ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
 Vol. , No. , YEAR
 https://doi.org/rmj.YEAR..PAGE
 EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

YOUSSOUF CHAHMA, KHASSANI ASSIA, AND CHEN HAIBO

AbStract. In this paper, we study the following fourth-order elliptic equations of Kirchhoff type:

$$
\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+V(x) u=f(x, u)+\lambda h(x, u) \quad x \in \mathbb{R}^{N}
$$

where $a>0, b \geq 0$ are constants, we have the potential $V(x): \mathbb{R}^{N} \rightarrow \mathbb{R}, V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$. The nonlinearity $\lambda h(x, u)+f(x, u)$ may involve a combination of concave and convex terms. Under some suitable conditions on $h, f \in C\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$, we show the existence of nontrivial solutions by combining the mountain pass theorem and variational methods. Moreover, we also prove the existence of infinitely many high-energy solutions using the Fountain theorem.

1. Introduction

In this article, we are interested in the existence of solution for the following Kirchhoff-type problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+V(x) u=f(x, u)+\lambda h(x, u), x \in \mathbb{R}^{N}, \\
u \in H^{2}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where a, b are positive constants, $\Delta^{2}:=\Delta(\Delta)$ is the biharmonic operator. Problem 1.1 arises in the study of travelling waves in suspension bridge and the study of the static deflection of an elastic plate in a fluid, see [1] Problem 1.1 is a nonlocal problem because of the so-called nonlocal term $b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x$ involved in equation (1.1). There are some mathematical difficulties since the presence of a nonlocal term in the equation indicates that (1.1) is not a pointwise identity. Indeed, in general, we do not know $\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \rightarrow \int_{\mathbb{R}^{N}}|\nabla u|^{2}$ from $u_{n} \rightharpoonup u$ in $H^{2}\left(\mathbb{R}^{N}\right)$. Compared with previous results where the study was based on the case of bounded domain, the case of unbounded domain seems to be more complicated. In this case, the principal difficulty is the lack of compactness of the embedding. In order to recover the compactness, some classical assumptions on $V(x)$ are introduced, such as the condition denoted as (V) below.

If we set $V(x)=0, \lambda=0$, replace \mathbb{R}^{N} by a bounded smooth domain $\Omega \in \mathbb{R}^{N}$ and set $u=\Delta u=0$ on $\partial \Omega$, then problem 1.1 is reduced to the following equation

[^0]\[

\left\{$$
\begin{array}{l}
\Delta^{2} u-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=f(x, u), \quad x \in \Omega \tag{1.2}\\
u=0, \quad \nabla u=0 \quad \text { on } \Omega
\end{array}
$$\right.
\]

which is related to the stationary analogue of the Kirchhoff equation

$$
\begin{equation*}
\Delta^{2} u+u_{t t}-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=f(x, u), \quad x \in \Omega \tag{1.3}
\end{equation*}
$$

Equation (1.3) was proposed by Burgreen [2] as a model for the transverse deflection $u(x, t)$ of an extensible beam of natural length $I(\Omega)$ whose ends are held a fixed distance apart. The nonlinear term represents the change in the tension of the beam due to its extensibility. The model has also been discussed by Eisley [3], while Woinowsky-Krieger and Ball had given related experimental results [4, 5].

In recent years, many authors have paid attention to Kirchhoff-type problems. For instance, see $[6,7,9,10,13,16,17,18,19,20]$ and the references therein. Meanwhile, little has been done for the existence of infinitely many solutions for fourth-order Kirchhoff-type problems in \mathbb{R}^{N}. It is the first purpose of our paper to investigate the existence of infinitely many solutions for fourth-order Kirchhoff-type problems in \mathbb{R}^{N}.

In [8], Xu and Chen considered the following nonhomogeneous fourth-order Kirchhoff-type

$$
\begin{equation*}
\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+V(x) u=f(x, u)+h(x), x \in \mathbb{R}^{N} \tag{1.4}
\end{equation*}
$$

using the Mountain Pass Theorem and Ekeland's variational principle, they obtained a multiplicity result to the above problem provided $|h|_{2}$ is small enough. Later, Zuo et al. [15] studied the existence of nontrivial solution to problem 1.4 using the Mountain Pass Theorem. In addition, they obtained infinitely many high-energy solutions for the homogeneous problem by two kinds of methods: Symmetry Mountain Pass Theorem and Fountain Theorem, when the nonlinearity f satisfies the following condition:
$(V) \inf _{x \in \mathbb{R}^{N}} V(x) \geq V_{0}>0$ and for any $M>0$, meas $\left\{x \in \mathbb{R}^{N}: V(x) \leq M\right\}<+\infty$, where V_{0} is a constant, "meas" denotes the Lebesgue measure in \mathbb{R}^{N}.
$\left(f_{1}\right) \lim _{|t| \rightarrow 0} \frac{f(x, t)}{|t|}=0$ uniformly for any $x \in \mathbb{R}^{N}$.
$\left(F_{2}\right)$ There are constants $2<p<2^{* *}$, and $C>0$ such that

$$
|f(x, t)| \leq C\left(|t|^{p-1}+1\right), \quad \forall(x, t) \in \mathbb{R}^{N} \times \mathbb{R}
$$

where if $N \leq 2$, let $2^{* *}=+\infty$; if $N \geq 2$, let $2^{* *}=\frac{2 N}{N-2}$.
$\left(f_{3}\right) \lim _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{4}} \rightarrow+\infty$ uniformly in $x \in \mathbb{R}^{N}$.

6 Mar 2024 19:04:39 PST
231014-Chahma Version 2 - Submitted to Rocky Mountain J. Math.

Observe that condition $\left(F_{4}\right)$ plays an important role for proving that any Palais-Smale sequence is bounded in the work.

Motivated by the above works, the purpose of this paper is to study the existence of nontrivial solution of problem 1.1 by combining the Mountain pass theorem and variational methods and the existence of infinitely many high-energy solutions using Fountain theorem. To the best of our knowledge, there are no papers about the existence of infinitely many high-energy solutions for problem 1.1. In what follows, we make the following assumption:
$\left(h_{1}\right) \quad h \in C\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right)$, there exist constants $1<\delta_{1}<\delta_{2}<\cdots<\delta_{m}<2$ and functions $\xi_{i} \in$ $L^{\frac{2}{2-\delta_{i}}}\left(\mathbb{R}^{N}, \mathbb{R}^{+}\right)(i=1, \ldots, m)$ such that

$$
|h(x, t)| \leq \sum_{i=1}^{m} \xi_{i}(x)|t|^{\delta_{i}-1}, \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

$\left(f_{2}\right)$ There are constants $4<p<2^{*}$, and $c_{1}>0$ such that

$$
|f(x, t)| \leq c_{1}\left(1+|t|^{p-1}\right)
$$

where if $1<N \leq 4$, let $2^{*}=+\infty$; if $4<N<8$, let $2^{*}=\frac{2 N}{N-4}$.
$\left(f_{4}\right)$ There exist $L>0$ and $\rho \in\left[0, \frac{V_{0}}{2}\right]$ such that

$$
4 F(x, t)-f(x, t) t \leq \rho|t|^{2}, \quad \text { for a.e. } x \in \mathbb{R}^{N} \text { and } \forall t \geq L
$$

Theorem 1.1. Assume that $(V),\left(h_{1}\right)$ and $\left(f_{1}\right)-\left(f_{4}\right)$ hold. Then there exists $\bar{\lambda}>0$ such that for $\lambda \in[-\bar{\lambda}, \bar{\lambda}]$, problem 1.1 has at least one nontrivial solution.

Theorem 1.2. Assume that $(V),\left(h_{1}\right)$ and $\left(f_{1}\right)-\left(f_{4}\right)$ hold and
$\left(f_{5}\right) f(x,-t)=-f(x, t)$ for all $(x, t) \in \mathbb{R}^{N} \times \mathbb{R}$.
$\left(h_{2}\right) h(x,-t)=-h(x, t)$ for all $(x, t) \in \mathbb{R}^{N} \times \mathbb{R}$.
Then there exists $\bar{\lambda}>0$ such that for $\lambda \in[-\bar{\lambda}, \bar{\lambda}]$, problem 1.1 has a sequence of solutions $\left(u_{n}\right)$ with

$$
\frac{1}{2}\left\|u_{n}\right\|^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right)^{2}-\lambda \int_{\mathbb{R}^{N}} h\left(x, u_{n}\right) u_{n} \mathrm{~d} x-\int_{\mathbb{R}^{N}} f\left(x, u_{n}\right) u_{n} \mathrm{~d} x \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

Corollary 1.3. The conclusion of Theorem 1.2 holds if we replace $\left(f_{3}\right)$ and $\left(f_{4}\right)$ by the following condition:
$\left(f_{3}^{\prime}\right)$ There exist $r>0$ and $\psi_{0}>0$ such that

$$
l=\inf _{x \in \mathbb{R}^{N},|t|=r} F(x, t)>\psi_{0}
$$

$\left(f_{4}^{\prime}\right)$ There exist $\mu>4$, and $\psi \in C\left(\mathbb{R}^{N}, \mathbb{R}_{+}^{*}\right)$ such that $\sup _{x \in \mathbb{R}^{N}} \psi(x) \leq \psi_{0}$, and

$$
\mu F(x, t)-f(x, t) t \leq d|t|^{2}+\mu \psi(x), \quad \text { for a.e } x \in \mathbb{R}^{N} \text { and } \forall|t| \geq r
$$

$\frac{1}{2} \quad$ where $d \in\left[0, \frac{\left(l-\psi_{0}\right)(\mu-2)}{r^{2}}\right)$.

Corollary 1.4. The conclusion of Theorem 1.2 holds if we replace $\left(f_{3}\right)$ and $\left(f_{4}\right)$ by the following conditions:
$\left(f_{3}^{\prime \prime}\right)$ There exists $r_{1}>0$ such that

$$
l^{\prime}=\inf _{x \in \mathbb{R}^{N},|t|=r_{1}} F(x, t)>0
$$

$\left(f_{4}^{\prime \prime}\right)$ There exists $\mu^{\prime}>4$ such that

$$
\mu^{\prime} F(x, t)-f(x, t) t \leq d^{\prime}|t|^{2}, \quad \text { for a.e. } x \in \mathbb{R}^{N} \text { and } \forall|t| \geq r_{1}
$$

where $d^{\prime} \in\left[0, \frac{l^{\prime}(\mu-2)}{r_{1}^{2}}\right)$.
Remark 1.5. Since problem 1.1 is defined on the whole space \mathbb{R}^{N}, it is well known that the main difficulty is the lack of compactness of the Sobolev embedding. To overcome this difficulty, we always assume that the potential $V(x)$ satisfies the condition (V), which was introduced by Bartsch et al. [11].

Remark 1.6. Obviously, condition $\left(f_{4}\right)$ is much weaker than condition $\left(F_{4}\right)$. It is worth pointing out that from $\left(F_{2}\right)$, one sees that $2<p<2^{* *}=\frac{2 N}{N-2}$ implies that $2^{* *} \searrow 2$ as $N \rightarrow \infty$. On the other hand, the combination of $\left(f_{1}\right),\left(f_{3}\right)$ and $\left(F_{4}\right)$ implies that

$$
\frac{f(x, t)}{t^{3}} \geq \frac{4 F(x, t)}{t^{4}} \rightarrow \infty, \quad \text { as }|t| \rightarrow \infty
$$

In particular, $f(x, t) \geq O\left(t^{3}\right)$. This is consistent with $\left(F_{2}\right)$ only when $N \leq 6$. We were able to improve upon this restriction by considering $4<N<8$ in $\left(f_{2}\right)$.

The rest of this article is organized as follows. In Section 2, we establish thevariational framework associated with problem 1.1. In Section 3, we give the proof of Theorem 1.1. In Section 4, we give the proof of Theorem 1.2.

2. Preliminaries

Hereafter, we shall use $c_{i}, C_{i}, i=1,2, \cdots$ to denote various positive constants which may change from line to line, and by \rightarrow (resp. -) the strong (resp. weak) convergence. We denote $L^{p}\left(\mathbb{R}^{N}\right)$ as a Lebesgue space with the norm $|u|_{p}:=\left(\int_{\mathbb{R}^{N}}|u(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}, 1 \leq p<\infty$. Denote $H^{2}\left(\mathbb{R}^{N}\right)$ as the usual Sobolev space equipped with the inner product and norm,

$$
\langle u, v\rangle_{H^{2}}=\int_{\mathbb{R}^{N}}(\Delta u \Delta v+\nabla u \cdot \nabla v+u v) \mathrm{d} x, \quad\|u\|_{H^{2}}=\langle u, u\rangle_{H^{2}}^{\frac{1}{2}}
$$

Define our working space

$$
E=\left\{u \in H^{2}: \int_{\mathbb{R}^{N}}\left(\Delta u^{2}+|\nabla u|^{2}+V(x) u^{2}\right) \mathrm{d} x<\infty\right\}
$$

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION
with the inner product and norm

$$
\langle u, v\rangle=\int_{\mathbb{R}^{N}}(\Delta u \Delta v+a \nabla u \cdot \nabla v+V(x) u v) \mathrm{d} x, \quad\|u\|=\langle u, u\rangle^{\frac{1}{2}} .
$$

Since $V(x)$ satisfies (V), it is easy to see that $\|\cdot\|_{H^{2}}$ is equivalent to $\|\cdot\|$. Then, E is a Hilbert space.
Furthermore, E is continuously embedded in $L^{s}\left(\mathbb{R}^{N}\right)$ for $2 \leq s \leq 2^{*}$ under the condition (V), that is, there exists $\eta_{s}>0$ such that

$$
\begin{equation*}
\|u\|_{s} \leq \eta_{s}\|u\| \quad \forall u \in E \tag{2.1}
\end{equation*}
$$

Lemma 2.1 ([12], Lemma 3.1). Under the assumption (V), the embedding $E \hookrightarrow L^{s}$ is compact for any $s \in\left[2,2^{*}\right)$.

Lemma 2.2. We say that $u \in E$ is a weak solution of problem 1.1 if

$$
\begin{equation*}
\langle u, \varphi\rangle+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla \varphi \mathrm{~d} x=\int_{\mathbb{R}^{N}} f(x, u) \varphi \mathrm{d} x+\lambda \int_{\mathbb{R}^{N}} h(x, u) \varphi \mathrm{d} x, \quad \forall \varphi \in E, \tag{2.2}
\end{equation*}
$$

the energy associated with problem 1.1, is functional $J_{\lambda}: E \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
J_{\lambda}(u)=\frac{1}{2}\|u\|^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right)^{2}-\int_{\mathbb{R}^{N}} F(x, u) \mathrm{d} x-\lambda \int_{\mathbb{R}^{N}} H(x, u) \mathrm{d} x . \tag{2.3}
\end{equation*}
$$

Consequently, seeking a weak solution of problem 1.1 is equivalent to finding a critical point of the functional J_{λ}. Moreover, $J_{\lambda} \in C^{1}(E, \mathbb{R})$ with

$$
\begin{aligned}
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle & =\int_{\mathbb{R}^{N}}(\Delta u \Delta v+a \nabla u \cdot \nabla v+V(x) u v) \mathrm{d} x \\
& +b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v \mathrm{~d} x \\
& -\int_{\mathbb{R}^{N}} f(x, u) v \mathrm{~d} x-\lambda \int_{\mathbb{R}^{N}} h(x, u) v \mathrm{~d} x, \quad \forall u, v \in E .
\end{aligned}
$$

Proof. It follows from $\left(h_{1}\right)$ that

$$
\begin{equation*}
|H(x, u)| \leq \sum_{i=1}^{m} \frac{1}{\delta_{i}} \xi_{i}(x)|u|^{\delta_{i}} . \tag{2.5}
\end{equation*}
$$

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATION

$$
\begin{aligned}
& \text { By }(V),(2.5) \text { and the Hölder inequality, for any } u \in E \text {, we have } \\
& \qquad \begin{aligned}
\int_{\mathbb{R}^{N}}|H(x, u)| \mathrm{d} x & \leq \int_{\mathbb{R}^{N}} \sum_{i=1}^{m} \frac{1}{\delta_{i}} \xi_{i}(x)|u|^{\delta_{i}} \mathrm{~d} x \\
& \leq \sum_{i=1}^{m} \int_{\mathbb{R}^{N}}\left(\frac{V(x)}{V_{0}}\right)^{\frac{\delta_{i}}{2}} \frac{1}{\delta_{i}} \xi_{i}(x)|u|^{\delta_{i}} \mathrm{~d} x
\end{aligned} \\
& \qquad \begin{aligned}
& \leq \sum_{i=1}^{m} \frac{V_{0}}{\frac{-\delta_{i}}{2}}\left|\xi_{i}(x)\right|_{\frac{2}{2-\delta_{i}}}^{\delta_{i}}\left(\int_{\mathbb{R}^{N}} V(x)|u|^{2} \mathrm{~d} x\right)^{\frac{\delta_{i}}{2}} \\
& \leq C_{2} \sum_{i=1}^{m}\|u\|^{\delta_{i}}
\end{aligned}
\end{aligned}
$$

By (2.3) and (2.6), J_{λ} is well defined on E. Now, we show that (2.4) holds. By $\left(h_{1}\right)$, for any $u, v \in E, t \in(0,1), \theta(x): \mathbb{R}^{N} \rightarrow(0,1)$ and the Hölder inequality we can obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \max _{t \in(0,1)}|h(x, u(x)+t \theta(x) v(x)) v(x)| \mathrm{d} x \\
& =\int_{\mathbb{R}^{N}} \max _{t \in(0,1)}|h(x, u(x)+t \boldsymbol{\theta}(x) v(x))||v(x)| \mathrm{d} x \\
& \leq \sum_{i=1}^{m} \int_{\mathbb{R}^{N}} \xi_{i}(x)\left(|u(x)|^{\delta_{i}-1}+|\theta(x) v(x)|^{\delta_{i}-1}\right)|v(x)| \mathrm{d} x \\
& \leq V_{0}^{\frac{-\delta_{i}}{2}} \sum_{i=1}^{m}\left(\int_{\mathbb{R}^{N}}\left|\xi_{i}\right|^{\frac{2}{2-\delta_{i}}} \mathrm{~d} x\right)^{\frac{2-\delta_{i}}{2}}\left(\int_{\mathbb{R}^{N}} V(x)|u(x)|^{2} \mathrm{~d} x\right)^{\frac{\delta_{i-1}}{2}}\left(\int_{\mathbb{R}^{N}} V(x)|v(x)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& +V_{0}^{\frac{-\delta_{i}}{2}} \sum_{i=1}^{m}\left(\int_{\mathbb{R}^{N}}\left|\xi_{i}\right|^{\frac{2}{2-\delta_{i}}} \mathrm{~d} x\right)^{\frac{2-\delta_{i}}{2}}\left(\int_{\mathbb{R}^{N}} V(x)|v(x)|^{2} \mathrm{~d} x\right)^{\frac{\delta_{i}}{2}} \\
& \leq V_{0}^{\frac{-\delta_{i}}{2}} \sum_{i=1}^{m}\left|\xi_{i}\right|_{\frac{2}{2-\delta_{i}}}\left(\|u\|^{\delta_{i}-1}+\|v\|^{\delta_{i}-1}\right)\|v\|<+\infty \text {. }
\end{aligned}
$$

Then by (2.3), (2.7) and Lebesgue's Dominated Convergence Theorem, we have

$$
\begin{aligned}
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle & =\lim _{t \rightarrow 0^{+}} \frac{J_{\lambda}(u+t v)-J_{\lambda}(u)}{t} \\
= & \lim _{t \rightarrow 0^{+}}\left\{\langle u, v\rangle+\frac{t}{2}\|v\|^{2}+\frac{b}{4}\left[t^{3} \int_{\mathbb{R}^{N}}|\nabla v|^{2} \mathrm{~d} x+4 \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v \mathrm{~d} x\right.\right. \\
& \left.+2 t \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x \int_{\mathbb{R}^{N}}|\nabla v|^{2} \mathrm{~d} x+4 t^{2} \int_{\mathbb{R}^{N}}|\nabla v|^{2} \mathrm{~d} x \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v \mathrm{~d} x+4 t\left(\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v \mathrm{~d} x\right)^{2}\right] \\
& \left.-\frac{1}{t} \int_{\mathbb{R}^{N}}[F(x, u(x)+t v(x))-F(x, u(x))] \mathrm{d} x-\frac{\lambda}{t} \int_{\mathbb{R}^{N}}[H(x, u(x)+t v(x))-H(x, u(x))] \mathrm{d} x\right\} \\
= & \langle u, v\rangle+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\mathbb{R}^{N}} f(x, u) v \mathrm{~d} x-\lambda \int_{\mathbb{R}^{N}} h(x, u) v \mathrm{~d} x .
\end{aligned}
$$

which implies that (2.4) holds. Moreover, by a standard argument, it is easy to show that $J_{\lambda} \in$ $C^{1}(E, \mathbb{R})$.

Definition 2.3. We say that J_{λ} satisfies the Palais-Smale condition at level $c(P S)_{c}$, i.e., any sequence $\left\{u_{n}\right\}$ has a convergent subsequence in E whenever

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \text {, as } n \rightarrow \infty \tag{2.8}
\end{equation*}
$$

Let X be a Banach space with the norm $\|\cdot\|$ and $X=\overline{\bigoplus_{i=1}^{\infty} X_{i}}$ with $\operatorname{dim} X_{i}<+\infty$ for each $i \in \mathbb{N}$. Further, we set

$$
Y_{k}=\bigoplus_{i=1}^{k} X_{i}, \quad Z_{k}=\bigoplus_{i=k}^{\infty} X_{i}
$$

To prove Theorem 1.1 we state the following mountain pass theorem (see [[14] Theorem 1.17]).
Theorem 2.4 (Mountain Pass Theorem). Let X be a Banach space, $I \in C^{1}(X, \mathbb{R}), I(0)=0$, and assume that
(S_{1}) there exist two positive real numbers α and ρ such that $I(u) \geq \alpha$ for all $\|u\|=\rho$,
$\left(S_{2}\right)$ there exists $e \in X$ with $\|e\|>\rho$ such that $I(e) \leq 0$,
If I satisfies the $(P S)_{c}$-condition for

$$
c=\inf _{\gamma \in \Gamma_{t \in[0,1]}} \sup I(\gamma(t)),
$$

with

$$
\Gamma=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\},
$$

then c is critical value of I and $c \geq \alpha$.
In order to deduce our results, the following Fountain theorem is a very useful tool.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIOY
Theorem 2.5 (Fountain theorem, Bartsch [14]). Let $I \in C^{1}(X, \mathbb{R})$ satisfy $I(-u)=I(u)$. Assume that, for every $k \in \mathbb{N}$, there exists $\rho_{k}>\gamma_{k}>0$ such that
$\left(A_{1}\right) a_{k}:=\max _{u \in Y_{k},\|u\|=\rho_{k}} I(u) \leq 0$,
$\left(A_{2}\right) b_{k}:=\inf _{u \in Z_{k},\|u\|=\gamma_{k}} I(u) \rightarrow+\infty$ as $k \rightarrow+\infty$.

If I satisfies the $(P S)_{c}$ condition for every $c>0$, then I has an unbounded sequence of critical values.

3. Proof of Theorems 1.1

We begin verifying the follow compactness lemma which shows that the functional J_{λ} satisfies (PS)condition

Lemma 3.1. Let assumptions $(V),\left(h_{1}\right)$ and $\left(f_{1}\right)-\left(f_{4}\right)$ hold. Then for every $\lambda \in \mathbb{R}$, any Palais-Smale sequence of J_{λ} is bounded.

Proof. Let $\left\{u_{n}\right\} \subset E$ be any Palais-Smale sequence of J_{λ}. Then, up to a subsequence, there exists $c \in \mathbb{R}$ such that

$$
J_{\lambda}\left(u_{n}\right) \rightarrow c, \text { and } J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 .
$$

For n large enough, by $\left(f_{3}\right)$ we have

$$
\begin{aligned}
c+1+\|u\| \geq & J_{\lambda}\left(u_{n}\right)-\frac{1}{4}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
= & \frac{1}{4} \int_{\mathbb{R}^{N}}\left(\left|\Delta u_{n}\right|^{2}+a\left|\nabla u_{n}\right|^{2}\right) \mathrm{d} x+\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x+\int_{\mathbb{R}^{N}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x \\
& -\lambda \int_{\mathbb{R}^{N}} \widetilde{H}\left(x, u_{n}\right) \mathrm{d} x \\
\geq & \frac{1}{4} \int_{\mathbb{R}^{N}}\left(\left|\Delta u_{n}\right|^{2}+a\left|\nabla u_{n}\right|^{2}\right) \mathrm{d} x+\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x-\frac{\rho}{4} \int_{\mathbb{R}^{N}} u_{n}^{2} \mathrm{~d} x \\
& +\int_{\mathbb{A}_{n}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x-|\lambda| \int_{\mathbb{R}^{N}} \widetilde{H}\left(x, u_{n}\right) \mathrm{d} x \\
\geq & \frac{1}{4} \int_{\mathbb{R}^{N}}\left(\left|\Delta u_{n}\right|^{2}+a\left|\nabla u_{n}\right|^{2}\right) \mathrm{d} x+\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x-\frac{1}{8} \int_{\mathbb{R}^{N}} V_{0} u_{n}^{2} \mathrm{~d} x \\
& +\int_{\mathbb{A}_{n}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x-|\lambda| \int_{\mathbb{R}^{N}} \widetilde{H}\left(x, u_{n}\right) \mathrm{d} x \\
\geq & \frac{1}{4} \int_{\mathbb{R}^{N}}\left(\left|\Delta u_{n}\right|^{2}+a\left|\nabla u_{n}\right|^{2}\right) \mathrm{d} x+\frac{1}{4} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x-\frac{1}{8} \int_{\mathbb{R}^{N}} V_{0} u_{n}^{2} \mathrm{~d} x \\
& +\int_{\mathbb{A}_{n}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x-|\lambda| \int_{\mathbb{R}^{N}} \widetilde{H}\left(x, u_{n}\right) \mathrm{d} x \\
\geq & \frac{1}{16}\left\|u_{n}\right\|^{2}+\frac{1}{16} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x+\int_{\mathbb{A}_{n}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x-|\lambda| \int_{\mathbb{R}^{N}} \widetilde{H}\left(x, u_{n}\right) \mathrm{d} x,
\end{aligned}
$$

where $\widetilde{F}\left(x, u_{n}\right)=\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right), \widetilde{H}\left(x, u_{n}\right)=H\left(x, u_{n}\right)-\frac{1}{4} h\left(x, u_{n}\right) u_{n}$ and $\mathbb{A}_{n}=\left\{x \in \mathbb{R}^{N}:\left|u_{n}\right| \leq\right.$ $L\}$.
By $\left(h_{1}\right),(2.1)$ and Hölder's inequality we can obtain

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{N}} \widetilde{H}\left(x, u_{n}\right)\right|= & \left|\int_{\mathbb{R}^{N}}\left(H\left(x, u_{n}\right)-\frac{1}{4} h\left(x, u_{n}\right) u_{n}\right)\right| \\
& \leq \int_{\mathbb{R}^{N}}\left|H\left(x, u_{n}\right)\right|+\left|\frac{1}{4} h\left(x, u_{n}\right) u_{n}\right| \\
& \leq \sum_{i=1}^{m}\left(\frac{1}{\delta_{i}}+\frac{1}{4}\right)\left|\xi_{i}(x)\right|_{\frac{2}{2-\delta_{i}}} \eta_{2}^{\delta_{i}}\left\|u_{n}\right\|^{\delta_{i}}
\end{aligned}
$$

$c+1+\left\|u_{n}\right\|+|\lambda| \sum_{i=1}^{m}\left(\frac{1}{\delta_{i}}+\frac{1}{4}\right)\left|\xi_{i}(x)\right|_{\frac{2}{2-\delta_{i}}} \eta_{2}^{\delta_{i}}\left\|u_{n}\right\|^{\delta_{i}} \geq \frac{1}{16}\left\|u_{n}\right\|^{2}+\frac{1}{16} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x+\int_{\mathbb{A}^{N}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x$.
For any $\varepsilon>0$, by $\left(f_{1}\right),\left(f_{2}\right)$, there exists $C(\varepsilon)>0$ such that

$$
\begin{array}{ll}
|f(x, t)| \leq 2 \varepsilon|t|+p C(\varepsilon)|t|^{p-1}, & \forall(x, t) \in \mathbb{R}^{N} \times \mathbb{R}, \\
|F(x, t)| \leq \int_{0}^{1}|f(x, s t) t| d s \leq \varepsilon|t|^{2}+C(\varepsilon)|t|^{p}, & \forall(x, t) \in \mathbb{R}^{N} \times \mathbb{R} . \tag{3.3}
\end{array}
$$

For $x \in \mathbb{R}^{N}$ and $\left|u_{n}\right| \leq L$, by (3.3), we have

$$
\begin{aligned}
\left|\widetilde{F}\left(x, u_{n}\right)\right| & \left|\leq \frac{1}{4}\right| f\left(x, u_{n}\right)\left|\left|u_{n}\right|+\left|F\left(x, u_{n}\right)\right|\right. \\
& \leq \frac{5}{4} \varepsilon\left|u_{n}\right|^{2}+\frac{5}{4} C(\varepsilon)\left|u_{n}\right|^{p} \\
& =\frac{5}{4}\left[\varepsilon+C(\varepsilon)\left|u_{n}\right|^{p-2}\right]\left|u_{n}\right|^{2} \\
& \leq \frac{5}{4}\left[\varepsilon+C(\varepsilon) L^{p-2}\right]\left|u_{n}\right|^{2} \\
& \leq C_{3}\left|u_{n}\right|^{2}
\end{aligned}
$$

Take $M>\max \left\{16 C_{3}, V_{0}\right\}$, then

$$
\begin{equation*}
\widetilde{F}\left(x, u_{n}\right) \geq-\frac{M}{16}\left|u_{n}\right|^{2}, \quad \forall x \in \mathbb{R}^{N},\left|u_{n}\right| \leq L . \tag{3.4}
\end{equation*}
$$

Let $\widetilde{\mathbb{A}}=\left\{x \in \mathbb{R}^{N}: V(x) \leq M\right\}$. By (V) we know that meas $(\widetilde{\mathbb{A}})<+\infty$. On the other hand, it follows from (3.4) that

$$
\begin{aligned}
\frac{1}{16} \int_{\mathbb{R}^{N}} V(x) u_{n}^{2} \mathrm{~d} x+\int_{\mathbb{A}_{n}} \widetilde{F}\left(x, u_{n}\right) \mathrm{d} x & \geq \frac{1}{16} \int_{\left|u_{n}\right| \leq L}(V(x)-M)\left|u_{n}\right|^{2} \mathrm{~d} x \\
& \geq \frac{1}{16} \int_{\tilde{\mathbb{A}} \cap \mathbb{A}_{n}}(V(x)-M) L^{2} \mathrm{~d} x \\
& \geq \frac{1}{16}\left(V_{0}-M\right) L^{2} \operatorname{meas}\left(\widetilde{\mathbb{A}} \cap \mathbb{A}_{n}\right) \\
& \geq \frac{1}{16}\left(V_{0}-M\right) L^{2} \operatorname{meas}(\widetilde{\mathbb{A}}) .
\end{aligned}
$$

Combining (3.2) and (3.5), we get that

$$
c+1+\left\|u_{n}\right\|+|\lambda| \sum_{i=1}^{m}\left(\frac{1}{\delta_{i}}+\frac{1}{4}\right)\left|\xi_{i}(x)\right|_{\frac{2}{2-\delta_{i}}} \eta_{2}^{\delta_{i}}\left\|u_{n}\right\|^{\delta_{i}} \geq \frac{1}{16}\left\|u_{n}\right\|^{2}+\frac{1}{16}\left(V_{0}-M\right) L^{2} \operatorname{meas}(\widetilde{\mathbb{A}})
$$

which implies that $\left\{u_{n}\right\}$ is bounded in E. Thus, this completes the proof.
Lemma 3.2. Let assumptions $(V),\left(h_{1}\right)$ and $\left(f_{1}\right)-\left(f_{4}\right)$ hold and $\left\{u_{n}\right\}$ is a bounded Palais-Smale sequence of J_{λ}, then for every $\lambda \in \mathbb{R},\left\{u_{n}\right\}$ has a strongly convergent subsequence in E.

Proof. Since $\left\{u_{n}\right\}$ is bounded in E, then there exists a constant $M>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \leq M, \quad \forall n \in \mathbb{N} \tag{3.6}
\end{equation*}
$$

Going if necessary to a subsequence, we may assume that there is a $u \in E$ such that

$$
\begin{align*}
& u_{n} \rightharpoonup \quad \text { in } E, \\
& u_{n} \rightarrow u \text { in } L^{s}\left(\mathbb{R}^{N}\right)\left(2 \leq s<2^{*}\right), \tag{3.7}\\
& u_{n} \rightarrow u \text { a.e. on } \mathbb{R}^{N} .
\end{align*}
$$

By (2.4), we have

$$
\begin{aligned}
& \left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}(u), u_{n}-u\right\rangle \\
& =\int_{\mathbb{R}^{N}}\left(\Delta u_{n}-\Delta u\right)^{2}+V(x)\left|u_{n}-u\right|^{2} \mathrm{~d} x+\left(a+b \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right) \int_{\mathbb{R}^{N}} \nabla u_{n} \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& -\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \int_{\mathbb{R}^{N}} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x-\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x \\
& -\lambda \int_{\mathbb{R}^{N}}\left(h\left(x, u_{n}\right)-h(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x \\
& =\int_{\mathbb{R}^{N}}\left(\Delta u_{n}-\Delta u\right)^{2}+V(x)\left|u_{n}-u\right|^{2} \mathrm{~d} x+\left(a+b \int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right) \int_{\mathbb{R}^{N}} \mid \nabla\left(u_{n}-u\right)^{2} \mathrm{~d} x \\
& \left.-\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right)_{\mathbb{R}^{N}} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x-\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x \\
& -\lambda \int_{\mathbb{R}^{N}}\left(h\left(x, u_{n}\right)-h(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x \\
& \geq\left\|u_{n}-u\right\|^{2}-b\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right)-\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& -\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x-\lambda \int_{\mathbb{R}^{N}}\left(h\left(x, u_{n}\right)-h(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x .
\end{aligned}
$$

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIOIX
Therefore, one has

$$
\begin{aligned}
\left\|u_{n}-u\right\|^{2} & \leq\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}(u), u_{n}-u\right\rangle+b\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right) \int_{\mathbb{R}^{N}} \nabla u \nabla\left(u_{n}-u\right) \mathrm{d} x \\
& +\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x+\lambda \int_{\mathbb{R}^{N}}\left(h\left(x, u_{n}\right)-h(x, u)\right)\left(u_{n}-u\right) \mathrm{d} x .
\end{aligned}
$$

Then, it follows from (3.3), (3.6), and the Hölder inequality that

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|f\left(x, u_{n}\right)-f(x, u) \| u_{n}-u\right| \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}}\left(\left|f\left(x, u_{n}\right)\right|+|f(x, u)|\right)\left|u_{n}-u\right| \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}} 2 \varepsilon\left(\left|u_{n}\right|+|u|\right)\left|u_{n}-u\right| \mathrm{d} x+p C(\varepsilon) \int_{\mathbb{R}^{N}}\left(\left|u_{n}\right|^{p-1}+|u|^{p-1}\right)\left|u_{n}-u\right| \mathrm{d} x \\
& \leq 2 \varepsilon\left[\left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}+\left(\int_{\mathbb{R}^{N}}|u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}\right]\left(\int_{\mathbb{R}^{N}}\left|u_{n}-u\right|^{2} \mathrm{~d} x\right)^{\frac{1}{2}} \\
& + \\
& +p C(\varepsilon)\left[\left(\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p} \mathrm{~d} x\right)^{\frac{p-1}{p}}+\left(\int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x\right)^{\frac{p-1}{p}}\right]\left(\int_{\mathbb{R}^{N}}\left|u_{n}-u\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \leq 2 \varepsilon\left(\eta_{2} M+|u|_{2}\right)\left\|u_{n}-u\right\|_{2}+p C(\varepsilon)\left(\eta_{p}^{p-1} M^{p-1}+|u|_{p}^{p-1}\right)\left\|u_{n}-u\right\|_{p} \rightarrow 0, n \rightarrow+\infty .
\end{aligned}
$$

Let $\phi_{u}: E \rightarrow \mathbb{R}$ such that $\phi_{u}(v)=\int_{\mathbb{R}^{3}} \nabla u \cdot \nabla v \mathrm{~d} x$. Since $\phi_{u}(v) \leq\|u\|\|v\|$, we can deduce that ϕ_{u} is continuous (linear and bounded) on E, using (3.7), then we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla u_{n} \mathrm{~d} x=\phi_{u}\left(u_{n}\right) \rightarrow \phi_{u}(u)=\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla u \mathrm{~d} x, \quad \text { as } n \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Thus, we get from $u_{n} \rightharpoonup u$ in H, (3.9), and the boundedness of $\left\{u_{n}\right\}$ that

$$
\begin{equation*}
b\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{N}}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x\right) \int_{\mathbb{R}^{N}} \nabla u \nabla\left(u_{n}-u\right) \mathrm{d} x \rightarrow 0, \text { as } n \rightarrow \infty . \tag{3.10}
\end{equation*}
$$

By (h_{1}), (2.1), and (3.6), using the Hölder inequality, we can conclude
$|n|-$

$$
\int_{\mathbb{R}^{N}}\left|h\left(x, u_{n}\right)-h(x, u) \| u_{n}-u\right| \mathrm{d} x
$$

$$
\leq \int_{\mathbb{R}^{N}}\left|h\left(x, u_{n}\right)\right|\left|u_{n}-u\right| \mathrm{d} x+\int_{\mathbb{R}^{N}}|h(x, u)|\left|u_{n}-u\right| \mathrm{d} x
$$

$$
\leq \int_{\mathbb{R}^{N}} \sum_{i=1}^{m} \xi_{i}(x)\left|u_{n}\right|^{\delta_{i}-1}\left|u_{n}-u\right| \mathrm{d} x+\int_{\mathbb{R}^{N}} \sum_{i=1}^{m} \xi_{i}(x)|u|^{\delta_{i}-1}\left|u_{n}-u\right| \mathrm{d} x
$$

$$
\leq \sum_{i=1}^{m}\left|\xi_{i}\right|_{\frac{2}{2-\delta_{i}}}\left(\left|u_{n}\right|_{2}^{\delta_{i}-1}+|u|_{2}^{\delta_{i}-1}\right)\left|u_{n}-u\right|_{2}
$$

$$
\leq \sum_{i=1}^{m}\left|\xi_{i}\right|_{\frac{2}{2-\delta_{i}}}\left(\eta_{2}^{\delta_{i}-1} M^{\delta_{i}-1}+|u|_{2}^{\delta_{i}-1}\right)\left|u_{n}-u\right|_{2}
$$

Therefore，it follows from（3．7）that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} h\left(x, u_{n}\right)-h(x, u)\left(u_{n}-u\right) \mathrm{d} x \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.11}
\end{equation*}
$$

Clearly，

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}(u), u_{n}-u\right\rangle \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.12}
\end{equation*}
$$

It follows from（3．8），（3．10），（3．11）and（3．12）that $\left\|u_{n}-u\right\| \rightarrow 0$.
Lemma 3．3．If $(V),\left(h_{1}\right),\left(f_{1}\right)-\left(f_{3}\right)$ hold，then there exist α, ρ and $\bar{\lambda}>0$ such that $J_{\lambda}(u) \geq \alpha$ whenever $\|u\|=\rho$ and $\lambda \in[-\bar{\lambda}, \bar{\lambda}]$ ．
Proof．$\left(h_{1}\right)$ together with（2．1）and Hölder＇s inequality imply that

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}|H(x, u)| & \leq \sum_{i=1}^{m} \int_{\mathbb{R}^{N}} \sum_{i=1}^{m} \frac{1}{\delta_{i}}\left|\xi_{i}(x) \| u\right|^{\delta_{i}} \\
& =\sum_{i=1}^{m} \frac{V_{0}^{\frac{-\delta_{i}}{2}}}{\delta_{i}}\left|\xi_{i}(x)\right|_{\frac{2}{2-\delta_{i}}}\|u\|^{\delta_{i}} \\
& \leq C_{4}\|u\|^{\delta_{m}}
\end{aligned}
$$

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIOIA

$$
\begin{aligned}
& \text { for }\|u\| \text { large enough. It follows from (3.3) and (3.13) that } \\
& \qquad \begin{aligned}
J_{\lambda}(u) & =\frac{1}{2}\|u\|^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{2}-\int_{\mathbb{R}^{N}} F(x, u)-\lambda \int_{\mathbb{R}^{N}} H(x, u) \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F(x, u)-|\lambda| \int_{\mathbb{R}^{N}} H(x, u) \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}}\left(\varepsilon|u|^{2}+C(\varepsilon)|u|^{p}\right)-|\lambda| C_{4}\|u\|^{\delta_{m}} \\
& \geq \frac{1}{2}\|u\|^{2}-\varepsilon \eta_{2}^{2}\|u\|^{2}-C(\varepsilon) \eta_{p}^{p}\|u\|^{p}-|\lambda| C_{4}\|u\|^{\delta_{m}} \\
& =\|u\|^{2}\left(\frac{1}{2}-\varepsilon \eta_{2}^{2}-C(\varepsilon) \eta_{p}^{p}\|u\|^{p-2}-|\lambda| C_{4}\|u\|^{\delta_{m}-2}\right)
\end{aligned}
\end{aligned}
$$

For $\varepsilon \leq \frac{1}{4 \eta_{2}^{2}}$, we have

$$
J_{\lambda}(u) \geq\|u\|^{2}\left(\frac{1}{4}-C(\varepsilon) \eta_{p}^{p}\|u\|^{p-2}-|\lambda| C_{4}\|u\|^{\delta_{m}-2}\right)
$$

Let

$$
\begin{equation*}
g(t)=C_{5} t^{p-2}+|\lambda| C_{4} t^{\delta_{m}-2}, \quad t \geq 0 \tag{3.14}
\end{equation*}
$$

and then we get $\lim _{t \rightarrow+\infty} g(t)=\lim _{t \rightarrow 0^{+}} g(t)=+\infty$, which implies that $g(t)$ is bounded below, thus $g(t)$ admits a minimizer t_{0} :

$$
t_{0}=\left(\frac{|\lambda| C_{4}\left(\delta_{m}-2\right)}{C_{5}(2-p)}\right)^{\frac{1}{p-\delta_{m}}}
$$

It follows from (3.14) that

$$
\begin{aligned}
& \inf _{t \in[0,+\infty)} g(t)=g\left(t_{0}\right) \\
& =C_{5}\left(\frac{|\lambda| C_{4}\left(\delta_{m}-2\right)}{C_{5}(2-p)}\right)^{\frac{p-2}{p-\delta_{m}}}+|\lambda| C_{4}\left(\frac{|\lambda| C_{4}\left(\delta_{m}-2\right)}{C_{5}(2-p)}\right)^{\frac{\delta_{m}-2}{p-\delta_{m}}} \\
& =|\lambda|^{\frac{p-2}{p-\delta_{m}}} G \text {, } \\
& g\left(t_{0}\right)<\frac{1}{4},
\end{aligned}
$$

thus, whenever $\lambda \in[-\bar{\lambda}, \bar{\lambda}]$, there exists $\rho=t_{0}>0$ such that $\|u\|=\rho$ and $J_{\lambda}(u) \geq \alpha>0=J_{\lambda}(0)$.

Lemma 3.4. Assume that $\left(h_{1}\right),\left(f_{1}\right)-\left(f_{3}\right)$ hold, then there exists $e \in E$, such that $J_{\lambda}(e)<0$ with $\|e\|>\rho$.

Proof. For every $M>0$, by $\left(f_{1}\right)-\left(f_{3}\right)$, there exists $C(M)>0$ such that

$$
\begin{equation*}
F(x, t) \geq M|t|^{4}-C(M)|t|^{2}, \quad \forall(x, t) \in \mathbb{R}^{N} \times \mathbb{R} \tag{3.15}
\end{equation*}
$$

Choose $\phi \in E$ with $|\phi|_{4}=1$, then for $t>0$, we have

$$
\begin{aligned}
J_{\lambda}(t \phi) & =\frac{t^{2}}{2}\|\phi\|^{2}+\frac{t^{4} b}{4}\left(\int_{\mathbb{R}^{N}}|\nabla \phi|^{2} d x\right)^{2}-\int_{\mathbb{R}^{N}} F(x, t \phi)-\lambda \int_{\mathbb{R}^{N}} H(x, t \phi) \\
& \leq \frac{t^{2}}{2}\|\phi\|^{2}+\frac{t^{4} b}{4}\|\phi\|^{4}-M t^{4}|\phi|_{4}^{4}+t^{2} C(M)|\phi|_{2}^{2}+t^{\delta_{m}}|\lambda| C_{4}\|\phi\|^{\delta_{m}} .
\end{aligned}
$$

which implies $J_{\lambda}(t \phi) \rightarrow-\infty$ as $t \rightarrow+\infty$ by taking $M>\frac{b}{4}\|\phi\|^{4}$. So, there exists $e=t_{0} \phi$ such that $\|e\|>\rho$ and $J_{\lambda}(e)<0=J_{\lambda}(0)$.

Proof of Theorems 1.1. We have $J_{\lambda} \in C^{1}(E, \mathbb{R})$ and $J_{\lambda}(0)=0$. On the other hand, condition $\left(S_{1}\right)$ is satisfied whenever $|\lambda| \leq \bar{\lambda}$ due to Lemma 3.3, and the functional J_{λ} satisfies the conditions $\left(S_{2}\right)$ due to Lemma 3.4. Moreover, by Lemmas 3.1, $3.2 J_{\lambda}$ satisfies the $(\mathrm{PS})_{c}$ condition. Therefore, the functional J_{λ} has at least one nontrivial solution $u \in E$, whenever $|\lambda| \leq \bar{\lambda}$.

4. Proof of Theorems 1.2

In this section, we prove the existence of sequence of solutions with high energy to problem 1.1.
Since $E \hookrightarrow L^{2}$, and L^{2} is a separable Hilbert space, E has a countable orthogonal basis $\left\{e_{i}\right\}_{i=1}^{\infty}$. Set

$$
E_{i}=\operatorname{span}\left\{e_{i}\right\}, \quad Y_{k}=\bigoplus_{i=1}^{k} E_{i}, \quad Z_{k}=\overline{\bigoplus_{i=k+1}^{\infty} E_{i}}, \quad k \in \mathbb{N}^{*}
$$

Then, $E=\overline{\bigoplus_{i=1}^{\infty} E_{i}}$ and Y_{k} is finite dimensional.
Lemma 4.1 ([14], Lemma 3.8). If $2 \leq s<2^{*}$ then we have that

$$
\beta_{k}:=\sup _{u \in Z_{k},\|u\|=1}|u|_{s} \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

Proof. It is clear that $0<\beta_{k+1} \leqslant \beta_{k}$, so $\beta_{k} \rightarrow \beta \geqslant 0(k \rightarrow \infty)$. For every $k \in \mathbb{N}$ (by the definition of β_{k}), there exists $u_{k} \in Z_{k}$ such that $\left\|u_{k}\right\|=1$ and

$$
\begin{equation*}
\left|u_{k}\right|_{s}>\frac{\beta}{2}>0 \tag{4.1}
\end{equation*}
$$

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIOIV
For any $v=\sum_{i=1}^{\infty} v_{i} e_{i}$, we have, by the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\left|\left\langle u_{k}, v\right\rangle\right|=\left|\left\langle u_{k}, \sum_{i=1}^{\infty} v_{i} e_{i}\right\rangle\right| & =\left|\left\langle u_{k}, \sum_{i=k+1}^{\infty} v_{i} e_{i}\right\rangle\right| \\
& \leqslant\left\|u_{k}\right\|\left\|\sum_{i=k+1}^{\infty} v_{i} e_{i}\right\| \\
& =\left(\sum_{i=k+1}^{\infty} v_{i}^{2}\right)^{1 / 2} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$, which implies that $u_{k} \rightharpoonup 0$ in E. The compact embedding of $E \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)\left(2 \leqslant s<2^{*}\right)$
implies that

$$
u_{k} \rightarrow 0 \quad \text { in } L^{s}\left(\mathbb{R}^{N}\right)\left(2 \leqslant s<2^{*}\right)
$$

Hence, letting $k \rightarrow \infty$ in (4.1), we get $\beta=0$, which completes the proof.
Lemma 4.2. Assume that $(V),\left(h_{1}\right),\left(f_{1}\right)$ and $\left(f_{2}\right)$ hold, then there exist $\bar{\lambda}>0$ and $\gamma_{k}>0$ such that

$$
\inf _{u \in Z_{k},\|u\|=\gamma_{k}} J_{\lambda}(u) \rightarrow+\infty \text { as } k \rightarrow \infty
$$

whenever $\lambda \in[-\bar{\lambda}, \bar{\lambda}]$.
Proof. Lemma 4.1 implies that

$$
\begin{equation*}
|u|_{s} \leq \beta_{k}\|u\|, \quad 1 \leq s<2^{*} \tag{4.2}
\end{equation*}
$$

Thus, by (3.13), (3.3), Lemma 3.1 and (4.2) we have,

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{1}{2}\|u\|^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{2}-\int_{\mathbb{R}^{N}} F(x, u)-\lambda \int_{\mathbb{R}^{N}} H(x, u) \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}} F(x, u)-\lambda \int_{\mathbb{R}^{N}} H(x, u) \\
& \geq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{N}}\left(\varepsilon|u|^{2}+C(\varepsilon)|u|^{p}\right)-|\lambda| C_{4}\|u\|^{\delta_{m}} \\
& \geq \frac{1}{2}\|u\|^{2}-\varepsilon \eta_{2}^{2}\|u\|^{2}-C(\varepsilon) \beta_{k}^{p}\|u\|^{p}-|\lambda| C_{4}\|u\|^{\delta_{m}} \\
& =\|u\|^{2}\left(\frac{1}{2}-\varepsilon \eta_{2}^{2}-C(\varepsilon) \beta_{k}^{p}\|u\|^{p-2}-|\lambda| C_{4}\|u\|^{\delta_{m}-2}\right)
\end{aligned}
$$

Taking $\varepsilon \leq \frac{1}{4 \eta_{2}^{2}}$, we have

$$
J_{\lambda}(u) \geq\|u\|^{2}\left(\frac{1}{4}-C(\varepsilon) \beta_{k}^{p}\|u\|^{p-2}-|\lambda| C_{4}\|u\|^{\delta_{m}-2}\right)
$$

Choose

$$
\gamma_{k}=\left(\frac{|\lambda| C_{4}\left(\delta_{m}-2\right)}{C(\varepsilon) \beta_{k}^{p}(2-p)}\right)^{\frac{1}{p-\delta_{m}}}
$$

such that

$$
b_{k}:=\inf _{u \in Z_{k},\|u\|=\gamma_{k}} J_{\lambda}(u) \geq \frac{1}{8} \gamma_{k}^{2} .
$$

Since $\beta_{k} \rightarrow 0,1<\delta_{m}<2$ and $4<p<2^{*}$ thus

$$
b_{k} \rightarrow+\infty, \quad \text { as } k \rightarrow+\infty .
$$

Lemma 4.3. Assume that $(V),\left(h_{1}\right)$, and $\left(f_{1}\right)-\left(f_{3}\right)$ hold, then for any finite dimensional subspace $Y_{k} \subset E$, there holds

$$
\max _{u \in Y_{k},\|u\|=\rho_{k}} J_{\lambda}(u) \leq 0 .
$$

Proof. Let Y_{k} be any finite dimensional subspace of E, by (3.13) and (3.15) we have

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{1}{2}\|u\|^{2}+\frac{b}{4}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{2}-\int_{\mathbb{R}^{N}} F(x, u)-\lambda \int_{\mathbb{R}^{N}} H(x, u) \\
& \leq \frac{1}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-M \int_{\mathbb{R}^{N}}|u|^{4}+C(M) \int_{\mathbb{R}^{N}}|u|^{2}+|\lambda| \int_{\mathbb{R}^{N}} H(x, u) \\
& \leq \frac{1}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-M|u|_{4}^{4}+C(M) \eta_{2}^{2}\|u\|^{2}+|\lambda| C_{4}\|u\|^{\delta_{m}} .
\end{aligned}
$$

Since on the finite dimensional space Y_{k} all norms are equivalent, so we can choose a constant $c_{2}>0$ such that

$$
|u|_{4} \geq c_{2}\|u\|, \quad \forall u \in Y_{k} .
$$

Therefore, one has

$$
J_{\lambda}(u) \leq \frac{1}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-M c_{2}^{4}\|u\|^{4}+C(M) \eta_{2}^{2}\|u\|^{2}+|\lambda| C_{4}\|u\|^{\delta_{m}} .
$$

Hence, choosing $M>\frac{b}{4 c_{2}^{4}}$, we conclude that there exists $\rho_{k}>\gamma_{k}>0$ such that

$$
\max _{u \in Y_{k},\|u\|=\rho_{k}} J_{\lambda}(u) \leq 0 .
$$

Proof of Theorems 1.2. Evidently, the functional J_{λ} defined in (2.3) is an even functional in view of $\left(f_{5}\right)$ and $\left(h_{2}\right)$ with $J_{\lambda}(0)=0$. Besides, Lemma 2.2 shows that $J_{\lambda} \in C^{1}(E, \mathbb{R})$ and satisfies conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ in Theorem 2.5. Thus, by Theorem 2.5, we get a sequence of nontrivial critical points $\left\{u_{k}\right\} \subset E$ of J_{λ} satisfying $J_{\lambda}\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ and $u_{k} \rightarrow 0$ in E as $k \rightarrow \infty$. whenever $|\lambda| \leq \bar{\lambda}$, that is, problem 1.1 possesses infinitely many solutions. This ends the proof.

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIOIS
Proof of Corollary 1.3. It is sufficient to show that $\left(f_{3}^{\prime}\right),\left(f_{4}^{\prime}\right)$ imply $\left(f_{3}\right),\left(f_{4}\right)$. Indeed, For any $(x, z) \in \mathbb{R}^{N} \times \mathbb{R}$, set

$$
\tau(t):=F\left(x, t^{-1} z\right) t^{\mu}, \quad \forall t \in\left[1, \frac{|z|}{r}\right]
$$

By $\left(f_{4}^{\prime}\right)$, for $|z| \geq r$, one has

$$
\begin{gathered}
\tau^{\prime}(t)=f\left(x, \frac{z}{t}\right)\left(-\frac{z}{t^{2}}\right) t^{\mu}+\mu F\left(x, \frac{z}{t}\right) t^{\mu-1} \\
t^{\mu-1}\left[\mu F\left(x, \frac{z}{t}\right)-f\left(x, \frac{z}{t}\right) \frac{z}{t}\right] \leq d t^{\mu-3}|z|^{2}+\mu|\psi(x)| t^{\mu-1} \\
\tau\left(\frac{|z|}{r}\right)-\tau(1)=\int_{1}^{\frac{|z|}{r}} \tau^{\prime}(t) d t \leq \frac{d|z|^{\mu}}{(\mu-2) r^{\mu-2}}-\frac{d|z|^{2}}{\mu-2}+\frac{|z|^{\mu}|\psi(x)|}{r^{\mu}}-|\psi(x)| .
\end{gathered}
$$

Thus,

Hence, for any $x \in \mathbb{R}^{N}$ and $|z| \geq r$, by $\left(f_{3}^{\prime}\right)$, one has

$$
\begin{aligned}
F(x, z)=\tau(1) & \geq \tau\left(\frac{|z|}{r}\right)+\frac{d|z|^{2}}{\mu-2}-\frac{d|z|^{\mu}}{(\mu-2) r^{\mu-2}}-\frac{|z|^{\mu}|\psi(x)|}{r^{\mu}}+|\psi(x)| \\
& \geq \inf _{x \in \mathbb{R}^{N},|t|=r} F(x, t)\left(\frac{|z|}{r}\right)^{\mu}-\frac{d|z|^{\mu}}{(\mu-2) r^{\mu-2}}-\frac{|z|^{\mu}|\psi(x)|}{r^{\mu}} \\
& \geq C_{7}|z|^{\mu}
\end{aligned}
$$

where $C_{7}=\frac{l}{r^{\mu}}-\frac{d}{(\mu-2) r^{\mu-2}}-\frac{\psi_{0}}{r^{\mu}}, C_{7}>0$ in view of $d \in\left[0, \frac{\left(l-\psi_{0}\right)(\mu-2)}{r^{2}}\right)$.
We obtain from (4.3) that

$$
\begin{equation*}
\frac{F(x, z)}{z^{4}} \geq C_{7}|z|^{\mu-4}, \quad \forall x \in \mathbb{R}^{N} \text { and }|z| \geq r \tag{4.4}
\end{equation*}
$$

Noticing that $\mu>4$, then (4.4) implies $\left(f_{3}\right)$. Furthermore, it follows from (4.4) and $\left(f_{4}^{\prime}\right)$ that

$$
4 F(x, z)-f(x, z) z=\mu F(x, z)-f(x, z) z+(4-\mu) F(x, z) \leq d|z|^{2}+\mu \psi_{0}-(\mu-4) C_{4}|z|^{\mu}
$$

for all $x \in \mathbb{R}^{N}$ and $|z| \geq r$. This, together with $\mu>4$, shows there exists $L>0$ such that

$$
4 F(x, z)-f(x, z) z<0 \quad \forall x \in \mathbb{R}^{N} \text { and }|z| \geq L
$$

which implies $\left(f_{4}\right)$.
Proof of Corollary 1.4. The proof of this Corollary is almost the same to the one of Corollary 1.3. So we omit it here.

Corollary 4.4. The conclusion of Corollary 1.4 holds if we replace $\left(f_{4}^{\prime \prime}\right)$ by the following condition: $\left(f_{4}^{\prime \prime \prime}\right) t \rightarrow f(x, t) /|t|^{\mu-1}$ is increasing on $(-\infty, 0)$ and $(0,+\infty)$.
Proof. In fact, if $t>0$, from $\left(f_{4}^{\prime \prime \prime}\right)$ we have

$$
\begin{equation*}
F(x, t)=\int_{0}^{1} f(x, s t) t \mathrm{~d} s=\int_{0}^{1} \frac{f(x, s t)}{(s t)^{\mu-1}} t^{\mu} s^{\mu-1} \mathrm{~d} s \leq \int_{0}^{1} \frac{f(x, t)}{t^{\mu-1}} t^{\mu} s^{\mu-1} \mathrm{~d} s \leq \frac{1}{\mu} f(x, t) t+\frac{d^{\prime}}{\mu}|t|^{2} \tag{4.5}
\end{equation*}
$$

Otherwise, if $t<0$, then

$$
\begin{aligned}
F(x, t)=\int_{0}^{1} f(x, s t) t \mathrm{~d} s & =-\int_{0}^{1} \frac{f(x, s t)}{(-s t)^{\mu-1}}(-t)^{\mu} s^{\mu-1} \mathrm{~d} s \\
& =-\int_{0}^{1} \frac{f(x, s t)}{|s t|^{\mu-1}}|t|^{\mu} s^{\mu-1} \mathrm{~d} s \\
& \leq-\int_{0}^{1} \frac{f(x, t)}{|t|^{\mu-1}}|t|^{\mu} s^{\mu-1} \mathrm{~d} s \\
& \leq \frac{1}{\mu} f(x, t) t+\frac{d^{\prime}}{\mu}|t|^{2} .
\end{aligned}
$$

Therefore, (4.5) and (4.6) show that $\left(f_{4}^{\prime \prime}\right)$ holds.
Corollary 4.5. If the following condition $\left(f_{3}^{\prime \prime \prime}\right)$ is used in palace of $\left(f_{3}^{\prime \prime}\right)$ of Corollary 1.4.
$\left(f_{3}^{\prime \prime \prime}\right)$ There exist $4<\alpha<2^{*}$ such that

$$
\liminf _{|u| \rightarrow \infty} \frac{F(x, u)}{|u|^{\alpha}}>0, \text { uniformly for } x \in \mathbb{R}^{N},
$$

then Corollary 1.4 remains true.
Proof. We only need to prove $\left(f_{3}^{\prime \prime}\right)$. Indeed, by $\left(f_{3}^{\prime \prime \prime}\right)$, we can take a $\omega \in\left(0, \liminf _{|u| \rightarrow \infty} \frac{F(x, u)}{|u|^{\alpha}}\right)$ small enough such that

$$
F(x, u) \geq \omega|u|^{\alpha}, \quad \text { for }|u| \text { large enough. }
$$

then though the above inequality, we know that $\left(f_{3}^{\prime \prime \prime}\right)$ implies $\left(f_{3}^{\prime \prime}\right)$. It means that Corollary 1.4 generalizes Corollary 4.5. This proof ends.

References

[1] P. J. McKenna and W. Walter; Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715.
[2] D. Burgreen; Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech. 18 (1951), 135-139.
[3] J. G. Eisley; Nonlinear vibrations of beams and rectangular plates, Z. Angew. Math. Phys. 15 (1964), 167-175.
[4] S. Woinowsky-Krieger; The effect of axial force on the vibration of hinged bars, J. Appl. Mech. 17 (1950), 35-36.
[5] J. Ball; Initial-boundary value for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.
[6] HB. Zhang, W. Guan; Least energy sign-changing solutions for fourth-order Kirchhoff-type equation with potential vanishing at infinity, J. Appl. Math. Comput. 64 (2020), 157-177.
[7] H. Song, C. Chen; Infinitely many solutions for Schrödinger-Kirchhoff-type fourth-order elliptic equations, Proc Edinb. Math. Soc. 4 (2017), 1-18.
[8] L. Xu, H. Chen; Multiple solutions for the nonhomogeneous fourth order elliptic equations of Kirchhoff-type, Taiwan. J. Math. 19 (2015), 1-12.
[9] S. Khoutir,H. Chen; Ground state solutions and least energy sign-changing solutions for a class of fourth order Kirchhoff-type equations in \mathbb{R}^{N}, Arab Journal of Mathematical Sciences. 23 (2016).
[10] Y. Chahma, H. Chen; Infinitely many small energy solutions for Fourth-Order Elliptic Equations with p-Laplacian in \mathbb{R}^{N}, Appl. Math. Lett. 144 (2023).

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIOAV

[11] T. Bartsch, Z. Q. Wang, M. Willem; The Dirichlet problem for superlinear elliptic equations, In: M. Chipot, P. Quittner (Eds.), Stationary partial differential equations, 2, Handbook of Differential Equations (Chapter 1), Elsevier, 1-55 (2005).
[12] T. Bartsch, Z.Q. Wang, W. Willem; The Dirichlet Problem for Superlinear Elliptic Equations. In: Chipot, M. and Quitter, P., Eds., Handbook of Differential Equations: Stationary Partial Differential Equations, 2, Elsevier, Amsterdam, 1-55 (2005).
[13] Y. Chahma, H. Chen; Infinitely many high energy solutions for fourth-order elliptic equations with p-Laplacian in bounded domain, J. Math. Comput. SCI-JM. 32 (2024), 109-121.
[14] M. Willem; Minimax Theorems, Birkhauser, Berlin, (1996).
[15] J. Zuo, T. An, Y. Ru, et al. Existence and Multiplicity of Solutions for Nonhomogeneous Schrödinger-Kirchhoff-Type Fourth-Order Elliptic Equations in \mathbb{R}^{N}, Mediterr. J. Math. 16 (2019), 123.
[16] L. Xu, H. Chen; Nontrivial solutions for Kirchhoff-type problems with a parameter, J. Math. Anal. Appl. 433 (2016), 455-472.
[17] B. Cheng, A New Result on Multiplicity of Nontrivial Solutions for the Nonhomogenous Schrödinger-Kirchhoff Type Problem in \mathbb{R}^{N}. Mediterr. J. Math. 13 (2016), 1099-1116.
[18] Y. Chahma, H. Chen; Sign-changing solutions for p-Laplacian Kirchhoff-type equations with critical exponent, J. Ellipt. Parab. Equa. 9 (2023), 1291-1317.
[19] A Cabada, G. M. Figueiredo, A generalization of an extensible beam equation with critical growth in \mathbb{R}^{N}, Nonlinear Analysis: Real World Applications, 20 (2014), 134-142.
[20] F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, Journal of Mathematical Analysis and Applications, 409 (2014), 140-146.
[21] Yuling Yin, Xian Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations, Journal of Mathematical Analysis and Applications, 375 (2011), 699-705.

School of Mathematics and Statistics, Central South University, Changsha, P.R. China
Faculty of Mathematics, University of Science and Technology Houari Boumediene, PB 32, ElAlia, Bab Ezzouar, Algiers, Algeria.

Email address: chahma.youssouf@csu.edu.cn
School of Mathematics and Computational Science, Xiangtan University, Xiangtan, P.R. China
Email address: khassaniassia@smail.xtu.edu.cn
School of Mathematics and Statistics, Central South University, Changsha, P.R. China
Email address: math_chb@csu.edu.cn

6 Mar 2024 19:04:39 PST
231014-Chahma Version 2 - Submitted to Rocky Mountain J. Math.

[^0]: This research was supported by The Natural Science Foundation of China (12071486).
 2020 Mathematics Subject Classification. 35J35, 35J60.
 Key words and phrases. Fourth-order elliptic equations of Kirchhoff type, Mountain pass theorem, Fountain theorem, Variational method.

