma. □

Lemma 3.2.

(1) Let z be an integer with z ≡ 1 mod 8. For every integer u ≥ 3 there is an
integer e0 such that the integers e that satisfy 3e ≡ z mod 2u are precisely
the integers e that satisfy e ≡ e0 mod 2u−2. If x ≤ u is an integer with
z ≡ 1 mod 2x, then e0 is divisible by 2x−2.

(2) Let z be an integer with z ≡ 1 mod 3. For every integer v ≥ 1 there is an
integer e0 such that the integers e that satisfy 2e ≡ z mod 3v are precisely
the integers e that satisfy e ≡ e0 mod 2 · 3v−1. If y ≤ v is an integer with
z ≡ 1 mod 3y, then e0 is divisible by 2 · 3y−1.

Proof. For statement 1: We leave the reader to show that for every u ≥ 3, the
order of 3 modulo 2u is 2u−2. (The proof can be modeled after the proof of [3,
Theorem 10.11, p. 218].) Since there are 2u−1 units in Z/2uZ, and the order of 3 is
half of this, it follows that half of the units are powers of 3. A power of 3 is never
congruent to 5 or 7 modulo 8, and this accounts for half of the units. Therefore,
every unit that is 1 or 3 modulo 8 is a power of 3. Thus, there is an e0 such that
3e0 ≡ z. The fact that 3e ≡ z mod 2u if and only if e ≡ e0 mod 2u−2 is simply a
consequence of the fact that the order of 3 modulo 2u is 2u−2.

If z ≡ 1 mod 2x with x ≤ u, then 3e0 ≡ 1 mod 2x, so e0 is a multiple of the order
of 3 modulo 2x, and hence e0 is divisible by 2x−2.

The proof of statement 2 is analogous, and we leave it to the reader. □

When we look at cases of equation (1) with larger values of n, we will find that
Lemma 3.1 tells us that we will need to include information gleaned from moduli
divisible by primes p such that the order of 3 modulo p is divisible by quite large
powers of 2. In Section 5 we show how we can work our way up to such moduli.

4. Lifting solutions

Our proofs of Theorems 1.1 and 1.2 are computational. In each proof, we consider
a sequence of moduli M1,M2, . . ., each dividing the next. Roughly speaking, we
first compute the solutions to equation (1) or (2) modulo M1; then for each i > 1 in
turn we “lift” the solutions modulo Mi−1 to solutions modulo Mi. We stop when
we have reached an Mi where all of the summands that appear on the right-hand
side of the solutions modulo Mi are determinate (in the sense defined in Section 2);
at that point, each solution modulo Mi can be lifted uniquely to a solution in the
integers, if it lifts to a solution at all.

This strategy depends on our having efficient methods for lifting a solution mod-
ulo Mi−1 to a solution modulo Mi. In Section 5 we will spell out our methods more
formally, but in this section we would like to give two examples to help make the
methods more clear. For the sake of exposition, we will focus on finding solutions

16 May 2023 08:21:31 PDT
210723-Howe Version 2 - Submitted to Rocky Mountain J. Math.



10 DIMITROV AND HOWE

to equation (1) modulo M for various M , and as we did in the introduction, we
will ignore the requirement that the summands be distinct.

As an example of one extreme case of the lifting problem, let M1 = 439 and let
n = 12 and consider the following solution to equation (1) modulo M1:

(7) 357 ≡ 20 + 21 + 211 + 212 + 215 + 216 + 226 + 227 + 237 + 257 + 265 + 268.

Let p be the prime 9361973132609 and let M2 = pM1. We will try to find a lift of
the solution (7) to a solution modulo M2. We compute that the graph of the powers
of 2 modulo M1 forms a loop of cycle length 73 with no tail... and we compute
that the graph of powers of 2 modulo M2 is also a tailless loop of cycle length 73.
That means that there is exactly one power of 2 in Z/M2Z that reduces to a given
power of 2 in Z/M1Z. If we can lift equation (7) to a solution modulo M2, then
the right-hand side of the lifted solution will have to be

20 + 21 + 211 + 212 + 215 + 216 + 226 + 227 + 237 + 257 + 265 + 268 mod M2.

If we let z be this sum, then to determine whether there is a lift of equation (7)
to a solution modulo M2, we simply have to determine whether there is an x such
that 3x ≡ z mod M2.

It turns out that the graph of powers of 3 modulo M2 is a tailless loop with cycle
length p − 1 = 9361973132608, so we definitely do not want to find x (if it exists)
by enumeration. Instead, we can find x by using discrete logarithms.

If there is an x with 3x ≡ z mod M2, then that same x satisfies 3x ≡ z mod p for
the prime p = M2/M1. We can find an x that satisfies this congruence if and only
if z ∈ (Z/pZ)∗ lies in the subgroup of (Z/pZ)∗ generated by 3. Using the computer
algebra package Magma, we find that in fact 3 generates the whole group of units,
and Magma very quickly computes a discrete logarithm of z with respect to 3 —
that is, an integer x with 3x ≡ z mod p. In fact, every integer x satisfying

(8) x ≡ 3976447101915 mod (p− 1)

will give a solution to this congruence.
In order for x to give a solution moduloM2, we also need to have 3x ≡ z mod M1.

The graph of powers of 3 modulo M1 is a tailless loop with cycle length 146, and we
find that for x to solve this congruence moduloM1 we need to have x ≡ 57 mod 146.

But 146 is a divisor of p − 1, and reducing equation (8) modulo 146, we find
that it becomes x ≡ 31 mod 146. This is incompatible with the congruence from
the preceding paragraph, so there is no x with 3x ≡ z mod M2. This shows that
equation (7) cannot be lifted to a solution modulo M2.

Let us turn to another example, which demonstrates a different approach to the
lifting problem. We again takeM1 = 439 and start with the solution to equation (1)
modulo M1 given by (7). This time, however, we take p = 1753 and M2 = pM1.
We will try to find a lift of the solution (7) to a solution modulo M2.

The graph of powers of 2 modulo M2 is a tailless loop of cycle length 146, which
is exactly twice as long as the cycle of powers of 2 modulo M1. That means that
there are exactly two powers of 2 modulo M2 that reduce to a given power of 2
modulo M1. In particular, the two lifts to Z/M2Z of the element 2i ∈ Z/M1Z are
2i and 2i+73.

Similarly, we can also compute that there are six lifts of 357 ∈ Z/M1Z to powers
of 3 in Z/M2Z, namely 357, 3203, 3349, 3495, 3641, and 3787.
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We see that every summand on the right-hand side of (7) has two lifts to Z/M2Z,
and the left-hand side has six lifts. In principle, we could compute all 6·212 = 24,576
lifts of the terms appearing in (7) and check to see which combinations of lifts give
us an equality modulo M2, but this would be inefficient... and for larger values
of n, it would become more and more inefficient.

Instead, we use a “meet in the middle” technique. We rewrite equation (7) to
get the following congruence modulo M1:

(9) 357 − 20 − 21 − 211 − 212 − 215 ≡ 216 + 226 + 227 + 237 + 257 + 265 + 268.

There are 6 · 25 = 192 lifts to Z/M2Z of the terms appearing on the left-hand side
of (9), and 27 = 128 lifts of the terms on the right-hand side. We compute the
values (modulo M2) of all of the left-hand lifts, and the values of all of the right-
hand lifts, and then compare the two lists to see whether there are any values in
common. (We can quickly find these common values if we sort each list first.) Each
such common value w gives us one (or more) lifts to Z/M2Z of (9), and hence also
of (7). And clearly, all solutions to (1) modulo M2 that are lifts of (7) will arise in
this way. In point of fact, for this particular example we found eight values of w,
from which we obtained eight solutions to (1) in Z/M2Z that were lifts of (7).

The two techniques we have demonstrated here for lifting solutions of (1) mod-
ulo M1 to solutions modulo M2 are the basis for the procedure for proving Theo-
rem 1.1 that we sketch in the following section.

5. Proof of Theorem 1.1

To prove Theorem 1.1 we consider a sequence of moduliMi, whereMi =
∏

j≤i mi

for the factors m1, . . . , m64 listed in Table 5, so that each Mi divides the next.
As we explained in Section 4, roughly speaking we first compute the solutions to
equation (1) in Z/M1Z; then, using the ideas sketched out in the examples in
Section 4, we lift the solutions to Z/M2Z, then to Z/M3Z, then to Z/M4Z, and
so on, stopping when we have reached an Mi where all of the powers of 2 that
appear in the solutions are determinate. If all the powers of 2 in a solution are
determinate, the solution can be lifted uniquely to a solution in the integers, if it
lifts to a solution at all.

To be more precise: For a given i, we write Mi = 2ui3viM ′
i where M

′
i is coprime

to 6. As we noted in Section 2, there are ui+O2(Mi) distinct powers of 2 moduloMi,
and vi + O3(Mi) distinct powers of 3. For each Mi in turn, we set M = Mi and
compute the solutions (x, a1, . . . , an) to

(10)


3x ≡ 2a1 + · · ·+ 2an mod M

0 ≤ x < v +O3(M)

0 = a1 ≤ · · · ≤ an < u+O2(M),

with the added condition that for every pair (j, k) of indices with j ̸= k, if aj
and ak are both less than ui, then aj ̸= ak. This last condition reflects the fact
that if a < ui, then 2a is a determinate power of 2 in Z/M1Z, and the right-hand
side exponents in the solutions to equation (1) are required to be distinct. (Note
that the upper bounds given in (10) have the effect of keeping us in line with
Convention 2.1.)

ForM1 = 24 ·7·73 we compute the solutions to (10) by brute force. The powers of
2 in Z/M1Z are 20 through 212. To every n-tuple (a1, . . . , an) of exponents between
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Table 2. Data for the factors mi and the moduli Mi =
∏

j≤i mj used in the proof of Theorem 1.1. The notation in
the table headings is as in Notation 2.3.

i mi O2(mi) O2(Mi) O′
3(mi) v2(O′

3(Mi)) i mi O2(mi) O2(Mi) O′
3(mi) v2(O′

3(Mi))

1 24 · 7 · 73 32 32 3 · 22 2 32 113246209 220 · 32 220 · 32 27 · 219 20
2 33 · 19 2 · 32 2 · 32 9 · 21 2 33 319489 212 · 30 220 · 32 39 · 28 20
3 5 · 13 · 37 · 109 22 · 32 22 · 32 27 · 22 2 34 1084521185281 221 · 32 221 · 32 43095 · 222 22
4 241 · 433 23 · 32 23 · 32 135 · 23 3 35 22 — 221 · 32 — 22
5 17 23 · 30 23 · 32 24 4 36 7348420609 222 · 31 222 · 32 73 · 224 24
6 22 — 23 · 32 — 4 37 22 — 222 · 32 — 24
7 38737 23 · 32 23 · 32 2421 · 23 4 38 448203325441 223 · 31 223 · 32 26715 · 221 24
8 97 · 577 24 · 32 24 · 32 3 · 24 4 39 1107296257 224 · 31 224 · 32 11 · 222 24
9 257 · 673 24 · 31 24 · 32 21 · 28 8 40 167772161 224 · 30 224 · 32 5 · 225 25

10 24 — 24 · 32 — 8 41 2 — 224 · 32 — 25
11 193 · 1153 25 · 32 25 · 32 9 · 26 8 42 74490839041 226 · 31 226 · 32 185 · 226 26
12 6337 25 · 32 25 · 32 99 · 24 8 43 2 — 226 · 32 — 26
13 65537 25 · 30 25 · 32 216 16 44 246423748609 226 · 31 226 · 32 27 · 228 28
14 28 — 25 · 32 — 16 45 22 — 226 · 32 — 28
15 641 26 · 30 26 · 32 5 · 27 16 46 29796335617 227 · 31 227 · 32 111 · 224 28
16 769 27 · 31 27 · 32 3 · 24 16 47 3221225473 228 · 31 228 · 32 227 28
17 274177 27 · 30 27 · 32 153 · 25 16 48 77309411329 229 · 31 229 · 32 230 30
18 18433 28 · 32 28 · 32 9 · 29 16 49 22 — 229 · 32 — 30
19 101377 29 · 32 29 · 32 99 · 29 16 50 5469640851457 230 · 31 230 · 32 849 · 230 30
20 2424833 210 · 30 210 · 32 37 · 216 16 51 28114855919617 231 · 31 231 · 32 3273 · 230 30
21 12289 211 · 31 211 · 32 29 16 52 1095981164658689 231 · 30 231 · 32 127589 · 233 33
22 974849 212 · 30 212 · 32 119 · 213 16 53 23 — 231 · 32 — 33
23 114689 213 · 30 213 · 32 7 · 214 16 54 87211 2 · 33 231 · 33 2907 · 20 33
24 39714817 214 · 31 214 · 32 101 · 212 16 55 5566277615617 232 · 33 232 · 33 3 · 232 33
25 1179649 215 · 32 215 · 32 9 · 216 16 56 25048249270273 233 · 33 233 · 33 81 · 234 34
26 7908360193 215 · 32 215 · 32 419 · 220 20 57 2 — 233 · 33 — 34
27 24 — 215 · 32 — 20 58 942556342910977 234 · 33 234 · 33 1143 · 237 37
28 171048961 216 · 32 216 · 32 1305 · 215 20 59 23 — 234 · 33 — 37
29 786433 217 · 31 217 · 32 216 20 60 206158430209 235 · 31 235 · 33 233 37
30 14155777 218 · 32 218 · 32 27 · 218 20 61 2748779069441 237 · 30 237 · 33 5 · 239 39
31 13631489 219 · 30 219 · 32 220 20 62 22 — 237 · 33 — 39
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0 and 12 with 0 = a1 ≤ · · · ≤ an, we can associate the 13-tuple (b0, . . . , b12), where
bi is the number of aj that are equal to i. Then instead of enumerating all of the
n-tuples (a1, . . . , an), we can simply run through all of the 13-tuples (b0, . . . , b12)
of non-negative integers such that

b0 + · · ·+ b12 = n

and

b0 = 1, b1 ≤ 1, b2 ≤ 1, and b3 ≤ 1.

When we find such a 13-tuple with the additional property that
∑

bj2
j is congruent

to 3x modulo M1 for one of the 12 powers of 3 modulo M1, we can compute the
associated n-tuple (a1, . . . , an) and add (x, a1, . . . , an) to our list of solutions of
equation (10) with M = M1. We obtain all solutions to the equation in this way.

Now suppose we have a list of solutions to (10) with M = Mi−1, and we want
to create the list of solutions with M = Mi, where Mi = miMi−1. Write Mi =
2ui3viM ′

i with M ′
i coprime to 6. For each solution (x, a1, . . . , an) to the problem

modulo Mi−1, we go through the following steps.

Step one: Compute the powers of 2 in Z/MiZ that lift the 2aj ∈ Z/Mi−1Z.
For each j = 1, . . . , n, we compute a list Aj of the values of a′ with 0 ≤ a′ <

ui +O2(Mi) such that 2a
′ ≡ 2aj mod Mi−1.

Step two: Compute the number of powers of 3 in Z/MiZ that lift 3x ∈ Z/Mi−1Z.
Let χ denote the number of values of x′ with 0 ≤ x′ < vi + O3(Mi) such that

3x
′ ≡ 3x mod Mi−1. If 3x is a determinate power of 3 modulo Mi−1, then χ = 1.

If 3x is an indeterminate power of 3 modulo Mi, then χ = O3(Mi)/O3(Mi−1).
And if 3x is indeterminate modulo Mi−1 but determinate modulo Mi, then χ =
1 +O3(Mi)/O3(Mi−1).

Step three: Compute the lifted solutions.
We compute lifted solutions in one of two ways; to decide between the two

methods, we check to see whether χ >
∏n

j=1 #Aj and whether mi is a prime
that does not divide 6Mi−1. If both these conditions hold, we say we are in the
unbalanced case, and if not we say we are in the balanced case.

(1) The unbalanced case. In this case we must have χ > 1, so 3x is an inde-
terminate power of 3 modulo Mi−1; also, in this case we have vi = vi−1

because mi ̸= 3. We proceed as follows, for each n-tuple (a′1, . . . , a
′
n) in

A1 × · · · ×An:
(a) Compute the right-hand side sum. Set s :=

∑
j 2

a′
j .

(b) Check to see whether the right-hand side sum is a power of 3 mod-

ulo Mi. To check to see whether there is a power of 3, say 3x
′
, with

3x
′ ≡ s mod Mi, we use discrete logarithms as follows.

Let g be a generator of the group of units of (Z/miZ)
∗, let z be

the smallest non-negative integer with gz ≡ s mod mi, and let y be
the smallest positive integer with gy ≡ 3 mod mi, so that z and y
are discrete logarithms of s and of 3 with respect to the base g. If
there is an x′ such that 3x

′ ≡ s mod Mi, then for this x′ we have
3x

′ ≡ s mod mi, so we must have x′y ≡ z mod (p− 1); for this x′ we

have 3x
′ ≡ s mod 2vi−1Mi−1, so we must have x′ ≡ x mod O3(Mi−1);

and for this x′ we have 3x
′ ≡ 3x ≡ 0 mod 3vi , so we must have x′ ≥ vi.
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14 DIMITROV AND HOWE

Conversely, any x′ that satisfies these three conditions will also satisfy
3x

′ ≡ s mod Mi.
For primes mi of the size we are considering, the computation

of the discrete logarithms z and y is easily done by the computer
algebra package Magma, in which we have written our code. It is also
a straightforward matter to compute the values of x′ that meet the
three conditions, if any exist.

For each x′ that we find, we add (x′, a′1, . . . , a
′
n) to our list of

solutions of equation (10) with M = Mi.
The time required to carry out this step is proportional to the number of
n-tuples (a′1, . . . , a

′
n) that we have to consider, which is

∏
#Ai.

(2) The balanced case. We proceed as follows.
(a) Compute the left-hand side lifts. We compute the set X of the values

of x′ with 0 ≤ x′ < vi +O3(Mi) such that 3x
′ ≡ 3x mod Mi−1.

(b) Group the variables into two balanced sets. Compute the value of k so
that the product #X ·

∏
j≤k #Aj and the product

∏
j>k #Aj are as

close in size as possible.
(c) Compute the lifts of the variables in each grouping. We make two lists.

The first is the list of all (k + 2)-tuples

(3x
′
− 2a

′
1 − · · · − 2a

′
k , x′, a′1, . . . , a

′
k)

for all (x′, a′1, . . . , a
′
k) ∈ X × A1 × · · · × Ak, where we view the first

entry of the tuple as an element of Z/MiZ. The second is the list of
all (n− k + 1)-tuples

(2a
′
k+1 + · · ·+ 2a

′
n , a′k+1, . . . , a

′
n)

for all (a′k+1, . . . , a
′
n) ∈ Ak+1 × · · · ×An, where again we view the first

entry as an element of Z/MiZ.
(d) Compare the lists for matching values. Sort each of these lists accord-

ing to the value of the first entry of each tuple, and then compare the
two sorted lists to find all pairs of elements, one from the first list and
one from the second, whose first entries are equal. Every such pair
gives us a solution to

3x
′
≡ 2a

′
1 + · · ·+ 2a

′
n in Z/MiZ

that reduces to our original solution in Z/Mi−1Z. Add each such
solution to our list of solutions of equation (10) with M = Mi.

The time it takes to carry out this step is proportional to the larger of
#X ·

∏
j≤k #Aj and

∏
j>k #Aj . If these two numbers are somewhat bal-

anced, the time required for this step will be roughly proportional to the
square root of #X ·

∏
j≤n #Aj .

Once we have computed all of the solutions to equation (10) with M = Mi by
this method, we check to see whether all of the powers of 2 that occur anywhere
on our list are determinate. If they are not, then we increase i by 1 and iterate
the procedure. If they are, then for each solution to (10) with M = Mi, we can
check to see whether the (unique) lifts of the terms in the right-hand side of (10) to
powers of 2 in Z add up to a power of 3. In this way, we hope to find all solutions
to (1).
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Table 3. For each n, we list the value of i such that our proce-
dure for solving equation (1) iterated up to the modulus Mi from
Table 5. We also give the wall-clock time it took for the computa-
tion to complete on a 2.8 GHz Quad-Core Intel Core i7 with 16GB
RAM running Magma V2.23-1 on Mac OS 11.2.3. For n ≥ 20 the
computation was split into parts that were run by separate pro-
cesses; the time given is the sum of the wall-clock times for each
process.

n i Time (sec) n i Time (sec)

3 10 0.01 13 37 19
4 10 0.02 14 45 52
5 14 0.04 15 45 145
6 14 0.07 16 59 457
7 14 0.14 17 59 1469
8 14 0.29 18 62 5746
9 14 0.62 19 62 17744
10 27 1.54 20 62 53617
11 37 3.81 21 62 139347
12 37 8.03 22 62 743737

Proof of Theorem 1.1. We ran through the procedure described above for all values
of n from 3 to 22. For each n, the procedure did terminate before we ran out of
values of Mi, so we successfully found all solutions to equation (1) for n ≤ 22. We
found that the binary representation of 3x has at most twenty-two bits equal to 1
exactly when x ≤ 25. □

In Table 5, we give for each n the value of i for which the modulus Mi gave
us all solutions to the equation. We also give the total time for the computation.
As mentioned earlier, the programs we used to implement this computation were
written in Magma and are available as supplementary material attached to the
ArXiv version of this paper, as well as on the second author’s web site.

The procedure we described in the proof of Theorem 1.1 suggests the properties
we looked for when choosing the factors mi out of which our moduli Mi are built.
In the balanced case, we want the sets Aj to be as small as possible, since the
work in the balanced case is roughly on the order of the square root of the product
#X ·

∏
j≤n #Aj . Of course, we’d like #X to be small as well, but since there are

n sets Aj we concentrate first on them.
For a given solution (x, a1, . . . , an) to (10) withM = Mi−1, how large are the Aj?

The answer is analogous to the computation of the value of χ given in Step Two of
our procedure. Suppose we are in the case where mi is odd. If 2

aj is a determinate
power of 2 modulo Mi−1, then #Aj = 1. If 2aj is indeterminate modulo Mi−1,
then it is indeterminate modulo Mi as well because mi is odd, and we have #Aj =
O2(Mi)/O2(Mi−1). If mi is coprime to Mi−1, which is the case for all of the values
we chose, then O2(Mi) is the least common multiple of O2(mi) and O2(Mi−1).

The ideal case would be for O2(mi) to be a divisor of O2(Mi−1), so that the
ratio O2(Mi)/O2(Mi−1) would be 1. The next-best case would be for O2(mi) to
divide 2O2(Mi−1) but not O2(Mi−1), so that O2(Mi)/O2(Mi−1) would be 2. We

16 May 2023 08:21:31 PDT
210723-Howe Version 2 - Submitted to Rocky Mountain J. Math.



16 DIMITROV AND HOWE

were able to stay in these two cases for every i with mi odd, except for i = 54,
where we have O2(Mi)/O2(Mi−1) = 3.

For those i for which O2(Mi)/O2(Mi−1) = 1, we can focus more on the unbal-
anced case. These i give us the opportunity to build up the number of powers of
2 in O′

3(Mi). For example, for i = 13 we have O2(Mi)/O2(Mi−1) = 1, and with
the value of mi that we chose, we increase the 2-part of the order of 3 from 28 in
O′

3(Mi−1) to 216 in O′
3(Mi).

We found our mi mostly by looking for primes p congruent to 1 modulo 2a3b for
various values of a and b, and computing the orders of 2 and 3 in (Z/pZ)∗.

We make one final note about our choice of the mi. We would also like the
number of solutions we have to consider at any given stage to be small. This
becomes especially critical for the larger values of n that we consider. Our choices
for mi, especially for small i, reflect this. For example, we have chosen m4 to be
241 · 433, which puts us in the balanced case with #Aj = 2 for most j and with
#X = 10. After this m4, we have m5 = 17, m6 = 22, and m7 = 38737. For
smaller values of n, it turns out that it would be faster to take m4 = 433 (which
gives us #X = 1), m5 = 17, m6 = 22, and then to add in a factor of 241 before
moving on to m7 = 38737. According to the heuristic mentioned in Step ??, the
time it takes to process a solution in the balanced case is very roughly proportional
to (#X ·

∏
j≤n #Aj)

1/2, so having #X equal to 1 instead of 10 should speed up

this step by a factor of about
√
10. But for large n, this improved speed for i = 4

would be outweighed by the extra time it would take to process the large number of
solutions that would make it through to the next step. To simplify our exposition,
we have simply given one single sequence of mi to use for all n, optimized for large
values of n, even though different choices would have made the program run faster
for smaller n.

6. Proof of Theorem 1.2

The proof of Theorem 1.2 is also computational, and is essentially the same as
that of Theorem 1.1. The sequence of moduli we use is given in Table 6, and the
time it took to run our program for n up to 24 is given in Table 6. The only other
comment we make here is that if n is odd and greater than 1, then there are no
solutions to equation (2), because no power of 2 (other than 1) can be written as
the sum of an odd number of powers of 3. □
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Table 4. Data for the factors mi and the moduli Mi =
∏

j≤i mj

used in the proof of Theorem 1.2. The notation in the table head-
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