ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol., No., YEAR

https://doi.org/rmj.YEAR..PAGE

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

YOUSSOUF CHAHMA. KHASSANI ASSIA. AND CHEN HAIBO

ABSTRACT. In this paper, we study the following fourth-order elliptic equations of Kirchhoff type:

$$\Delta^2 u - \left(a + b \int\limits_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x\right) \Delta u + V(x)u = f(x, u) + \lambda h(x, u) \quad x \in \mathbb{R}^N,$$

where a > 0, b > 0 are constants, we have the potential $V(x) : \mathbb{R}^N \to \mathbb{R}, V \in C(\mathbb{R}^N, \mathbb{R})$. The nonlinearity $\lambda h(x,u) + f(x,u)$ may involve a combination of concave and convex terms. Under some suitable conditions on $h, f \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ and $\lambda \in \mathbb{R}$, we show the existence of nontrivial solutions by combining the mountain pass theorem and variational methods. Moreover, we also prove the existence of infinitely many high-energy solutions using the Fountain theorem.

1. Introduction

In this article, we are interested in the existence of solution for the following Kirchhoff-type problem:

$$\frac{23}{24}$$
 (1.1)

 $\begin{cases} \Delta^2 u - \left(a + b \int\limits_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x\right) \Delta u + V(x)u = f(x, u) + \lambda h(x, u), \ x \in \mathbb{R}^N, \\ u \in H^2(\mathbb{R}^N), \end{cases}$ where a, b are positive constants, $\Delta^2 := \Delta(\Delta)$ is the biharmonic operator. Problem 1.1 arises in the ²⁸ study of travelling waves in suspension bridge and the study of the static deflection of an elastic plate in $\overline{29}$ a fluid, see [1] Problem 1.1 is a nonlocal problem because of the so-called nonlocal term $b \int_{\mathbb{R}^N} |\nabla u|^2 dx$ $\overline{30}$ involved in equation (1.1). There are some mathematical difficulties since the presence of a nonlocal $\overline{\mathbf{31}}$ term in the equation indicates that (1.1) is not a pointwise identity. Indeed, in general, we do not know

 $\int_{\mathbb{R}^N} |\nabla u_n|^2 \to \int_{\mathbb{R}^N} |\nabla u|^2$ from $u_n \rightharpoonup u$ in $H^2(\mathbb{R}^N)$. Compared with previous results where the study was ³³ based on the case of bounded domain, the case of unbounded domain seems to be more complicated.

³⁴ In this case, the principal difficulty is the lack of compactness of the embedding. In order to recover 35 the compactness, some classical assumptions on V(x) are introduced, such as the condition denoted as

(V) below.

If we set $V(x) = 0, \lambda = 0$, replace \mathbb{R}^N by a bounded smooth domain $\Omega \in \mathbb{R}^N$ and set $u = \Delta u = 0$ on 37 $\partial \Omega$, then problem 1.1 is reduced to the following equation 38

³⁹ This research was supported by The Natural Science Foundation of China (12071486). 40

²⁰²⁰ Mathematics Subject Classification. 35J35, 35J60.

⁴¹ Key words and phrases. Fourth-order elliptic equations of Kirchhoff type, Mountain pass theorem, Fountain theorem,

⁴² Variational method.

1

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

$$\begin{cases} \frac{2}{3} \\ \frac{3}{4} \end{cases} (1.2) \qquad \qquad \begin{cases} \Delta^2 u - \left(a + b \int |\nabla u|^2 \, \mathrm{d}x\right) \Delta u = f(x, u), & x \in \Omega, \\ u = 0, & \nabla u = 0 & \text{on } \Omega, \end{cases}$$

which is related to the stationary analogue of the Kirchhoff equation

$$\frac{\frac{8}{9}}{\frac{9}{10}}(1.3) \qquad \qquad \Delta^2 u + u_{tt} - (a + b \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x) \Delta u = f(x, u), \qquad x \in \Omega.$$

Equation (1.3) was proposed by Burgreen [2] as a model for the transverse deflection u(x,t) of an extensible beam of natural length I (Ω) whose ends are held a fixed distance apart. The nonlinear term represents the change in the tension of the beam due to its extensibility. The model has also been discussed by Eisley [3], while Woinowsky-Krieger and Ball had given related experimental results [4, 5].

In recent years, many authors have paid attention to Kirchhoff-type problems. For instance, see 17 [6, 7, 9, 10, 13, 16, 17, 18, 19, 20] and the references therein. Meanwhile, little has been done for 18 the existence of infinitely many solutions for fourth-order Kirchhoff-type problems in \mathbb{R}^N . It is the 19 first purpose of our paper to investigate the existence of infinitely many solutions for fourth-order 20 Kirchhoff-type problems in \mathbb{R}^N .

In [8], Xu and Chen considered the following nonhomogeneous fourth-order Kirchhoff-type

(1.4)
$$\Delta^2 u - \left(a + b \int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x\right) \Delta u + V(x)u = f(x, u) + h(x), \ x \in \mathbb{R}^N,$$

using the Mountain Pass Theorem and Ekeland's variational principle, they obtained a multiplicity result to the above problem provided $|h|_2$ is small enough. Later, Zuo et al. [15] studied the existence of nontrivial solution to problem 1.4 using the Mountain Pass Theorem. In addition, they obtained infinitely many high-energy solutions for the homogeneous problem by two kinds of methods: Symmetry Mountain Pass Theorem and Fountain Theorem, when the nonlinearity f satisfies the following condition:

 $(V) \inf_{x \in \mathbb{R}^N} V(x) \ge V_0 > 0$ and for any M > 0, meas $\{x \in \mathbb{R}^N : V(x) \le M\} < +\infty$, where V_0 is a 33 34 constant, "meas" denotes the Lebesgue measure in \mathbb{R}^N . 35 (*f*₁) $\lim_{|t|\to 0} \frac{f(x,t)}{|t|} = 0$ uniformly for any $x \in \mathbb{R}^N$. 36 37 (*F*₂) There are constants 2 , and <math>C > 0 such that 38 $|f(x,t)| \le C(|t|^{p-1}+1), \quad \forall (x,t) \in \mathbb{R}^N \times \mathbb{R},$ 39 where if $N \le 2$, let $2^{**} = +\infty$; if $N \ge 2$, let $2^{**} = \frac{2N}{N-2}$. (f₃) $\lim_{|t| \to +\infty} \frac{F(x,t)}{t^4} \to +\infty$ uniformly in $x \in \mathbb{R}^N$. 40 41 42

 (F_4) There exists r > 0 such that

14 15

16 17

18

19 20 21

22

38

20

 $tf(x,t) > 4F(x,t), \quad \forall x \in \mathbb{R}^N, |t| > r.$

1 2 3 4 5 6 Observe that condition (F_4) plays an important role for proving that any Palais–Smale sequence is bounded in the work.

Motivated by the above works, the purpose of this paper is to study the existence of nontrivial solution of problem 1.1 by combining the Mountain pass theorem and variational methods and the existence of infinitely many high-energy solutions using Fountain theorem. To the best of our knowledge, there are no papers about the existence of infinitely many high-energy solutions for problem 1.1. In what follows, we make the following assumption: 10

 (h_1) $h \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$, there exist constants $1 < \delta_1 < \delta_2 < \cdots < \delta_m < 2$ and functions $\xi_i \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ 11 12 $L^{\frac{2}{2-\delta_i}}\left(\mathbb{R}^N,\mathbb{R}^+\right)$ $(i=1,\ldots,m)$ such that 13

$$h(x,t)| \leq \sum_{i=1}^m \xi_i(x)|t|^{\delta_i-1}, \quad \forall (x,t) \in \Omega \times \mathbb{R}.$$

(f_2) There are constants $4 , and <math>c_1 > 0$ such that

$$|f(x,t)| \le c_1 \left(1 + |t|^{p-1}\right)$$

where if $1 < N \le 4$, let $2^* = +\infty$; if 4 < N < 8, let $2^* = \frac{2N}{N-4}$.

(f₄) There exist L > 0 and $\rho \in \left[0, \frac{V_0}{2}\right]$ such that

$$4F(x,t) - f(x,t)t \le \rho |t|^2$$
, for a.e. $x \in \mathbb{R}^N$ and $\forall t \ge L$.

23 **Theorem 1.1.** Assume that (V), (h_1) and $(f_1) - (f_4)$ hold. Then there exists $\overline{\lambda} > 0$ such that for 24 $\lambda \in [-\bar{\lambda}, \bar{\lambda}]$, problem 1.1 has at least one nontrivial solution. 25

Theorem 1.2. Assume that (V), (h_1) and $(f_1) - (f_4)$ hold and 26

(f₅) f(x, -t) = -f(x, t) for all $(x, t) \in \mathbb{R}^N \times \mathbb{R}$. 27

(h₂) h(x, -t) = -h(x, t) for all $(x, t) \in \mathbb{R}^N \times \mathbb{R}$. 28

29 Then there exists $\bar{\lambda} > 0$ such that for $\lambda \in [-\bar{\lambda}, \bar{\lambda}]$, problem 1.1 has a sequence of solutions (u_n) with 30

$$\frac{\frac{31}{32}}{\frac{32}{33}} \qquad \frac{1}{2} \|u_n\|^2 + \frac{b}{4} \left(\int_{\mathbb{R}^N} |\nabla u_n|^2 \, \mathrm{d}x \right)^2 - \lambda \int_{\mathbb{R}^N} h(x, u_n) u_n \, \mathrm{d}x - \int_{\mathbb{R}^N} f(x, u_n) u_n \, \mathrm{d}x \to \infty, \quad as \ n \to \infty.$$

34 **Corollary 1.3.** The conclusion of Theorem 1.2 holds if we replace (f_3) and (f_4) by the following 35 condition:

36 (f'_3) There exist r > 0 and $\psi_0 > 0$ such that 37

$$l = \inf_{x \in \mathbb{R}^N, |t|=r} F(x,t) > \psi_0.$$

$$(f'_{4}) \text{ There exist } \mu > 4, \text{ and } \psi \in C(\mathbb{R}^{N}, \mathbb{R}^{*}_{+}) \text{ such that } \sup_{x \in \mathbb{R}^{N}} \psi(x) \leq \psi_{0}, \text{ and}$$

$$\mu F(x,t) - f(x,t)t \leq d|t|^{2} + \mu \psi(x), \text{ for a.e } x \in \mathbb{R}^{N} \text{ and } \forall |t| \geq r,$$

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

where
$$d \in \left[0, \frac{(l-\psi_0)(\mu-2)}{r^2}\right)$$

1 2

21 22

30

37 38

3 4 5 6 7 8 9 10 11 12 13 **Corollary 1.4.** The conclusion of Theorem 1.2 holds if we replace (f_3) and (f_4) by the following conditions:

 (f_3'') There exists $r_1 > 0$ such that $l' = \inf_{x \in \mathbb{R}^N, |t| = r_1} F(x, t) > 0.$ (f_4'') There exists $\mu' > 4$ such that

$$\mu' F(x,t) - f(x,t)t \leq d'|t|^2, \quad \text{for a.e. } x \in \mathbb{R}^N \text{ and } \forall |t| \geq r_1,$$

where $d' \in \left[0, \frac{l'(\mu - 2)}{r_1^2}\right).$

14 15 16 17 **Remark 1.5.** Since problem 1.1 is defined on the whole space \mathbb{R}^N , it is well known that the main difficulty is the lack of compactness of the Sobolev embedding. To overcome this difficulty, we always assume that the potential V(x) satisfies the condition (V), which was introduced by Bartsch et al. [11].

18 **Remark 1.6.** Obviously, condition (f_4) is much weaker than condition (F_4) . It is worth pointing out that from (F₂), one sees that $2 implies that <math>2^{**} \searrow 2$ as $N \to \infty$. On the other hand, the combination of (f_1) , (f_3) and (F_4) implies that 20

$$\frac{f(x,t)}{t^3} \ge \frac{4F(x,t)}{t^4} \to \infty, \quad as \ |t| \to \infty$$

23 In particular, $f(x,t) \ge O(t^3)$. This is consistent with (F_2) only when $N \le 6$. We were able to improve 24 upon this restriction by considering 4 < N < 8 in (f_2) . 25

26 The rest of this article is organized as follows. In Section 2, we establish thevariational framework associated with problem 1.1. In Section 3, we give the proof of Theorem 1.1. In Section 4, we give the 27 28 proof of Theorem 1.2. 29

2. Preliminaries

31 Hereafter, we shall use $c_i, C_i, i = 1, 2, \cdots$ to denote various positive constants which may change 32 from line to line, and by \rightarrow (resp. \rightarrow) the strong (resp. weak) convergence. We denote $L^p(\mathbb{R}^N)$ as 33 a Lebesgue space with the norm $|u|_p := (\int |u(x)|^p dx)^{\frac{1}{p}}, 1 \le p < \infty$. Denote $H^2(\mathbb{R}^N)$ as the usual 34 35 Sobolev space equipped with the inner product and norm, 36

$$\langle u, v \rangle_{H^2} = \int_{\mathbb{R}^N} (\Delta u \Delta v + \nabla u \cdot \nabla v + uv) \, \mathrm{d}x, \quad \|u\|_{H^2} = \langle u, u \rangle_{H^2}^{\frac{1}{2}}.$$

39 Define our working space

$$E = \{ u \in H^2 : \int_{\mathbb{R}^N} (\Delta u^2 + |\nabla u|^2 + V(x)u^2) \, \mathrm{d}x < \infty \}.$$

with the inner product and norm $\frac{2}{3} \qquad \langle u,v \rangle = \int_{\mathbb{R}^N} (\Delta u \Delta v + a \nabla u \cdot \nabla v + V(x) uv) \, dx, \quad \|u\| = \langle u,u \rangle^{\frac{1}{2}}.$ $\frac{5}{6} \text{ Since } V(x) \text{ satisfies } (V), \text{ it is easy to see that } \|\cdot\|_{H^2} \text{ is equivalent to } \|\cdot\|. \text{ Then, } E \text{ is a Hilbert space.}$ Furthermore, E is continuously embedded in $L^s(\mathbb{R}^N)$ for $2 \le s \le 2^*$ under the condition (V), that is, there exists $\eta_s > 0$ such that $\frac{9}{10} (2.1) \qquad \|u\|_s \le \eta_s \|u\| \quad \forall u \in E.$ $\frac{12}{12} \text{ Lemma 2.1 ([12], Lemma 3.1). Under the assumption (V), the embedding <math>E \hookrightarrow L^s$ is compact for any

 $\frac{12}{13} s \in [2, 2^*).$

Lemma 2.2. We say that $u \in E$ is a weak solution of problem 1.1 if

$$\frac{7}{\frac{8}{9}}(2.2) \qquad \langle u, \varphi \rangle + b \int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x \int_{\mathbb{R}^N} \nabla u \cdot \nabla \varphi \, \mathrm{d}x = \int_{\mathbb{R}^N} f(x, u) \varphi \, \mathrm{d}x + \lambda \int_{\mathbb{R}^N} h(x, u) \varphi \, \mathrm{d}x, \quad \forall \varphi \in E,$$

²⁰/₂₁ the energy associated with problem 1.1, is functional $J_{\lambda} : E \to \mathbb{R}$ defined by

16

(2.3)
$$J_{\lambda}(u) = \frac{1}{2} ||u||^2 + \frac{b}{4} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x \right)^2 - \int_{\mathbb{R}^N} F(x, u) \, \mathrm{d}x - \lambda \int_{\mathbb{R}^N} H(x, u) \, \mathrm{d}x$$

²⁶₂₇ Consequently, seeking a weak solution of problem 1.1 is equivalent to finding a critical point of the functional J_{λ} . Moreover, $J_{\lambda} \in C^{1}(E, \mathbb{R})$ with

⁸ *Proof.* It follows from (h_1) that

(2.5)
$$|H(x,u)| \le \sum_{i=1}^{m} \frac{1}{\delta_i} \xi_i(x) |u|^{\delta_i}.$$

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIONS $\leq \sum_{i=1}^m \int\limits_{\mathbb{T}^n} \left(rac{V(x)}{V_0}
ight)^{rac{\delta_i}{2}} rac{1}{\delta_i} \xi_i(x) |u|^{\delta_i} \mathrm{d}x$ $\leq \sum_{i=1}^{m} \frac{V_0^{-\frac{\delta_i}{2}}}{\delta_i} |\xi_i(x)|_{\frac{2}{2-\delta_i}} \left(\int_{\mathbb{T}^N} V(x) |u|^2 \, \mathrm{d}x \right)^{\frac{\alpha_i}{2}}$ By (2.3) and (2.6), J_{λ} is well defined on *E*. Now, we show that (2.4) holds. By (h_1) , for any $u, v \in E, t \in (0,1), \theta(x) : \mathbb{R}^N \to (0,1)$ and the Hölder inequality we can obtain 22 23 24 25 $\int \max_{t \in \{0,1\}} |h(x, u(x) + t\theta(x)v(x))v(x)| dx$ 26

$$\frac{27}{28} = \int_{\mathbb{R}^{N}} \max_{t \in (0,1)} |h(x, u(x) + t\theta(x)v(x))| |v(x)| dx \\
= \int_{\mathbb{R}^{N}} \max_{t \in (0,1)} |h(x, u(x) + t\theta(x)v(x))| |v(x)| dx \\
\frac{39}{31} = \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \xi_{i}(x)(|u(x)|^{\delta_{i}-1} + |\theta(x)v(x)|^{\delta_{i}-1}) |v(x)| dx \\
\frac{31}{32} = \sum_{i=1}^{3} \int_{\mathbb{R}^{N}} \xi_{i}(x)(|u(x)|^{\delta_{i}-1} + |\theta(x)v(x)|^{\delta_{i}-1}) |v(x)| dx \\
\frac{31}{32} = \sum_{i=1}^{3} \int_{\mathbb{R}^{N}} \xi_{i}(x)(|u(x)|^{\delta_{i}-1} + |\theta(x)v(x)|^{\delta_{i}-1}) |v(x)| dx \\
\frac{31}{32} = \sum_{i=1}^{3} \int_{\mathbb{R}^{N}} \xi_{i}(x)(|u(x)|^{2} dx)^{\frac{2-\delta_{i}}{2}} \left(\int_{\mathbb{R}^{N}} V(x)|u(x)|^{2} dx\right)^{\frac{\delta_{i}-1}{2}} \left(\int_{\mathbb{R}^{N}} V(x)|v(x)|^{2} dx\right)^{\frac{\delta_{i}}{2}} \\
+ V_{0}^{-\frac{\delta_{i}}{2}} \sum_{i=1}^{m} \left(\int_{\mathbb{R}^{N}} |\xi_{i}|^{\frac{2}{2-\delta_{i}}} dx\right)^{\frac{2-\delta_{i}}{2}} \left(\int_{\mathbb{R}^{N}} V(x)|v(x)|^{2} dx\right)^{\frac{\delta_{i}}{2}} \\
= V_{0}^{-\frac{\delta_{i}}{2}} \sum_{i=1}^{m} |\xi_{i}|_{\frac{2}{2-\delta_{i}}} \left(||u||^{\delta_{i}-1} + ||v||^{\delta_{i}-1}\right) ||v|| < +\infty.$$

1 Then by (2.3), (2.7) and Lebesgue's Dominated Convergence Theorem, we have

$$\begin{cases} \frac{2}{3} \\ \langle J'_{\lambda}(u), v \rangle = \lim_{t \to 0^{+}} \frac{J_{\lambda}(u+tv) - J_{\lambda}(u)}{t} \\ = \lim_{t \to 0^{+}} \left\{ \langle u, v \rangle + \frac{t}{2} ||v||^{2} + \frac{b}{4} \left[t^{3} \int_{\mathbb{R}^{N}} |\nabla v|^{2} dx + 4 \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v dx \right. \\ \left. + 2t \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx \int_{\mathbb{R}^{N}} |\nabla v|^{2} dx + 4t^{2} \int_{\mathbb{R}^{N}} |\nabla v|^{2} dx \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v dx + 4t \left(\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v dx \right)^{2} \right] \\ \left. - \frac{1}{t} \int_{\mathbb{R}^{N}} [F(x, u(x) + tv(x)) - F(x, u(x))] dx - \frac{\lambda}{t} \int_{\mathbb{R}^{N}} [H(x, u(x) + tv(x)) - H(x, u(x))] dx \right\} \\ \left. = \langle u, v \rangle + b \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v dx - \int_{\mathbb{R}^{N}} f(x, u)v dx - \lambda \int_{\mathbb{R}^{N}} h(x, u)v dx. \end{cases}$$

¹⁶/₁₈ which implies that (2.4) holds. Moreover, by a standard argument, it is easy to show that $J_{\lambda} \in \frac{17}{18} C^1(E, \mathbb{R})$. □

Definition 2.3. We say that J_{λ} satisfies the Palais-Smale condition at level c (PS)_c, i.e., any sequence $\{u_n\}$ has a convergent subsequence in E whenever

$$\frac{22}{23} (2.8) \qquad \qquad J_{\lambda}(u_n) \to c \quad and \quad J'_{\lambda}(u_n) \to 0, \ as \ n \to \infty.$$

Let X be a Banach space with the norm $\|\cdot\|$ and $X = \overline{\bigoplus_{i=1}^{\infty} X_i}$ with dim $X_i < +\infty$ for each $i \in \mathbb{N}$. Further, we set

$$Y_k = \bigoplus_{i=1}^k X_i, \quad Z_k = \overline{\bigoplus_{i=k}^\infty X_i}$$

²⁸/₂₉ To prove Theorem 1.1 we state the following mountain pass theorem (see [[14] Theorem 1.17]).

Theorem 2.4 (Mountain Pass Theorem). Let X be a Banach space, $I \in C^1(X, \mathbb{R})$, I(0) = 0, and assume that

 $\begin{array}{l} \frac{32}{2} \quad (S_1) \text{ there exist two positive real numbers } \alpha \text{ and } \rho \text{ such that } I(u) \geq \alpha \text{ for all } \|u\| = \rho, \\ \frac{33}{2} \quad (S_1) \text{ there exist } u \in X \text{ with } \|u\| > \rho \text{ such that } I(u) \leq 0 \end{array}$

(S₂) there exists $e \in X$ with $||e|| > \rho$ such that $I(e) \le 0$,

 $\frac{34}{35}$ If I satisfies the $(PS)_c$ -condition for

$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t)),$$

38 with

36 37

39

21

26

27

 $\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = e \},\$

 $\frac{40}{41}$ then c is critical value of I and $c \ge \alpha$.

⁴² In order to deduce our results, the following Fountain theorem is a very useful tool.

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

1 Theorem 2.5 (Fountain theorem, Bartsch [14]). Let $I \in C^1(X, \mathbb{R})$ satisfy I(-u) = I(u). Assume that, $_{2}$ for every $k \in \mathbb{N}$, there exists $\rho_{k} > \gamma_{k} > 0$ such that 3 4 5 6 7 8 9 10 11 12 13 $(A_1) \ a_k := \max_{u \in Y_k, \|u\| = \rho_k} I(u) \le 0,$ $(A_2) \ b_k := \inf_{u \in Z_k, \|u\| = \gamma_k} I(u) \to +\infty \text{ as } k \to +\infty.$ If I satisfies the $(PS)_c$ condition for every c > 0, then I has an unbounded sequence of critical values. 14 15 16 17 18 3. Proof of Theorems 1.1 19 We begin verifying the follow compactness lemma which shows that the functional J_{λ} satisfies (PS)-20 condition 21 22 23 24 25 26 **Lemma 3.1.** Let assumptions (V), (h_1) and $(f_1) - (f_4)$ hold. Then for every $\lambda \in \mathbb{R}$, any Palais-Smale 27 28 sequence of J_{λ} is bounded. 29 30 31 32 $\overline{33}$ Proof. Let $\{u_n\} \subset E$ be any Palais-Smale sequence of J_{λ} . Then, up to a subsequence, there exists $\overline{\mathbf{34}} \ c \in \mathbb{R}$ such that 35 36 37 38 39 40 41 $J_{\lambda}(u_n) \rightarrow c$, and $J'_{\lambda}(u_n) \rightarrow 0$. 42

1 For n large enough, by (f_3) we have
$ \begin{array}{l} \frac{2}{3} \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{6}{7} \\ \frac{7}{8} \\ \frac{9}{10} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{1}{8} \\ \frac{9}{10} \\ \frac{1}{12} \\ $
$\frac{1}{4} \qquad \qquad 1 \qquad f \qquad \qquad 1 \qquad f \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
$= \frac{1}{4} \int \left(\Delta u_n ^2 + a \nabla u_n ^2 \right) dx + \frac{1}{4} \int V(x) u_n^2 dx + \int \widetilde{F}(x, u_n) dx$
$\begin{array}{c} 6 \\ \mathbb{R}^{N} \\ \mathbb{R}^{N} \\ \mathbb{R}^{N} \\ \mathbb{R}^{N} \end{array}$
$\frac{7}{8}$ $-\lambda \int \widetilde{H}(x,u_n) \mathrm{d}x$
$\frac{8}{\mathbb{R}^N}$
$\frac{9}{10} = \frac{1}{1} \int (1 - 1)^2 + 1 \nabla (1 - 1)^2 + \frac{1}{1} \int V(1 - 2 - 1) \rho \int \frac{1}{2} \frac{1}{1} \int \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \int \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \int \frac{1}{1} \frac{1}{1}$
$\geq \frac{1}{4} \int \left(\Delta u_n ^2 + a \nabla u_n ^2 \right) \mathrm{d}x + \frac{1}{4} \int V(x) u_n^2 \mathrm{d}x - \frac{\rho}{4} \int u_n^2 \mathrm{d}x$
$\frac{1}{12} \qquad \qquad \mathbb{R}^{N} \qquad \qquad \mathbb{R}^{N} \qquad \qquad \mathbb{R}^{N}$
$+\int \widetilde{F}(x,u_n) \mathrm{d}x - \lambda \int \widetilde{H}(x,u_n) \mathrm{d}x$
$\begin{array}{c} J \\ 14 \\ \mathbb{A}_n \\ \mathbb{R}^N \end{array}$
$ \geq \frac{15}{4} \int \left(\Delta u_n ^2 + a \nabla u_n ^2 \right) \mathrm{d}x + \frac{1}{4} \int V(x) u_n^2 \mathrm{d}x - \frac{1}{8} \int V_0 u_n^2 \mathrm{d}x $
$\begin{array}{c} 16 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
$\frac{17}{18} \qquad \qquad$
$+\int \widetilde{F}(x,u_n) \mathrm{d}x - \lambda \int \widetilde{H}(x,u_n) \mathrm{d}x$
$\begin{array}{c} & & \\ & & \\ 20 \end{array} \qquad $
$\geq \frac{1}{4} \int \left(\Delta u_n ^2 + a \nabla u_n ^2 \right) \mathrm{d}x + \frac{1}{4} \int V(x) u_n^2 \mathrm{d}x - \frac{1}{8} \int V_0 u_n^2 \mathrm{d}x$
$\begin{array}{cccc} + J & + J & + J \\ 22 & \mathbb{R}^N & \mathbb{R}^N & \mathbb{R}^N \end{array}$
$+\int \widetilde{F}(x,u_n) \mathrm{d}x - \lambda \int_{\mathbb{R}^N} \widetilde{H}(x,u_n) \mathrm{d}x$
$\sum_{n=1}^{24} \int_{\mathbb{R}^N} (c) dn + c \int_{\mathbb{R}$
$\frac{25}{26} \qquad \qquad$
$\geq \frac{1}{16} u_n ^2 + \frac{1}{16} \int_{U} V(x) u_n^2 \mathrm{d}x + \int \widetilde{F}(x, u_n) \mathrm{d}x - \lambda \int_{U} \widetilde{H}(x, u_n) \mathrm{d}x,$
$\mathbb{R}^{N} \qquad \mathbb{A}_{n} \qquad \mathbb{R}^{N}$
where $\widetilde{F}(x,u_n) = \frac{1}{4}f(x,u_n)u_n - F(x,u_n)$, $\widetilde{H}(x,u_n) = H(x,u_n) - \frac{1}{4}h(x,u_n)u_n$ and $\mathbb{A}_n = \{x \in \mathbb{R}^N : u_n \le 1\}$
30 L.
31 By (h_1) , (2.1) and Hölder's inequality we can obtain
32
$\begin{vmatrix} \int_{\mathbb{R}^N} \widetilde{H}(x,u_n) \\ = \left \int_{\mathbb{R}^N} \left(H(x,u_n) - \frac{1}{4}h(x,u_n)u_n \right) \right $
$\left \int H(x,u_n)\right = \left \int \left(H(x,u_n) - \frac{1}{4}h(x,u_n)u_n\right)\right $
\mathbb{R}^N \mathbb{R}^N
37 (3.1) $\leq \int H(x,u_n) + \frac{1}{4}h(x,u_n)u_n $
$\frac{J}{\mathbb{R}^N} \xrightarrow{4}$
$\sum_{n=1}^{39} \sum_{i=1}^{m} \left(1 + 1\right) \xi_i(x) = n^{\delta_i} x ^{\delta_i}$
$\begin{vmatrix} \int_{\mathbb{R}^{N}} \widetilde{H}(x,u_{n}) \\ = \left \int_{\mathbb{R}^{N}} \left(H(x,u_{n}) - \frac{1}{4}h(x,u_{n})u_{n} \right) \right \\ \leq \int_{\mathbb{R}^{N}} H(x,u_{n}) + \frac{1}{4}h(x,u_{n})u_{n} \\ \leq \sum_{i=1}^{m} \left(\frac{1}{\delta_{i}} + \frac{1}{4} \right) \xi_{i}(x) _{\frac{2}{2-\delta_{i}}} \eta_{2}^{\delta_{i}} u_{n} ^{\delta_{i}}, \\ \leq \text{Hence} \end{aligned}$
42 Hence

$$\begin{split} \frac{1}{2} (3.2) & \frac{1}{2} (3.2) \\ \frac{3}{4} (c+1+\|u_n\|+|\lambda|\sum_{i=1}^{m} \left(\frac{1}{\delta_i}+\frac{1}{4}\right) |\xi_i(x)|_{\frac{2}{2-\delta_i}} \eta_2^{\delta_i} \|u_n\|^{\delta_i} \geq \frac{1}{16} \|u_n\|^2 + \frac{1}{16} \int_{\mathbb{R}^N} V(x) u_n^2 \, dx + \int_{\delta^N} \tilde{F}(x,u_n) \, dx. \\ \frac{5}{6} & \text{For any } \varepsilon > 0, \text{ by } (f_1), (f_2), \text{ there exists } C(\varepsilon) > 0 \text{ such that} \\ \hline \\ \hline \\ \frac{7}{6} (3.3) & |F(x,t)| \leq 2\varepsilon |t| + pC(\varepsilon) |t|^{p-1}, & \forall (x,t) \in \mathbb{R}^N \times \mathbb{R}, \\ \frac{9}{10} (3.3) & |F(x,t)| \leq \frac{1}{9} |f(x,st)| ds \leq \varepsilon |t|^2 + C(\varepsilon) |t|^p, \quad \forall (x,t) \in \mathbb{R}^N \times \mathbb{R}. \\ \hline \\ \frac{11}{10} \text{ For } x \in \mathbb{R}^N \text{ and } |u_n| \leq L, \text{ by } (3.3), \text{ we have} \\ \hline \\ \frac{12}{10} & |\tilde{F}(x,u_n)| \leq \frac{1}{4} |f(x,u_n)| |u_n| + |F(x,u_n)| \\ \frac{5}{16} & \leq \frac{5}{4} \varepsilon |u_n|^2 + \frac{5}{4} C(\varepsilon) |u_n|^p \\ & \leq \frac{5}{4} \varepsilon |u_n|^2 + \frac{5}{4} C(\varepsilon) |u_n|^p \\ & = \frac{5}{4} [\varepsilon + C(\varepsilon) L^{p-2}] |u_n|^2 \\ & \leq \frac{5}{4} [\varepsilon + C(\varepsilon) L^{p-2}] |u_n|^2 \\ & \leq C_3 |u_n|^2, \\ \hline \\ \text{Take } M > \max \{16C_3, V_0\}, \text{ then} \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} \int V(x) u_n^2 \, dx + \int_{\delta_n} \tilde{F}(x,u_n) \, dx \geq \frac{1}{16} \int_{|u_n| \leq L} (V(x) - M) |u_n|^2 \, dx \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} \int U(x) u_n^2 \, dx + \int_{\delta_n} \tilde{F}(x,u_n) \, dx \geq \frac{1}{16} \int_{\delta_i \cap \Delta_n} (V(x) - M) |u_n|^2 \, dx \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} \int U(x) u_n^2 \, dx + \int_{\delta_n} \tilde{F}(x,u_n) \, dx \geq \frac{1}{16} \int_{\delta_i \cap \Delta_n} (V(x) - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\ \hline \\ \frac{26}{10} & |\tilde{I}|_{\delta_i} (V_0 - M) L^2 \, mas(\tilde{A}), \\$$

1 which implies that $\{u_n\}$ is bounded in E. Thus, this completes the proof.

2 3 4 5 6 7 8 9 **Lemma 3.2.** Let assumptions (V), (h_1) and $(f_1) - (f_4)$ hold and $\{u_n\}$ is a bounded Palais-Smale sequence of J_{λ} , then for every $\lambda \in \mathbb{R}$, $\{u_n\}$ has a strongly convergent subsequence in E.

Proof. Since $\{u_n\}$ is bounded in *E*, then there exists a constant M > 0 such that

 $||u_n|| \leq M, \quad \forall n \in \mathbb{N}.$ (3.6)

Going if necessary to a subsequence, we may assume that there is a $u \in E$ such that

32 33 34

35 36 37

$$\begin{aligned} &\langle J'_{\lambda}(u_{n}) - J'_{\lambda}(u), u_{n} - u \rangle \\ &= \int_{\mathbb{R}^{N}} (\Delta u_{n} - \Delta u)^{2} + V(x) |u_{n} - u|^{2} dx + \left(a + b \int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} dx\right) \int_{\mathbb{R}^{N}} \nabla u_{n} \cdot \nabla (u_{n} - u) dx \\ &- \left(a + b \int_{\mathbb{R}^{N}} |\nabla u|^{2} dx\right) \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla (u_{n} - u) dx - \int_{\mathbb{R}^{N}} (f(x, u_{n}) - f(x, u)) (u_{n} - u) dx \\ &- \lambda \int_{\mathbb{R}^{N}} (h(x, u_{n}) - h(x, u)) (u_{n} - u) dx \\ &= \int_{\mathbb{R}^{N}} (\Delta u_{n} - \Delta u)^{2} + V(x) |u_{n} - u|^{2} dx + \left(a + b \int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} dx\right) \int_{\mathbb{R}^{N}} |\nabla (u_{n} - u)^{2} dx \\ &- \left(\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx - \int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} dx\right) \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla (u_{n} - u) dx - \int_{\mathbb{R}^{N}} (f(x, u_{n}) - f(x, u)) (u_{n} - u) dx \\ &- \lambda \int_{\mathbb{R}^{N}} (h(x, u_{n}) - h(x, u)) (u_{n} - u) dx \\ &\geq ||u_{n} - u||^{2} - b \left(\int_{\mathbb{R}^{N}} |\nabla u|^{2} dx - \int_{\mathbb{R}^{N}} |\nabla u_{n}|^{2} dx\right) - \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla (u_{n} - u) dx \\ &- \int_{\mathbb{R}^{N}} (f(x, u_{n}) - f(x, u)) (u_{n} - u) dx - \lambda \int_{\mathbb{R}^{N}} (h(x, u_{n}) - h(x, u)) (u_{n} - u) dx. \end{aligned}$$

Therefore, one has 2 3 4 5 6 7 8 9 $\begin{aligned} \|u_n - u\|^2 &\leq \langle J'_{\lambda}(u_n) - J'_{\lambda}(u), u_n - u \rangle + b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x - \int_{\mathbb{R}^N} |\nabla u_n|^2 \, \mathrm{d}x \right) \int_{\mathbb{R}^N} \nabla u \nabla (u_n - u) \, \mathrm{d}x \\ &+ \int_{\mathbb{R}^N} \left(f(x, u_n) - f(x, u) \right) (u_n - u) \, \mathrm{d}x + \lambda \int_{\mathbb{R}^N} \left(h(x, u_n) - h(x, u) \right) (u_n - u) \, \mathrm{d}x. \end{aligned}$

Then, it follows from (3.3), (3.6), and the Hölder inequality that

$$\int_{\mathbb{R}^{N}} |f(x,u_{n}) - f(x,u)| |u_{n} - u| dx$$

$$\int_{\mathbb{R}^{N}} |f(x,u_{n}) - f(x,u)| |u_{n} - u| dx$$

$$\leq \int_{\mathbb{R}^{N}} 2\varepsilon (|u_{n}| + |u|) |u_{n} - u| dx + pC(\varepsilon) \int_{\mathbb{R}^{N}} (|u_{n}|^{p-1} + |u|^{p-1}) |u_{n} - u| dx$$

$$\leq \int_{\mathbb{R}^{N}} 2\varepsilon (|u_{n}| + |u|) |u_{n} - u| dx + pC(\varepsilon) \int_{\mathbb{R}^{N}} (|u_{n}|^{p-1} + |u|^{p-1}) |u_{n} - u| dx$$

$$\leq 2\varepsilon \left[\left(\int_{\mathbb{R}^{N}} |u_{n}|^{2} dx \right)^{\frac{1}{2}} + \left(\int_{\mathbb{R}^{N}} |u|^{2} dx \right)^{\frac{1}{2}} \right] \left(\int_{\mathbb{R}^{N}} |u_{n} - u|^{2} dx \right)^{\frac{1}{2}}$$

$$+ pC(\varepsilon) \left[\left(\int_{\mathbb{R}^{N}} |u_{n}|^{p} dx \right)^{\frac{p-1}{p}} + \left(\int_{\mathbb{R}^{N}} |u|^{p} dx \right)^{\frac{p-1}{p}} \right] \left(\int_{\mathbb{R}^{N}} |u_{n} - u|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq 2\varepsilon (\eta_{2}M + |u|_{2}) ||u_{n} - u||_{2} + pC(\varepsilon) (\eta_{p}^{p-1}M^{p-1} + |u|_{p}^{p-1}) ||u_{n} - u||_{p} \to 0, n \to +\infty.$$

Let $\phi_u : E \to \mathbb{R}$ such that $\phi_u(v) = \int_{\mathbb{R}^3} \nabla u \cdot \nabla v \, dx$. Since $\phi_u(v) \le ||u|| ||v||$, we can deduce that ϕ_u is $\frac{30}{E}$ continuous (linear and bounded) on \tilde{E} , using (3.7), then we have 31

(3.9)
$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla u_n \, \mathrm{d}x = \phi_u(u_n) \to \phi_u(u) = \int_{\mathbb{R}^N} \nabla u \cdot \nabla u \, \mathrm{d}x, \quad \text{as } n \to \infty.$$

36 Thus, we get from $u_n \rightharpoonup u$ in H, (3.9), and the boundedness of $\{u_n\}$ that 37

$$b \left(\int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d}x - \int_{\mathbb{R}^N} |\nabla u_n|^2 \, \mathrm{d}x \right) \int_{\mathbb{R}^N} \nabla u \nabla (u_n - u) \, \mathrm{d}x \to 0, \text{ as } n \to \infty.$$

⁴² By (h_1) , (2.1), and (3.6), using the Hölder inequality, we can conclude

 $\begin{array}{c|c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
\end{array}$ $\int_{\mathbb{D}^N} |h(x,u_n) - h(x,u)| |u_n - u| \mathrm{d}x$ $\leq \int_{\mathbb{T}^N} |h(x,u_n)| |u_n - u| \mathrm{d}x + \int_{\mathbb{R}^N} |h(x,u)| |u_n - u| \mathrm{d}x$ $\leq \int_{...} \sum_{i=1}^{m} \xi_{i}(x) |u_{n}|^{\delta_{i}-1} |u_{n}-u| dx + \int_{\text{TDN}} \sum_{i=1}^{m} \xi_{i}(x) |u|^{\delta_{i}-1} |u_{n}-u| dx$ $\leq \sum_{i=1}^{m} |\xi_i|_{\frac{2}{2-\delta_i}} (|u_n|_2^{\delta_i-1} + |u|_2^{\delta_i-1})|u_n - u|_2$ $\leq \sum_{i=1}^{m} |\xi_i|_{\frac{2}{2-\delta_i}} (\eta_2^{\delta_i-1} M^{\delta_i-1} + |u|_2^{\delta_i-1}) |u_n-u|_2.$ 16 17 18 Therefore, it follows from (3.7) that 19 20 $\int_{\mathbb{T}^N} h(x, u_n) - h(x, u)(u_n - u) dx \to 0, \quad \text{as } n \to \infty.$ (3.11)21 22 23 Clearly, 24 25 26 $\langle J'_{2}(u_{n}) - J'_{2}(u), u_{n} - u \rangle \to 0$, as $n \to \infty$. (3.12)27 It follows from (3.8), (3.10), (3.11) and (3.12) that $||u_n - u|| \to 0$. 28 29 **Lemma 3.3.** If (V), (h_1) , $(f_1) - (f_3)$ hold, then there exist α , ρ and $\bar{\lambda} > 0$ such that $J_{\lambda}(u) \ge \alpha$ whenever $||u|| = \rho$ and $\lambda \in [-\bar{\lambda}, \bar{\lambda}]$. 30 31 32 33 *Proof.* (h_1) together with (2.1) and Hölder's inequality imply that 34 35 $\int_{\mathbb{R}^N} |H(x,u)| \leq \sum_{i=1}^m \int_{\mathbb{R}^N} \sum_{i=1}^m \frac{1}{\delta_i} |\xi_i(x)| |u|^{\delta_i}$ 36 37 38 $=\sum_{i=1}^{m} \frac{V_0^{\frac{-\delta_i}{2}}}{\delta_i} |\xi_i(x)|_{\frac{2}{2-\delta_i}} ||u||^{\delta_i}$ 39 (3.13)40 41 $\leq C_4 \|u\|^{\delta_m},$ 42

for ||u|| large enough. It follows from (3.3) and (3.13) that $\begin{array}{c|c} 2\\ \hline 3\\ \hline 4\\ \hline 5\\ \hline 6\\ \hline 7\\ \hline 8\\ 9\\ \hline 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ \hline 16\\ 17\\ 18\\ 19\\ 20\\ \end{array}$ $J_{\lambda}(u) = \frac{1}{2} ||u||^2 + \frac{b}{4} \left(\int_{\mathbb{T}^N} |\nabla u|^2 \right)^2 - \int_{\mathbb{T}^N} F(x, u) - \lambda \int_{\mathbb{T}^N} H(x, u)$ $\geq \frac{1}{2} \|u\|^2 - \int\limits_{\mathbb{T}^N} F(x,u) - |\lambda| \int\limits_{\mathbb{T}^N} H(x,u)$ $\geq \frac{1}{2} \|u\|^2 - \int\limits_{\mathbb{T}^N} \left(\varepsilon |u|^2 + C(\varepsilon) |u|^p \right) - |\lambda| C_4 \|u\|^{\delta_m}$ $\geq rac{1}{2} \|u\|^2 - arepsilon \eta_2^2 \|u\|^2 - C(arepsilon) \eta_p^p \|u\|^p - |\lambda| C_4 \|u\|^{\delta_m}$ $= \|u\|^{2} \left(\frac{1}{2} - \varepsilon \eta_{2}^{2} - C(\varepsilon) \eta_{p}^{p} \|u\|^{p-2} - |\lambda| C_{4} \|u\|^{\delta_{m}-2} \right).$ For $\varepsilon \leq \frac{1}{4\eta_2^2}$, we have $J_{\lambda}(u) \geq \|u\|^{2} \left(\frac{1}{4} - C(\varepsilon)\eta_{p}^{p}\|u\|^{p-2} - |\lambda|C_{4}\|u\|^{\delta_{m}-2}\right)$ Let 21 22 23 $\varrho(t) = C_5 t^{p-2} + |\lambda| C_4 t^{\delta_m - 2}, \quad t \ge 0,$ (3.14)and then we get $\lim_{t \to +\infty} g(t) = \lim_{t \to 0^+} g(t) = +\infty$, which implies that g(t) is bounded below, thus g(t)24 25 26 admits a minimizer t_0 $t_0 = \left(\frac{|\lambda|C_4(\delta_m - 2)}{C_5(2 - n)}\right)^{\frac{1}{p - \delta_m}}.$ 27 28 29 It follows from (3.14) that 30 $\inf_{t \in [0, +\infty)} g(t) = g(t_0)$ 31 32 $=C_5\left(\frac{|\lambda|C_4(\delta_m-2)}{C_5(2-p)}\right)^{\frac{p-2}{p-\delta_m}}+|\lambda|C_4\left(\frac{|\lambda|C_4(\delta_m-2)}{C_5(2-p)}\right)^{\frac{\delta_m-2}{p-\delta_m}}$ 33 34 $=|\lambda|^{\frac{p-2}{p-\delta_m}}G.$ 35 36 with $G = C_5 \left(\frac{C_4(\delta_m - 2)}{C_5(2-p)} \right)^{\frac{p-2}{p-\delta_m}} + C_4 \left(\frac{C_4(\delta_m - 2)}{C_5(2-p)} \right)^{\frac{\delta_m - 2}{p-\delta_m}}.$ 37 38 39 Then for $|\lambda| \leq \left(\frac{1}{4G}\right)^{\frac{p-q_m}{p-2}} := \bar{\lambda}$, we have 40 $g(t_0) < \frac{1}{4},$ 41 thus, whenever $\lambda \in [-\bar{\lambda}, \bar{\lambda}]$, there exists $\rho = t_0 > 0$ such that $||u|| = \rho$ and $J_{\lambda}(u) \ge \alpha > 0 = J_{\lambda}(0)$. \Box 42

Lemma 3.4. Assume that (h_1) , $(f_1) - (f_3)$ hold, then there exists $e \in E$, such that $J_{\lambda}(e) < 0$ with $\|e\| > \rho.$ 2 3 4 5 6 7 8 9 10 11 12 13 14 *Proof.* For every M > 0, by $(f_1) - (f_3)$, there exists C(M) > 0 such that $F(x,t) \ge M|t|^4 - C(M)|t|^2, \quad \forall (x,t) \in \mathbb{R}^N \times \mathbb{R}.$ (3.15)Choose $\phi \in E$ with $|\phi|_4 = 1$, then for t > 0, we have $J_{\lambda}(t\phi) = \frac{t^2}{2} \|\phi\|^2 + \frac{t^4 b}{4} \left(\int_{m_N} |\nabla \phi|^2 dx \right)^2 - \int_{m_N} F(x, t\phi) - \lambda \int_{m_N} H(x, t\phi)$ $\leq \frac{t^2}{2} \|\phi\|^2 + \frac{t^4 b}{4} \|\phi\|^4 - Mt^4 |\phi|_4^4 + t^2 C(M) |\phi|_2^2 + t^{\delta_m} |\lambda| C_4 \|\phi\|^{\delta_m}.$ 15 which implies $J_{\lambda}(t\phi) \to -\infty$ as $t \to +\infty$ by taking $M > \frac{b}{4} \|\phi\|^4$. So, there exists $e = t_0 \phi$ such that 16 17 18 $||e|| > \rho$ and $J_{\lambda}(e) < 0 = J_{\lambda}(0)$. 19 Proof of Theorems 1.1. We have $J_{\lambda} \in C^1(E,\mathbb{R})$ and $J_{\lambda}(0) = 0$. On the other hand, condition (S_1) is satisfied whenever $|\lambda| \leq \overline{\lambda}$ due to Lemma 3.3, and the functional J_{λ} satisfies the conditions (S_2) due to Lemma 3.4. Moreover, by Lemmas 3.1, 3.2 J_{λ} satisfies the (PS)_c condition. Therefore, the functional ²² J_{λ} has at least one nontrivial solution $u \in E$, whenever $|\lambda| \leq \overline{\lambda}$. 23 24 4. Proof of Theorems 1.2 25 In this section, we prove the existence of sequence of solutions with high energy to problem 1.1. 26 Since $E \hookrightarrow L^2$, and L^2 is a separable Hilbert space, E has a countable orthogonal basis $\{e_i\}_{i=1}^{\infty}$. Set 27 28 $E_i = span\{e_i\}, \quad Y_k = \bigoplus_{i=1}^k E_i, \quad Z_k = \overline{\bigoplus_{i=k+1}^{\infty}} E_i, \quad k \in \mathbb{N}^*.$ 29 30 31 Then, $E = \overline{\bigoplus_{i=1}^{\infty} E_i}$ and Y_k is finite dimensional. 32 33 34 **Lemma 4.1** ([14], Lemma 3.8). If $2 \le s < 2^*$ then we have that 35

$$\beta_k := \sup_{u \in Z_k, \|u\|=1} |u|_s \to 0, \quad as \ k \to \infty.$$

Proof. It is clear that $0 < \beta_{k+1} \leq \beta_k$, so $\beta_k \to \beta \ge 0 (k \to \infty)$. For every $k \in \mathbb{N}$ (by the definition of β_k 39), there exists $u_k \in Z_k$ such that $||u_k|| = 1$ and

$$\frac{\frac{41}{42}}{42} (4.1) \qquad |u_k|_s > \frac{\beta}{2} > 0.$$

36 37

40

 $\frac{1}{2} \text{ For any } v = \sum_{i=1}^{\infty} v_i e_i, \text{ we have, by the Cauchy-Schwartz inequality,}} \\ \frac{1}{2} \text{ For any } v = \sum_{i=1}^{\infty} v_i e_i, \text{ we have, by the Cauchy-Schwartz inequality,}} \\ |\langle u_k, v \rangle| = \left| \left\langle u_k, \sum_{i=1}^{\infty} v_i e_i \right\rangle \right| = \left| \left\langle u_k, \sum_{i=k+1}^{\infty} v_i e_i \right\rangle \right| \\ \leq ||u_k|| \left\| \sum_{i=k+1}^{\infty} v_i^2 \right| \\ \leq ||u_k|| \left\| \sum_{i=k+1}^{\infty} v_i^2 \right| \\ = \left(\sum_{i=k+1}^{\infty} v_i^2 \right) \\ \frac{11}{12} \text{ as } k \to \infty, \text{ which implies that } u_k \to 0 \text{ in } E. \text{ The compact embedor} \\ \text{implies that} \\ u_k \to 0 \text{ in } L^s \left(\mathbb{R}^N \right) (2 < s < 2^*) \\ \end{bmatrix}$ $|\langle u_k, v \rangle| = \left| \left\langle u_k, \sum_{i=1}^{\infty} v_i e_i \right\rangle \right| = \left| \left\langle u_k, \sum_{i=1}^{\infty} v_i e_i \right\rangle \right|$ $\leq \|u_k\| \left\| \sum_{i=k+1}^{\infty} v_i e_i \right\|$ $=\left(\sum_{i=1}^{\infty}v_i^2\right)^{1/2}\to 0,$ as $k \to \infty$, which implies that $u_k \to 0$ in *E*. The compact embedding of $E \hookrightarrow L^s(\mathbb{R}^N)$ $(2 \le s < 2^*)$ $u_k \to 0$ in $L^s(\mathbb{R}^N)$ $(2 \leq s < 2^*)$. 14 15 Hence, letting $k \to \infty$ in (4.1), we get $\beta = 0$, which completes the proof. 16 17 18 **Lemma 4.2.** Assume that (V), (h_1) , (f_1) and (f_2) hold, then there exist $\overline{\lambda} > 0$ and $\gamma_k > 0$ such that $\inf_{u\in Z_k, \|u\|=\gamma_k} J_{\lambda}(u) \to +\infty \text{ as } k \to \infty,$ whenever $\lambda \in [-\bar{\lambda}, \bar{\lambda}]$. 20 21 22 23 24 Proof. Lemma 4.1 implies that (4.2) $|u|_{s} < \beta_{k} ||u||, \quad 1 < s < 2^{*}.$ Thus, by (3.13), (3.3), Lemma 3.1 and (4.2) we have, 25 26 $J_{\lambda}(u) = \frac{1}{2} ||u||^{2} + \frac{b}{4} \left(\int_{\mathbb{T}^{N}} |\nabla u|^{2} \right)^{2} - \int_{\mathbb{T}^{N}} F(x, u) - \lambda \int_{\mathbb{T}^{N}} H(x, u)$ 27 28 29 $\geq \frac{1}{2} \|u\|^2 - \int F(x,u) - \lambda \int H(x,u)$ 30 31 32 $\geq rac{1}{2} \|u\|^2 - \int\limits_{\mathbb{T}^N} ig(arepsilon |u|^2 + C(arepsilon) |u|^pig) - |\lambda| C_4 \|u\|^{\delta_m}$ 33 34 35 36 37 $\geq rac{1}{2} \|u\|^2 - arepsilon \eta_2^2 \|u\|^2 - C(arepsilon) eta_k^p \|u\|^p - |\lambda| C_4 \|u\|^{\delta_m}$ $= \|u\|^{2} \left(\frac{1}{2} - \varepsilon \eta_{2}^{2} - C(\varepsilon) \beta_{k}^{p} \|u\|^{p-2} - |\lambda| C_{4} \|u\|^{\delta_{m}-2} \right)$ 38 39 40 Taking $\varepsilon \leq \frac{1}{4\eta_2^2}$, we have 41 42 $J_{\lambda}(u) \geq \|u\|^{2} \left(\frac{1}{4} - C(\varepsilon) \beta_{k}^{p} \|u\|^{p-2} - |\lambda| C_{4} \|u\|^{\delta_{m}-2} \right).$

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

1 Proof of Corollary 1.3. It is sufficient to show that (f'_3) , (f'_4) imply (f_3) , (f_4) . Indeed, For any 2 $(x,z) \in \mathbb{R}^N \times \mathbb{R}$, set 3 $\tau(t) := F(x,t^{-1}z)t^{\mu}, \quad \forall t \in \left[1,\frac{|z|}{r}\right].$ 5 By (f'_4) , for $|z| \ge r$, one has 6 $\tau'(t) = f\left(x,\frac{z}{t}\right)\left(-\frac{z}{t^2}\right)t^{\mu} + \mu F\left(x,\frac{z}{t}\right)t^{\mu-1},$ 8 $t^{\mu-1}\left[\mu F\left(x,\frac{z}{t}\right) - f\left(x,\frac{z}{t}\right)\frac{z}{t}\right] \le dt^{\mu-3}|z|^2 + \mu|\psi(x)|t^{\mu-1}.$ 10 Thus, 11 $t^{\mu-1}\left[\int_{r}^{|z|} \tau'(t)dt < \frac{d|z|^{\mu}}{r} - \frac{d|z|^2}{r} |z|^{\mu}|\psi(x)|$ $\tau\left(\frac{|z|}{r}\right) - \tau(1) = \int_{1}^{\frac{|z|}{r}} \tau'(t) dt \le \frac{d|z|^{\mu}}{(\mu-2)r^{\mu-2}} - \frac{d|z|^2}{\mu-2} + \frac{|z|^{\mu}|\psi(x)|}{r^{\mu}} - |\psi(x)|.$ 12 13 14 Hence, for any $x \in \mathbb{R}^N$ and $|z| \ge r$, by (f'_3) , one has 15 $F(x,z) = \tau(1) \ge \tau\left(\frac{|z|}{r}\right) + \frac{d|z|^2}{\mu - 2} - \frac{d|z|^{\mu}}{(\mu - 2)r^{\mu - 2}} - \frac{|z|^{\mu}|\psi(x)|}{r^{\mu}} + |\psi(x)|$ 16 17 18 19 20 (4.3) $\geq \inf_{x \in \mathbb{R}^{N}, |t|=r} F(x,t) \left(\frac{|z|}{r}\right)^{\mu} - \frac{d|z|^{\mu}}{(\mu-2)r^{\mu-2}} - \frac{|z|^{\mu}|\psi(x)|}{r^{\mu}}$ $> C_7 |_Z |^{\mu}$ where $C_7 = \frac{l}{r^{\mu}} - \frac{d}{(\mu-2)r^{\mu-2}} - \frac{\psi_0}{r^{\mu}}, C_7 > 0$ in view of $d \in \left[0, \frac{(l-\psi_0)(\mu-2)}{r^2}\right]$. 23 We obtain from (4.3) that 24 $\frac{F(x,z)}{r^4} \ge C_7 |z|^{\mu-4}, \quad \forall x \in \mathbb{R}^N \text{ and } |z| \ge r.$ 25 (4.4)26 27 Noticing that $\mu > 4$, then (4.4) implies (f_3) . Furthermore, it follows from (4.4) and (f'_4) that $4F(x,z) - f(x,z)z = \mu F(x,z) - f(x,z)z + (4-\mu)F(x,z) \le d|z|^2 + \mu \psi_0 - (\mu-4)C_4|z|^{\mu}$ 28 29 30 for all $x \in \mathbb{R}^N$ and $|z| \ge r$. This, together with $\mu > 4$, shows there exists L > 0 such that $4F(x,z) - f(x,z)z < 0 \quad \forall x \in \mathbb{R}^N \text{ and } |z| > L,$ 31 32 \square which implies (f_4) . Proof of Corollary 1.4. The proof of this Corollary is almost the same to the one of Corollary 1.3. So 34 we omit it here. 35 **Corollary 4.4.** The conclusion of Corollary 1.4 holds if we replace (f''_4) by the following condition: 36 37 $(f_4^{\prime\prime\prime})$ $t \to f(x,t)/|t|^{\mu-1}$ is increasing on $(-\infty,0)$ and $(0,+\infty)$. $\overline{\mathbf{39}}$ *Proof.* In fact, if t > 0, from (f_4''') we have 40 $\frac{41}{42} (4.5) \quad F(x,t) = \int_0^1 f(x,st)t \, \mathrm{d}s = \int_0^1 \frac{f(x,st)}{(st)^{\mu-1}} t^{\mu} s^{\mu-1} \, \mathrm{d}s \le \int_0^1 \frac{f(x,t)}{t^{\mu-1}} t^{\mu} s^{\mu-1} \, \mathrm{d}s \le \frac{1}{\mu} f(x,t)t + \frac{d'}{\mu} |t|^2.$

Otherwise, if t < 0, then 2 3 4 5 6 7 8 9 10 11 12 13 $F(x,t) = \int_0^1 f(x,st)t \, \mathrm{d}s = -\int_0^1 \frac{f(x,st)}{(-st)^{\mu-1}} (-t)^{\mu} s^{\mu-1} \, \mathrm{d}s$ $= -\int_{0}^{1} \frac{f(x,st)}{|st|^{\mu-1}} |t|^{\mu} s^{\mu-1} ds$ (4.6) $\leq -\int_{0}^{1} \frac{f(x,t)}{|t|^{\mu-1}} |t|^{\mu} s^{\mu-1} \,\mathrm{d}s$ $\leq \frac{1}{u}f(x,t)t + \frac{d'}{u}|t|^2.$ Therefore, (4.5) and (4.6) show that (f_4'') holds. 14 **Corollary 4.5.** If the following condition (f_3'') is used in palace of (f_3') of Corollary 1.4. 15 16 17 (f_3''') There exist $4 < \alpha < 2^*$ such that $\liminf_{|u|\to\infty}\frac{F(x,u)}{|u|^{\alpha}}>0, \text{ uniformly for } x\in\mathbb{R}^N,$ 18 19 then Corollary 1.4 remains true. 20 *Proof.* We only need to prove (f_3'') . Indeed, by (f_3''') , we can take a $\omega \in \left(0, \liminf_{|u| \to \infty} \frac{F(x,u)}{|u|^{\alpha}}\right)$ small 21 22 23 enough such that $F(x,u) \ge \omega |u|^{\alpha}$, for |u| large enough. 24 then though the above inequality, we know that (f_3'') implies (f_3'') . It means that Corollary 1.4 25 generalizes Corollary 4.5. This proof ends. 26 27 References 28 29 [1] P. J. McKenna and W. Walter; Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715. 30 [2] D. Burgreen; Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech. 18 (1951), 135-139. 31 [3] J. G. Eisley; Nonlinear vibrations of beams and rectangular plates, Z. Angew. Math. Phys. 15 (1964), 167-175. 32 [4] S. Woinowsky-Krieger; The effect of axial force on the vibration of hinged bars, J. Appl. Mech. 17 (1950), 35-36. 33 [5] J. Ball; Initial-boundary value for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90. 34 [6] HB. Zhang, W. Guan; Least energy sign-changing solutions for fourth-order Kirchhoff-type equation with potential 35 vanishing at infinity, J. Appl. Math. Comput. 64 (2020), 157-177. 36 [7] H. Song, C. Chen; Infinitely many solutions for Schrödinger-Kirchhoff-type fourth-order elliptic equations, Proc Edinb. 37 Math. Soc. 4 (2017), 1-18. [8] L. Xu, H. Chen; Multiple solutions for the nonhomogeneous fourth order elliptic equations of Kirchhoff-type, Taiwan. 38 J. Math. 19 (2015), 1-12. 39 [9] S. Khoutir,H. Chen; Ground state solutions and least energy sign-changing solutions for a class of fourth order 40 *Kirchhoff-type equations in* \mathbb{R}^N . Arab Journal of Mathematical Sciences. 23 (2016). 41 [10] Y. Chahma, H. Chen; Infinitely many small energy solutions for Fourth-Order Elliptic Equations with p-Laplacian in 42 \mathbb{R}^{N} , Appl. Math. Lett. **144** (2023).

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

- 1 [11] T. Bartsch, Z. Q. Wang, M. Willem; The Dirichlet problem for superlinear elliptic equations, In: M. Chipot, P. Quittner
- 2 (Eds.), Stationary partial differential equations, 2, Handbook of Differential Equations (Chapter 1), Elsevier, 1-55 (2005).
 3 (12) T. D. (12) T. D.
- [12] T. Bartsch, Z.Q. Wang, W. Willem; *The Dirichlet Problem for Superlinear Elliptic Equations*. In: Chipot, M. and Quitter, P., Eds., Handbook of Differential Equations: Stationary Partial Differential Equations, 2, Elsevier, Amsterdam, 1-55 (2005).
- 6 [13] Y. Chahma, H. Chen; Infinitely many high energy solutions for fourth-order elliptic equations with p-Laplacian in
- 7 bounded domain, J. Math. Comput. SCI-JM. **32** (2024), 109-121.
- [14] M. Willem; *Minimax Theorems*, Birkhauser, Berlin, (1996).
- [15] J. Zuo, T. An, Y. Ru, et al. Existence and Multiplicity of Solutions for Nonhomogeneous Schrödinger–Kirchhoff-Type Fourth-Order Elliptic Equations in \mathbb{R}^N , Mediterr. J. Math. **16** (2019), 123.
- [10] [16] L. Xu, H. Chen; Nontrivial solutions for Kirchhoff-type problems with a parameter, J. Math. Anal. Appl. 433 (2016),
 [11] 455-472.
- ¹² [17] B. Cheng, A New Result on Multiplicity of Nontrivial Solutions for the Nonhomogenous Schrödinger–Kirchhoff Type Problem in \mathbb{R}^N . Mediterr. J. Math. **13** (2016), 1099-1116.
- [14] [18] Y. Chahma, H. Chen; Sign-changing solutions for p-Laplacian Kirchhoff-type equations with critical exponent, J. Ellipt. Parab. Equa. 9 (2023), 1291-1317.
- [19] A Cabada, G. M. Figueiredo, A generalization of an extensible beam equation with critical growth in \mathbb{R}^N , Nonlinear Analysis: Real World Applications, **20** (2014), 134-142.
- [17] [20] F. Wang, M. Avci, Y. An, *Existence of solutions for fourth order elliptic equations of Kirchhoff type*, Journal of Mathematical Analysis and Applications, **409** (2014), 140-146.
- [21] Yuling Yin, Xian Wu, *High energy solutions and nontrivial solutions for fourth-order elliptic equations*, Journal of Mathematical Analysis and Applications, **375** (2011), 699-705.
- 21 School of Mathematics and Statistics, Central South University, Changsha, P.R. China 22
- FACULTY OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY HOUARI BOUMEDIENE, PB 32, EL-ALIA, BAB EZZOUAR, ALGIERS, ALGERIA.
- 26 SCHOOL OF MATHEMATICS AND COMPUTATIONAL SCIENCE, XIANGTAN UNIVERSITY, XIANGTAN, P.R. CHINA 27 Email address: khassaniassia@smail.xtu.edu.cn
- SCHOOL OF MATHEMATICS AND STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA, P.R. CHINA
 Email address: math_chb@csu.edu.cn
- 31 32 33

30

- 34
- 35
- 36
- 37

38 39

40

41