WEAKLY CONFLUENT CLASSES OF DENDRITES

ALEJANDRO ILLANES, VERÓNICA MARTÍNEZ-DE-LA-VEGA, JORGE M. MARTÍNEZ-MONTEJANO, AND DARIA MICHALIK

Abstract

Given continua X, Y and a class \mathcal{F} of maps between continua, define $X \geq_{\mathcal{F}} Y$ if there exists an onto map $f: X \rightarrow Y$ belonging to \mathcal{F}. A map $f: X \rightarrow Y$ is weakly confluent if for each subcontinuum B of Y, there exists a subcontinuum A of X such that $f(A)=B$. In this paper we consider the class \mathcal{W} of weakly confluent maps. Two continua X and Y are \mathcal{W}-equivalent provided that $X \leq_{\mathcal{W}} Y$ and $Y \leq_{\mathcal{W}} X$. We show that any Gehman Dendrite G_{n} is \mathcal{W}-equivalent to any universal dendrite D_{m}. We consider the class $\left[G_{3}\right]_{\mathcal{W}}$ of all dendrites that are \mathcal{W}-equivalent to G_{3}. We characterize the elements of $\left[G_{3}\right]_{\mathcal{W}}$ in two ways: (a) a dendrite D belongs to $\left[G_{3}\right]_{\mathcal{W}}$ if and only if D contains uncountably many endpoints, and (b) a dendrite D belongs to $\left[G_{3}\right]_{\mathcal{W}}$ if and only if D is maximal with respect to the preorder $\leq_{\mathcal{W}}$

1. Introduction

A continuum is a compact connected metric space with more than one point. A subcontinuum of a continuum X is a nonempty closed connected subset of X, so one-point sets in X are subcontinua of X. A map is a continuous function.

Given an onto map $f: X \rightarrow Y$ between continua, we say that f is:

- monotone provided that for each subcontinuum B of $Y, f^{-1}(B)$ is a subcontinuum of X; - confluent if for each subcontinuum B of Y and each component A of $f^{-1}(B), f(A)=B$; and
- weakly confluent if for each subcontinuum B of Y, there is a subcontinuum A of X such that $f(A)=B$.

Note that
monotone \Rightarrow confluent \Rightarrow weakly confluent.
The class of monotone (respectively, confluent and weakly confluent) maps is denoted by \mathcal{M} (respectively, \mathcal{C} and \mathcal{W}). It is easy to show that classes \mathcal{M}, \mathcal{C} and \mathcal{W} are closed under composition.

Date: September 26, 2023.
2010 Mathematics Subject Classification. Primary 54F50; Secondary, 54E40, 54F15, 54F65.
Key words and phrases. Continuum, confluent, dendrite, Gehman dendrite, monotone, universal dendrite, weakly confluent.

This paper was partially supported by the project "Teoría de Continuos e Hiperespacios, dos" (AI-S15492) of CONACyT. The work of the last author was supported by the National Science Centre, Poland, through the Grant Nr rej.: 2021/05/X/ST1/00357.

Given continua X and Y, and a class of maps between continua \mathcal{F}, we define $X \geq_{\mathcal{F}} Y$ if there exists an onto map $f: X \rightarrow Y$ belonging to \mathcal{F}. Two continua X and Y are \mathcal{F}-equivalent (denoted by $X \simeq_{\mathcal{F}} Y$) provided that $X \leq_{\mathcal{F}} Y$ and $Y \leq_{\mathcal{F}} X$. Given a class of continua \mathcal{E}, a continuum $X \in \mathcal{E}$ is \mathcal{F}-isolated in the class \mathcal{E} provided that the following implication holds: if $Y \in \mathcal{E}$ and $X \simeq_{\mathcal{F}} Y$, then X and Y are homeomorphic.

A curve is a 1-dimensional continuum. A dendrite is a locally connected continuum without simple closed curves. For a continuum X and a point $p \in X$ we use the order of p in X in the sense of Menger-Urysohn [4, Appendix A.2], which is denoted by $o(p, X)$. For dendrites $D, o(p, D)$ can be defined as the number of components of $D \backslash\{p\}$ (see [1, p. 2]). Then $o(p, D) \in \mathbb{N} \cup\{\omega\}$. Points of order one in X are end-points, and points of order greater than 2 are ramification points. The set of end-points of X is denoted by $E(X)$ and the set of ramification points of X is denoted by $R(X)$.

Given $n \in \mathbb{N}(n \geq 3)$ and $m \in \mathbb{N} \cup\{\omega\}(m \geq 3)$, two important dendrites we will use are the Gehman dendrite G_{n} and the the universal dendrite D_{m}. The Gehman dendrite G_{n} is characterized by having $E\left(G_{n}\right)$ homeomorphic to the Cantor set; all ramification points of G_{n} are of order n; and $E\left(G_{n}\right)=\mathrm{cl}_{X}\left(R\left(G_{n}\right)\right) \backslash R\left(G_{n}\right)$ (see [5, p. 21], and for a picture of G_{3} see [10, p. 424]). The universal dendrite D_{m} is characterized by having the following properties: all ramification points are of order m and each arc in X contains ramification points [3, Theorem 3.1] (see [7, p. 61] for a picture of D_{4}).

In the realm of dendrites a very complete study of the preorder $\leq_{\mathcal{F}}$ was made by J. J. Charatonik, W. J. Charatonik and J. R. Prajs in [5]. Several families \mathcal{F} were considered, but the most important results are related to monotone and open mappings.

For dendrites, the following facts are known.
(a) if X and Y are dendrites, then $X \simeq_{\mathcal{M}} Y$ if and only if $X \simeq_{\mathcal{C}} Y$ [5, Corollary 5.7],
(b) for every $n, m \in \mathbb{N} \cup\{\omega\}(n, m \geq 3), D_{n} \simeq_{\mathcal{M}} D_{m}, D_{n} \simeq_{\mathcal{C}} D_{m}$ and $D_{n} \simeq_{\mathcal{W}} D_{m}$ [5, Theorem 5.27],
(c) for each $n \geq 3$ and for each $m \in \mathbb{N} \cup\{\omega\}(m \geq 3), G_{n}$ and D_{m} are not \mathcal{M}-equivalent (it follows from [9, Theorem 5.27]),
(d) trees are \mathcal{W}-isolated in the class of trees [8, Theorem 3.3],
(e) A finite graph X is not \mathcal{W}-isolated in the class of all continua if and only if X is either an arc, or a simple closed curve, or contains a cycle (a cycle is a simple closed curve with exactly one ramification point of X), or contains a ramification point contained in two distinct sticks (a stick is an edge joining a ramification point to an end-point) [8, Theorem 3.4],
(f) a dendrite X is \mathcal{M}-isolated in the class of all continua if and only if $R(X)$ is finite [9, Theorem 1.1],
(g) it follows from [2, Theorem 3.2] that: if two dendrites are monotone-equivalent, then they are quasi-homeomorphic (two dendrites X and Y are quasi-homeomorphic if for each $\varepsilon>0$ there are ε-onto maps $f_{\varepsilon}: X \rightarrow Y$ and $\left.g_{\varepsilon}: Y \rightarrow X\right)$. However the converse is not true.

The authors in [5, Theorem 5.27], gave a complete characterization of dendrites which are maximum elements with respect to the preorder $\leq_{\mathcal{M}}$ (equivalently, $\leq_{\mathcal{C}}$ [5, Corollary 5.7]), they showed that a dendrite D satisfies $X \leq_{\mathcal{M}} D$ for every dendrite X if and only if D contains the dendrite L_{0} described in $[5,5.26]$.

The aim of this paper is to characterize the maximal dendrites with respect to the preorder $\leq_{\mathcal{W}}$. We prove that D is one of these dendrites if and only if $E(D)$ is uncountable. The proof of this result is based in the theorem that says that there exists a weakly confluent map f from the Gehman dendrite G_{6} onto the universal dendrite D_{4}. Most of this paper is devoted to give a detailed construction of the map f.

2. Gehman and universal dendrites

Theorem 2.1. For $n \geq 3$ and $m \in\{3,4, \ldots\} \cup\{\omega\}$, the Gehman dendrite G_{n} and the universal dendrite D_{m} are weakly confluent equivalent.

To prove this theorem it is enough to show that there exists a weakly confluent map $f: G_{6} \rightarrow D_{4}$; the argument is as follows: By [1, Corollary 6.10], for all $n, m \geq 3, G_{n}$ is a monotone image of G_{m} and, by [3, Corollary 6.4], for all $k, l \in\{3,4, \ldots\} \cup\{\omega\}, D_{k}$ is monotone equivalent to D_{l}. Let $n \geq 3$ and $m \in\{3,4, \ldots\}$, since monotone maps are weakly confluent, there are weakly confluent maps $g_{0}: D_{m} \rightarrow D_{\omega}$ and $g_{1}: D_{\omega} \rightarrow G_{n}[3$, Proposition 6.2]. Hence, $g=g_{1} \circ g_{0}: D_{m} \rightarrow G_{n}$ is a weakly confluent map. We can take monotone maps $f_{1}: G_{n} \rightarrow G_{6}$ and $f_{2}: D_{4} \rightarrow D_{m}$. Thus, $f_{3}=f_{2} \circ f \circ f_{1}: G_{n} \rightarrow D_{m}$ is weakly confluent. Therefore, G_{n} and D_{m} are weakly confluent equivalent.

This section is devoted to construct a weakly confluent map $f: G_{6} \rightarrow D_{4}$.

For simplicity, the ramification and end points of a dendrite will also be called vertices. We will use the universal dendrite D_{4}. Recall that this dendrite is characterized by the following two properties [6, Theorem 6.2, p. 229]:
(a) each ramification point in D_{4} has order 4 , and
(b) each arc in D_{4} contains points of order 4.

Since the proof that there exists a weakly confluent map from the Gehman dendrite G_{6} onto D_{4} requires some explicit formulas, we start by giving an appropriate description of D_{4}.

We will use the set of dyadic numbers \mathcal{D} in the interval $[0,1]$:

$$
\mathcal{D}=\left\{\frac{k}{2^{m}} \in[0,1]: m \in \mathbb{N} \text { and } k \in\left\{0,1, \ldots, 2^{m}\right\}\right\}
$$

Given $r \in \mathcal{D} \backslash\{0,1\}$, the degree of r is the unique number $g(r) \in \mathbb{N}$ such that $r=\frac{k}{2^{g(r)}}$, where k is odd.

Lemma 2.2. (a) Let $r, s \in \mathcal{D} \backslash\{0,1\}$. Then $r-\frac{s}{2^{g(r)}} \in \mathcal{D} \backslash\{0,1\}$ and $g\left(r-\frac{s}{2^{g(r)}}\right)=g(r)+g(s)$. (b) Let $[a, b]$ be a non-degenerate subinterval of $[0,1]$. Then there exists a unique element $r \in[a, b] \cap(\mathcal{D} \backslash\{0,1\})$ with minimal degree $g(r)$; if $g(r)>1$, then $\frac{1}{2^{g(r)}}>\max \{b-r, r-a\}$, and if $g(r)=1$, then $r=\frac{1}{2}$.

Proof. (a). Since $r \geq \frac{1}{2^{g(r)}}$, we have that $0 \leq r-\frac{1}{2^{g(r)}}<r-\frac{s}{2 g(r)}<r<1$, so $r-\frac{s}{2 g^{g}(r)} \in$ $\mathcal{D} \backslash\{0,1\}$. Let $m=g(r)$ and $n=g(s)$. Consider the dyadic representation of r and s : $r=\frac{r_{1}}{2^{1}}+\cdots+\frac{r_{m}}{2^{m}}, s=\frac{s_{1}}{2^{1}}+\cdots+\frac{s_{n}}{2^{n}}$, where each r_{i} and each s_{i} is in $\{0,1\}$ and $r_{m}=1=s_{n}$. Then $r-\frac{s}{2^{g(r)}}=\frac{r_{1}}{2^{1}}+\cdots+\frac{r_{m}}{2^{m}}-\left(\frac{s_{1}}{2^{m+1}}+\cdots+\frac{s_{n}}{2^{m+n}}\right)=\frac{2^{m+n-1} r_{1}+\cdots+2^{n} r_{m}-2^{n-1} s_{1}-\cdots-2 s_{n-1}-s_{n}}{2^{m+n}}$. This shows that $g\left(r-\frac{s}{2^{g(r)}}\right)=m+n=g(r)+g(s)$.
(b). Suppose to the contrary that $r_{1}<r_{2}$ are elements with minimal degree in $[a, b]$ such that $g\left(r_{1}\right)=g\left(r_{2}\right) \in \mathbb{N}$. Then there exist odd numbers $k_{1}, k_{2} \in\left\{1, \ldots, 2^{g\left(r_{1}\right)}\right\}$ such that $0 \leq r_{1}=\frac{k_{1}}{2^{g\left(r_{1}\right)}}<\frac{k_{1}+1}{2^{g\left(r_{1}\right)}}<\frac{k_{1}+2}{2^{g\left(r_{1}\right)}} \leq \frac{k_{2}}{2^{g\left(r_{2}\right)}}=r_{2} \leq 1$. Since $k_{1}+1$ is even, the number $r_{0}=\frac{k_{1}+1}{2^{g\left(r_{1}\right)}}$ belongs to $[a, b] \cap(\mathcal{D} \backslash\{0,1\})$ and $g\left(r_{0}\right)<g\left(r_{1}\right)$, a contradiction. This proves the uniqueness of the element r of minimal degree. Suppose that $r=\frac{k}{2^{g(r)}}$, with k odd and $g(r)>1$. If $r+\frac{1}{2^{g(r)}}=\frac{k+1}{2^{g(r)}} \leq b$, then $g\left(\frac{k+1}{2^{g(r)}}\right)<g(r)$, this contradicts the choice of r. Thus $b-r<\frac{1}{2^{g(r)}}$. Similarly, $r-a<\frac{1}{2^{g(r)}}$.

2.1. Construction of D_{4}.

When we take points p and q in a dendrite, by $p q$ we denote the unique arc joining them, if $p \neq q$, and $p q=\{p\}$, if $p=q$.

We consider the points $v=d=(0,0), a=(0,1), b=(0,-1), c=(1,0)$ and $e=(-1,0)$ in the Euclidean plane \mathbb{R}^{2}. To construct D_{4}, we start with a cross and then we add smaller and smaller crosses in strategic points and strategic sizes. Points a, b, c, e will be useful for indicating if we will walk up, down, right or left.

Let $\mathcal{B}_{L}=\{d, a, b, c, e\}$ and $\mathcal{B}_{L}^{\prime}=\{a, b, c, e\}$. Set $\beta=\frac{7}{8}$. We use the number β to short segments in order to avoid intersection of paths.

We define two types of elements in the set \mathcal{B}_{L}^{\prime}, we say that a and b are of the vertical type; and c and e are of the horizontal type.

We consider the set D_{4}^{*} of points q in the plane \mathbb{R}^{2} such that either $q=v$ or q is of the following form.

$$
\begin{equation*}
q=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}+t \beta^{m} \frac{r_{m+1} z_{m+1}}{2^{g(1)+\cdots+g\left(r_{m}\right)}} \tag{1}
\end{equation*}
$$

where $m \geq 0, t \in(0,1]$, for each $i \in\{1, \ldots, m+1\}, r_{i} \in \mathcal{D} \backslash\{0,1\}, z_{i} \in \mathcal{B}_{L}^{\prime}$, and, if $i>1, z_{i}$ is of distinct type than z_{i-1}, meaning $z_{i} \in\{a, b\}$ if and only if $z_{i+1} \in\{c, d\}$.

We will give a brief explanation of a point $q \in D_{4}^{*}$.
In the term $\frac{r_{1} z_{1}}{2^{0}}, z_{1}$ indicates one of the four fundamental directions a, b, c or e and the dyadic number r_{1} indicates how much we advance on the direction z_{1}. Similarly, in the term $\beta \frac{r_{2} z_{2}}{2 g\left(r_{1}\right)}, z_{2}$ indicates the direction in which we move when we are standing on point $v+\frac{r_{1} z_{1}}{2^{2}}$, we are asking that z_{2} is of different type than z_{1}, so we change direction, and $\beta \frac{r_{2}}{2^{g\left(r_{1}\right)}}$ indicates how much we move in that direction. This movement is limited by the factor $\frac{1}{2^{g\left(r_{1}\right)}}$. For example if $r_{1}=\frac{1}{2}$, since $r_{2} \in(0,1)$, the length of this movement is less than $\frac{\beta}{2}$, if $r_{1} \in\left\{\frac{1}{4}, \frac{3}{4}\right\}$, is less than $\frac{\beta}{4}$, if $r_{1} \in\left\{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\right\}$, is less than $\frac{\beta}{8}$, etcetera. The factor β allows us to avoid intersections of paths, so the arcs from the point v to any point in D_{4}^{*} is unique. We continue
until we use the last term: $t \beta^{m} \frac{r_{m+1} z_{m+1}}{2 g(1)+\cdots+g\left(r_{m}\right)}$, here the number t indicates that we run on a complete segment.

On Figure 1, we illustrate the set covered by the elements in D_{4}^{*} with $m=0$, and we also illustrate some elements with $m=1$. In fact the complete elements for $m=1$ include countably many segments perpendicular to the first cross.

Figure 1. $m=0$ and $m=1$
In the case that q is written in the form (1), define the number $m(q)=m$ and the point

$$
w(q)=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}} .
$$

Notice that $m(q), w(q)$ and z_{m+1} are uniquely determined by q. So we can write

$$
q=w(q)+t \beta^{m(q)} \frac{r_{m(q)+1} z_{m(q)+1}}{2^{g(1)+\cdots+g\left(r_{m(q)}\right)}} .
$$

The expression in (1) is not unique since the number $\operatorname{tr}_{m(q)+1}$ can be written in many ways. Observe that D_{4}^{*} includes exactly all points in D_{4} of order 2 or 4 . That is, $D_{4} \backslash D_{4}^{*}=E\left(D_{4}\right)$ $\left(E\left(D_{4}\right)\right.$ is the set of end-points of $\left.D_{4}\right)$. Then D_{4}^{*} is dense in D_{4}. The set of ramification points of D_{4} is the set $R\left(D_{4}\right)$ of points $p \in D_{4}$ such that either $p=v$ or p is of the form

$$
\begin{equation*}
p=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}+\beta^{m} \frac{r_{m+1} z_{m+1}}{2^{g(1)+\cdots+g(m)}} \tag{2}
\end{equation*}
$$

where $m, r_{1}, \ldots, r_{m+1}$ and z_{1}, \ldots, z_{m+1} satisfy the conditions described previously. Observe that the expression for points in $R\left(D_{4}\right)$ is unique.

Given $q \in D_{4}^{*}$, in the following definition we give name the segments we use to go from v to q.
Definition 2.3. Given $q \in D_{4}^{*}$ (written as in (1)), define

$$
\begin{aligned}
& L_{1}(q)=\left\{v+s \frac{r_{1} z_{1}}{2^{0}}: s \in(0,1]\right\}, \\
& L_{2}(q)=\left\{v+\frac{r_{1} z_{1}}{2^{0}}+s \beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}: s \in(0,1]\right\}, \\
& \quad \vdots \\
& L_{m}(q)=\left\{v+\frac{r_{1} z_{1}}{2^{0}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+s \beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}: s \in(0,1]\right\} \text { and } \\
& L_{m+1}(q)=\left\{w(q)+s t \beta^{m} \frac{r_{m+1} \frac{1}{2 g+1} r^{g\left(r_{1}\right)+\cdots+g\left(r_{m}\right)}}{s \in(0,1]\} .}\right.
\end{aligned}
$$

Observe that each set $L_{i}(q)$ is homeomorphic to the interval $(0,1]$ and the unique arc in D_{4} joining v and q (respectively, v and $\left.w(q)\right)$ is $v q=\{v\} \cup L_{1}(q) \cup \cdots \cup L_{m+1}(q)$ (respectively, $\left.\{v\} \cup L_{1}(q) \cup \cdots \cup L_{m}(q)\right)$. Observe that the rays $L_{1}(q), \cdots, L_{m+1}(q)$ are uniquely determined by q.

2.2. Description of the dendrite X.

Recall that the Gehman dendrite G_{3} is characterized as the dendrite satisfying that its set of end-points is homeomorphic to the Cantor set, each ramification point is of order three and $E\left(G_{3}\right)=\mathrm{cl}_{G_{3}}\left(R\left(G_{3}\right)\right) \backslash R\left(G_{3}\right)$ [11, p. 100], see [12, p. 203], for a picture. Similarly, the Gehman dendrite of order 6 , denoted by G_{6}, is characterized as the dendrite satisfying that its set of end-points is homeomorphic to the Cantor set, each ramification point is of order 6 and $E\left(G_{6}\right)=\mathrm{cl}_{G_{6}}\left(R\left(G_{6}\right)\right) \backslash R\left(G_{6}\right)$.

Instead of working directly with G_{6}, it is convenient for us to take G_{6} but transforming (exactly) one point of order 6 into a point of order 5 . This new space is named X.

Fix a ramification point $v_{G_{6}}$ of G_{6}, let $C_{1}^{*}, \ldots, C_{6}^{*}$ be the components of $G_{6} \backslash\left\{v_{G_{6}}\right\}$. Consider the continuum X obtained by shrinking the set $C_{1}^{*} \cup\left\{v_{G_{6}}\right\}$ into a point. Let $V \in X$ be the point corresponding to $C_{1}^{*} \cup\left\{v_{G_{6}}\right\}$. Then X is a dendrite such that its set of end-points is homeomorphic to the Cantor set, the point V has order 5 , the rest of its ramification points are of order 6 and $E(X)=\operatorname{cl}_{X}(R(X)) \backslash R(X)$. Observe that X is a monotone (and then weakly confluent) image of $G_{6}\left(X \leq_{\mathcal{W}} G_{6}\right)$. We establish the following conventions on dendrite X.

As we did with D_{4}, we will describe X by starting at the vertex V, and then giving five possible directions (D, A, B, C and E) indicating the ways we can walk. So, the vertices of X will be described in the following way: V is the first vertex, $V D, V A, V B, V C$ and $V E$ are the five vertices adjacent to V in X. Besides V, the vertices adjacent to $V A$, are $V A D$, $V A A, V A B, V A C$ and $V A E$, and we continue in this way.

Formally: fix five distinct labels D, A, B, C and E (all different from V). Let $\mathcal{B}_{C}=$ $\{D, A, B, C, E\}$ and $\mathcal{B}_{C}^{\prime}=\{A, B, C, E\}$. The ramification points of X are all the finite sequences of the form:

$$
T=Z_{0} Z_{1} Z_{2} \ldots Z_{m}
$$

where $m \geq 0, Z_{0}=V$ and for each $i \in\{1, \ldots, m\}, Z_{i} \in \mathcal{B}_{C}$.

The maximal free arcs in X are the arcs of the form $T_{m} T_{m+1}$, where $T_{m}=Z_{0} Z_{1} Z_{2} \ldots Z_{m}$ and $T_{m+1}=Z_{0} Z_{1} Z_{2} \ldots Z_{m} Z_{m+1}$. Then the arc $V T_{m}$ is the union of the arcs $Z_{0}\left(Z_{0} Z_{1}\right)$, $\left(Z_{0} Z_{1}\right)\left(Z_{0} Z_{1} Z_{2}\right), \ldots,\left(Z_{0} \ldots Z_{m-1}\right)\left(Z_{0} \ldots Z_{m}\right)$. We fix a one-to-one onto map

$$
\sigma\left(T_{m+1}\right):[0,1] \rightarrow T_{m} T_{m+1}
$$

such that $\sigma\left(T_{m+1}\right)(0)=T_{m}$ and $\sigma\left(T_{m+1}\right)(1)=T_{m+1}$. The set $\sigma\left(T_{m+1}\right)([0,1])$ is the arc $T_{m} T_{m+1}$ in X that joins T_{m} and T_{m+1}. Let

$$
\eta\left(T_{m+1}\right): T_{m} T_{m+1} \rightarrow[0,1]
$$

be the inverse mapping of $\sigma\left(T_{m+1}\right)$.

Figure 2. X_{3}
The end-points of X are the infinite sequences of the form:

$$
R=Z_{0} Z_{1} Z_{2} \ldots
$$

where $Z_{0}=V$ and for each $i \in \mathbb{N}, Z_{i} \in \mathcal{B}_{C}$. The $\operatorname{arc} V R$ in X is given by:

$$
V R=T_{0} T_{1} \cup T_{1} T_{2} \cup T_{2} T_{3} \cup \cdots
$$

where for each $m \geq 0, T_{m}=Z_{0} Z_{1} \ldots Z_{m}$. Then $T_{0}=Z_{0}=V$ and

$$
X=\bigcup\left\{T_{0} R: R \text { is an end-point of } \mathrm{X}\right\}
$$

For each $m \geq 0$, let

$$
X_{m}=\left\{T_{0} T_{m} \subseteq X: T_{m}=Z_{0} Z_{1} Z_{2} \ldots Z_{m} \text { and, for each } i \in\{1, \ldots, m\}, Z_{i} \in \mathcal{B}_{C}\right\}
$$

In Figure 2, we illustrate the set X_{3}.
For the definition of D_{4}, we used the set $\mathcal{B}_{L}=\{d, a, b, c, e\}$. Recall that the elements of the set \mathcal{B}_{C} are denoted with the capital letters A, B, C, D, E we will use the following correspondence: $D \rightarrow d, A \rightarrow a, B \rightarrow b, C \rightarrow c, E \rightarrow e$. When we denote an element in \mathcal{B}_{C} by Z_{i}, we consider the element $z_{i} \in \mathcal{B}_{L}$ defined with the previous correspondence for
the element Z_{i}. Conversely, for each element $z \in \mathcal{B}_{L}$, we define the corresponding element $Z \in \mathcal{B}_{C}$.

We define two types of elements in the set \mathcal{B}_{C}^{\prime}, we say that A and B are of the vertical type; and C and E are of the horizontal type.

2.3. Definition of f.

For a vertex $T_{m+1}=Z_{0} Z_{1} \ldots Z_{m+1}$ of X, define a sequence $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m+1}$ as follows. Take $i \in\{1,2, \ldots, m+1\}$.
(a) If $Z_{i}=D$, let $\lambda_{i}=0$;
(b) if $Z_{i} \neq D$ and $\left\{Z_{0}, \ldots, Z_{i-1}\right\}=\{D\}$, let $\lambda_{i}=1$;
(c) if $Z_{i} \neq D$ and $\left\{Z_{0}, \ldots, Z_{i-1}\right\} \neq\{D\}$, let $j_{0}=\max \left\{j \in\{1, \ldots, i-1\}: Z_{j} \neq D\right\}$ and define $\lambda_{i}=\lambda_{j_{0}}$, in the case that Z_{i} is of the same type than $Z_{j_{0}}$; and $\lambda_{i}=\beta \lambda_{j_{0}}$ (recall that $\beta=\frac{7}{8}$), in the case that Z_{i} is of distinct type than $Z_{j_{0}}$. Then each λ_{i} belongs to the set $\left\{\beta^{k}: k \in \mathbb{N}\right\} \cup\{0,1\}$
Define $f: X \rightarrow \mathbb{R}^{2}$ as follows. Set $f(V)=v$, and given a vertex $T_{m+1}=Z_{0} Z_{1} \ldots Z_{m+1}$ of X and a point $p \in T_{m} T_{m+1}$, where $T_{m}=Z_{0} Z_{1} \ldots Z_{m}$, define

$$
\begin{equation*}
f(p)=v+\frac{\lambda_{1} z_{1}}{2^{1}}+\frac{\lambda_{2} z_{2}}{2^{2}}+\cdots+\frac{\lambda_{m} z_{m}}{2^{m}}+\eta\left(T_{m+1}\right)(p) \frac{\lambda_{m+1} z_{m+1}}{2^{m+1}} \tag{3}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{m+1}$ are defined as previously, for the sequence T_{m+1}.
Given an end-point $p=Z_{0} Z_{1} Z_{2} \ldots$ of X, define

$$
f(p)=v+\frac{\lambda_{1} z_{1}}{2^{1}}+\frac{\lambda_{2} z_{2}}{2^{2}}+\frac{\lambda_{3} z_{3}}{2^{3}}+\cdots
$$

where for each $m \in \mathbb{N}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are defined as previously for the sequence $T_{m}=$ $Z_{0} Z_{1} \ldots Z_{m}$. Observe that each number λ_{i} is defined using only the elements Z_{1}, \ldots, Z_{i}, and it is independent of any number $k \geq i$.

Given $m \in \mathbb{N}$, observe that

$$
\begin{gathered}
f\left(X_{m}\right)=\left\{f\left(T_{0}\left(Z_{0} Z_{1} \ldots Z_{m}\right)\right): Z_{0} Z_{1} Z_{2} \ldots Z_{m} \text { is a ramification point of } X\right\} \\
=\left\{f(p): p \in T_{n-1} T_{n}, 1 \leq n \leq m \text { and } T_{n} \in R(X)\right\}
\end{gathered}
$$

is the minimum tree in \mathbb{R}^{2} containing the points in the set

$$
f\left(X_{m}\right)=\left\{f\left(Z_{0} Z_{1} \ldots Z_{m}\right): Z_{0} Z_{1} Z_{2} \ldots Z_{m} \text { is a ramification point of } X\right\} .
$$

Since $\left\{Z_{0} Z_{1}: Z_{1} \in \mathcal{B}_{C}\right\}=\{V D, V A, V B, V C, V E\}$, we have that $f\left(X_{1}\right)$ is the minimum tree in the plane \mathbb{R}^{2} containing the points $v, v+\frac{a}{2}, v+\frac{b}{2}, v+\frac{c}{2}$ and $v+\frac{e}{2}$.

Observe that $f\left(X_{2}\right)$ is the minimum tree in the plane containing the points:
$v, v+\frac{a}{2}, v+\frac{b}{2}, v+\frac{c}{2}, v+\frac{e}{2}$, (they come from $V D, V A, V B, V C, V E$, or $V D D, V A D$, $V B D, V C D, V E D) ;$
$v+\frac{a}{4}, v+\frac{b}{4}, v+\frac{c}{4}, v+\frac{e}{4}$, (from $\left.V D A, V D B, V D C, V D E\right) ;$
$v+\frac{3 a}{4}, v+\frac{3 b}{4}, v+\frac{3 c}{4}, v+\frac{3 e}{4}$, (from $\left.V A A, V B B, V C C, V E E\right) ;$
$v+\frac{a}{4}, v+\frac{b}{4}, v+\frac{c}{4}, v+\frac{e}{4}$, (from $\left.V A B, V B A, V C E, V E C\right) ;$
$v+\frac{a}{2}+\beta \frac{c}{4}, v+\frac{a}{2}+\beta \frac{e}{4}, v+\frac{b}{2}+\beta \frac{c}{4}, v+\frac{b}{2}+\beta \frac{e}{4}, v+\frac{c}{2}+\beta \frac{a}{4}, v+\frac{c}{2}+\beta \frac{b}{4}, v+\frac{e}{2}+\beta \frac{a}{4}, v+\frac{e}{2}+\beta \frac{b}{4}$ (from $V A C, V A E, V B C, V B E, V C A, V C B, V E A, V E B$).

In Figure 3 we picture the sets $f\left(X_{1}\right), f\left(X_{2}\right)$ and $f\left(X_{3}\right)$.

Figure 3. $f\left(X_{1}\right), f\left(X_{2}\right)$ and $f\left(X_{3}\right)$.
Clearly f is continuous.
The following lemma is an easy consequence of the definitions.
Lemma 2.4. Let $T_{m+1}=Z_{0} Z_{1} \ldots Z_{m+1}$ be a vertex of X and $T_{m}=Z_{0} Z_{1} \ldots Z_{m}$. Then:
(a) $f\left(T_{m}\right)=v+\frac{\lambda_{1} z_{1}}{2^{1}}+\frac{\lambda_{2} z_{2}}{2^{2}}+\cdots+\frac{\lambda_{m} z_{m}}{2^{m}}$,
(b) if $Z_{m+1}=D$, then $f\left(T_{m} T_{m+1}\right)=\left\{f\left(T_{m}\right)\right\}=\left\{f\left(T_{m+1}\right)\right\}=f\left(T_{m}\right) f\left(T_{m+1}\right)$,
(c) if $Z_{m+1} \neq D$, then $f\left(T_{m} T_{m+1}\right)=f\left(T_{m}\right) f\left(T_{m+1}\right)$. That is, $f\left(T_{m} T_{m+1}\right)=\left\{v+\frac{\lambda_{1} z_{1}}{2^{1}}+\right.$ $\left.\frac{\lambda_{2} z_{2}}{2^{2}}+\cdots+\frac{\lambda_{m} z_{m}}{2^{m}}+t \frac{\lambda_{m+1} z_{m+1}}{2^{m+1}} \in D_{4}: t \in[0,1]\right\}$.

Lemma 2.5. Let $T=Z_{0} Z_{1} \ldots Z_{m}$ be a vertex of X and $Z \in \mathcal{B}^{\prime}{ }_{C}$. Suppose that $\left\{W_{1}, \ldots, W_{n}\right\} \subset$ $\{D, Z\}$. Define the sequence $S=Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{n}$. For each $i \in\{1, \ldots, n\}$, let $s_{i}=0$, if $W_{i}=D$; and $s_{i}=1$, if $W_{i}=Z$. Set $r=\frac{s_{1}}{2^{1}}+\cdots+\frac{s_{n}}{2^{n}} \in \mathcal{D}$. Then:
(a) if $\left\{W_{1}, \ldots, W_{n}\right\}=\{D\}$, then $f(T S)=\{f(T)\}$;
(b) if $Z \in\left\{W_{1}, \ldots, W_{n}\right\}$, then $f(T S)=f(T) f(S)$; and
(c) if Z and Z_{m} are of different type and $Z_{m} \neq D$, then $f(S)=f(T)+\frac{\beta \lambda_{m}}{2^{m}} r z$, where λ_{m} is defined for the sequence T.

Proof. (a) follows from Lemma 2.4. To prove (b) and (c), suppose that $W_{i_{1}}, \ldots, W_{i_{k}}$ are all the elements in $\left\{W_{1}, \ldots, W_{n}\right\}$ which are equal to Z, where $k \in \mathbb{N}$ and $i_{1}<\cdots<i_{k}$. For each $l \in\{1, \ldots, k\}$, let $S_{l}=Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{i_{l}}$.

Given $i \in\{1, \ldots, n\}$, if $i \notin\left\{i_{1}, \ldots, i_{k}\right\}$, then $w_{i}=d=(0,0)$ and $\lambda_{m+i}=0$; if $i \in$ $\left\{i_{1}, \ldots, i_{k}\right\}$, then $w_{i}=z$ and $\lambda_{m+i}=\lambda_{m+i_{1}}$ (since there are not changes of types). Thus, by the definition of f, we obtain that

$$
\begin{align*}
f\left(S_{l}\right) & =v+\frac{\lambda_{1} z_{1}}{2^{1}}+\frac{\lambda_{2} z_{2}}{2^{2}}+\cdots+\frac{\lambda_{m} z_{m}}{2^{m}}+\frac{\lambda_{m+i_{1}} z}{2^{m+i_{1}}}+\cdots+\frac{\lambda_{m+i_{1}} z}{2^{m+i_{l}}} \tag{4}\\
& =f(T)+\frac{\lambda_{m+i_{1}}}{2^{m}}\left(\frac{1}{2^{i_{1}}}+\cdots+\frac{1}{2^{i_{l}}}\right) z .
\end{align*}
$$

In particular, if Z is of different type of Z_{m}, by (a) we have that $f(S)=f\left(S_{k}\right)=f(T)+$ $\frac{\lambda_{m+i_{k}}}{2^{m}} r z=f(T)+\frac{\beta \lambda_{m}}{2^{m}} r z\left(\lambda_{m+i_{1}}=\cdots=\lambda_{m+i_{k}}=\lambda_{m} \beta\right.$ since there is exactly one change of type from m to $m+i_{1}$).

Observe that Lemma 2.4 implies that

$$
\begin{aligned}
f\left(T S_{1}\right) & =f\left(T\left(Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{i_{1}-1}\right) \cup\left(Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{i_{l}-1}\right) S_{1}\right) \\
& =f\left(T\left(Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{i_{1}-1}\right)\right) \cup f\left(\left(Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{i_{l}-1}\right) S_{1}\right) \\
& =\{f(T)\} \cup f\left(Z_{0} Z_{1} \ldots Z_{m} W_{1} \ldots W_{i_{l}-1}\right) f\left(S_{1}\right)=f(T) f\left(S_{1}\right) .
\end{aligned}
$$

By (4), this arc is the set $J_{1}=\left\{f(T)+t \frac{\lambda_{m+i_{1}} z}{2^{m}}\left(\frac{1}{2^{i_{1}}}\right): t \in[0,1]\right\}$. Similarly, $f\left(S_{1} S_{2}\right)=$ $f\left(S_{1}\right) f\left(S_{2}\right)$ and by (4), this arc is the set $J_{2}=\left\{f(T)+\frac{\lambda_{m+i_{1}} z}{2^{m}}\left(\frac{1}{2^{i_{1}}}\right)+t \frac{\lambda_{m+i_{2}} z}{2^{m}}\left(\frac{1}{2^{i_{1}}}+\frac{1}{2^{i_{2}}}\right)\right.$: $t \in[0,1]\}$. Since $J_{1} \cap J_{2}=\left\{f(T)+\frac{\lambda_{m+i_{1}} z}{2^{m}}\left(\frac{1}{2^{i_{1}}}\right)\right\}=\left\{f\left(S_{1}\right)\right\}$, we conclude that $f\left(T S_{2}\right)=$ $f\left(T S_{1}\right) \cup f\left(S_{1} S_{2}\right)=J_{1} \cup J_{2}=f(T) f\left(S_{2}\right)$.

Inductively, the proof of (b) can be completed.
We have described the elements of \mathcal{D}_{4}^{*} in (1) and we defined f with the expression in (3). We see how they are related.

First, we show how to associate a finite sequence of elements of \mathcal{B}_{C} to an element of the form $r z$, where $r \in \mathcal{D} \backslash\{0,1\}$ and $z \in \mathcal{B}_{L}^{\prime}$. Let $Z \in \mathcal{B}_{C}^{\prime}$ be the element associated to z. Suppose that $r=\frac{k}{2^{n}}$, where k is odd. We write r using dyadic notation, that is, we write $r=\frac{s_{1}}{2^{1}}+\cdots+\frac{s_{n}}{2^{n}}$, where $s_{n}=1$ and for each $i \in\{1, \ldots, n-1\}, s_{i} \in\{0,1\}$. Observe that $g(r)=n$. We define the sequence $Z_{1} \ldots Z_{n}$ by making $Z_{i}=D$, if $s_{i}=0$; and $Z_{i}=Z$, if $s_{i}=1$. Observe that $Z_{n}=Z$.

Given an element of the form $t z$, where $t \in(0,1]$ and $z \in \mathcal{B}^{\prime}{ }_{L}$, we associate to $t z$ a sequence $Z_{1} Z_{2} \ldots$ of elements in the set $\{D, Z\}$ in a similar way. That is, we start writing $t=\frac{s_{1}}{2^{1}}+\cdots$ and we define $Z_{i}=Z$ if $s_{i}=1$, otherwise $Z_{i}=0(i \geq 1)$. In the case that t has two dyadic representations, we simply choose the finite one (the one with a tail of zeros).
Lemma 2.6. Let $r \in \mathcal{D} \backslash\{0,1\}, z \in \mathcal{B}_{L}^{\prime}$ and $Z_{1} \ldots Z_{n}$ be the sequence associated to $r z$. Then $z_{n}=z$ and $r z=\frac{z_{1}}{2^{1}}+\cdots+\frac{z_{n}}{2^{n}}$.
Proof. We have observed that $Z_{n}=Z$, so $z_{n}=z$. As before, we write $r=\frac{s_{1}}{2^{1}}+\cdots+\frac{s_{n}}{2^{n}}$. Given $i \in\{1, \ldots, n\}$, if $s_{i}=0$, then $Z_{i}=D$, so $(0,0)=d=z_{i}$, and $z_{i}=0 z=s_{i} z$; if
$s_{i}=1$, then $Z_{i}=Z$, so $z_{i}=z=s_{i} z$. In both cases, $z_{i}=s_{i} z$. Therefore $\frac{z_{1}}{2^{1}}+\frac{z_{2}}{2^{2}}+\cdots+\frac{z_{n}}{2^{n}}=$ $\frac{s_{1} z}{2^{1}}+\frac{s_{2} z}{2^{2}}+\cdots+\frac{s_{n} z}{2^{n}}=r z$.
Lemma 2.7. Let r_{1}, \ldots, r_{m} in $\mathcal{D} \backslash\{0,1\}$ and z_{1}, \ldots, z_{m} in \mathcal{B}_{L}^{\prime}. For each $k \in\{1, \ldots, m\}$, let $Z_{1}^{(k)} \ldots Z_{j_{k}}^{(k)}$ be the sequence in \mathcal{B}_{C} associated to $r_{k} z_{k}$. Suppose that for each $k \in\{1, \ldots, m-1\}$, z_{k+1} is of distinct type than z_{k}. Let $T=Z_{0} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} \ldots Z_{1}^{(m)} \ldots Z_{j_{m}}^{(m)}$. Then
(a) $f(T)=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}$, where $j_{i}=g\left(z_{i}\right)$, for each i,
(b) for each $k \in\{1, \ldots, m\}$, the contribution of the subsequence $Z_{1}^{(k)} \ldots Z_{j_{k}}^{(k)}$ to the sum that defines $f(T)$ is the term $\frac{\beta^{k-1} r_{k} z_{k}}{2^{j_{1}+\cdots+j_{k-1}}}$,
(c) if $\lambda_{1}, \ldots, \lambda_{j_{1}+\cdots+j_{m}}$ is the sequence associated to the vertex T, then $\lambda_{j_{1}}=\beta^{0}, \lambda_{j_{1}+j_{2}}=$ $\beta^{1}, \ldots, \lambda_{j_{1}+\cdots+j_{m}}=\beta^{m-1}$,
(d) the number of terms in the sum that defines $f(T)$ in (3), equivalently, the number of terms in the sequence T, is equal to $j_{1}+\cdots+j_{m}+1=g\left(r_{1}\right)+\cdots+g\left(r_{m}\right)+1$,
(e) let $S=Y_{0} Y_{1} \ldots Y_{n}$ be a vertex of X and $R=Y_{0} Y_{1} \ldots Y_{n} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} \ldots Z_{1}^{(m)} \ldots Z_{j_{m}}^{(m)}$. Suppose that Y_{n} and Z_{1} are of distinct type and $Y_{n} \neq D$. Let $\left\{\lambda_{1}, \ldots \lambda_{n}\right\}$ be the set of λ 's defined for the sequence S and $\gamma=\frac{\beta \lambda_{n}}{2^{n}}$. Then

$$
f(R)=f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}\right)
$$

(f) let S and R be as in (e). Then $f(S R)=f(S) f(R)$.

Proof. Let $i \in\left\{1, \ldots, j_{1}\right\}$. Since $\left\{Z_{1}^{(1)}, \ldots, Z_{j_{1}}^{(1)}\right\} \subset\left\{D, Z_{1}\right\}$, by definition: $\lambda_{i}=0$, if $Z_{i}^{(1)}=$ D; and $\lambda_{i}=1$ (there are not changes of types), if $Z_{i}^{(1)}=Z_{1}$. In the first case, since $d=(0,0)$, we conclude that $\frac{\lambda_{i} z_{i}^{(1)}}{2^{i}}=\frac{\lambda_{i}(0,0)}{2^{i}}=\frac{z_{i}^{(1)}}{2^{i}}$. In the second case, $\frac{\lambda_{i} z_{i}^{(1)}}{2^{i}}=\frac{z_{i}^{(1)}}{2^{i}}$. Thus, by Lemma 2.6, $\frac{\lambda_{1} z_{1}^{(1)}}{2^{1}}+\cdots+\frac{\lambda_{j_{1}} z_{j_{1}}^{(1)}}{2^{j_{1}}}=\frac{z_{1}^{(1)}}{2^{1}}+\cdots+\frac{z_{j_{1}}^{(1)}}{2^{j_{1}}}=r_{1} z_{1}$.
Given $i \in\left\{1, \ldots, j_{2}\right\}$. Since $\left\{Z_{1}^{(2)}, \ldots, Z_{j_{2}}^{(2)}\right\} \subset\left\{D, Z_{2}\right\}$, by definition of $f(T): \lambda_{j_{1}+i}=0$, if $Z_{i}^{(2)}=D$, and $\lambda_{j_{1}+i}=\beta$ (there is exactly one change of type), if $Z_{i}^{(2)}=Z_{2}$. In the first case, since $d=(0,0)$, we have that $\frac{\lambda_{j_{1}+z_{i}} z_{i}^{(2)}}{2^{j_{1}+i}}=\frac{\lambda_{j_{1}+i}(0,0)}{2^{j_{1}+i}}=\frac{\beta z_{i}^{(2)}}{2^{j_{1}+i}}$. In the second case, $\frac{\lambda_{j_{1}+i z_{i}}^{(2)}}{2^{j_{1}+i}}=\frac{\beta z_{i}^{(2)}}{2^{j_{1}+i}}$. Thus, by Lemma 2.6, $\frac{\lambda_{j_{1}+1 z_{1}}^{(2)}}{2^{j_{1}+1}}+\cdots+\frac{\lambda_{j_{1}+j_{2}} z_{j_{2}}^{(2)}}{2^{j_{1}+j_{2}}}=\frac{\beta^{1}}{2^{j_{1}}}\left(\frac{z_{1}^{(2)}}{2^{1}}+\cdots+\frac{z_{2}^{(2)}}{2^{j_{2}}}\right)=\frac{\beta^{1} r_{2} z_{2}}{2^{j_{1}}}$.

The proofs of (a) and (b) can be completed continuing in this way.
Properties (c) and (d) are easy to show.
We prove (e). The case $m=1$ was proved in Lemma 2.5 (c). We prove the case $m=2$. Suppose that $\lambda_{1}, \ldots \lambda_{n+j_{1}}$ are the λ 's defined for the sequence $Y_{1} \ldots Y_{n} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)}$. Observe that since each λ_{i} depends only on the first i terms, $\lambda_{1} \ldots \lambda_{n}$ are the λ^{\prime} s defined for $Y_{1} \ldots Y_{n}$. Since there is exactly one change of type among the terms $Y_{n} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)}$, we have that $\lambda_{n+j_{1}}=\lambda_{n} \beta$. By Lemma 2.5 (c), $f\left(Y_{0} Y_{1} \ldots Y_{n} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} Z_{1}^{(2)} \ldots Z_{j_{2}}^{(2)}\right)=$ $f\left(Y_{0} Y_{1} \ldots Y_{n} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)}\right)+\frac{\beta \lambda_{n+j_{1}}}{2^{n+j_{1}}} r_{2} z_{2}=f(S)+\gamma \frac{r_{1} z_{1}}{2^{0}}+\frac{\beta^{2} \lambda_{n}}{2^{n+j_{1}}} r_{2} z_{2}=f(S)+\gamma\left(\frac{r_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}\right)$. The rest of (e) can be proved in a similar way.

We prove (f) by induction. The case $m=1$ follows from Lemma 2.5 (b). Now, suppose that (f) holds for $m-1 \geq 1$. Let $R^{\prime}=Y_{0} Y_{1} \ldots Y_{n} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} \ldots Z_{1}^{(m-1)} \ldots Z_{j_{m-1}}^{(m-1)}$. Using the induction hypothesis and (e), we obtain that

$$
\begin{aligned}
& f(S R)=f\left(\left(Y_{0} Y_{1} \ldots Y_{n}\right) R\right)=f\left(\left(Y_{0} Y_{1} \ldots Y_{n}\right) R^{\prime} \cup R^{\prime} R\right) \\
&=f\left(\left(Y_{0} Y_{1} \ldots Y_{n}\right) R^{\prime}\right) \cup f\left(R^{\prime} R\right)=f(S) f\left(R^{\prime}\right) \cup f\left(R^{\prime}\right) f(R) \\
&=f(S)\left(f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{\left.\left.2^{j_{1}+\cdots+j_{m-2}}\right)\right) \cup}\right.\right. \\
&\left(f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}\right)\right)\left(f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}\right)\right) .
\end{aligned}
$$

Observe that the arc in D_{4} joining the points $f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta^{\frac{r_{2} z_{2}}{2^{j 1}}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}\right)$ and $f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}\right)$ is the set
$L=\left\{f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}+t \beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}\right): t \in[0,1]\right\}=f\left(R^{\prime}\right) f(R)$, and the intersection of L with the $\operatorname{arc} L_{0}=f(S)\left(f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2 j_{1}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}\right)\right)=$ $f(S) f\left(R^{\prime}\right)$ is the point $f(S)+\gamma\left(\frac{r_{1} z_{1}}{2^{0}}+\beta^{\left.\frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}\right)=f\left(R^{\prime}\right) \text {. Then } L \cup L_{0}=}\right.$ $f\left(R^{\prime}\right) f(R) \cup f(S) f\left(R^{\prime}\right)$ is the arc joining $f(S)$ and $f(R)$. Therefore $f(S R)=f(S) f(R)$.

Lemma 2.8. $f(X)=D_{4}$.
Proof. Let r_{1}, \ldots, r_{m} in $\mathcal{D} \backslash\{0,1\}, z_{1}, \ldots, z_{m}$ in \mathcal{B}_{L}^{\prime} and for each $k \in\{1, \ldots, m-1\}, z_{k+1}$ is of distinct type than z_{k}. By Lemma 2.7, each element $q \in R\left(D_{4}\right)$,

$$
q=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}},
$$

and any arc $v q$ in D_{4} is contained in $\operatorname{Im}(f)$. We obtain that $R\left(D_{4}\right) \subset f\left(\bigcup_{m=1}^{\infty} X_{m}\right) \subset D_{4}$. Since $X=\operatorname{cl}_{X}\left(\bigcup_{m=1}^{\infty} X_{m}\right)$ is compact and $R\left(D_{4}\right)$ is dense in D_{4}, we obtain that $f(X)=$ D_{4}.
Lemma 2.9. Let $T=Z_{0} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} \ldots Z_{1}^{(m)} \ldots Z_{j_{m}}^{(m)}$ and

$$
q=f(T)=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}
$$

be as in Lemma 2.7. Let $k=j_{1}+\cdots+j_{m}$. Write the sequence T in the form $T=Y_{0} Y_{1} \ldots Y_{k}$. Let $t \in \mathcal{D} \backslash\left\{0,1, r_{m}\right\}$ be such that $\frac{1}{2 g\left(r_{m}\right)}>\left|r_{m}-t\right|$ and let

$$
q_{t}=v+\frac{r_{1} z_{1}}{2^{0}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}+\beta^{m-1} \frac{t z_{m}}{2^{j_{1}+\cdots+j_{m-1}}} .
$$

Then there exist $n \in \mathbb{N}, Y_{k}^{\prime} \in \mathcal{B}_{C}^{\prime}$, and $Y_{k+1}, \ldots, Y_{k+n} \in\left\{D, Y_{k}^{\prime}\right\}$ such that Y_{k}^{\prime} is of the same type than $Y_{k}=Z_{j_{m}}^{(m)}$, and the vertex $T_{k+n}=Y_{0} Y_{1} \ldots Y_{k} \ldots Y_{k+n}$ has the following properties $f\left(T_{k+n}\right)=q_{t}, f\left(T T_{k+n}\right)=q q_{t}, g\left(r_{m}\right)+n=g(t)$ and $\lambda_{k+n}=\beta^{m-1}$ (where $\lambda_{1}, \ldots, \lambda_{k+n}$ is the sequence defined for the vertex T_{k+n}).

Proof. We suppose that $z_{m}=a$, the rest of the cases (that is, z_{m} is one of the points $\{b, c, e\}$) are similar. We consider two cases.

Case 1. $t<r_{m}$.
We take the dyadic representation of the number $2^{g\left(r_{m}\right)}\left(r_{m}-t\right) \in \mathcal{D} \backslash\{0,1\}$, to be:

$$
2^{g\left(r_{m}\right)}\left(r_{m}-t\right)=\frac{s_{1}}{2^{1}}+\cdots+\frac{s_{n}}{2^{n}}
$$

where $\left\{s_{1}, \ldots, s_{n}\right\} \subset\{0,1\}$ and $s_{n}=1$.
Since Y_{k}^{\prime} is of the same type than $Y_{k}, t<r_{m}$ and $z_{m}=a$, we have that $z_{m+1}=-z_{m}=b$.
Let $r^{\prime}=2^{g\left(r_{m}\right)}\left(r_{m}-t\right), Y_{k+1} \ldots Y_{k+n}$ be the sequence associated to $r^{\prime} b=r^{\prime}(-a)=r^{\prime}\left(-z_{m}\right)$. Then $Y_{k+n}=-Z_{m}=B,\left\{Y_{k+1}, \ldots, Y_{k+n}\right\} \subset\{D, B\}$ and

$$
T_{k+n}=Y_{0} Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} \ldots Z_{1}^{(m)} \ldots Z_{j_{m}}^{(m)} Y_{k+1} \ldots Y_{k+n}=Y_{0} Y_{1} \ldots Y_{k} Y_{k+1} \ldots Y_{k+n}
$$

Observe that $g\left(r^{\prime}\right)=n$. By Lemma 2.2 (a), $g\left(r_{m}\right)+n=g\left(r_{m}\right)+g\left(r^{\prime}\right)=g\left(r_{m}-\frac{r^{\prime}}{2^{g\left(r_{m}\right)}}\right)=$ $g(t)$. Thus $g\left(r_{m}\right)+n=g(t)$.

Since $\left\{Y_{k+1}, \ldots, Y_{k+n}\right\} \subset\{D, B\}$ and $B \in\left\{Y_{k+1}, \ldots, Y_{k+n}\right\}$, by Lemma 2.5 (b), we have that $f\left(T T_{k+n}\right)=f(T) f\left(T_{k+n}\right)=q f\left(T_{k+n}\right)$. We prove that $f\left(T_{k+n}\right)=q_{t}$.

By definition,

$$
f\left(T_{k+n}\right)=v+\frac{\lambda_{1} y_{1}}{2^{1}}+\cdots+\frac{\lambda_{k} y_{k}}{2^{k}}+\frac{\lambda_{k+1} y_{k+1}}{2^{k+1}}+\cdots+\frac{\lambda_{k+n} y_{k+n}}{2^{k+n}} .
$$

Since for each $i \in\{1, \ldots, k\}$, the definition of a number λ_{i}, depends only on the sequence $Y_{0} \ldots Y_{i}$, we have that λ_{i} also is the one used in the definition of $f(T)$. Then

$$
\begin{aligned}
f(T) & =v+\frac{\lambda_{1} y_{1}}{2^{1}}+\cdots+\frac{\lambda_{k} y_{k}}{2^{k}} \\
& =v+\frac{\lambda_{1} z_{1}^{(1)}}{2^{1}}+\cdots+\frac{\lambda_{j_{1}} z_{j_{1}}^{(1)}}{2^{j_{1}}}+\cdots+\frac{\lambda_{j_{1}+\cdots+j_{m-1}+1} z_{1}^{(m)}}{2^{j_{1}+\cdots+j_{m-1}+1}}+\cdots+\frac{\lambda_{j_{1}+\cdots+j_{m}} z_{j_{m}}^{(m)}}{2^{j_{1}+\cdots+j_{m}}} .
\end{aligned}
$$

By Lemma 2.7 (a) and (c), the last sum is equal to

$$
v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}
$$

and $\lambda_{k}=\beta^{m-1}$.
Thus

$$
v+\frac{\lambda_{1} y_{1}}{2^{1}}+\cdots+\frac{\lambda_{k} y_{k}}{2^{k}}=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}} .
$$

Since y_{k} and b are of the same type, in fact, $b=-a=-z_{m}=-z_{j_{m}}^{(m)}=-y_{k}$, we have that for each $i \in\{1, \ldots, n\}, \beta^{m-1}=\lambda_{k}=\lambda_{k+i}$, if $Y_{k+i}=B$ (equivalently, $s_{i}=1$); and $\lambda_{k+i}=0$,
if $Y_{k+i}=D$ (equivalently, $s_{i}=0$). Then $y_{k+i}=s_{i} b$, and $\lambda_{k+i} y_{k+i}=\lambda_{k} y_{k+i}=\beta^{m-1} s_{i} b$. Therefore

$$
\begin{aligned}
f\left(T_{k+n}\right) & =v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}+\frac{\beta^{m-1} s_{1} b}{2^{k+1}}+\cdots+\frac{\beta^{m-1} s_{n} b}{2^{k+n}} \\
& =v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-1} \frac{r_{m} z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}-\frac{\beta^{m-1} z_{m}}{2^{j_{1}+\cdots+j_{m-1}} 2^{j_{m}}}\left(\frac{s_{1}}{2^{1}}+\cdots+\frac{s_{n}}{2^{n}}\right) \\
& =v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{j_{1}}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{j_{1}+\cdots+j_{m-2}}}+\beta^{m-1} \frac{z_{m}}{2^{j_{1}+\cdots+j_{m-1}}}\left(r_{m}-\frac{2^{j_{m}}\left(r_{m}-t\right)}{2^{j_{m}}}\right) \\
& =q_{t} .
\end{aligned}
$$

Hence, $f\left(T_{k+n}\right)=q_{t}$.
Case 2. $r_{m}<t$.
The proof in this case is similar to the proof of Case 1, using the dyadic representation of the number $r^{\prime \prime}=2^{g\left(r_{m}\right)}\left(t-r_{m}\right)$ and the sequence associated to $r^{\prime \prime} a$.

Theorem 2.10. The function f is weakly confluent.
Proof. Take a subcontinuum B of D_{4}. We are going to show that there exists a subcontinuum A of X such that $f(A)=B$. By 2.8, we suppose that B is non-degenerate. Let $q_{0} \in B$ be such that q_{0} is the first point in B when we walk from v to B. That is, q_{0} is the only point in B with the property that for each $q \in B, q_{0} \in v q$ (equivalently, $v q_{0} \subset v q$). Then $B \neq\left\{q_{0}\right\}$. So q_{0} is not an end-point of D_{4}. So either $q_{0}=v$ or q_{0} can be written as in (1).

Case A. $q_{0} \neq v$.
In this case

$$
\begin{equation*}
q_{0}=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+t^{*} \beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}} \tag{5}
\end{equation*}
$$

where $t^{*}>0$.
Let $w=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}, t_{0}=t^{*} r_{m}$ and $z=\beta^{m-1} \frac{z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}$. Then

$$
q_{0}=w+t_{0} z
$$

Consider the $\operatorname{arc} L=\left\{w+t z \in D_{4}: t \in[0,1]\right\}$. We know that (see Definition 2.3)

$$
v q_{0}=\{v\} \cup L_{1}\left(q_{0}\right) \cup \cdots \cup L_{m-1}\left(q_{0}\right) \cup L_{m}\left(q_{0}\right) .
$$

where $L_{m}\left(q_{0}\right)=\left\{w+s t_{0} z: s \in(0,1]\right\}$. Then for each $s<1, w+s t_{0} z \notin B$. Thus $t_{0}=$ $\min \{t \in[0,1]: w+t z \in B\}$. Since $B \cap L$ is a subcontinuum of D_{4} there exists $t_{2} \in\left[t_{0}, 1\right]$ such that $B \cap L=\left\{w+t z \in D_{4}: t \in\left[t_{0}, t_{2}\right]\right\}$.
Case 1. $t_{0}<t_{2}$.
By Lemma $2.2(b)$, there exists a unique element $r \in\left(t_{0}, t_{2}\right) \cap(\mathcal{D} \backslash\{0,1\})$ with minimum degree. Set

$$
q_{1}=w+r z
$$

Then

$$
q_{1}=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+\beta^{m-1} \frac{r z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)+g\left(r_{m-1}\right)}} .
$$

Since $r \in \mathcal{D} \backslash\{0,1\}$, by Lemma 2.7 (a) and (d), there exist $k \in \mathbb{N}$ and a sequence Y_{0}, \ldots, Y_{k} in \mathcal{B}_{C} such that the vertex

$$
T_{0}=Y_{0} Y_{1} \ldots Y_{k}
$$

of X satisfies $f\left(T_{0}\right)=q_{1}$ and $k=g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)+g(r)$.
Claim 1. Let $q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$. Then there exists an arc J_{q} in X such that $T_{0} \in J_{q}$ and $q \in f\left(J_{q}\right) \subset B$.

We prove Claim 1. We start writing q as in (2)

$$
q=v+\frac{r_{1}^{\prime} z_{1}^{\prime}}{2^{0}}+\beta \frac{r_{2}^{\prime} z_{2}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}^{\prime}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-1}^{\prime}\right)}} .
$$

Since $q \in R\left(D_{4}\right), r_{m^{\prime}}^{\prime} \in \mathcal{D} \backslash\{0,1\}$. Let $L_{1}(q), \ldots, L_{m}(q)$ be as in Definition 2.3. Since $\{v\} \cup L_{1}\left(q_{0}\right) \cup \cdots \cup L_{m-1}\left(q_{0}\right) \subset v q_{0} \subset v q$, the uniqueness of arcs in D_{4} implies that $L_{1}\left(q_{0}\right)=$ $L_{1}(q), \ldots, L_{m-1}\left(q_{0}\right)=L_{m-1}(q), m \leq m^{\prime}$ and $z_{m}=z_{m}^{\prime}$. Then $r_{1}=r_{1}^{\prime}, \ldots, r_{m-1}=r_{m-1}^{\prime}$; and $z_{1}=z_{1}^{\prime}, \ldots, z_{m}=z_{m}^{\prime}$. Thus

$$
\begin{align*}
q & =v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-3} \frac{r_{m-2} z_{m-2}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-3}\right)}}+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+ \\
& \beta^{m-1} \frac{r_{m}^{\prime} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}^{\prime}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+r^{\prime}\left(r_{m^{\prime}-1}^{\prime}\right)}} \\
& =w+r_{m}^{\prime} z+\beta^{m} \frac{r_{m+1}^{\prime} z_{m+1}^{\prime}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)+g\left(r_{m}^{\prime}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}^{\prime}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-1}^{\prime}\right)}} \tag{6}
\end{align*}
$$

For each $i \in\left\{1, \ldots, m^{\prime}\right\}$, let $W_{1}^{(i)}, \ldots, W_{j_{i}}^{(i)}$ be the sequence in \mathcal{B}_{C} associated to $r_{i}^{\prime} z_{i}^{\prime}$. Let $k^{\prime \prime}=g\left(r_{1}\right)+\cdots+g\left(r_{m^{\prime}}\right)$. Observe that by Lemma 2.7, if $V_{0}, \ldots, V_{k^{\prime \prime}} \in \mathcal{B}_{C}$ satisfies that the sequence

$$
V=V_{0} V_{1} \ldots V_{k^{\prime \prime}}
$$

is the sequence $V_{0} W_{1}^{(1)} \ldots W_{g\left(r_{1}^{\prime}\right)}^{(1)} \ldots W_{1}^{\left(m^{\prime}\right)} \ldots W_{g\left(r_{m^{\prime}}^{\prime}\right)}^{\left(m^{\prime}\right)}$, then $f(V)=q$. Moreover,

$$
V_{0} V_{1} \ldots V_{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m}^{\prime}\right)}=V_{0} W_{1}^{(1)} \ldots W_{g\left(r_{1}^{\prime}\right)}^{(1)} \ldots W_{1}^{(m)} \ldots W_{g\left(r_{m}^{\prime}\right)}^{(m)}
$$

Then

$$
V_{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m}^{\prime}\right)+1} \ldots V_{k^{\prime \prime}}=W_{1}^{(m+1)} \ldots W_{g\left(r_{m+1}^{\prime}\right)}^{(m+1)} \ldots W_{1}^{\left(m^{\prime}\right)} \ldots W_{g\left(r_{m^{\prime}}^{\prime}\right)}^{\left(m^{\prime}\right)}
$$

Subcase 1.1. $m<m^{\prime}$.

Take the natural order $<$ for the arc $v q$ for which $v<q$. Since $q_{0} \in L \cap v q$ and $w+r_{m}^{\prime} z$ is the last point of $v q$ in L, we have that $q_{0} \leq w+r_{m}^{\prime} z \leq q$. Then $w+r_{m}^{\prime} z \in q_{0} q \cap L \subset B \cap L$. Thus $r_{m}^{\prime} \in\left[t_{0}, t_{2}\right]$ and $w+r_{m}^{\prime} z \in B$.
1.1.1. Suppose that $r \neq r_{m}^{\prime}$.

If $g(r)>1$, by Lemma 2.2 (b) we have that $\frac{1}{2^{g(r)}}>\max \left\{t_{2}-r, r-t_{0}\right\} \geq\left|r-r_{m}^{\prime}\right|$; and if $g(r)=1$, then $r=\frac{1}{2}$, since $r_{m}^{\prime} \in(0,1)$, we conclude that $\frac{1}{2^{g(r)}}=\frac{1}{2}>\left|r_{m}^{\prime}-r\right|$. Thus we can apply Lemma 2.9 to T_{0}, q_{1} and $w+r_{m}^{\prime} z$ to obtain that there exist $n \in \mathbb{N}$ and $Y_{k+1}, \ldots, Y_{k+n} \in \mathcal{B}_{\mathcal{C}}$, such that the vertex $T_{k+n}=Y_{0} Y_{1} \ldots Y_{k} \ldots Y_{k+n}$ satisfies $f\left(T_{k+n}\right)=$ $w+r_{m}^{\prime} z, f\left(T_{0} T_{k+n}\right)=q_{1}\left(w+r_{m}^{\prime} z\right)=\{w+t z: t$ is in the subinterval of $[0,1]$ joining r and $\left.r_{m}^{\prime}\right\} \subset\left\{w+t z: t \in\left[t_{0}, t_{2}\right]\right\} \subset B, g(r)+n=g\left(r_{m}^{\prime}\right)$ and $\lambda_{k+n}=\beta^{m-1}$ (where $\lambda_{1}, \ldots \lambda_{k+n}$ are defined for the vertex $\left.T_{k+n}\right)$.

Since $k=g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)+g(r)$, we obtain $k+n=g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)+g\left(r_{m}^{\prime}\right)=$ $g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m-1}^{\prime}\right)+g\left(r_{m}^{\prime}\right)$. Therefore

$$
k+n+1=g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m-1}^{\prime}\right)+g\left(r_{m}^{\prime}\right)+1
$$

Observe that

$$
\begin{align*}
f\left(T_{k+n}\right) & =w+r_{m}^{\prime} z \\
& =v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+\beta^{m-1} \frac{r_{m}^{\prime} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}} . \tag{7}
\end{align*}
$$

Note that $f\left(T_{k+n}\right)$ coincides with the first terms in the equality (6). Define

$$
Z^{*}=Y_{0} Y_{1} \ldots Y_{k+n} V_{k+n+1} \ldots V_{k^{\prime \prime}}=Y_{0} Y_{1} \ldots Y_{k+n} W_{1}^{(m+1)} \ldots W_{j_{m+1}}^{(m+1)} \ldots W_{1}^{\left(m^{\prime}\right)} \ldots W_{j_{m^{\prime}}}^{\left(m^{\prime}\right)} .
$$

We claim that $f\left(Z^{*}\right)=q, T_{0} \in T_{0} Z^{*}, f\left(T_{0} Z^{*}\right) \subset B$.
Observe that $z_{m+1} \in\left\{v_{k+n+1}, \ldots, v_{k+n+j_{m+1}}\right\} \subset\left\{d, z_{m+1}\right\}, Y_{k+n}=Z_{m}$ and Z_{m+1} are of different type, $k+n=g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m-1}^{\prime}\right)+g\left(r_{m}^{\prime}\right)$ and $\lambda_{k+n}=\beta^{m-1}$, by Lemma 2.7 (e) we have that

$$
\begin{aligned}
f\left(Z^{*}\right) & =f\left(T_{n+k}\right)+\beta^{m} \frac{r_{m+1}^{\prime} z_{m+1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m-1}^{\prime}\right)+g\left(r_{m}^{\prime}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g^{\prime}\left(r_{m^{\prime}-2}^{\prime}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-1}^{\prime}\right)}} \\
& =w+r_{m}^{\prime} z+\beta^{m} \frac{r_{m+1}^{\prime} z_{m+1}^{\prime}}{2^{g\left(r_{1}\right)+\cdots+\left(_{m-1}\right)+g\left(r_{m}^{\prime}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}^{\prime}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-1}^{\prime}\right)}} .
\end{aligned}
$$

Therefore $f\left(Z^{*}\right)=q$. Moreover, by Lemma $2.7(\mathrm{f}), f\left(T_{k+n} Z^{*}\right)=f\left(T_{k+n}\right) f\left(Z^{*}\right)$.
Set $J_{q}=T_{0} Z^{*}$. Then $T_{0} \in J_{q}$ and $q=f\left(Z^{*}\right) \in f\left(J_{q}\right)$. Since $f\left(T_{k+n}\right), f\left(Z^{*}\right) \in B$, we have that $f\left(J_{q}\right)=f\left(T_{0} Z^{*}\right) \subset f\left(T_{0} T_{k+n}\right) \cup f\left(T_{k+n} Z^{*}\right) \subset B \cup f\left(T_{k+n}\right) f\left(Z^{*}\right) \subset B$. Therefore $f\left(J_{q}\right) \subset B$. This completes the analysis of the case $r \neq r_{m}^{\prime}$.
1.1.2. Suppose that $r=r_{m}^{\prime}$.

In this case define $Z^{*}=Y_{0} \ldots Y_{k} W_{1}^{(m+1)} \ldots W_{j_{m+1}}^{(m+1)} \ldots W_{1}^{\left(m^{\prime}\right)} \ldots W_{j_{m^{\prime}}}^{\left(m^{\prime}\right)}$. Since $f\left(Y_{0} \ldots Y_{k}\right)=$ $f\left(T_{0}\right)=q_{1}=w+r z=w+r_{m}^{\prime}$, by Lemma 2.7 (e) $f\left(Z^{*}\right)=f\left(Y_{0} \ldots Y_{k}\right)+\beta^{m} \frac{r_{m+1}^{\prime} z_{m+1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m-1}^{\prime}\right)+g\left(r_{m}^{\prime}\right)}}+$
$\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-1}^{\prime}\right)}}=q$. Hence, $f\left(Z^{*}\right)=q$. Moreover, since $f\left(T_{0}\right)=w+r_{m}^{\prime} \in B$, by Lemma $2.7(\mathrm{f}), f\left(T_{0} Z^{*}\right)=f\left(T_{0}\right) f\left(Z^{*}\right) \subset B$.

Set $J_{q}=T_{0} Z^{*}$. Then $T_{0} \in J_{q}, q=f\left(Z^{*}\right) \in f\left(J_{q}\right) \subset B$.
Subcase 1.2. $m=m^{\prime}$.
In this subcase,

$$
\begin{aligned}
q & =v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+\beta^{m-1} \frac{r_{m}^{\prime} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}} \\
& =w+r_{m}^{\prime} z .
\end{aligned}
$$

In the case that $r \neq r_{m}^{\prime}, q \in L \cap B$, so $r_{m}^{\prime} \in\left[t_{0}, t_{2}\right]$. As at the beginning of subcase 1.1.1., we conclude that $\frac{1}{2^{g(r)}}>\left|r_{m}^{\prime}-r\right|$, so we can apply Lemma 2.9 to T_{0}, q_{1} and $w+r_{m}^{\prime} z$ to obtain that there exist $M \in \mathbb{N}$ and $Y_{k+1}, \ldots, Y_{k+M} \in \mathcal{B}_{C}$, such that the vertex $T_{k+M}=$ $Y_{0} Y_{1} \ldots Y_{k} \ldots Y_{k+M}$ satisfies $f\left(T_{k+M}\right)=w+r_{m}^{\prime} z=q$ and $f\left(T_{0} T_{k+M}\right)=q_{1} q=\{w+t z: t$ is in the subinterval of $[0,1]$ joining r and $\left.r_{m}^{\prime}\right\} \subset\left\{w+t z: t \in\left[t_{0}, t_{2}\right]\right\} \subset B$. Set $S_{0}=T_{k+M}$. In the case that $r=r_{m}^{\prime}$, we have that $q_{1}=q$. Set $S_{0}=T_{0}$. In both cases, $T_{0} \in T_{0} S_{0}, f\left(T_{0} S_{0}\right) \subset B$ and $q_{1} q=f\left(T_{0} S_{0}\right)$. In this case, define $J_{q}=T_{0} S_{0}$.

This completes the proof of Claim 1.
Hence, we have shown that for each $q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$, there exists an arc J_{q} in X such that $T_{0} \in J_{q}$ and $q \in f\left(J_{q}\right) \subset B$.

Define $A=\mathrm{cl}_{X}\left(\bigcup\left\{J_{q}: q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)\right\}\right)$. Then A is a subcontinuum of X such that $f(A) \subset B$. Since $\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$ is dense in $B,\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right) \subset f(A)$ and $f(A)$ is compact, we have that $f(A)=B$.

Case 2. $t_{0}=t_{2}$.
In this case, $B \cap L=\left\{q_{0}\right\}$.
Take an element $q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$. We write q as in (2):

$$
q=v+\frac{r_{1}^{\prime} z_{1}^{\prime}}{2^{0}}+\beta \frac{r_{2}^{\prime} z_{2}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}^{\prime}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)}+\cdots+2^{g\left(r_{m^{\prime}-1}^{\prime}\right)}} .
$$

Since $q_{0} \in v q$, proceeding as at the beginning of the proof of Claim 1, we obtain that $m \leq m^{\prime}, r_{1}=r_{1}^{\prime}, \ldots, r_{m-1}=r_{m-1}^{\prime}$; and $z_{1}=z_{1}^{\prime}, \ldots, z_{m}=z_{m}^{\prime}$. Thus

$$
\begin{aligned}
q= & v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{g\left(r_{1}\right)}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+\beta^{m-1} \frac{r_{m}^{\prime} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}+ \\
& \beta^{m} \frac{r_{m+1}^{\prime} z_{m+1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m}^{\prime}\right)}}+\cdots+\beta^{m^{\prime}-2} \frac{r_{m^{\prime}-1}^{\prime} z_{m^{\prime}-1}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-2}\right)}}+\beta^{m^{\prime}-1} \frac{r_{m^{\prime}}^{\prime} z_{m^{\prime}}^{\prime}}{2^{g\left(r_{1}^{\prime}\right)+\cdots+g\left(r_{m^{\prime}-1}^{\prime}\right)}} .
\end{aligned}
$$

Let $L_{1}(q), \ldots, L_{m^{\prime}}(q)$ be as in Definition 2.3. Since $L \cap\left(\operatorname{cl}_{D_{4}}\left(L_{m+1}(q)\right) \cup \cdots \cup L_{m^{\prime}}(q)\right)=$ $\left\{w+r_{m}^{\prime} z\right\}$, we have that the first point of the arc $v q$, going from q to v that belongs to L is $w+r_{m}^{\prime} z$. Since $q_{0} \in L$, we infer that $w+r_{m}^{\prime} z \in q_{0} q$. Then $w+r_{m}^{\prime} z \in L \cap B$. Therefore $q_{0}=w+r_{m}^{\prime} z=w+t_{0} z$ and $r_{m}^{\prime}=t_{0}$. In particular, $t_{0} \in \mathcal{D}$ and $q_{0} \in R\left(D_{4}\right)$.

For each $i \in\left\{1, \ldots, m^{\prime}\right\}$, let $W_{1}^{(i)}, \ldots, W_{j_{i}}^{(i)}$ be the sequence in \mathcal{B}_{C} associated to $r_{i}^{\prime} z_{i}^{\prime}$. Let $k=j_{1}+\cdots+j_{m}$ and $k^{\prime}=j_{1}+\cdots+j_{m^{\prime}}$.

Observe that by Lemma 2.7, if $V_{0}, \ldots, V_{k^{\prime}} \in \mathcal{B}_{C}$ satisfies that the sequence $Z=Z_{0} \ldots Z_{k}$ (respectively, $Z^{\prime}=Z_{0} \ldots Z_{k} \ldots Z_{k^{\prime}}$) is the sequence $Z_{0} W_{1}^{(1)} \ldots W_{j_{1}}^{(1)} \ldots W_{1}^{(m)} \ldots W_{j_{m}}^{(m)}$ (respectively, $\left.Z_{0} W_{1}^{(1)} \ldots W_{j_{1}}^{(1)} \ldots W_{1}^{\left(m^{\prime}\right)} \ldots W_{j_{m^{\prime}}}^{\left(m^{\prime}\right)}\right)$ then $f(Z)=q_{0}$ and $f\left(Z^{\prime}\right)=q$. Observe that the sequence $W_{1}^{(i)}, \ldots, W_{j_{m}}^{(m)}$ depends on $r_{m}^{\prime} z_{m}^{\prime}=t_{0} z_{m}$. This implies that the sequence Z depends on $r_{1} z_{1}, \ldots, r_{m-1} z_{m-1}, t_{0} z_{m}$. Thus Z depends only on q_{0}, therefore Z does not depend on q.

Note that $Z^{\prime}=Z_{0} \ldots Z_{k} W_{1}^{(m+1)} \ldots W_{j_{m+1}}^{(m+1)} \ldots W_{1}^{\left(m^{\prime}\right)} \ldots W_{j_{m^{\prime}}}^{\left(m^{\prime}\right)}$. By Lemma $2.7(\mathrm{f}), f\left(Z Z^{\prime}\right)=$ $f(Z) f\left(Z^{\prime}\right)=q_{0} q \subset B$.

Set $J_{q}=Z Z^{\prime}$. Then $Z \in J_{q}, q=f\left(Z^{\prime}\right) \in f\left(J_{q}\right) \subset B$. Hence, we have shown that for each $q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$, there exists an arc J_{q} in X such that $Z \in J_{q}$ and $q \in f\left(J_{q}\right) \subset B$.

Define $A=\operatorname{cl}_{X}\left(\bigcup\left\{J_{q}: q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)\right\}\right)$. Then A is a subcontinuum of X such that $f(A) \subset B$. Since $\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$ is dense in $B,\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right) \subset f(A)$ and $f(A)$ is compact, we have that $f(A)=B$.

This completes the proof of the existence of A in the case that $b_{0} \neq v$.
Case B. $q_{0}=v$, equivalently, $v \in B$.
Given $q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)$, write q as in (2). Then

$$
q=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{1}}+\cdots+\beta^{m-2} \frac{r_{m-1} z_{m-1}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-2}\right)}}+\beta^{m-1} \frac{r_{m} z_{m}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{m-1}\right)}}
$$

For each $k \in\{1, \ldots, m\}$, let $Z_{1}^{(k)} \ldots Z_{j_{k}}^{(k)}$ be the sequence in \mathcal{B}_{C} associated to $r_{k} z_{k}$. Let $T_{k}=Z_{1}^{(1)} \ldots Z_{j_{1}}^{(1)} \ldots Z_{1}^{(k)} \ldots Z_{j_{k}}^{(k)}$ and

$$
q_{k}=v+\frac{r_{1} z_{1}}{2^{0}}+\beta \frac{r_{2} z_{2}}{2^{1}}+\cdots+\beta^{k-1} \frac{r_{k} z_{k}}{2^{g\left(r_{1}\right)+\cdots+g\left(r_{k-1}\right)}} .
$$

By Lemma 2.7, $f\left(T_{k}\right)=q_{k}$.
Let $L_{1}(q), \ldots, L_{m}(q)$ be as in Definition 2.3. Then $v q=\{v\} \cup L_{1}(q) \cup \cdots \cup L_{m}(q)$. Since $v q \subset B$ and for each $k \in\{1, \ldots m\}, q_{k} \in L_{k}(q)$, we obtain that $q_{k} \in B$.

Given $k \in\{1, \ldots, m\}$, since $\left\{Z_{1}^{(k)}, \ldots, Z_{j_{k}}^{(k)}\right\} \subset\left\{D, Z_{k}\right\}$, we can apply Lemma 2.5 (c), to obtain that $f\left(T_{k-1} T_{k}\right)=f\left(T_{k-1}\right) f\left(T_{k}\right)=q_{k-1} q_{k} \subset B$. Therefore $f\left(V T_{m}\right)=f\left(V T_{1} \cup T_{1} T_{2} \cup\right.$ $\left.\cdots \cup T_{m-1} T_{m}\right)=f\left(V T_{1}\right) \cup f\left(T_{1} T_{2}\right) \cup \cdots \cup f\left(T_{m-1} T_{m}\right) \subset B$.

Let $J_{q}=V T_{m}$. Then J_{q} is an arc in X such that $v=f(V) \in f\left(J_{q}\right), q=q_{m}=f\left(T_{m}\right) \in$ $f\left(J_{q}\right)$ and $f\left(J_{q}\right) \subset B$. Define $A=\operatorname{cl}_{X}\left(\bigcup\left\{J_{q}: q \in\left(B \backslash\left\{q_{0}\right\}\right) \cap R\left(D_{4}\right)\right\}\right)$. Proceeding as before, we conclude that $f(A)=B$. This finishes the proof that f is weakly confluent.

3. The Characterization

Theorem 3.1. Let X be a dendrite such that $E(X)$ is at most countable. Then the Gehman dendrite G_{3} is not a weakly confluent image of X.

Proof. Suppose to the contrary that there exists a weakly confluent map $f: X \rightarrow G_{3}$. Fix a point $v \in G_{3}$ such that $\operatorname{ord}\left(v, G_{3}\right)=2$. Recall that, $E\left(G_{3}\right)$ is homeomorphic to the Cantor
set [5, p. 21]. Given $q \in E\left(G_{3}\right)$ consider the arc $B_{q}=v q$. Let A_{q} be a subcontinumm of X such that $f\left(A_{q}\right)=B_{q}$. Fix $a_{q} \in A_{q}$ such that $f\left(a_{q}\right)=q$. Fix a point $u \in X$. Observe that $X=\bigcup\{u e \subset X: e \in E(X)\}$. Since $R(X)$ and $E(X)$ are at most countable [4, Theorem 1.5 (d)] and $\left\{a_{q} \in X: q \in E\left(G_{3}\right)\right\}$ is uncountable, there exists $e_{0} \in E(X)$ such that the set $D=\left(u e_{0} \backslash\left(R(X) \cup\left\{u, e_{0}\right\}\right)\right) \cap\left\{a_{q}: q \in E\left(G_{3}\right)\right\}$ is uncountable.

Given $a_{q} \in D$, since $a_{q} \notin R(X) \cup\left\{u, e_{0}\right\}$, we have that $A_{q} \cap u e_{0}$ is an arc. We identify the arc $u e_{0}$ with the interval $[0,1]$, so we write $A_{q} \cap u e_{0}=\left[s_{q}, t_{q}\right]$, where $s_{q}<t_{q}$. Since D is uncountable, there exists $\varepsilon>0$ such that $2 \varepsilon<t_{q}-s_{q}$ for uncountably many points $a_{q} \in D$. Since $a_{q} \in\left[s_{q}, t_{q}\right]$, we may assume that $t_{q}-a_{q}>\varepsilon$ for uncountably many points $a_{q} \in D$. Thus there exist $a_{q_{1}}, a_{q_{2}} \in D$ such that $\left[a_{q_{1}}, t_{q_{1}}\right] \cap\left[a_{q_{2}}, t_{q_{2}}\right] \neq \emptyset$ and $q_{1} \neq q_{2}$. Thus we may assume that $a_{q_{2}} \in\left[a_{q_{1}}, t_{q_{1}}\right]$. Hence $a_{q_{2}} \in A_{q_{1}}, q_{2}=f\left(a_{q_{2}}\right) \in f\left(A_{q_{1}}\right)=B_{q_{1}}=v q_{1}$. Therefore $q_{2} \in v q_{1}$, a contradiction. This finishes the proof of the theorem.

Denote by

$$
\mathcal{M}(\mathcal{D})=\left\{D: D \text { is a dendrite and } E \leq_{\mathcal{W}} D \text { for each dendrite } E\right\}
$$

Observe that $\mathcal{M}(\mathcal{D})$ denotes the family of dendrites that are maximum elements with respect to the preorder $\leq_{\mathcal{W}}$. By [5, Fact 5.22 and Theorem 5.27], all the universal dendrites $D_{n}(n \in \mathbb{N} \cup\{\omega\})$ belong to $\mathcal{M}(\mathcal{D})$. By Theorem 2.1, each Gehman dendrite $G_{n}(n \geq 3)$ also belongs to $\mathcal{M}(\mathcal{D})$. In the following theorem we characterize the elements of $\mathcal{M}(\mathcal{D})$.

Theorem 3.2. A dendrite X belongs to $\mathcal{M}(\mathcal{D})$ if and only if $E(X)$ is uncountable.
Proof. The necessity is proved in Theorem 3.1. Now, suppose that $E(X)$ is uncountable. By [10, Theorem 1] X contains a dendrite G homeomorphic to G_{3}. By [5, Theorem 4.16], $G \leq_{\mathcal{M}} X$, so $G_{3} \leq_{\mathcal{W}} X$ and $X \in \mathcal{M}(\mathcal{D})$.

4. Another answer

In [5, Question 5.12], it was asked if the existence of a weakly confluent map from a dendrite X onto a dendrite Y implies the existence of a confluent map from X onto Y. The following example answers this question in the negative.

Example 4.1. D_{3} is a weakly confluent image of G_{3}, but D_{3} is not a confluent image of G_{3}.
We show the assertions in Example 4.1. By Theorem 2.1, there exists a weakly confluent map from G_{3} onto D_{3}. In order to show that D_{3} is not the confluent image of G_{3}, suppose to the contrary that $D_{3} \leq_{\mathcal{C}} G_{3}$. By [5, Corollary 5.7], $D_{3} \leq_{\mathcal{M}} G_{3}$. Since $G_{3} \leq_{\mathcal{M}} D_{3}$ [3, Corollary 6.5], $G_{3} \simeq_{\mathcal{M}} D_{3}$. By [5, Theorem 5.27], G_{3} contains a copy of the dendrite L_{0} constructed in $[5,5.6, \mathrm{p} .16]$. This is a contradiction since L_{0} contains sequences of ramification points converging to points of order ≥ 2 and, in G_{3}, each limit of ramification points is an end-point. Therefore, D_{3} is not a confluent image of G_{3}.

A simpler example that answers Question 5.12 in [5], is the following. Let

$$
X=([-1,1] \times\{0\}) \cup\left(\bigcup\left(\left\{\frac{1}{n}\right\} \times\left[0, \frac{1}{n}\right]: n \in \mathbb{N}\right\}\right)
$$

We can prove that X is a dendrite such that X is a weakly confluent image of G_{3}, but X is not a confluent image of G_{3}.

References

[1] D. Arévalo, W. J. Charatonik, P. Pellicer-Covarrubias and L. Simón, Dendrites with closed set of end points, Topology Appl. 115 (2001), no. 1, 1-17.
[2] R. Carmelo, U. Darji and A. Marcone, Classification problems in continuum theory, Trans. Amer. Math. Soc., 357 (2005), no. 11, 4301-4328.
[3] J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991), no. 2, 163187.
[4] J. J. Charatonik and W. J. Charatonik, Dendrites, XXX National Congress of the Mexican Mathematical Society (Spanish) (Aguascalientes, 1997), 227-253, Aportaciones Mat. Comun. 22, Soc. Mat. Mexicana, México, 1998.
[5] J. J. Charatonik, W. J. Charatonik and J. R. Prajs, Mapping hierarchy for dendrites, Dissertationes Math. (Rozprawy Mat.) 333 (1994), 52 pp.
[6] W. J. Charatonik and A. Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), no. 3, 215-238.
[7] A. Illanes, Countable closed set aposyndesis and hyperspaces, Houston J. Math. 23, no. 1, 1997.
[8] A. Illanes, V. Martínez-de-la-Vega, J. M. Martínez-Montejano and D. Michalik, Hierarchy of curves with weakly confluent maps, preprint.
[9] V. Martínez-de-la-Vega and C. Mouron, Monotone classes of dendrites, Canad. J. Math. 68 (2016), no. 3, 675-697.
[10] J. Nikiel, A characterization of dendroids with uncountably many end-points in the classical sense, Houston J. Math. 9 (1983), no. 3, 421-432.
[11] J. Nikiel, On dendroids and their end-points and ramification points in the classical sense, Fund. Math. 124 (1984), no. 2, 99-108.
[12] J. Nikiel, On Gehman dendroids, Glas. Mat. Ser. III 20(40) (1985), no.1, 203-214.
(A. Illanes) Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Ciudad de México, 04510, México

E-mail address: illanes@matem.unam.mx
(V. Martínez-de-la-Vega) Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Ciudad de México, 04510, México

E-mail address: vmvm@matem.unam.mx
(J. M. Martínez-Montejano) Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, Ciudad de México, 04510, México

E-mail address: jorgemm@ciencias.unam.mx
(D. Michalik) Jan Kochanowski University, Świȩtokrzyska 15, 25-406, Kielce, Poland E-mail address: daria.michalik@ujk.edu.pl

