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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI
SEQUENCES

MARTIN BUNDER AND JOSEPH TONIEN

ABSTRACT. In this paper, we study the linear space of all two-sided generalized Fibonacci sequences
{Fn}n∈Z that satisfy the recurrence equation of order k: Fn = Fn−1+Fn−2+ · · ·+Fn−k. We give two types
of explicit formula, one is based on generalized binomial coefficients and the other based on generalized
multinomial coefficients.

1. Introduction

The Fibonacci sequence, F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2, have been generalized in many ways. One
of the generalizations [12, 5, 17] is to change the recurrence equation to Fn = αFn−1 +βFn−2, thus
keeping the characteristic equation remained in order 2. Another common generalization is to extend
the recurrence equation to a higher order. For a fixed integer k ≥ 2, a sequence is called a Fibonacci
sequence of order k if it satisfies the following recurrence equation

(1) Fn = Fn−1 +Fn−2 + · · ·+Fn−k.

For some particular values of k, the sequence has a special name. It is called a tribonacci sequence, a
tetranacci sequence and a pentanacci sequence for k = 3,4,5, respectively.

A Fibonacci sequence of order k is uniquely determined by a list of values of k consecutive terms.
For instance, if the values of F0,F1, . . . ,Fk−1 are given then using the recurrence equation (1), we can
work out the values of all other terms Fn for n≥ k, as well as for negative indices n < 0. Here is an
example of a Fibonacci sequence of order 5:

. . . ,F−4 =−2,F−3 = 7,F−2 =−3,F−1 =−4,

F0 = 3,F1 = 1,F2 = 4,F3 = 1,F4 = 5,F5 = 14,F6 = 25, . . . .

Since we have F0 = 0 and F1 = 1 in the original Fibonacci sequence, there are two common ways
to set the initial conditions: (i) F0 = F1 = · · · = Fk−2 = 0, Fk−1 = 1 as in [18, 9, 19, 13, 4, 6]; or (ii)
F0 = 0, F1 = · · ·= Fk−2 = Fk−1 = 1 as in [14, 21, 3]. Another initial condition F0 = F1 = · · ·= Fk−1 = 1
appears in Ferguson [8] arisen in the study of polyphase merge-sorting. Various formulas have been
found for Fibonacci sequences with these three initial conditions which can be grouped into three
types: Binet formula [7, 13], binomial coefficients [8, 1] and multinomial coefficents [18, 13]. We note
that these formulas of Fn are only restricted to the integer indices n≥ 0. The Binet type of formula is
algebraic in nature and remains valid when we extend to negative indices n < 0. However, formulas
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involved binomial coefficients and multinomial coefficents are limited to non-negative indices and it is
not trivial to extend to negative indices.

While most authors only consider sequences Fn with n≥ 0, in this paper, we will study two-sided
sequences. Those are sequences {Fn} where the index n ∈ Z, that is, we allow n to be a negative
integer. Instead of looking for explicit formula for a Fibonacci sequence with a particular initial
condition, our aim is to find explicit formulas for a general Fibonacci sequence that has an arbitrary
initial condition (F0,F1, . . . ,Fk−1). To do that, we consider the set of all Fibonacci sequences of
order k. This forms a k-dimensional linear space. We will study the standard basis of this linear
space which is denoted by B(0),B(1), . . . ,B(k−1). For 0≤ j ≤ k−1, each B( j) is a Fibonacci sequence
whose initial values are all zero except B( j)

j = 1. We will find explicit formula for the basis sequences
B(0),B(1), . . . ,B(k−1), and thus, any Fibonacci sequence F can be determined by a linear combination
F = F0B(0)+F1B(1)+ · · ·+Fk−1B(k−1).

Our aim is to find explicit formulas for two-sided Fibonacci sequences that are expressed in terms
of binomial coefficients and multinomial coefficients, respectively. Since the classical binomial
coefficients and multinomial coefficients are only associated with non-negative integers, to use these
for our two-sided sequences we need to extend the binomial notation and multinomial notation to
include negative integers. To this end, we extend the binomial notation

(n
i

)
to negative values of n and

i, writing this as
〈(n

i

)〉
. Subjected to the two conditions

〈(n
n

)〉
= 1 and

〈(n−1
i

)〉
+
〈(n−1

i−1

)〉
=
〈(n

i

)〉
,

the latter is called the Pascal Recursion equation, the value of the generalized binomial notation is
uniquely determined. In Theorem 7, we will show that

B( j)
n =−∑

i∈Z
(−1)i

〈(
n− ik
i−1

)〉
2n+1−i(k+1)

+ ∑
i∈Z

(−1)i
〈(

n− j−1− ik
i−1

)〉
2n− j−i(k+1) for all n ∈ Z.

We extend the multinomial notation
( n

i1,i2,...,it

)
to negative values of n and i1, . . . , it , writing this as〈( n

i1,i2,...,it

)〉
. The generalization is done as follows.

Using the generalized binomial notation we extend the traditional multinomial notation(
n

i1, i2, . . . , ik

)
=

(
n

i2 + · · ·+ it

)(
i2 + · · ·+ it
i3 + · · ·+ it

)
. . .

(
it−2 + it−1 + it

it−1 + it

)(
it−1 + it

it

)
,

to〈(
n

i1, i2, . . . , it

)〉
=

〈(
n

i2 + · · ·+ it

)〉〈(
i2 + · · ·+ it
i3 + · · ·+ it

)〉
. . .

〈(
it−2 + it−1 + it

it−1 + it

)〉〈(
it−1 + it

it

)〉
.

Using this generalized multinomial notation, in Theorem 12, we will show that

B( j)
n = ∑

n−k− j≤a1+2a2+···+kak≤n−k

〈(
a1 +a2 + · · ·+ak

a1,a2, . . . ,ak

)〉
, for all n ∈ Z.

The rest of the paper is organised as follows. In section 2, we study the linear space of Fibonacci
sequences of order k in general, especially looking at the linear automorphisms of this space. Formulas
based on the generalized binomial notation are derived in section 3. Formulas based on the generalized
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multinomial notation are derived in section 4. Finally, in section 5, we remark on how the generalized
Fibonacci sequences are related to a tiling problem.

2. The Fibonacci linear space of order k

Definition 1. Let k≥ 2 be a fixed integer. A sequence {Fn}n∈Z is called a Fibonacci sequence of order
k if it satisfies the following recurrence equation

(2) Fn = Fn−1 +Fn−2 + · · ·+Fn−k, for all n ∈ Z.

We can see that, given k values (F0,F1, . . . ,Fk−1), then using the Fibonacci recurrence equation (2),
all other values Fn for n ∈ Z are determined uniquely. We will refer to (F0,F1, . . . ,Fk−1) as the initial
values of the sequence. The set of all Fibonacci sequences of order k forms a k-dimensional vector
space (either over the field R or C). We will use Fibonacci(k) to denote this vector space of all Fibonacci
sequences of order k. We now define the standard basis for the Fibonacci vector space Fibonacci(k).

Definition 2. Let k ≥ 2 be a fixed integer. For each integer 0 ≤ j ≤ k− 1, the sequence B( j) ∈
Fibonacci(k) is defined by the initial values

B( j)
n =

{
0, if 0≤ n≤ k−1 and n 6= j
1, if n = j.

The special sequences B(0),B(1), . . . ,B(k−1) defined above form a standard basis for the space
Fibonacci(k). Any member of this Fibonacci vector space is a linear combination of the standard basis
and we have the following theorem.

Theorem 1. Let k ≥ 2 be a fixed integer. Let {Fn}n∈Z be a Fibonacci sequence of order k. Then

Fn =
k−1

∑
j=0

B( j)
n Fj for all n ∈ Z.

By Theorem 1, we can see that in order to determine an explicit formula for any Fibonacci sequence
{Fn}n∈Z, it suffices to derive formula for the k basis sequences B(0),B(1), . . . ,B(k−1).

2.1. Linear operators on the Fibonacci space. Here we list some standard linear operators on two-
sided sequences.

• Identity operator I.
• Left shift operator L: L(X) = Y iff Yn = Xn+1 for all n ∈ Z.
• Right shift operator R: R(X) = Y iff Yn = Xn−1 for all n ∈ Z. The left shift and the right shift

are inverse of each other: LR= RL= I.
• Forward difference operator ∆: ∆(X) = Y iff Yn = Xn+1−Xn for all n ∈ Z. Here ∆ = L−I.
• Backward difference operator ∇: ∇(X) =Y iff Yn = Xn−Xn−1 for all n ∈ Z. Here ∇ = I−R=
I−L−1, L∇ = ∆ and R∆ = ∇.

We have the following theorem concerning the above operators.

Theorem 2. All operators I, L, R, ∆ and ∇ when restricted to the space Fibonacci(k) are linear
automorphisms Fibonacci(k)→ Fibonacci(k) and satisfy the following relations:
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(i) Lk = I+L+L2 + · · ·+Lk−1.
(ii) R= L−1 =−I−L−L2−·· ·−Lk−2 +Lk−1

(iii) Rk = I−R−R2−·· ·−Rk−1.
(iv) L= R−1 = I+R+R2 + · · ·+Rk−1.
(v) Lk+1 = 2Lk−I.
(vi) Rk+1 = 2R−I.
(vii) ∆(I+(k−1)R+(k−2)R2 +(k−3)R3 + · · ·+2Rk−2 +Rk−1) = (k−1)I.
(viii) ∇(kI+(k−1)R+(k−2)R2 + · · ·+2Rk−2 +Rk−1) = (k−1)I.
(ix) ∑

k
i=0
(k+1

i+1

) k−1−2i
k+1 ∆i = 0.

(x) (k−1)I+∑
k
i=1
(k+1

i+1

)
(−1)i∇i = 0.

Proof. It is easy to see that all these operators I, L, R, ∆ and ∇ are linear. Each maps a Fibonacci
sequence to another Fibonacci sequence. The bijectivity of I, L, R is obvious, whereas, the bijectivity
of ∆ and ∇ follows from (vii) and (viii), respectively.

(i) For any X ∈ Fibonacci(k), let (I+ L+ L2 + · · ·+ Lk−1)(X) = Y then Yn = Xn +Xn+1 +Xn+2 +

· · ·+Xn+k−1 = Xn+k, therefore, Y = Lk(X). This proves that, restricted to the linear space Fibonacci(k),
I+L+L2 + · · ·+Lk−1 = Lk.

(ii) For any X ∈ Fibonacci(k), let (−I−L−L2−·· ·−Lk−2+Lk−1)(X) =Y then Yn =−Xn−Xn+1−
Xn+2−·· ·−Xn+k−2 +Xn+k−1 = Xn−1. Hence, Y = R(X), and therefore, −I− L− L2−·· ·− Lk−2 +
Lk−1 = R= L−1.

(iii) For any X ∈ Fibonacci(k), let (I−R−R2−·· ·−Rk−1)(X) = Y then Yn = Xn−Xn−1−Xn−2−
·· ·−Xn−k+1 = Xn−k. Hence, Y = Rk(X), and therefore, I−R−R2−·· ·−Rk−1 = Rk.

(iv) For any X ∈ Fibonacci(k), let (I+R+R2 + · · ·+Rk−1)(X) = Y then Yn = Xn +Xn−1 +Xn−2 +
· · ·+Xn−k+1 = Xn+1. Hence, Y = L(X), and therefore, I+R+R2 + · · ·+Rk−1 = L= R−1.

(v) By (i), Lk+1 = LLk = L(I+L+L2 + · · ·+Lk−1) = L+L2 + · · ·+Lk−1 +Lk = (I+L+L2 + · · ·+
Lk−1)+Lk−I= Lk +Lk−I= 2Lk−I.

(vi) By (iii), Rk+1 = RRk = R(I− R− R2−·· ·− Rk−1) = R− R2− R3−·· ·− Rk−1− Rk = R− R2−
R3−·· ·−Rk−1− (I−R−R2−·· ·−Rk−1) = 2R−I.

(vii) We have

∆(I+(k−1)R+(k−2)R2 +(k−3)R3 + · · ·+2Rk−2 +Rk−1)

= (L−I)(I+(k−1)R+(k−2)R2 +(k−3)R3 + · · ·+2Rk−2 +Rk−1)

= L+(k−2)I−R−R2−·· ·−Rk−2−Rk−1

= (k−1)I by (iv).

(viii) We have

∇(kI+(k−1)R+(k−2)R2 + · · ·+2Rk−2 +Rk−1)

= (I−R)(kI+(k−1)R+(k−2)R2 + · · ·+2Rk−2 +Rk−1)

= kI−R−R2−·· ·−Rk−1−Rk

= (k−1)I by (iii).
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(ix) Substituting L= I+∆ into (i), we have

(I+∆)k = I+(I+∆)+(I+∆)2 + · · ·+(I+∆)k−1

k

∑
i=0

(
k
i

)
∆

i =
k−1

∑
j=0

j

∑
i=0

(
j
i

)
∆

i =
k−1

∑
i=0

k−1

∑
j=i

(
j
i

)
∆

i =
k−1

∑
i=0

(
k

i+1

)
∆

i.

Therefore,

∆
k =

k−1

∑
i=0

((
k

i+1

)
−
(

k
i

))
∆

i =
k−1

∑
i=0

(
k+1
i+1

)
k−1−2i

k+1
∆

i.

(x) Substituting R= I−∇ into (iii), we have

(I−∇)k = I− (I−∇)− (I−∇)2−·· ·− (I−∇)k−1.

So
k

∑
i=1

(
k
i

)
(−∇)i =−

k−1

∑
j=1

j

∑
i=0

(
j
i

)
(−∇)i =−(k−1)I−

k−1

∑
i=1

k−1

∑
j=i

(
j
i

)
(−∇)i

=−(k−1)I−
k−1

∑
i=1

(
k

i+1

)
(−∇)i.

Therefore,

(−∇)k =−(k−1)I−
k−1

∑
i=1

((
k

i+1

)
+

(
k
i

))
(−∇)i

=−(k−1)I−
k−1

∑
i=1

(
k+1
i+1

)
(−∇)i

and
k

∑
i=1

(
k+1
i+1

)
(−∇)i =−(k−1)I. �

Theorem 3. Denote S = B(0)+B(1)+ · · ·+B(k−1) ∈ Fibonacci(k). We have
(i) B( j)−B( j−1) = R j(B(0)) for all 1≤ j ≤ k−1.
(ii) B( j) = ∑

j
i=0 R

i(B(0)) for all 0≤ j ≤ k−1.
(iii) B(0) = R(B(k−1)) and B(k−1) = L(B(0)).
(iv) B( j) = ∑

j
i=0 R

i+1(B(k−1)) for all 0≤ j ≤ k−1.
(v) S = (kI+(k−1)R+(k−2)R2 + · · ·+Rk−1)(B(0)).
(vi) ∇(S) = (k−1)B(0).
(vii) (I−R j+1)(S) = (k−1)B( j) for all 0≤ j ≤ k−1.

Proof. (i) Both B( j)−B( j−1) and R j(B(0)) are members of Fibonacci(k) and their initial values are
equal, therefore, B( j)−B( j−1) = R j(B(0)).

(ii) It follows from (i).
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 6

(iii) By (ii), B(k−1) = ∑
k−1
i=0 R

i(B(0)) and since L = R−1 = I+R+R2 + · · ·+Rk−1 (Theorem 2(iv)),
we have B(k−1) = L(B(0)) and so B(0) = R(B(k−1)).

(iv) It follows from (ii) and (iii).
(v) It follows from (ii).
(vi) It follows from (v) and Theorem 2(viii).
(vii) We have

(k−1)B( j) = (k−1)
j

∑
i=0

Ri(B(0)) by (ii)

=
j

∑
i=0

Ri(∇(S)) by (vi)

=
j

∑
i=0

(Ri(1−R))(S) = (1−R j+1)(S).

Another direct way to prove (vii) is by observing that both (k−1)B( j) and (1−R j+1)(S) are members
of Fibonacci(k) and their initial values are equal. �

3. Explicit formulas based on binomials

In this section, we will derive explicit formula for the two-sided Fibonacci basis sequences B(0),
B(1), . . . ,B(k−1) expressed in terms of binomial coefficients. Since the traditional binomial notation is
associated with non-negative integers, to use these for our two-sided sequences we need to extend the
binomial notation to include negative integers. To this end, we extend the binomial notation

(n
i

)
to

negative values of n and i.
The binomial notation

(n
i

)
can be generalized to

〈(n
i

)〉
for all integers n and i by enforcing two

conditions:

•
〈(n

n

)〉
= 1 for all n ∈ Z; and

• Pascal Recursion relation

(3)
〈(

n−1
i

)〉
+

〈(
n−1
i−1

)〉
=

〈(
n
i

)〉
.

With these two conditions,
〈(n

i

)〉
is uniquely determined as〈(

n
i

)〉
=

{
nn−i

(n−i)! =
n(n−1)(n−2)...(i+1)

(n−i)! , if n≥ i

0, otherwise
(4)

=


(n

i

)
, if n≥ i≥ 0

(−1)i+n
(−i−1
−n−1

)
, if −1≥ n≥ i

0, otherwise

.(5)

Refer to [15, 16] for detailed discussion on various generalizations of binomial notation. The
following table shows some values of

〈(n
i

)〉
:
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 7

〈(n
i

)〉 i
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

n

6 0 0 0 0 0 0 1 6 15 20 15 6 1
5 0 0 0 0 0 0 1 5 10 10 5 1 0
4 0 0 0 0 0 0 1 4 6 4 1 0 0
3 0 0 0 0 0 0 1 3 3 1 0 0 0
2 0 0 0 0 0 0 1 2 1 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
−1 −1 1 −1 1 −1 1 0 0 0 0 0 0 0
−2 5 −4 3 −2 1 0 0 0 0 0 0 0 0
−3 −10 6 −3 1 0 0 0 0 0 0 0 0 0
−4 10 −4 1 0 0 0 0 0 0 0 0 0 0
−5 −5 1 0 0 0 0 0 0 0 0 0 0 0
−6 1 0 0 0 0 0 0 0 0 0 0 0 0

In the following theorem, we define an auxiliary sequence {An}n∈Z which will be useful in the
sequel. Note that this sequence is not a member of the linear space Fibonacci(k). The proof of the
theorem is a consequence of the Pascal Recursion relation (3).

Theorem 4. Let k ≥ 2 and the sequence {An} defined as

(6) An = ∑
i∈Z

(−1)i
〈(

n− ik
i−1

)〉
2n+1−i(k+1) for all n ∈ Z.

Then A0 = A1 = A2 = · · ·= Ak−1 = 0, An = An−1 +An−2 + · · ·+An−k−1 and An = 2An−1−An−k−1.

Proof. Note that the above summation in the formula of An only has a finite number of non-zero
terms. This is because

〈(n−ik
i−1

)〉
= 0 except for 1≤ i≤ n+1

k+1 when n≥ 0 and n+1
k ≤ i≤ n+1

k+1 for n≤−1.
It follows that A0 = A1 = A2 = · · ·= Ak−1 = 0 and Ak =−1.

We have

2An−1−An−k−1 =2∑(−1)i
〈(

n−1− ik
i−1

)〉
2n−i(k+1)

−∑(−1)i
〈(

n− k−1− ik
i−1

)〉
2n−k−i(k+1)

=∑(−1)i
〈(

n−1− ik
i−1

)〉
2n+1−i(k+1)

+∑(−1)i+1
〈(

n−1− (i+1)k
i−1

)〉
2n+1−(i+1)(k+1).
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 8

In the last summation, let i := i+1, we have

2An−1−An−k−1 =∑(−1)i
〈(

n−1− ik
i−1

)〉
2n+1−i(k+1)

+∑(−1)i
〈(

n−1− ik
i−2

)〉
2n+1−i(k+1)

and by the Pascal Recursion (3),

2An−1−An−k−1 =∑(−1)i
〈(

n− ik
i−1

)〉
2n+1−i(k+1)

=An.

Therefore, (Rk+1−2R+I)(A) = 0.
As Rk+1−2R+I= (R−I)(Rk +Rk−1 + · · ·+R−I), it follows that (Rk +Rk−1 + · · ·+R−I)(A) is

a constant sequence, so An−1 +An−2 + · · ·+An−k−An = A0 +A1 + · · ·+Ak−1−Ak = 1. �
Recall that in Theorem 3 we define the sequence S = B(0)+B(1)+ · · ·+B(k−1) ∈ Fibonacci(k). The

following theorem gives an explicit formula for the sequence S.

Theorem 5. Let k≥ 2. The k-order Fibonacci sequence S (determined by the first k terms (1,1, . . . ,1))
satisfies the following formula

(7) Sn = 1− (k−1)∑
i∈Z

(−1)i
〈(

n− ik
i−1

)〉
2n+1−i(k+1) for all n ∈ Z.

Proof. Let S′n denote the sequence on the RHS of (7) then S′n = 1− (k− 1)An where {An} is the
auxiliary sequence defined in Theorem 4. It follows from Theorem 4 that S′0 = S′1 = · · ·= S′k−1 = 1,
S′k = k and S′n = 2S′n−1−S′n−k−1. By Theorem 2(vi), the sequence S also satisfies the same recursion
equation Sn = 2Sn−1−Sn−k−1. Since Si = S′i for all 0≤ i≤ k, it follows that Si = S′i for all i ∈ Z. �

Theorem 6. Let k≥ 2. The k-order Fibonacci sequence S (determined by the first k terms (1,1, . . . ,1))
satisfies the following formula

(8) Sn = 1− (k−1) ∑
1≤i≤ n+1

k+1

(−1)i
(

n− ik
i−1

)
2n+1−i(k+1) for all n≥ 0,

(9) Sn = 1− (k−1) ∑
n+1

k ≤i≤ n+1
k+1

(−1)i
〈(

n− ik
i−1

)〉
2n+1−i(k+1) for all n≤−1.

Proof. Since
〈(n−ik

i−1

)〉
= 0 except for 1≤ i≤ n+1

k+1 when n≥ 0 and n+1
k ≤ i≤ n+1

k+1 for n≤−1, the
theorem follows from Theorem 5. �

Theorem 7. Let k ≥ 2, 0 ≤ j ≤ k− 1. The k-order Fibonacci sequence B( j) satisfies the following
formula

B( j)
n =−∑

i∈Z
(−1)i

〈(
n− ik
i−1

)〉
2n+1−i(k+1)+ ∑

i∈Z
(−1)i

〈(
n− j−1− ik

i−1

)〉
2n− j−i(k+1) for all n ∈ Z.
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 9

Proof. By Theorem 3(vii), B( j) = 1
k−1(I−R j+1)(S), thus, using the formula (7) for Sn in Theorem 5,

we obtain the desired formula for B( j)
n . �

The formula (8) for Sn in Theorem 6 is equivalent to a formula in Ferguson [8] (formula (3) for
Vn,a(n+1)+b). Theorem 7 for the case j = k−1 and positive indices is proved in Benjamin et al. [1].

4. Explicit formula based on multinomials

In this section, we will derive explicit formula for the two-sided Fibonacci basis sequences B(0),
B(1), . . . ,B(k−1) expressed in terms of multinomial coefficients. Since the traditional multinomial
notation is associated with non-negative integers, to use these for our two-sided sequences we need to
extend the multinomial notation to include negative integers. To this end, we extend the multinomial
notation

( n
i1,i2,...,it

)
to negative values of n and i1, i2, . . . , it .

A multinomial is defined as

(i1, i2, . . . , it) =
(

i1 + i2 + · · ·+ it
i1, i2, . . . , it

)
=

(i1 + i2 + · · ·+ it)!
i1!i2! . . . it!

.

We observe that

(i1, i2, . . . , it) =
(

i1 + · · ·+ it
i2 + · · ·+ it

)(
i2 + · · ·+ it
i3 + · · ·+ it

)
. . .

(
it−2 + it−1 + it

it−1 + it

)(
it−1 + it

it

)
.

We will use this formula to extend multinomial notation for negative integers.

Definition 3. Let t ≥ 2 be an integer. For any integers i1, i2, . . . , it , the generalized multinomial
〈(i1, i2, . . . , it)〉 is defined as

〈(i1, i2, . . . , it)〉=
〈(

i1 + i2 + · · ·+ it
i1, i2, . . . , it

)〉
=

〈(
i1 + · · ·+ it
i2 + · · ·+ it

)〉〈(
i2 + · · ·+ it
i3 + · · ·+ it

)〉
. . .

〈(
it−2 + it−1 + it

it−1 + it

)〉〈(
it−1 + it

it

)〉
.

Using the following formula for the generalized binomial coefficient〈(
n
i

)〉
=

{
nn−i

(n−i)! =
n(n−1)(n−2)...(i+1)

(n−i)! , if n≥ i

0, otherwise
,

we obtain the following formula for the generalized multinomial

〈(i1, i2, . . . , it)〉=
〈(

i1 + i2 + · · ·+ it
i1, i2, . . . , it

)〉

=


(i1 + · · ·+ it)i1(i2 + · · ·+ it)i2 . . .(it−1 + it)

it−1

i1!i2! . . . it−1!
, if i1, i2, . . . , it−1 ≥ 0

0, otherwise
.

When t = 2, the Pascal Recursion relation becomes

〈(i1, i2)〉= 〈(i1−1, i2)〉+ 〈(i1, i2−1)〉 .
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 10

For a general t ≥ 2, we have the following generalized Pascal Recursion relation for multinomials:

〈(i1, i2, . . . , it)〉= 〈(i1−1, i2, . . . , it)〉+ 〈(i1, i2−1, . . . , it)〉+ · · ·+ 〈(i1, i2, . . . , it −1)〉 .(10)

Since
〈(n

i

)〉
is non-zero only for n≥ i≥ 0 or−1≥ n≥ i, the generalized multinomial 〈(i1, i2, . . . , it)〉

is non-zero only for i1 + · · ·+ it ≥ i2 + · · ·+ it ≥ ·· · ≥ it−1 + it ≥ it ≥ 0 or −1 ≥ i1 + · · ·+ it ≥
i2 + · · ·+ it ≥ ·· · ≥ it−1 + it ≥ it . Using the formula (5) for

〈(n
i

)〉
, we can derive the formula for the

generalized multinomial in these two separate cases.
Case 1. If i1 + · · ·+ it ≥ i2 + · · ·+ it ≥ ·· · ≥ it−1 + it ≥ it ≥ 0, i.e. i1, i2, . . . , it ≥ 0, then

〈(i1, i2, . . . , it)〉=
〈(

i1 + i2 + · · ·+ it
i1, i2, . . . , it

)〉
=

(
i1 + i2 + · · ·+ it

i1, i2, . . . , it

)
= (i1, i2, . . . , it).

Case 2. If −1≥ i1 + · · ·+ it ≥ i2 + · · ·+ it ≥ ·· · ≥ it−1 + it ≥ it then

〈(i1, i2, . . . , it)〉=
〈(

i1 + i2 + · · ·+ it
i1, i2, . . . , it

)〉
= (−1)i1+···+it−1

(
−it −1

i1, i2, . . . , it−1,−i1−·· ·− it −1

)
= (−1)i1+···+it−1(i1, i2, . . . , it−1,−i1−·· ·− it −1).

Thus, we obtain the following theorem that connects the generalized multinomial to the classical
multinomial.

Theorem 8. For any integer t ≥ 2 and i1, i2, . . . , it ∈ Z, we have

〈(i1, i2, . . . , it)〉

=


(i1, i2, . . . , it), if i1, i2, . . . , it ≥ 0
(−1)i1+···+it−1(i1, i2, . . . , it−1,−i1−·· ·− it −1) if i1, i2, . . . , it−1 ≥ 0 and i1 + · · ·+ it ≤−1
0, otherwise.

In the following theorem, we define an auxiliary sequence {Xn}n∈Z. Note that X is a member of the
linear space Fibonacci(k).

Theorem 9. Let k ≥ 2, c ∈ Z any constant, and

Xn = ∑
a1+2a2+···+kak=n+c

〈(a1,a2, . . . ,ak)〉

= ∑
s1+s2+···+sk=n+c

〈(
s1

s2

)〉〈(
s2

s3

)〉
. . .

〈(
sk−1

sk

)〉
.

Then {Xn}n∈Z is a Fibonacci sequence of order k.

Proof. The two formulas on the RHS are equivalent by using the variables s1 = a1 + · · ·+ ak,
s2 = a2 + · · ·+ak, . . . , sk−1 = ak−1 +ak and sk = ak.

Note that the summation only has a finite number of non-zero terms. This is because 〈(a1,a2, . . . ,ak)〉
is non-zero only if s1 ≥ s2 ≥ ·· · ≥ sk ≥ 0 or−1≥ s1 ≥ s2 ≥ ·· · ≥ sk, and there are only a finite number
of choices for s1,s2, . . . ,sk that have the same sign whose sum s1 + s2 + · · ·+ sk = n+ c is fixed.
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 11

By Pascal Recursion relation (10),

Xn = ∑
a1+2a2+···+kak=n+c

〈(a1−1,a2, . . . ,ak)〉

+ ∑
a1+2a2+···+kak=n+c

〈(a1,a2−1, . . . ,ak)〉

+ · · ·+ ∑
a1+2a2+···+kak=n+c

〈(a1,a2, . . . ,ak−1)〉.

Let a′1 = a1−1, a′2 = a2−1, . . . , a′k = ak−1. We have

Xn = ∑
a′1+2a2+···+kak=n+c−1

〈
(a′1,a2, . . . ,ak)

〉
+ ∑

a1+2a′2+···+kak=n+c−2

〈
(a1,a′2, . . . ,ak)

〉
+ · · ·+ ∑

a1+2a2+···+ka′k=n+c−k

〈
(a1,a2, . . . ,a′k)

〉
= Xn−1 +Xn−2 + · · ·+Xn−k,

therefore, {Xn} is a Fibonacci sequence of order k. �

Theorem 10. Let k ≥ 2. Then

(11) B(0)
n = ∑

a1+2a2+···+kak=n−k
〈(a1,a2, . . . ,ak)〉, for all n ∈ Z.

Proof. Let B′ denote the RHS, then by Theorem 9, B′ is a Fibonacci sequence. We only need to
show its initial values match with those of B(0).

Again, as in the proof of Theorem 9, we use the variables s1 = a1 + · · ·+ak, s2 = a2 + · · ·+ak, . . . ,
sk−1 = ak−1 +ak and sk = ak, then s1 + s2 + · · ·+ sk = n−k. When n = 0, s1 + s2 + · · ·+ sk =−k < 0,
so 〈(a1,a2, . . . ,ak)〉 is non-zero only if −1≥ s1 ≥ s2 ≥ ·· · ≥ sk. The only possibility is s1 = s2 = · · ·=
sk =−1 and this gives a1 = a2 = · · ·= ak−1 = 0, ak =−1 and B′0 = 〈(0, . . . ,0,−1)〉= 1.

When 1≤ n≤ k−1, −(k−1)≤ s1 + s2 + · · ·+ sk = n− k < 0. There are no such −1≥ s1 ≥ s2 ≥
·· · ≥ sk that satisfy this condition, so the summation is empty and B′n = 0 for 1≤ n≤ k−1. �

Theorem 11. Let k ≥ 2. Then

B(k−1)
n = ∑

a1+2a2+···+kak=n−k+1
〈(a1,a2, . . . ,ak)〉, for all n ∈ Z.

Proof. By Theorem 3(iii), B(k−1) = L(B(0)), so using the formula for B(0)
n in Theorem 10 we obtain

the desired formula for B(k−1)
n . �

The formula in Theorem 11 is proved in Miles [18] for natural number n≥ k−1. Our Theorem 11
extends it to n < k−1 and negative integer n.

The Tribonacci sequence {Tn}n≥0 studied in Rabinowitz [20] is a Fibonacci sequence of order k = 3
with initial values T0 = 0, T1 = 1, T2 = 1. Solving for T−1, we have T−1 = 0, so T = L(B(2)). The
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ON THE LINEAR SPACE OF THE TWO-SIDED GENERALIZED FIBONACCI SEQUENCES 12

formula in Theorem 11 is proved in Rabinowitz [20] for k = 3 and n≥ 2. Our Theorem 11 extends it
to all order k ≥ 2 and all index n ∈ Z.

The next theorem give an explicit formula for all basis Fibonacci sequences of order k.

Theorem 12. Let k ≥ 2. For any 0≤ j ≤ k−1,

B( j)
n = ∑

n−k− j≤a1+2a2+···+kak≤n−k
〈(a1,a2, . . . ,ak)〉, for all n ∈ Z.

Proof. By Theorem 3(ii), B( j) = ∑
j
i=0 R

i(B(0)), so using the formula for B(0)
n in Theorem 10 we

obtain the desired formula for B( j)
n . �

Theorem 11 and Theorem 12 give rise to two different formulas for the sequence B(k−1). It would
be interesting to see a combinatorial proof of the equality of these two formulas.

5. A remark on a tiling problem

It is well known that the classical Fibonacci sequence, F0 = 0, F1 = 1, Fn = Fn−1 +Fn−2, has a close
relation with the tiling problem. The value Fn counts the number of tilings of an 1× n-board with
square-tiles 1×1 and domino-tiles 1×2. This is because for n≥ 2, by considering the first tile, if the
first tile is a square then there are Fn−1 ways to cover the remaining strip of length n−1, and if the first
tile is a domino then there are Fn−2 ways to cover the remaining strip of length n−2. That is how the
recursion equation Fn = Fn−1 +Fn−2 arises.

If we allow tiles of length up to k, then the result is a sequence {Cn}n≥0. We have C0 = 0, C1 = 1,
C2 =C0 +C1, C3 =C0 +C1 +C2,. . . , Ck−1 =C0 +C1 + · · ·+Ck−2, and for n≥ k, Cn =Cn−1 +Cn−2 +
· · ·+Cn−k. Of course, if we extend the index to negative integers and set C−1 =C−2 = · · ·=C−(k−2) = 0
then we have the Fibonacci recursion equation Cn =Cn−1 +Cn−2 + · · ·+Cn−k holds for all n≥ 2. This
sequence C is just a left shift of the basis sequence B(k−1). Indeed, C = Rk−2(B(k−1)). Many authors
such as Gabai, Philippou, Muwafi, Benjamin, Heberle, Quinn and Su [19, 9, 1, 2] have studied this
tiling problem and here we decide to use the letter C to denote this sequence since it is related to a
combinatorial problem.

Acknowledgement. The authors wish to thank the anonymous reviewer for many helpful comments
and suggestions that helped us to improve our paper.
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