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Abstract. Given continua X, Y and a class F of maps between continua, define X ≥F Y
if there exists an onto map f : X → Y belonging to F . A map f : X → Y is weakly
confluent if for each subcontinuum B of Y , there exists a subcontinuum A of X such that
f(A) = B. In this paper we consider the classW of weakly confluent maps. Two continua X
and Y are W-equivalent provided that X ≤W Y and Y ≤W X. We show that any Gehman
Dendrite Gn is W-equivalent to any universal dendrite Dm. We consider the class [G3]W
of all dendrites that are W-equivalent to G3. We characterize the elements of [G3]W in two
ways: (a) a dendrite D belongs to [G3]W if and only if D contains uncountably many end-
points, and (b) a dendrite D belongs to [G3]W if and only if D is maximal with respect to
the preorder ≤W

1. Introduction

A continuum is a compact connected metric space with more than one point. A subcon-
tinuum of a continuum X is a nonempty closed connected subset of X, so one-point sets in
X are subcontinua of X. A map is a continuous function.

Given an onto map f : X → Y between continua, we say that f is:
- monotone provided that for each subcontinuum B of Y , f−1(B) is a subcontinuum of X;
- confluent if for each subcontinuum B of Y and each component A of f−1(B), f(A) = B;
and
- weakly confluent if for each subcontinuum B of Y , there is a subcontinuum A of X such
that f(A) = B.

Note that

monotone ⇒ confluent ⇒ weakly confluent.

The class of monotone (respectively, confluent and weakly confluent) maps is denoted by
M (respectively, C and W). It is easy to show that classes M, C and W are closed under
composition.

Date: September 26, 2023.
2010 Mathematics Subject Classification. Primary 54F50; Secondary, 54E40, 54F15, 54F65.
Key words and phrases. Continuum, confluent, dendrite, Gehman dendrite, monotone, universal dendrite,

weakly confluent.
This paper was partially supported by the project “Teoŕıa de Continuos e Hiperespacios, dos” (AI-S-
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Given continua X and Y , and a class of maps between continua F , we define X ≥F Y if
there exists an onto map f : X → Y belonging to F . Two continua X and Y are F -equivalent
(denoted by X 'F Y ) provided that X ≤F Y and Y ≤F X. Given a class of continua E , a
continuum X ∈ E is F -isolated in the class E provided that the following implication holds:
if Y ∈ E and X 'F Y , then X and Y are homeomorphic.

A curve is a 1-dimensional continuum. A dendrite is a locally connected continuum without
simple closed curves. For a continuum X and a point p ∈ X we use the order of p in X in
the sense of Menger-Urysohn [4, Appendix A.2], which is denoted by o(p,X). For dendrites
D, o(p,D) can be defined as the number of components of D \ {p} (see [1, p. 2]). Then
o(p,D) ∈ N∪ {ω}. Points of order one in X are end-points, and points of order greater than
2 are ramification points. The set of end-points of X is denoted by E(X) and the set of
ramification points of X is denoted by R(X).

Given n ∈ N (n ≥ 3) and m ∈ N ∪ {ω} (m ≥ 3), two important dendrites we will use
are the Gehman dendrite Gn and the the universal dendrite Dm. The Gehman dendrite Gn

is characterized by having E(Gn) homeomorphic to the Cantor set; all ramification points
of Gn are of order n; and E(Gn) = clX(R(Gn)) \ R(Gn) (see [5, p. 21], and for a picture
of G3 see [10, p. 424]). The universal dendrite Dm is characterized by having the following
properties: all ramification points are of order m and each arc in X contains ramification
points [3, Theorem 3.1] (see [7, p. 61] for a picture of D4).

In the realm of dendrites a very complete study of the preorder ≤F was made by J. J.
Charatonik, W. J. Charatonik and J. R. Prajs in [5]. Several families F were considered, but
the most important results are related to monotone and open mappings.

For dendrites, the following facts are known.

(a) if X and Y are dendrites, then X 'M Y if and only if X 'C Y [5, Corollary 5.7],
(b) for every n,m ∈ N ∪ {ω} (n,m ≥ 3), Dn 'M Dm, Dn 'C Dm and Dn 'W Dm [5,

Theorem 5.27],
(c) for each n ≥ 3 and for each m ∈ N∪{ω} (m ≥ 3), Gn and Dm are notM-equivalent

(it follows from [9, Theorem 5.27]),
(d) trees are W-isolated in the class of trees [8, Theorem 3.3],
(e) A finite graph X is notW-isolated in the class of all continua if and only if X is either

an arc, or a simple closed curve, or contains a cycle (a cycle is a simple closed curve
with exactly one ramification point of X), or contains a ramification point contained
in two distinct sticks (a stick is an edge joining a ramification point to an end-point)
[8, Theorem 3.4],

(f) a dendrite X is M-isolated in the class of all continua if and only if R(X) is finite
[9, Theorem 1.1],

(g) it follows from [2, Theorem 3.2] that: if two dendrites are monotone-equivalent, then
they are quasi-homeomorphic (two dendrites X and Y are quasi-homeomorphic if for
each ε > 0 there are ε-onto maps fε : X → Y and gε : Y → X). However the converse
is not true.
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The authors in [5, Theorem 5.27], gave a complete characterization of dendrites which are
maximum elements with respect to the preorder ≤M (equivalently, ≤C [5, Corollary 5.7]),
they showed that a dendrite D satisfies X ≤M D for every dendrite X if and only if D
contains the dendrite L0 described in [5, 5.26].

The aim of this paper is to characterize the maximal dendrites with respect to the preorder
≤W . We prove that D is one of these dendrites if and only if E(D) is uncountable. The proof
of this result is based in the theorem that says that there exists a weakly confluent map f
from the Gehman dendrite G6 onto the universal dendrite D4. Most of this paper is devoted
to give a detailed construction of the map f .

2. Gehman and universal dendrites

Theorem 2.1. For n ≥ 3 and m ∈ {3, 4, . . .} ∪ {ω}, the Gehman dendrite Gn and the
universal dendrite Dm are weakly confluent equivalent.

To prove this theorem it is enough to show that there exists a weakly confluent map
f : G6 → D4; the argument is as follows: By [1, Corollary 6.10], for all n,m ≥ 3, Gn is
a monotone image of Gm and, by [3, Corollary 6.4], for all k, l ∈ {3, 4, . . .} ∪ {ω}, Dk is
monotone equivalent to Dl. Let n ≥ 3 and m ∈ {3, 4, . . .}, since monotone maps are weakly
confluent, there are weakly confluent maps g0 : Dm → Dω and g1 : Dω → Gn [3, Proposition
6.2]. Hence, g = g1 ◦ g0 : Dm → Gn is a weakly confluent map. We can take monotone maps
f1 : Gn → G6 and f2 : D4 → Dm. Thus, f3 = f2 ◦ f ◦ f1 : Gn → Dm is weakly confluent.
Therefore, Gn and Dm are weakly confluent equivalent.

This section is devoted to construct a weakly confluent map f : G6 → D4.

For simplicity, the ramification and end points of a dendrite will also be called vertices. We
will use the universal dendrite D4. Recall that this dendrite is characterized by the following
two properties [6, Theorem 6.2, p. 229]:

(a) each ramification point in D4 has order 4, and
(b) each arc in D4 contains points of order 4.

Since the proof that there exists a weakly confluent map from the Gehman dendrite G6

onto D4 requires some explicit formulas, we start by giving an appropriate description of D4.
We will use the set of dyadic numbers D in the interval [0, 1]:

D = { k
2m
∈ [0, 1] : m ∈ N and k ∈ {0, 1, . . . , 2m}}.

Given r ∈ D \ {0, 1}, the degree of r is the unique number g(r) ∈ N such that r = k
2g(r)

,
where k is odd.

Lemma 2.2. (a) Let r, s ∈ D\{0, 1}. Then r− s
2g(r)
∈ D\{0, 1} and g(r− s

2g(r)
) = g(r)+g(s).

(b) Let [a, b] be a non-degenerate subinterval of [0, 1]. Then there exists a unique element
r ∈ [a, b]∩ (D \ {0, 1}) with minimal degree g(r); if g(r) > 1, then 1

2g(r)
> max{b− r, r− a},

and if g(r) = 1, then r = 1
2
.
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Proof. (a). Since r ≥ 1
2g(r)

, we have that 0 ≤ r − 1
2g(r)

< r − s
2g(r)

< r < 1, so r − s
2g(r)

∈
D \ {0, 1}. Let m = g(r) and n = g(s). Consider the dyadic representation of r and s:
r = r1

21
+ · · ·+ rm

2m
, s = s1

21
+ · · ·+ sn

2n
, where each ri and each si is in {0, 1} and rm = 1 = sn.

Then r − s
2g(r)

= r1
21

+ · · · + rm
2m
− ( s1

2m+1 + · · · + sn
2m+n ) = 2m+n−1r1+···+2nrm−2n−1s1−···−2sn−1−sn

2m+n .
This shows that g(r − s

2g(r)
) = m+ n = g(r) + g(s).

(b). Suppose to the contrary that r1 < r2 are elements with minimal degree in [a, b] such
that g(r1) = g(r2) ∈ N. Then there exist odd numbers k1, k2 ∈ {1, . . . , 2g(r1)} such that
0 ≤ r1 = k1

2g(r1)
< k1+1

2g(r1)
< k1+2

2g(r1)
≤ k2

2g(r2)
= r2 ≤ 1. Since k1 + 1 is even, the number r0 = k1+1

2g(r1)

belongs to [a, b]∩ (D \{0, 1}) and g(r0) < g(r1), a contradiction. This proves the uniqueness
of the element r of minimal degree. Suppose that r = k

2g(r)
, with k odd and g(r) > 1. If

r + 1
2g(r)

= k+1
2g(r)
≤ b, then g( k+1

2g(r)
) < g(r), this contradicts the choice of r. Thus b− r < 1

2g(r)
.

Similarly, r − a < 1
2g(r)

. �

2.1. Construction of D4.

When we take points p and q in a dendrite, by pq we denote the unique arc joining them,
if p 6= q, and pq = {p}, if p = q.

We consider the points v = d = (0, 0), a = (0, 1), b = (0,−1), c = (1, 0) and e = (−1, 0)
in the Euclidean plane R2. To construct D4, we start with a cross and then we add smaller
and smaller crosses in strategic points and strategic sizes. Points a, b, c, e will be useful for
indicating if we will walk up, down, right or left.

Let BL = {d, a, b, c, e} and B′L = {a, b, c, e}. Set β = 7
8
. We use the number β to short

segments in order to avoid intersection of paths.
We define two types of elements in the set B′L, we say that a and b are of the vertical type;

and c and e are of the horizontal type.
We consider the set D∗4 of points q in the plane R2 such that either q = v or q is of the

following form.

q = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−1 rmzm

2g(r1)+···+g(rm−1)
+ tβm

rm+1zm+1

2g(1)+···+g(rm)
, (1)

where m ≥ 0, t ∈ (0, 1], for each i ∈ {1, . . . ,m+ 1}, ri ∈ D \ {0, 1}, zi ∈ B′L, and, if i > 1, zi
is of distinct type than zi−1, meaning zi ∈ {a, b} if and only if zi+1 ∈ {c, d}.

We will give a brief explanation of a point q ∈ D∗4.
In the term r1z1

20
, z1 indicates one of the four fundamental directions a, b, c or e and the

dyadic number r1 indicates how much we advance on the direction z1. Similarly, in the term
β r2z2

2g(r1)
, z2 indicates the direction in which we move when we are standing on point v+ r1z1

20
, we

are asking that z2 is of different type than z1, so we change direction, and β r2
2g(r1)

indicates

how much we move in that direction. This movement is limited by the factor 1
2g(r1)

. For

example if r1 = 1
2
, since r2 ∈ (0, 1), the length of this movement is less than β

2
, if r1 ∈ {1

4
, 3

4
},

is less than β
4
, if r1 ∈ {1

8
, 3

8
, 5

8
, 7

8
}, is less than β

8
, etcetera. The factor β allows us to avoid

intersections of paths, so the arcs from the point v to any point in D∗4 is unique. We continue
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until we use the last term: tβm rm+1zm+1

2g(1)+···+g(rm) , here the number t indicates that we run on a
complete segment.

On Figure 1, we illustrate the set covered by the elements in D∗4 with m = 0, and we
also illustrate some elements with m = 1. In fact the complete elements for m = 1 include
countably many segments perpendicular to the first cross.

Figure 1. m = 0 and m = 1

In the case that q is written in the form (1), define the number m(q) = m and the point

w(q) = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−1 rmzm

2g(r1)+···+g(rm−1)
.

Notice that m(q), w(q) and zm+1 are uniquely determined by q. So we can write

q = w(q) + tβm(q) rm(q)+1zm(q)+1

2g(1)+···+g(rm(q))
.

The expression in (1) is not unique since the number trm(q)+1 can be written in many ways.
Observe that D∗4 includes exactly all points in D4 of order 2 or 4. That is, D4 \D∗4 = E(D4)
(E(D4) is the set of end-points of D4). Then D∗4 is dense in D4. The set of ramification points
of D4 is the set R(D4) of points p ∈ D4 such that either p = v or p is of the form

p = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−1 rmzm

2g(r1)+···+g(rm−1)
+ βm

rm+1zm+1

2g(1)+···+g(m)
(2)

where m, r1, . . . , rm+1 and z1, . . . , zm+1 satisfy the conditions described previously. Observe
that the expression for points in R(D4) is unique.
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Given q ∈ D∗4, in the following definition we give name the segments we use to go from v
to q.

Definition 2.3. Given q ∈ D∗4 (written as in (1)), define

L1(q) = {v + s r1z1
20

: s ∈ (0, 1]},
L2(q) = {v + r1z1

20
+ sβ r2z2

2g(r1)
: s ∈ (0, 1]},

...
Lm(q) = {v+ r1z1

20
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ sβm−1 rmzm

2g(r1)+···+g(rm−1)
: s ∈ (0, 1]} and

Lm+1(q) = {w(q) + stβm rm+1zm+1

2g(r1)+···+g(rm) : s ∈ (0, 1]}.

Observe that each set Li(q) is homeomorphic to the interval (0, 1] and the unique arc in
D4 joining v and q (respectively, v and w(q)) is vq = {v}∪L1(q)∪· · ·∪Lm+1(q) (respectively,
{v}∪L1(q)∪· · ·∪Lm(q)). Observe that the rays L1(q), · · · , Lm+1(q) are uniquely determined
by q.

2.2. Description of the dendrite X.

Recall that the Gehman dendrite G3 is characterized as the dendrite satisfying that its set
of end-points is homeomorphic to the Cantor set, each ramification point is of order three
and E(G3) = clG3(R(G3)) \ R(G3) [11, p. 100], see [12, p. 203], for a picture. Similarly, the
Gehman dendrite of order 6, denoted by G6, is characterized as the dendrite satisfying that
its set of end-points is homeomorphic to the Cantor set, each ramification point is of order
6 and E(G6) = clG6(R(G6)) \R(G6).

Instead of working directly with G6, it is convenient for us to take G6 but transforming
(exactly) one point of order 6 into a point of order 5. This new space is named X.

Fix a ramification point vG6 of G6, let C∗1 , . . . , C
∗
6 be the components of G6\{vG6}. Consider

the continuum X obtained by shrinking the set C∗1 ∪ {vG6} into a point. Let V ∈ X be the
point corresponding to C∗1 ∪ {vG6}. Then X is a dendrite such that its set of end-points
is homeomorphic to the Cantor set, the point V has order 5, the rest of its ramification
points are of order 6 and E(X) = clX(R(X)) \ R(X). Observe that X is a monotone (and
then weakly confluent) image of G6 (X ≤W G6). We establish the following conventions on
dendrite X.

As we did with D4, we will describe X by starting at the vertex V , and then giving five
possible directions (D, A, B, C and E) indicating the ways we can walk. So, the vertices of
X will be described in the following way: V is the first vertex, V D, V A, V B, V C and V E
are the five vertices adjacent to V in X. Besides V , the vertices adjacent to V A, are V AD,
V AA, V AB, V AC and V AE, and we continue in this way.

Formally: fix five distinct labels D, A, B, C and E (all different from V ). Let BC =
{D,A,B,C,E} and B′C = {A,B,C,E}. The ramification points of X are all the finite
sequences of the form:

T = Z0Z1Z2 . . . Zm,

where m ≥ 0, Z0 = V and for each i ∈ {1, . . . ,m}, Zi ∈ BC .
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The maximal free arcs in X are the arcs of the form TmTm+1, where Tm = Z0Z1Z2 . . . Zm
and Tm+1 = Z0Z1Z2 . . . ZmZm+1. Then the arc V Tm is the union of the arcs Z0(Z0Z1),
(Z0Z1)(Z0Z1Z2),. . . ,(Z0 . . . Zm−1)(Z0 . . . Zm). We fix a one-to-one onto map

σ(Tm+1) : [0, 1]→ TmTm+1

such that σ(Tm+1)(0) = Tm and σ(Tm+1)(1) = Tm+1. The set σ(Tm+1)([0, 1]) is the arc
TmTm+1 in X that joins Tm and Tm+1. Let

η(Tm+1) : TmTm+1 → [0, 1]

be the inverse mapping of σ(Tm+1).

Figure 2. X3

The end-points of X are the infinite sequences of the form:

R = Z0Z1Z2 . . .

where Z0 = V and for each i ∈ N, Zi ∈ BC . The arc V R in X is given by:

V R = T0T1 ∪ T1T2 ∪ T2T3 ∪ · · ·
where for each m ≥ 0, Tm = Z0Z1 . . . Zm. Then T0 = Z0 = V and

X =
⋃
{T0R : R is an end-point of X}.

For each m ≥ 0, let

Xm = {T0Tm ⊆ X : Tm = Z0Z1Z2 . . . Zm and, for each i ∈ {1, . . . ,m}, Zi ∈ BC}.
In Figure 2, we illustrate the set X3.

For the definition of D4, we used the set BL = {d, a, b, c, e}. Recall that the elements
of the set BC are denoted with the capital letters A,B,C,D,E we will use the following
correspondence: D → d, A → a, B → b, C → c, E → e. When we denote an element in
BC by Zi, we consider the element zi ∈ BL defined with the previous correspondence for
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the element Zi. Conversely, for each element z ∈ BL, we define the corresponding element
Z ∈ BC .

We define two types of elements in the set B′C , we say that A and B are of the vertical
type; and C and E are of the horizontal type.

2.3. Definition of f .

For a vertex Tm+1 = Z0Z1 . . . Zm+1 of X, define a sequence λ1, λ2, . . . , λm+1 as follows.
Take i ∈ {1, 2, . . . ,m+ 1}.

(a) If Zi = D, let λi = 0;
(b) if Zi 6= D and {Z0, . . . , Zi−1} = {D}, let λi = 1;
(c) if Zi 6= D and {Z0, . . . , Zi−1} 6= {D}, let j0 = max{j ∈ {1, . . . , i− 1} : Zj 6= D} and

define λi = λj0 , in the case that Zi is of the same type than Zj0 ; and λi = βλj0 (recall
that β = 7

8
), in the case that Zi is of distinct type than Zj0 . Then each λi belongs to

the set {βk : k ∈ N} ∪ {0, 1}
Define f : X → R2 as follows. Set f(V ) = v, and given a vertex Tm+1 = Z0Z1 . . . Zm+1 of

X and a point p ∈ TmTm+1, where Tm = Z0Z1 . . . Zm, define

f(p) = v +
λ1z1

21
+
λ2z2

22
+ · · ·+ λmzm

2m
+ η(Tm+1)(p)

λm+1zm+1

2m+1
(3)

where λ1, . . . , λm+1 are defined as previously, for the sequence Tm+1.
Given an end-point p = Z0Z1Z2 . . . of X, define

f(p) = v +
λ1z1

21
+
λ2z2

22
+
λ3z3

23
+ · · · ,

where for each m ∈ N, λ1, λ2, . . . , λm are defined as previously for the sequence Tm =
Z0Z1 . . . Zm. Observe that each number λi is defined using only the elements Z1, . . . , Zi, and
it is independent of any number k ≥ i.

Given m ∈ N, observe that

f(Xm) = {f(T0(Z0Z1 . . . Zm)) : Z0Z1Z2 . . . Zm is a ramification point of X}
= {f(p) : p ∈ Tn−1Tn, 1 ≤ n ≤ m and Tn ∈ R(X)}

is the minimum tree in R2 containing the points in the set

f(Xm) = {f(Z0Z1 . . . Zm) : Z0Z1Z2 . . . Zm is a ramification point of X}.
Since {Z0Z1 : Z1 ∈ BC} = {V D, V A, V B, V C, V E}, we have that f(X1) is the minimum

tree in the plane R2 containing the points v, v + a
2
, v + b

2
, v + c

2
and v + e

2
.

Observe that f(X2) is the minimum tree in the plane containing the points:
v, v + a

2
, v + b

2
, v + c

2
, v + e

2
, (they come from V D, V A, V B, V C, V E, or V DD, V AD,

V BD, V CD, V ED);
v + a

4
, v + b

4
, v + c

4
, v + e

4
, (from V DA, V DB, V DC, V DE);

v + 3a
4

, v + 3b
4

, v + 3c
4

, v + 3e
4

, (from V AA, V BB, V CC, V EE);

v + a
4
, v + b

4
, v + c

4
, v + e

4
, (from V AB, V BA, V CE, V EC);
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WEAKLY CONFLUENT CLASSES OF DENDRITES 9

v+ a
2

+β c
4
, v+ a

2
+β e

4
, v+ b

2
+β c

4
, v+ b

2
+β e

4
, v+ c

2
+β a

4
, v+ c

2
+β b

4
, v+ e

2
+β a

4
, v+ e

2
+β b

4

(from V AC, V AE, V BC, V BE, V CA, V CB, V EA, V EB).
In Figure 3 we picture the sets f(X1), f(X2) and f(X3).

Figure 3. f(X1), f(X2) and f(X3).

Clearly f is continuous.
The following lemma is an easy consequence of the definitions.

Lemma 2.4. Let Tm+1 = Z0Z1 . . . Zm+1 be a vertex of X and Tm = Z0Z1 . . . Zm. Then:

(a) f(Tm) = v + λ1z1
21

+ λ2z2
22

+ · · ·+ λmzm
2m

,
(b) if Zm+1 = D, then f(TmTm+1) = {f(Tm)} = {f(Tm+1)} = f(Tm)f(Tm+1),
(c) if Zm+1 6= D, then f(TmTm+1) = f(Tm)f(Tm+1). That is, f(TmTm+1) = {v + λ1z1

21
+

λ2z2
22

+ · · ·+ λmzm
2m

+ tλm+1zm+1

2m+1 ∈ D4 : t ∈ [0, 1]}.

Lemma 2.5. Let T = Z0Z1 . . . Zm be a vertex of X and Z ∈ B′C. Suppose that {W1, . . . ,Wn} ⊂
{D,Z}. Define the sequence S = Z0Z1 . . . ZmW1 . . .Wn. For each i ∈ {1, . . . , n}, let si = 0,
if Wi = D; and si = 1, if Wi = Z. Set r = s1

21
+ · · ·+ sn

2n
∈ D. Then:

(a) if {W1, . . . ,Wn} = {D}, then f(TS) = {f(T )};
(b) if Z ∈ {W1, . . . ,Wn}, then f(TS) = f(T )f(S); and
(c) if Z and Zm are of different type and Zm 6= D, then f(S) = f(T ) + βλm

2m
rz, where λm

is defined for the sequence T .
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Proof. (a) follows from Lemma 2.4. To prove (b) and (c), suppose that Wi1 , . . . ,Wik are all
the elements in {W1, . . . ,Wn} which are equal to Z, where k ∈ N and i1 < · · · < ik. For each
l ∈ {1, . . . , k}, let Sl = Z0Z1 . . . ZmW1 . . .Wil .

Given i ∈ {1, . . . , n}, if i /∈ {i1, . . . , ik}, then wi = d = (0, 0) and λm+i = 0; if i ∈
{i1, . . . , ik}, then wi = z and λm+i = λm+i1 (since there are not changes of types). Thus, by
the definition of f , we obtain that

f(Sl) = v +
λ1z1

21
+
λ2z2

22
+ · · ·+ λmzm

2m
+
λm+i1z

2m+i1
+ · · ·+ λm+i1z

2m+il

= f(T ) +
λm+i1

2m
(

1

2i1
+ · · ·+ 1

2il
)z.

(4)

In particular, if Z is of different type of Zm, by (a) we have that f(S) = f(Sk) = f(T ) +
λm+ik

2m
rz = f(T ) + βλm

2m
rz (λm+i1 = · · · = λm+ik = λmβ since there is exactly one change of

type from m to m+ i1).
Observe that Lemma 2.4 implies that

f(TS1) = f(T (Z0Z1 . . . ZmW1 . . .Wi1−1) ∪ (Z0Z1 . . . ZmW1 . . .Wil−1)S1)

= f(T (Z0Z1 . . . ZmW1 . . .Wi1−1)) ∪ f((Z0Z1 . . . ZmW1 . . .Wil−1)S1)

= {f(T )} ∪ f(Z0Z1 . . . ZmW1 . . .Wil−1)f(S1) = f(T )f(S1).

By (4), this arc is the set J1 = {f(T ) + t
λm+i1

z

2m
( 1

2i1
) : t ∈ [0, 1]}. Similarly, f(S1S2) =

f(S1)f(S2) and by (4), this arc is the set J2 = {f(T ) +
λm+i1

z

2m
( 1

2i1
) + t

λm+i2
z

2m
( 1

2i1
+ 1

2i2
) :

t ∈ [0, 1]}. Since J1 ∩ J2 = {f(T ) +
λm+i1

z

2m
( 1

2i1
)} = {f(S1)}, we conclude that f(TS2) =

f(TS1) ∪ f(S1S2) = J1 ∪ J2 = f(T )f(S2).
Inductively, the proof of (b) can be completed. �

We have described the elements of D∗4 in (1) and we defined f with the expression in (3).
We see how they are related.

First, we show how to associate a finite sequence of elements of BC to an element of the
form rz, where r ∈ D \ {0, 1} and z ∈ B′L. Let Z ∈ B′C be the element associated to z.
Suppose that r = k

2n
, where k is odd. We write r using dyadic notation, that is, we write

r = s1
21

+ · · · + sn
2n

, where sn = 1 and for each i ∈ {1, . . . , n − 1}, si ∈ {0, 1}. Observe that
g(r) = n. We define the sequence Z1 . . . Zn by making Zi = D, if si = 0; and Zi = Z, if
si = 1. Observe that Zn = Z.

Given an element of the form tz, where t ∈ (0, 1] and z ∈ B′L, we associate to tz a sequence
Z1Z2 . . . of elements in the set {D,Z} in a similar way. That is, we start writing t = s1

21
+ · · ·

and we define Zi = Z if si = 1, otherwise Zi = 0 (i ≥ 1). In the case that t has two dyadic
representations, we simply choose the finite one (the one with a tail of zeros).

Lemma 2.6. Let r ∈ D\{0, 1}, z ∈ B′L and Z1 . . . Zn be the sequence associated to rz. Then
zn = z and rz = z1

21
+ · · ·+ zn

2n
.

Proof. We have observed that Zn = Z, so zn = z. As before, we write r = s1
21

+ · · · + sn
2n

.
Given i ∈ {1, . . . , n}, if si = 0, then Zi = D, so (0, 0) = d = zi, and zi = 0z = siz; if
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WEAKLY CONFLUENT CLASSES OF DENDRITES 11

si = 1, then Zi = Z, so zi = z = siz. In both cases, zi = siz. Therefore z1
21

+ z2
22

+ · · ·+ zn
2n

=
s1z
21

+ s2z
22

+ · · ·+ snz
2n

= rz. �

Lemma 2.7. Let r1, . . . , rm in D \ {0, 1} and z1, . . . , zm in B′L. For each k ∈ {1, . . . ,m}, let

Z
(k)
1 . . . Z

(k)
jk

be the sequence in BC associated to rkzk. Suppose that for each k ∈ {1, . . . ,m−1},
zk+1 is of distinct type than zk. Let T = Z0Z

(1)
1 . . . Z

(1)
j1
. . . Z

(m)
1 . . . Z

(m)
jm

. Then

(a) f(T ) = v + r1z1
20

+ β r2z2
2j1

+ · · ·+ βm−1 rmzm
2j1+···+jm−1

, where ji = g(zi), for each i,

(b) for each k ∈ {1, . . . ,m}, the contribution of the subsequence Z
(k)
1 . . . Z

(k)
jk

to the sum

that defines f(T ) is the term βk−1rkzk
2j1+···+jk−1

,

(c) if λ1, . . . , λj1+···+jm is the sequence associated to the vertex T , then λj1 = β0, λj1+j2 =
β1,. . . , λj1+···+jm = βm−1,

(d) the number of terms in the sum that defines f(T ) in (3), equivalently, the number of
terms in the sequence T , is equal to j1 + · · ·+ jm + 1 = g(r1) + · · ·+ g(rm) + 1,

(e) let S = Y0Y1 . . . Yn be a vertex of X and R = Y0Y1 . . . YnZ
(1)
1 . . . Z

(1)
j1
. . . Z

(m)
1 . . . Z

(m)
jm

.
Suppose that Yn and Z1 are of distinct type and Yn 6= D. Let {λ1, . . . λn} be the set
of λ’s defined for the sequence S and γ = βλn

2n
. Then

f(R) = f(S) + γ( r1z1
20

+ β r2z2
2j1

+ · · ·+ βm−1 rmzm
2j1+···+jm−1

),

(f) let S and R be as in (e). Then f(SR) = f(S)f(R).

Proof. Let i ∈ {1, . . . , j1}. Since {Z(1)
1 , . . . , Z

(1)
j1
} ⊂ {D,Z1}, by definition: λi = 0, if Z

(1)
i =

D; and λi = 1 (there are not changes of types), if Z
(1)
i = Z1. In the first case, since d = (0, 0),

we conclude that
λiz

(1)
i

2i
= λi(0,0)

2i
=

z
(1)
i

2i
. In the second case,

λiz
(1)
i

2i
=

z
(1)
i

2i
. Thus, by Lemma 2.6,

λ1z
(1)
1

21
+ · · ·+ λj1z

(1)
j1

2j1
=

z
(1)
1

21
+ · · ·+ z

(1)
j1

2j1
= r1z1.

Given i ∈ {1, . . . , j2}. Since {Z(2)
1 , . . . , Z

(2)
j2
} ⊂ {D,Z2}, by definition of f(T ): λj1+i = 0, if

Z
(2)
i = D, and λj1+i = β (there is exactly one change of type), if Z

(2)
i = Z2. In the first case,

since d = (0, 0), we have that
λj1+iz

(2)
i

2j1+i =
λj1+i(0,0)

2j1+i =
βz

(2)
i

2j1+i . In the second case,
λj1+iz

(2)
i

2j1+i =
βz

(2)
i

2j1+i .

Thus, by Lemma 2.6,
λj1+1z

(2)
1

2j1+1 + · · ·+ λj1+j2
z
(2)
j2

2j1+j2
= β1

2j1
(
z
(2)
1

21
+ · · ·+ z

(2)
j2

2j2
) = β1r2z2

2j1
.

The proofs of (a) and (b) can be completed continuing in this way.
Properties (c) and (d) are easy to show.
We prove (e). The case m = 1 was proved in Lemma 2.5 (c). We prove the case m = 2.

Suppose that λ1, . . . λn+j1 are the λ ’s defined for the sequence Y1 . . . YnZ
(1)
1 . . . Z

(1)
j1

. Ob-
serve that since each λi depends only on the first i terms, λ1 . . . λn are the λ′s defined

for Y1 . . . Yn. Since there is exactly one change of type among the terms YnZ
(1)
1 . . . Z

(1)
j1

,

we have that λn+j1 = λnβ. By Lemma 2.5 (c), f(Y0Y1 . . . YnZ
(1)
1 . . . Z

(1)
j1
Z

(2)
1 . . . Z

(2)
j2

) =

f(Y0Y1 . . . YnZ
(1)
1 . . . Z

(1)
j1

)+
βλn+j1

2n+j1
r2z2 = f(S)+γ r1z1

20
+ β2λn

2n+j1
r2z2 = f(S)+γ( r1

20
+β r2z2

2j1
). The

rest of (e) can be proved in a similar way.
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We prove (f) by induction. The case m = 1 follows from Lemma 2.5 (b). Now, suppose

that (f) holds for m− 1 ≥ 1. Let R′ = Y0Y1 . . . YnZ
(1)
1 . . . Z

(1)
j1
. . . Z

(m−1)
1 . . . Z

(m−1)
jm−1

. Using the

induction hypothesis and (e), we obtain that

f(SR) = f((Y0Y1 . . . Yn)R) = f((Y0Y1 . . . Yn)R′ ∪R′R)

= f((Y0Y1 . . . Yn)R′) ∪ f(R′R) = f(S)f(R′) ∪ f(R′)f(R)

= f(S)(f(S) + γ(
r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−2 rm−1zm−1

2j1+···+jm−2
))∪

(f(S)+γ( r1z1
20

+β r2z2
2j1

+ · · ·+βm−2 rm−1zm−1

2j1+···+jm−2
))(f(S)+γ( r1z1

20
+β r2z2

2j1
+ · · ·+βm−1 rmzm

2j1+···+jm−1
)).

Observe that the arc in D4 joining the points f(S)+γ( r1z1
20

+β r2z2
2j1

+ · · ·+βm−2 rm−1zm−1

2j1+···+jm−2
)

and f(S) + γ( r1z1
20

+ β r2z2
2j1

+ · · ·+ βm−1 rmzm
2j1+···+jm−1

) is the set

L = {f(S)+γ( r1z1
20

+β r2z2
2j1

+· · ·+βm−2 rm−1zm−1

2j1+···+jm−2
+tβm−1 rmzm

2j1+···+jm−1
) : t ∈ [0, 1]} = f(R′)f(R),

and the intersection of L with the arc L0 = f(S)(f(S)+γ( r1z1
20

+β r2z2
2j1

+· · ·+βm−2 rm−1zm−1

2j1+···+jm−2
)) =

f(S)f(R′) is the point f(S) +γ( r1z1
20

+β r2z2
2j1

+ · · ·+βm−2 rm−1zm−1

2j1+···+jm−2
) = f(R′). Then L∪L0 =

f(R′)f(R)∪ f(S)f(R′) is the arc joining f(S) and f(R). Therefore f(SR) = f(S)f(R). �

Lemma 2.8. f(X) = D4.

Proof. Let r1, . . . , rm in D \ {0, 1}, z1, . . . , zm in B′L and for each k ∈ {1, . . . ,m− 1}, zk+1 is
of distinct type than zk. By Lemma 2.7, each element q ∈ R(D4),

q = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−1 rmzm

2g(r1)+···+g(rm−1)
,

and any arc vq in D4 is contained in Im(f). We obtain that R(D4) ⊂ f(
⋃∞
m=1Xm) ⊂ D4.

Since X = clX(
⋃∞
m=1Xm) is compact and R(D4) is dense in D4, we obtain that f(X) =

D4. �

Lemma 2.9. Let T = Z0Z
(1)
1 . . . Z

(1)
j1
. . . Z

(m)
1 . . . Z

(m)
jm

and

q = f(T ) = v +
r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−1 rmzm

2j1+···+jm−1

be as in Lemma 2.7. Let k = j1 + · · ·+ jm. Write the sequence T in the form T = Y0Y1 . . . Yk.
Let t ∈ D \ {0, 1, rm} be such that 1

2g(rm) > |rm − t| and let

qt = v +
r1z1

20
+ · · ·+ βm−2 rm−1zm−1

2j1+···+jm−2
+ βm−1 tzm

2j1+···+jm−1
.

Then there exist n ∈ N, Y ′k ∈ B′C, and Yk+1, . . . , Yk+n ∈ {D, Y ′k} such that Y ′k is of the same

type than Yk = Z
(m)
jm

, and the vertex Tk+n = Y0Y1 . . . Yk . . . Yk+n has the following properties

f(Tk+n) = qt, f(TTk+n) = qqt, g(rm) + n = g(t) and λk+n = βm−1 (where λ1, . . . , λk+n is the
sequence defined for the vertex Tk+n).
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Proof. We suppose that zm = a, the rest of the cases (that is, zm is one of the points {b, c, e})
are similar. We consider two cases.

Case 1. t < rm.

We take the dyadic representation of the number 2g(rm)(rm − t) ∈ D \ {0, 1}, to be:

2g(rm)(rm − t) =
s1

21
+ · · ·+ sn

2n
,

where {s1, . . . , sn} ⊂ {0, 1} and sn = 1.
Since Y ′k is of the same type than Yk, t < rm and zm = a, we have that zm+1 = −zm = b.
Let r′ = 2g(rm)(rm−t), Yk+1 . . . Yk+n be the sequence associated to r′b = r′(−a) = r′(−zm).

Then Yk+n = −Zm = B, {Yk+1, . . . , Yk+n} ⊂ {D,B} and

Tk+n = Y0Z
(1)
1 . . . Z

(1)
j1
. . . Z

(m)
1 . . . Z

(m)
jm

Yk+1 . . . Yk+n = Y0Y1 . . . YkYk+1 . . . Yk+n.

Observe that g(r′) = n. By Lemma 2.2 (a), g(rm) + n = g(rm) + g(r′) = g(rm − r′

2g(rm) ) =
g(t). Thus g(rm) + n = g(t).

Since {Yk+1, . . . , Yk+n} ⊂ {D,B} and B ∈ {Yk+1, . . . , Yk+n}, by Lemma 2.5 (b), we have
that f(TTk+n) = f(T )f(Tk+n) = qf(Tk+n). We prove that f(Tk+n) = qt.

By definition,

f(Tk+n) = v +
λ1y1

21
+ · · ·+ λkyk

2k
+
λk+1yk+1

2k+1
+ · · ·+ λk+nyk+n

2k+n
.

Since for each i ∈ {1, . . . , k}, the definition of a number λi, depends only on the sequence
Y0 . . . Yi, we have that λi also is the one used in the definition of f(T ). Then

f(T ) = v +
λ1y1

21
+ · · ·+ λkyk

2k

= v +
λ1z

(1)
1

21
+ · · ·+

λj1z
(1)
j1

2j1
+ · · ·+

λj1+···+jm−1+1z
(m)
1

2j1+···+jm−1+1
+ · · ·+

λj1+···+jmz
(m)
jm

2j1+···+jm
.

By Lemma 2.7 (a) and (c), the last sum is equal to

v +
r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−1 rmzm

2j1+···+jm−1

and λk = βm−1.
Thus

v +
λ1y1

21
+ · · ·+ λkyk

2k
= v +

r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−1 rmzm

2j1+···+jm−1
.

Since yk and b are of the same type, in fact, b = −a = −zm = −z(m)
jm

= −yk, we have that

for each i ∈ {1, . . . , n}, βm−1 = λk = λk+i, if Yk+i = B (equivalently, si = 1); and λk+i = 0,
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if Yk+i = D (equivalently, si = 0). Then yk+i = sib, and λk+iyk+i = λkyk+i = βm−1sib.
Therefore

f(Tk+n) = v +
r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−1 rmzm

2j1+···+jm−1
+
βm−1s1b

2k+1
+ · · ·+ βm−1snb

2k+n

= v +
r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−1 rmzm

2j1+···+jm−1
− βm−1zm

2j1+···+jm−12jm
(
s1

21
+ · · ·+ sn

2n
)

= v +
r1z1

20
+ β

r2z2

2j1
+ · · ·+ βm−2 rm−1zm−1

2j1+···+jm−2
+ βm−1 zm

2j1+···+jm−1
(rm −

2jm(rm − t)
2jm

)

= qt.

Hence, f(Tk+n) = qt.

Case 2. rm < t.

The proof in this case is similar to the proof of Case 1, using the dyadic representation of
the number r′′ = 2g(rm)(t− rm) and the sequence associated to r′′a. �

Theorem 2.10. The function f is weakly confluent.

Proof. Take a subcontinuum B of D4. We are going to show that there exists a subcontinuum
A of X such that f(A) = B. By 2.8, we suppose that B is non-degenerate. Let q0 ∈ B be
such that q0 is the first point in B when we walk from v to B. That is, q0 is the only point in
B with the property that for each q ∈ B, q0 ∈ vq (equivalently, vq0 ⊂ vq). Then B 6= {q0}.
So q0 is not an end-point of D4. So either q0 = v or q0 can be written as in (1).

Case A. q0 6= v.
In this case

q0 = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ t∗βm−1 rmzm

2g(r1)+···+g(rm−1)
(5)

where t∗ > 0.
Let w = v+ r1z1

20
+β r2z2

2g(r1)
+· · ·+βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
, t0 = t∗rm and z = βm−1 zm

2g(r1)+···+g(rm−1)
.

Then

q0 = w + t0z.

Consider the arc L = {w + tz ∈ D4 : t ∈ [0, 1]}. We know that (see Definition 2.3)

vq0 = {v} ∪ L1(q0) ∪ · · · ∪ Lm−1(q0) ∪ Lm(q0).

where Lm(q0) = {w + st0z : s ∈ (0, 1]}. Then for each s < 1, w + st0z /∈ B. Thus t0 =
min{t ∈ [0, 1] : w + tz ∈ B}. Since B ∩ L is a subcontinuum of D4 there exists t2 ∈ [t0, 1]
such that B ∩ L = {w + tz ∈ D4 : t ∈ [t0, t2]}.

Case 1. t0 < t2.

By Lemma 2.2 (b), there exists a unique element r ∈ (t0, t2) ∩ (D \ {0, 1}) with minimum
degree. Set
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WEAKLY CONFLUENT CLASSES OF DENDRITES 15

q1 = w + rz.

Then

q1 = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ βm−1 rzm

2g(r1)+···+g(rm−2)+g(rm−1)
.

Since r ∈ D\{0, 1}, by Lemma 2.7 (a) and (d), there exist k ∈ N and a sequence Y0, . . . , Yk
in BC such that the vertex

T0 = Y0Y1 . . . Yk

of X satisfies f(T0) = q1 and k = g(r1) + · · ·+ g(rm−1) + g(r).

Claim 1. Let q ∈ (B \ {q0}) ∩ R(D4). Then there exists an arc Jq in X such that T0 ∈ Jq
and q ∈ f(Jq) ⊂ B.

We prove Claim 1. We start writing q as in (2)

q = v +
r′1z
′
1

20
+ β

r′2z
′
2

2g(r
′
1)

+ · · ·+ βm
′−2 r′m′−1z

′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1)+···+g(r′

m′−1
)
.

Since q ∈ R(D4), r′m′ ∈ D \ {0, 1}. Let L1(q), . . . , Lm(q) be as in Definition 2.3. Since
{v}∪L1(q0)∪ · · · ∪Lm−1(q0) ⊂ vq0 ⊂ vq, the uniqueness of arcs in D4 implies that L1(q0) =
L1(q), . . . , Lm−1(q0) = Lm−1(q), m ≤ m′ and zm = z′m. Then r1 = r′1, . . . , rm−1 = r′m−1; and
z1 = z′1, . . . , zm = z′m. Thus

q = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−3 rm−2zm−2

2g(r1)+···+g(rm−3)
+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+

βm−1 r′mzm
2g(r1)+···+g(rm−1)

+ · · ·+ βm
′−2 r′m′−1z

′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1)+···+g(r′

m′−1
)

= w + r′mz + βm
r′m+1z

′
m+1

2g(r1)+···+g(rm−1)+g(r′m)
+ · · ·+ βm

′−2 r′m′−1z
′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1)+···+g(r′

m′−1
)

(6)

For each i ∈ {1, . . . ,m′}, let W
(i)
1 , . . . ,W

(i)
ji

be the sequence in BC associated to r′iz
′
i. Let

k′′ = g(r1) + · · ·+ g(rm′). Observe that by Lemma 2.7, if V0, . . . , Vk′′ ∈ BC satisfies that the
sequence

V = V0V1 . . . Vk′′

is the sequence V0W
(1)
1 . . .W

(1)

g(r′1) . . .W
(m′)
1 . . .W

(m′)
g(r′

m′ )
, then f(V ) = q. Moreover,

V0V1 . . . Vg(r′1)+···+g(r′m) = V0W
(1)
1 . . .W

(1)

g(r′1) . . .W
(m)
1 . . .W

(m)
g(r′m).

Then

Vg(r′1)+···+g(r′m)+1 . . . Vk′′ = W
(m+1)
1 . . .W

(m+1)

g(r′m+1) . . .W
(m′)
1 . . .W

(m′)
g(r′

m′ )
.

Subcase 1.1. m < m′.
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Take the natural order < for the arc vq for which v < q. Since q0 ∈ L∩ vq and w+ r′mz is
the last point of vq in L, we have that q0 ≤ w + r′mz ≤ q. Then w + r′mz ∈ q0q ∩ L ⊂ B ∩ L.
Thus r′m ∈ [t0, t2] and w + r′mz ∈ B.

1.1.1. Suppose that r 6= r′m.
If g(r) > 1, by Lemma 2.2 (b) we have that 1

2g(r)
> max{t2 − r, r − t0} ≥ |r − r′m|; and

if g(r) = 1, then r = 1
2
, since r′m ∈ (0, 1), we conclude that 1

2g(r)
= 1

2
> |r′m − r|. Thus

we can apply Lemma 2.9 to T0, q1 and w + r′mz to obtain that there exist n ∈ N and
Yk+1, . . . , Yk+n ∈ BC, such that the vertex Tk+n = Y0Y1 . . . Yk . . . Yk+n satisfies f(Tk+n) =
w + r′mz, f(T0Tk+n) = q1(w + r′mz) = {w + tz : t is in the subinterval of [0, 1] joining r and
r′m} ⊂ {w + tz : t ∈ [t0, t2]} ⊂ B, g(r) + n = g(r′m) and λk+n = βm−1 (where λ1, . . . λk+n are
defined for the vertex Tk+n).

Since k = g(r1) + · · ·+ g(rm−1) + g(r), we obtain k+ n = g(r1) + · · ·+ g(rm−1) + g(r′m) =
g(r′1) + · · ·+ g(r′m−1) + g(r′m). Therefore

k + n+ 1 = g(r′1) + · · ·+ g(r′m−1) + g(r′m) + 1

Observe that

f(Tk+n) = w + r′mz

= v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ βm−1 r′mzm

2g(r1)+···+g(rm−1)
.

(7)

Note that f(Tk+n) coincides with the first terms in the equality (6). Define

Z∗ = Y0Y1 . . . Yk+nVk+n+1 . . . Vk′′ = Y0Y1 . . . Yk+nW
(m+1)
1 . . .W

(m+1)
jm+1

. . .W
(m′)
1 . . .W

(m′)
jm′

.

We claim that f(Z∗) = q, T0 ∈ T0Z
∗, f(T0Z

∗) ⊂ B.
Observe that zm+1 ∈ {vk+n+1, . . . , vk+n+jm+1} ⊂ {d, zm+1}, Yk+n = Zm and Zm+1 are of

different type, k + n = g(r′1) + · · · + g(r′m−1) + g(r′m) and λk+n = βm−1, by Lemma 2.7 (e)
we have that

f(Z∗) = f(Tn+k) + βm
r′m+1z

′
m+1

2g(r
′
1)+···+g(r′m−1)+g(r′m)

+ · · ·+ βm
′−2 r′m′−1z

′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1)+···+g(r′

m′−1
)

= w + r′mz + βm
r′m+1z

′
m+1

2g(r1)+···+g(rm−1)+g(r′m)
+ · · ·+ βm

′−2 r′m′−1z
′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1)+···+g(r′

m′−1
)
.

Therefore f(Z∗) = q. Moreover, by Lemma 2.7 (f), f(Tk+nZ
∗) = f(Tk+n)f(Z∗).

Set Jq = T0Z
∗. Then T0 ∈ Jq and q = f(Z∗) ∈ f(Jq). Since f(Tk+n), f(Z∗) ∈ B, we

have that f(Jq) = f(T0Z
∗) ⊂ f(T0Tk+n) ∪ f(Tk+nZ

∗) ⊂ B ∪ f(Tk+n)f(Z∗) ⊂ B. Therefore
f(Jq) ⊂ B. This completes the analysis of the case r 6= r′m.

1.1.2. Suppose that r = r′m.

In this case define Z∗ = Y0 . . . YkW
(m+1)
1 . . .W

(m+1)
jm+1

. . .W
(m′)
1 . . .W

(m′)
jm′

. Since f(Y0 . . . Yk) =

f(T0) = q1 = w+rz = w+r′m, by Lemma 2.7 (e) f(Z∗) = f(Y0 . . . Yk)+β
m r′m+1z

′
m+1

2
g(r′1)+···+g(r′m−1)+g(r′m)

+
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· · · + βm
′−2 r′

m′−1
z′
m′−1

2
g(r′1)+···+g(r′

m′−2
)

+ βm
′−1 r′

m′z
′
m′

2
g(r′1)+···+g(r′

m′−1
)

= q. Hence, f(Z∗) = q. Moreover, since

f(T0) = w + r′m ∈ B, by Lemma 2.7 (f), f(T0Z
∗) = f(T0)f(Z∗) ⊂ B.

Set Jq = T0Z
∗. Then T0 ∈ Jq, q = f(Z∗) ∈ f(Jq) ⊂ B.

Subcase 1.2. m = m′.

In this subcase,

q = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ βm−1 r′mzm

2g(r1)+···+g(rm−1)

= w + r′mz.

In the case that r 6= r′m, q ∈ L ∩B, so r′m ∈ [t0, t2]. As at the beginning of subcase 1.1.1.,
we conclude that 1

2g(r)
> |r′m − r|, so we can apply Lemma 2.9 to T0, q1 and w + r′mz to

obtain that there exist M ∈ N and Yk+1, . . . , Yk+M ∈ BC , such that the vertex Tk+M =
Y0Y1 . . . Yk . . . Yk+M satisfies f(Tk+M) = w+r′mz = q and f(T0Tk+M) = q1q = {w+ tz : t is in
the subinterval of [0, 1] joining r and r′m} ⊂ {w+ tz : t ∈ [t0, t2]} ⊂ B. Set S0 = Tk+M . In the
case that r = r′m, we have that q1 = q. Set S0 = T0. In both cases, T0 ∈ T0S0, f(T0S0) ⊂ B
and q1q = f(T0S0). In this case, define Jq = T0S0.

This completes the proof of Claim 1.
Hence, we have shown that for each q ∈ (B \ {q0}) ∩ R(D4), there exists an arc Jq in X

such that T0 ∈ Jq and q ∈ f(Jq) ⊂ B.
Define A = clX(

⋃
{Jq : q ∈ (B \ {q0}) ∩ R(D4)}). Then A is a subcontinuum of X such

that f(A) ⊂ B. Since (B \ {q0})∩R(D4) is dense in B, (B \ {q0})∩R(D4) ⊂ f(A) and f(A)
is compact, we have that f(A) = B.

Case 2. t0 = t2.

In this case, B ∩ L = {q0}.
Take an element q ∈ (B \ {q0}) ∩R(D4). We write q as in (2):

q = v +
r′1z
′
1

20
+ β

r′2z
′
2

2g(r
′
1)

+ · · ·+ βm
′−2 r′m′−1z

′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1) + · · ·+ 2g(r

′
m′−1

)
.

Since q0 ∈ vq, proceeding as at the beginning of the proof of Claim 1, we obtain that
m ≤ m′, r1 = r′1, . . . , rm−1 = r′m−1; and z1 = z′1, . . . , zm = z′m. Thus

q = v +
r1z1

20
+ β

r2z2

2g(r1)
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ βm−1 r′mzm

2g(r1)+···+g(rm−1)
+

βm
r′m+1z

′
m+1

2g(r
′
1)+···+g(r′m)

+ · · ·+ βm
′−2 r′m′−1z

′
m′−1

2g(r
′
1)+···+g(r′

m′−2
)

+ βm
′−1 r′m′z

′
m′

2g(r
′
1)+···+g(r′

m′−1
)
.

Let L1(q), . . . , Lm′(q) be as in Definition 2.3. Since L ∩ (clD4(Lm+1(q)) ∪ · · · ∪ Lm′(q)) =
{w + r′mz}, we have that the first point of the arc vq, going from q to v that belongs to L
is w + r′mz. Since q0 ∈ L, we infer that w + r′mz ∈ q0q. Then w + r′mz ∈ L ∩ B. Therefore
q0 = w + r′mz = w + t0z and r′m = t0. In particular, t0 ∈ D and q0 ∈ R(D4).
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For each i ∈ {1, . . . ,m′}, let W
(i)
1 , . . . ,W

(i)
ji

be the sequence in BC associated to r′iz
′
i. Let

k = j1 + · · ·+ jm and k′ = j1 + · · ·+ jm′ .
Observe that by Lemma 2.7, if V0, . . . , Vk′ ∈ BC satisfies that the sequence Z = Z0 . . . Zk

(respectively, Z ′ = Z0 . . . Zk . . . Zk′) is the sequence Z0W
(1)
1 . . .W

(1)
j1
. . .W

(m)
1 . . .W

(m)
jm

(re-

spectively, Z0W
(1)
1 . . .W

(1)
j1
. . .W

(m′)
1 . . .W

(m′)
jm′

) then f(Z) = q0 and f(Z ′) = q. Observe that

the sequence W
(i)
1 , . . . ,W

(m)
jm

depends on r′mz
′
m = t0zm. This implies that the sequence Z de-

pends on r1z1, . . . , rm−1zm−1, t0zm. Thus Z depends only on q0, therefore Z does not depend
on q.

Note that Z ′ = Z0 . . . ZkW
(m+1)
1 . . .W

(m+1)
jm+1

. . .W
(m′)
1 . . .W

(m′)
jm′

. By Lemma 2.7 (f), f(ZZ ′) =

f(Z)f(Z ′) = q0q ⊂ B.
Set Jq = ZZ ′. Then Z ∈ Jq, q = f(Z ′) ∈ f(Jq) ⊂ B. Hence, we have shown that for each

q ∈ (B \ {q0}) ∩R(D4), there exists an arc Jq in X such that Z ∈ Jq and q ∈ f(Jq) ⊂ B.
Define A = clX(

⋃
{Jq : q ∈ (B \ {q0}) ∩ R(D4)}). Then A is a subcontinuum of X such

that f(A) ⊂ B. Since (B \ {q0})∩R(D4) is dense in B, (B \ {q0})∩R(D4) ⊂ f(A) and f(A)
is compact, we have that f(A) = B.

This completes the proof of the existence of A in the case that b0 6= v.
Case B. q0 = v, equivalently, v ∈ B.
Given q ∈ (B \ {q0}) ∩R(D4), write q as in (2). Then

q = v +
r1z1

20
+ β

r2z2

21
+ · · ·+ βm−2 rm−1zm−1

2g(r1)+···+g(rm−2)
+ βm−1 rmzm

2g(r1)+···+g(rm−1)
.

For each k ∈ {1, . . . ,m}, let Z
(k)
1 . . . Z

(k)
jk

be the sequence in BC associated to rkzk. Let

Tk = Z
(1)
1 . . . Z

(1)
j1
. . . Z

(k)
1 . . . Z

(k)
jk

and

qk = v +
r1z1

20
+ β

r2z2

21
+ · · ·+ βk−1 rkzk

2g(r1)+···+g(rk−1)
.

By Lemma 2.7, f(Tk) = qk.
Let L1(q), . . . , Lm(q) be as in Definition 2.3. Then vq = {v} ∪ L1(q) ∪ · · · ∪ Lm(q). Since

vq ⊂ B and for each k ∈ {1, . . .m}, qk ∈ Lk(q), we obtain that qk ∈ B.

Given k ∈ {1, . . . ,m}, since {Z(k)
1 , . . . , Z

(k)
jk
} ⊂ {D,Zk}, we can apply Lemma 2.5 (c), to

obtain that f(Tk−1Tk) = f(Tk−1)f(Tk) = qk−1qk ⊂ B. Therefore f(V Tm) = f(V T1 ∪ T1T2 ∪
· · · ∪ Tm−1Tm) = f(V T1) ∪ f(T1T2) ∪ · · · ∪ f(Tm−1Tm) ⊂ B.

Let Jq = V Tm. Then Jq is an arc in X such that v = f(V ) ∈ f(Jq), q = qm = f(Tm) ∈
f(Jq) and f(Jq) ⊂ B. Define A = clX(

⋃
{Jq : q ∈ (B \{q0})∩R(D4)}). Proceeding as before,

we conclude that f(A) = B. This finishes the proof that f is weakly confluent. �

3. The Characterization

Theorem 3.1. Let X be a dendrite such that E(X) is at most countable. Then the Gehman
dendrite G3 is not a weakly confluent image of X.

Proof. Suppose to the contrary that there exists a weakly confluent map f : X → G3. Fix a
point v ∈ G3 such that ord(v,G3) = 2. Recall that, E(G3) is homeomorphic to the Cantor
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set [5, p. 21]. Given q ∈ E(G3) consider the arc Bq = vq. Let Aq be a subcontinumm of X
such that f(Aq) = Bq. Fix aq ∈ Aq such that f(aq) = q. Fix a point u ∈ X. Observe that
X =

⋃
{ue ⊂ X : e ∈ E(X)}. Since R(X) and E(X) are at most countable [4, Theorem

1.5 (d)] and {aq ∈ X : q ∈ E(G3)} is uncountable, there exists e0 ∈ E(X) such that the set
D = (ue0 \ (R(X) ∪ {u, e0})) ∩ {aq : q ∈ E(G3)} is uncountable.

Given aq ∈ D, since aq /∈ R(X) ∪ {u, e0}, we have that Aq ∩ ue0 is an arc. We identify
the arc ue0 with the interval [0, 1], so we write Aq ∩ ue0 = [sq, tq], where sq < tq. Since D is
uncountable, there exists ε > 0 such that 2ε < tq − sq for uncountably many points aq ∈ D.
Since aq ∈ [sq, tq], we may assume that tq − aq > ε for uncountably many points aq ∈ D.
Thus there exist aq1 , aq2 ∈ D such that [aq1 , tq1 ] ∩ [aq2 , tq2 ] 6= ∅ and q1 6= q2. Thus we may
assume that aq2 ∈ [aq1 , tq1 ]. Hence aq2 ∈ Aq1 , q2 = f(aq2) ∈ f(Aq1) = Bq1 = vq1. Therefore
q2 ∈ vq1, a contradiction. This finishes the proof of the theorem. �

Denote by

M(D) = {D : D is a dendrite and E ≤W D for each dendrite E}.
Observe that M(D) denotes the family of dendrites that are maximum elements with

respect to the preorder ≤W . By [5, Fact 5.22 and Theorem 5.27], all the universal dendrites
Dn (n ∈ N ∪ {ω}) belong to M(D). By Theorem 2.1, each Gehman dendrite Gn (n ≥ 3)
also belongs to M(D). In the following theorem we characterize the elements of M(D).

Theorem 3.2. A dendrite X belongs to M(D) if and only if E(X) is uncountable.

Proof. The necessity is proved in Theorem 3.1. Now, suppose that E(X) is uncountable.
By [10, Theorem 1] X contains a dendrite G homeomorphic to G3. By [5, Theorem 4.16],
G ≤M X, so G3 ≤W X and X ∈M(D). �

4. Another answer

In [5, Question 5.12], it was asked if the existence of a weakly confluent map from a
dendrite X onto a dendrite Y implies the existence of a confluent map from X onto Y . The
following example answers this question in the negative.

Example 4.1. D3 is a weakly confluent image of G3, but D3 is not a confluent image of G3.

We show the assertions in Example 4.1. By Theorem 2.1, there exists a weakly confluent
map from G3 onto D3. In order to show that D3 is not the confluent image of G3, suppose to
the contrary that D3 ≤C G3. By [5, Corollary 5.7], D3 ≤M G3. Since G3 ≤M D3 [3, Corollary
6.5], G3 'M D3. By [5, Theorem 5.27], G3 contains a copy of the dendrite L0 constructed
in [5, 5.6, p. 16]. This is a contradiction since L0 contains sequences of ramification points
converging to points of order ≥ 2 and, in G3, each limit of ramification points is an end-point.
Therefore, D3 is not a confluent image of G3.

A simpler example that answers Question 5.12 in [5], is the following. Let

X = ([−1, 1]× {0}) ∪ (
⋃

({ 1
n
} × [0, 1

n
] : n ∈ N}).
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We can prove that X is a dendrite such that X is a weakly confluent image of G3, but X
is not a confluent image of G3.
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