NON-PERIODICITY OF CAPUTO FRACTIONAL DERIVATIVES

RUI A. C. FERREIRA

Abstract. In this paper we show that a non-constant periodic function cannot have a periodic Caputo fractional derivative by relaxing the conditions appearing in previous works.

1. Preamble

Consider, for $a \in \mathbb{R}, \alpha>0$ and a continuous function $f:[a, \infty) \rightarrow \mathbb{R}$, the Riemann-Liouville fractional integral of order α,

$$
I_{a^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-s)^{\alpha-1} f(s) d s
$$

For a sufficiently smooth function f and $n-1<\alpha<n(n \in \mathbb{N})$, the Riemann-Liouville fractional derivative and the Caputo fractional derivative of order α of f are defined, respectively, by

$$
D_{a^{+}}^{\alpha} f(t)=\left(\frac{d}{d t}\right)^{n}\left[I_{a^{+}}^{n-\alpha} f\right](t),
$$

and

$$
{ }^{C} D_{a^{+}}^{\alpha} f(t)=D_{a^{+}}^{\alpha}\left[f(\cdot)-\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(\cdot-a)^{k}\right](t) .
$$

In recent times engineers and scientists have developed new models that involve fractional differential equations. These models have been applied successfully, e.g., in mechanics (theory of viscoelasticity and viscoplasticity), (bio-)chemistry (modelling of polymers and proteins), electrical engineering (transmission of ultrasound waves), medicine (modelling of human tissue under mechanical loads), etc... (cf. [3]). The mathematical theory of fractional calculus has also been evolving, in several different research directions $[3,5,6]$.

In the past decade some works appeared in the literature showing that a non-constant T-periodic ($T>0$) function cannot have a T-periodic fractional derivative (whether it's the Riemann-Liouville or the Caputo one) [1, 4]. One application of such a result is the following: Consider the dynamical system

$$
\begin{equation*}
{ }^{C} D_{0^{+}}^{\alpha} y(t)=f(t, y(t)), t>0, y(0)=y_{0}, \tag{1}
\end{equation*}
$$

where f is T-periodic with respect to its first argument. Then, there are no non-constant T-periodic solutions to (1). For, if it exists such a solution, then

$$
{ }^{C} D_{0^{+}}^{\alpha} y(t+T)=f(t+T, y(t+T))=f(t, y(t))={ }^{C} D_{0^{+}}^{\alpha} y(t),
$$

i.e., ${ }^{C} D_{0^{+}}^{\alpha} y$ is T-periodic, which contradicts the aforementioned result (cf. [1, 4]).

The (non-)periodicity result proved in $[1,4]$ is obtained imposing harsh restrictions on the functional space or on the order of the derivative. Concretely, in [1], the authors consider only $\alpha \in(0,1)$ and in [4] the authors consider functions $y \in C^{n}[0, \infty)$, with $n-1<\alpha<n$. With respect to the latter we should remind the reader that, under the continuity assumption of f in (1), a solution $y \in C^{n-1}[0, \delta](\delta>0)$ to (1) exists. However, in general, there are no solutions in $C^{n}[0, \delta]$ (cf. [3, Section 6.4]).

Motivated by the reasoning in the previous paragraph, in this work we will prove the following result.

Theorem 1. Let $n-1<\alpha<n(n \in \mathbb{N})$. Consider the functional space $\mathcal{F}=\{f:[0, \infty): \rightarrow$ $\mathbb{R}\}$ s.t. $\left.f \in C^{n-1}[0, \infty),{ }^{C} D_{0^{+}}^{\alpha} f \in C[0, \infty)\right\}$.

If $f \in \mathcal{F}$ is a non-constant T-periodic function $(T>0)$, then ${ }^{C} D_{0^{+}}^{\alpha} f$ is not a T-periodic function.

For the proof of Theorem 1, which we postpone to the next section, we will make use of the following (key) result:

Proposition 1. [2, Lemma A.2] Let $c>a$ be a real number and $u \in L^{1}[a, c]$. Consider the function $\Psi:(c, \infty) \rightarrow \mathbb{R}$ defined by

$$
\Psi(t)=\int_{a}^{c}(t-s)^{\mu} u(s) d s, \quad \mu \in \mathbb{R} \backslash \mathbb{N}
$$

If Ψ is a polynomial over a subinterval $I \subset(c, \infty)$ with a nonempty interior, then $u=0$.
We close this section emphasizing that Theorem 1 furnishes a remarkable difference between the classical (integer order derivative) and the fractional calculus.

2. Proof of Theorem 1 and some observations

Proof. (of Theorem 1) Assume that $f \in \mathcal{F}$ is a non-constant T-periodic function such that

$$
{ }^{C} D_{0^{+}}^{\alpha} f(t)={ }^{C} D_{0^{+}}^{\alpha} f(t+T), \quad \forall t \geq 0 .
$$

Then (cf. the proof of [5, Theorem 2.1]),

$$
\begin{aligned}
& \frac{1}{\Gamma(n-\alpha)} \frac{d}{d t} \int_{0}^{t}(t-s)^{n-\alpha-1}\left[f^{(n-1)}(s)-f^{(n-1)}(0)\right] d s \\
&=\frac{1}{\Gamma(n-\alpha)}\left(\int_{0}^{t+T}(t+T-s)^{n-\alpha-1}\left[f^{(n-1)}(s)-f^{(n-1)}(0)\right] d s\right)^{\prime}
\end{aligned}
$$

where we also have used the chain rule on the right hand side. Integrating both sides of the previous equality, we obtain

$$
\begin{aligned}
& \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t}(t-s)^{n-\alpha-1}\left[f^{(n-1)}(s)-f^{(n-1)}(0)\right] d s \\
&=\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t+T}(t+T-s)^{n-\alpha-1}\left[f^{(n-1)}(s)-f^{(n-1)}(0)\right] d s+c, \quad c \in \mathbb{R}
\end{aligned}
$$

Performing the change of variable $s=r-T$ on the left hand side of the previous equality and recalling that f^{n-1} is also a non-constant T-periodic function on $[0, \infty)$, we deduce that

$$
\begin{aligned}
\frac{1}{\Gamma(n-\alpha)} \int_{T}^{t+T}(t+T-r)^{n-\alpha-1} & {\left[f^{(n-1)}(r)-f^{(n-1)}(0)\right] d r } \\
& =\frac{1}{\Gamma(n-\alpha)} \int_{0}^{t+T}(t+T-s)^{n-\alpha-1}\left[f^{(n-1)}(s)-f^{(n-1)}(0)\right] d s+c
\end{aligned}
$$

or

$$
\frac{1}{\Gamma(n-\alpha)} \int_{0}^{T}(t+T-s)^{n-\alpha-1}\left[f^{(n-1)}(s)-f^{(n-1)}(0)\right] d s=-c, \quad t \geq 0
$$

By Proposition 1 we conclude that $f^{(n-1)}$ is constant on $[0, T]$, property that extends to $[0, \infty)$ by periodicity. Therefore, f is a polynomial function which, by hypothesis, must be constant. This is absurd and, therefore, the theorem is proved.

Remark 1. It is pertinent to highlight the following:
(1) The main result of [1] and [4] relies on the usage of the Laplace transform and the Mellin transform, respectively. The proof of Proposition 1 does not make use of such methods, therefore, being of different nature of the previous known ones in the literature.
(2) In $[1$, Section 4] the authors actually show that the Caputo fractional derivative of a T-periodic function cannot be \tilde{T}-periodic for any period \tilde{T}. It is unclear for us if one can directly apply Proposition 1 to show such result without making use of integral transforms.
(3) Consider the function,

$$
S(x)=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}, \quad x \geq 0
$$

This function is continuous and 2π-periodic on $[0, \infty)$. It has continuous first order derivatives for all $x>0$ except at the points $x=2 m \pi, m=1,2, \ldots$ But, for $0<\alpha<1$, ${ }^{C} D_{0^{+}}^{\alpha} S \in C[0, \infty)\left(c f . \quad\left[7\right.\right.$, Theorem 3] and recall that $S(0)=0$, hence, $\left.{ }^{C} D_{0^{+}}^{\alpha} S=D_{0^{+}}^{\alpha} S\right)$. Therefore, S is a function for which we can apply Theorem 1 (hence, concluding that ${ }^{C} D_{0^{+}}^{\alpha} S$ is not 2π-periodic on $[0, \infty)$) but not [4, Theorem 2].
(4) Let $1<\alpha<2$. We may show that the function $f_{\alpha}(x)=E_{\alpha}\left(-x^{\alpha}\right), x \geq 0$, where $E_{\alpha}(x)=$ $\sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(k \alpha+1)}$ is the Mittag-Leffler function, is not periodic ${ }^{1}\left(\right.$ note that $\left.E_{2}\left(-x^{2}\right)=\cos (x)\right)$. Indeed, the function $f_{\alpha} \in \mathcal{F}$ solves the following fractional initial value problem (cf. [5, Example 4.10]),

$$
\begin{equation*}
{ }^{C} D_{0^{+}}^{\alpha} y(t)=-y(t), \quad y(0)=1, y^{\prime}(0)=0 \tag{2}
\end{equation*}
$$

which proves the claim by Theorem 1. Observe that, since $\alpha \notin(0,1)$ and $f_{\alpha} \notin C^{2}[0, \infty)$, we could not use the results of [1] and [4] to (2).

[^0]
Acknowledgments

Rui A. C. Ferreira was supported by the "Fundação para a Ciência e a Tecnologia (FCT)" through the program "Stimulus of Scientific Employment, Individual Support-2017 Call" with reference CEECIND/00640/2017.

References

[1] I. Area, J. Losada, J. J. Nieto, On fractional derivatives and primitives of periodic functions, Abstr. Appl. Anal. 2014, Art. ID 392598, 8 pp.
[2] L. Bourdin and R. A. C. Ferreira, Legendre's Necessary Condition for Fractional Bolza Functionals with Mixed Initial/Final Constraints, J. Optim. Theory Appl. 190 (2021), no. 2, 672-708.
[3] K. Diethelm, The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
[4] E. Kaslik and S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13 (2012), no. 3, 1489-1497.
[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
[6] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd Edition. World Scientific, 587 pages, 2022.
[7] B. Ross, S. G. Samko and E. R. Love, Functions that have no first order derivative might have fractional derivatives of all orders less than one. Real Anal. Exchange 20 (1994/95), no. 1, 140-157.

Grupo Física-Matemática, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal and Department of Mathematics, University of Beira Interior, Covilhã 6201-001, Portugal. Email: raferreira@fc.ul.pt.

[^0]: ${ }^{1}$ We note that this result follows easilly from, e.g., [3, Theorem 7.5].

