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9
10 ABSTRACT. In this paper, we study the following fourth-order elliptic equations of Kirchhoff type:
11 .
o Au— a+b/ |Vul? dx | Au+V (x)u= f(x,u) + Ah(x,u) xeRV,
“ By
13
v where a > 0, b > 0 are constants, we have the potential V(x) : RY — R, V € C(R",R). The nonlinearity
— Ah(x,u) + f(x,u) may involve a combination of concave and convex terms. Under some suitable
s conditions on i, f € C(RY xR, R) and A € R, we show the existence of nontrivial solutions by combining
16 the mountain pass theorem and variational methods. Moreover, we also prove the existence of infinitely
17 many high-energy solutions using the Fountain theorem.
18
19 1. Introduction
20
-, In this article, we are interested in the existence of solution for the following Kirchhoff-type problem:
22
23
— Au—(a+b [ |Vul> dx | Au+V (x)u= f(x,u)+ Ah(x,u), x € RV,
24 (1.1 RN
25
o uc H*(RV),

27 where a, b are positive constants, A% := A(A) is the biharmonic operator. Problem 1.1 arises in the
28 study of travelling waves in suspension bridge and the study of the static deflection of an elastic plate in
29 a fluid, see [1] Problem 1.1 is a nonlocal problem because of the so-called nonlocal term b [in |Vu|? dx
30 involved in equation (1.1). There are some mathematical difficulties since the presence of a nonlocal
31 term in the equation indicates that (1.1) is not a pointwise identity. Indeed, in general, we do not know
32 Jgn |Vin|? = Jgn |[Vul? from u, — uin H*(RY). Compared with previous results where the study was
33 based on the case of bounded domain, the case of unbounded domain seems to be more complicated.
34 In this case, the principal difficulty is the lack of compactness of the embedding. In order to recover
35 the compactness, some classical assumptions on V (x) are introduced, such as the condition denoted as
36 (V) below.

37 If weset V(x) = 0,4 =0, replace RY by a bounded smooth domain Q € R" and set u = Au =0 on
38 dQ, then problem 1.1 is reduced to the following equation
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1
2

. Azu—(a—i—bf]Vu]z dx) Au= f(x,u), x€Q,
> (1.2) Q

4 u=0, Vu=0 onQ,

5

s which is related to the stationary analogue of the Kirchhoff equation

i

%(1.3) A2u+u,,—(a+b/|Vu|2 dx)Au = f(x,u), xeQ.
— Q

10
11 Equation (1.3) was proposed by Burgreen [2] as a model for the transverse deflection u(x,#) of an
12 extensible beam of natural length I () whose ends are held a fixed distance apart. The nonlinear term
13 represents the change in the tension of the beam due to its extensibility. The model has also been
14 discussed by Eisley [3], while Woinowsky-Krieger and Ball had given related experimental results
15 [4,5].

16 Inrecent years, many authors have paid attention to Kirchhoff-type problems. For instance, see
17 [6,7,9, 10, 13, 16, 17, 18, 19, 20] and the references therein. Meanwhile, little has been done for
18 the existence of infinitely many solutions for fourth-order Kirchhoff-type problems in RY. It is the
19 first purpose of our paper to investigate the existence of infinitely many solutions for fourth-order
20 Kirchhoff-type problems in RY.

o1 In [8], Xu and Chen considered the following nonhomogeneous fourth-order Kirchhoff-type
22

23

24 (1.4) A’u— a—l—b/ \Vul> dx | Au+V (x)u= f(x,u) +h(x), xR,

25 v

26

>, using the Mountain Pass Theorem and Ekeland’s variational principle, they obtained a multiplicity

result to the above problem provided |4, is small enough. Later, Zuo et al. [15] studied the existence

of nontrivial solution to problem 1.4 using the Mountain Pass Theorem. In addition, they obtained
4o infinitely many high-energy solutions for the homogeneous problem by two kinds of methods: Symme-
3 try Mountain Pass Theorem and Fountain Theorem, when the nonlinearity f satisfies the following

2 condition:

s (V) ianV(x) > Vo > 0 and for any M > 0, meas{x € RV : V(x) < M} < +oo, where Vj is a
o xeR

34 [13 2 b

— constant, “meas” denotes the Lebesgue measure in RN
35 1 f(x*,t)
— f1) lim i
36 |t|—0

37 (F») There are constants 2 < p < 2**, and C > 0 such that

38

39 ]f(x,t)|§C(|z|P*1+1)7 V(x,r) € RN xR,

28

29

= 0 uniformly for any x € RV,

40 where if N <2, let 2" = +oo; if N > 2, let 2** = 5.
= (f5) lim £ s 4 oo uniformly in x € RY.
42 li| oo
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(Fy4) There exists r > 0 such that
tf(x,t) > 4F (x,t), VxRN [t|>r

Observe that condition (F4) plays an important role for proving that any Palais—Smale sequence is
~~ bounded in the work.

—  Motivated by the above works, the purpose of this paper is to study the existence of nontrivial solution
- of problem 1.1 by combining the Mountain pass theorem and variational methods and the existence of
. infinitely many high-energy solutions using Fountain theorem. To the best of our knowledge, there
—~ are no papers about the existence of infinitely many high-energy solutions for problem 1.1. In what

9
1o follows, we make the following assumption:

11 (h1) heCRN x R,R), there exist constants 1 < § < & < -+- < §, < 2 and functions & €

1
2
3
4
5

— 2

2 L>% (RN, R*) (i =1,...,m) such that

8 m

" |h(x,1)| < Zéi(x)!t!‘s"_l, V(x,t) € QxR.
15 i=1

16 (f2) There are constants 4 < p < 2*, and ¢; > 0 such that
= Flenl <er (14]P),

19 where if 1 <N <4, let 2* = 4o0; if 4 <N < 8, let 2* = 2.

20 (fs) ThereexistL>0andp € [0, %] such that
21

22 4F (x,1) — f(x,0)t < plt]*, forae. xR and Vr > L.

= Theorem 1.1. Assume that (V), (h1) and (fi) — (f1) hold. Then there exists A > 0 such that for
Z% A € [=A,A], problem 1.1 has at least one nontrivial solution.

25 Theorem 1.2. Assume that (V), (h1) and (f1) — (fa) hold and

27 (fs) flx,—t) = —f(x,t) for all (x,t) € RN x R.
28 (hy) h(x,—t) = —h(x,t) for all (x,t) € RN x R.

29 Then there exists A > 0 such that for A € [—A, ], problem 1.1 has a sequence of solutions (uy,) with
30

- 2

s 1 b

w S5 | [V ar | =2 [ vy ax— [ fluu des oo, asn— .

’BE N RN RN

% Corollary 1.3. The conclusion of Theorem 1.2 holds if we replace (f3) and (f3) by the following

35 condition:

z% ( f;) There exist r > 0 and Wy > 0 such that

38 = inf F(x,t) > w.
30 x€RN Jt|=r
‘E ( f:‘) There exist [t > 4, and y € C(RN,R*) such that sup y(x) < W, and

41 XERN

42 WF(x,t) — f(x,0)t < d|t]* +py(x), foraexeRN andV|t|>r,
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U—wMu—%)

where d € |0, >
;

Corollary 1.4. The conclusion of Theorem 1.2 holds if we replace (f3) and (f4) by the following
conditions:
(f ;) There exists r1 > 0 such that
I'= inf F(x,t)>0.
XERN7‘I|:F]

(f!;l) There exists W' > 4 such that
WF(x,t) — f(x,0)t < d'|t|2, fora.e. x € RN and V|t > ry,

/ JE—
where d' € [071(1.12))

AAAAA
2e[s]=]3]e|e|~]o]a|s|e]|r]|-~

q
— Remark 1.5. Since problem 1.1 is defined on the whole space RY, it is well known that the main
. difficulty is the lack of compactness of the Sobolev embedding. To overcome this difficulty, we always
1 assume that the potential V(x) satisfies the condition (V), which was introduced by Bartsch et al. [11].
17

E Remark 1.6. Obviously, condition (fy) is much weaker than condition (Fy). It is worth pointing out
19 that from (Fy), one sees that 2 < p < 2** = % implies that 2** 2 as N — oo. On the other hand,
20 the combination of (f1), (f3) and (Fy) implies that

21 fla1) _ 4P (1)
22 PO

— oo, as |t| — oo.

23
o In particular, f(x,t) > O (tS). This is consistent with (F») only when N < 6. We were able to improve
S5 upon this restriction by considering 4 < N < 8 in (f).

25 The rest of this article is organized as follows. In Section 2, we establish thevariational framework
27 associated with problem 1.1. In Section 3, we give the proof of Theorem 1.1. In Section 4, we give the

2E proof of Theorem 1.2.
29

30 2. Preliminaries

31 . .. .
- Hereafter, we shall use c;, C;, i = 1,2,--- to denote various positive constants which may change

. from line to line, and by — (resp. —) the strong (resp. weak) convergence. We denote L”(R") as

1
52 a Lebesgue space with the norm |ul, := ([ |u(x)|P dx)7, 1 < p < oo . Denote H*>(R") as the usual
%_ Sobolev space equipped with the inner product and norm,
36

1
- mwmz/@mHwa+meywm:ww;.

38 RN
39 .

~_ Define our working space

40

. E=fueh: [ (A 4|Vl +V () dx< o).

42 RN
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with the inner product and norm

s

2 1

3 (u,v) = / (AuAv+aVu-Vv+V(x)uv) dx, ||u|| = (u,u)?.

. !

5

— Since V (x) satisfies (V), it is easy to see that || - || ;2 is equivalent to || - ||. Then, E is a Hilbert space.

6
F Furthermore, E is continuously embedded in LS(RN ) for 2 < s < 2* under the condition (V), that is,

Y there exists 1, > 0 such that

2.1 lu|ls < mgllul| Yu€E.

12 Lemma 2.1 ([12], Lemma 3.1). Under the assumption (V), the embedding E — L* is compact for any
183 5€[2,2%).

14

15 Lemma 2.2. We say that u € E is a weak solution of problem 1.1 if

16

WD we)+b [ IVuPdr [VuVodi= [ fxuwedr+a [hixuwedr VoeE.
E RN RN RN RN

20 the energy associated with problem 1.1, is functional J, : E — R defined by
21

22

2
23

il 1 b

24 (2.3) J,l(u):§|]u|\2+1 /]Vu\zdx —/F(x,u)dx—?t/H(x,u) dx.
25 N RN RN

26
— Consequently, seeking a weak solution of problem 1.1 is equivalent to finding a critical point of the

2?functional Jy. Moreover, J, € C'(E,R) with

29
%0 (Jy(w),v) = /(AuAv+aVu-Vv—|—V(x)uv) dx
31

32 RN

B (2.4 +b/Wu\2dx/Vu-Vvdx
i RN RN

35

36 _/f(x>u)VdX—7L/h(X,u)vdx, Yu,v € E.
37 RN RN

%8 Proof. 1t follows from (h;) that

39

40

" my
e Hx )| < Y 5 &0l
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By (V),(2.5) and the Holder inequality, for any u € E, we have

1
2
3
A
5 n 1 S
- [ ar< [ Y <&@l ar
o RN gy =17
B mo v\ ? 5
< _~ 7 _ i
D <3 [ (B2) jew
10 =l
—(2.6) N 5
2 moyT ’
= <Y Ul | [Vl ar
_ i=1 l -9 N
14
5 s
= <G Y |l
16 i=1

19

23 By (2.3) and (2.6), J,, is well defined on E. Now, we show that (2.4) holds. By (h;), for any
21 u,v€E,t€(0,1), 0(x): RN — (0,1) and the Holder inequality we can obtain
22

23

24
25
2 max, [h(xulx) +18(x)v(x))v(x)| dx

27 RN

28 = [ max |ha(x,u(x)+16(x)v(x))||v(x)| dx
29 1e(0,1)

_ ]RN

30

s <X [ &+ 0l o)] ax

2 S

Z% 2.7) . i
5 ot Y| flerTa) | [veuwPa) | [veePa

= el (fee) () N
Q

T
>
>

|

-
—_

37

38 -5 m
-~ +V, * Z‘T
PR 1=
40

41 Fi &

— §V0 Z|§z| 2

42 2-5;

1

[S7]

G e ]| [P

N N

85— 85—
(=" 4+ V131 ] < oo
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Then by (2.3), (2.7) and Lebesgue’s Dominated Convergence Theorem, we have

1
2 Do (u+1v) — Iy (u)
/

— lim
s (2 (),v) = 50 t
4
n — lim {(u,v} IR+ [ /|VV|2dx+4/yvu\2dx/vu Vv dx
— t—0t
o RV
7
s +2z/|vu|2dx/\vv|2dx+4z /|Vv|2dx/ Vie- Vv dx + 4t /Vu Vo de
9
o RY R
o I 2
" —;/[F(x,u(x)+tv(x))—F(x,u(x))] dx—7/[H(x,u(x)+tv(x)) dx
E RN RN
8

—
»

:<u,v>—|—b/|Vu|2dx/Vu-Vvdx—/f(x,u)vdx—l/h(x,u)vdx.

-
| &

6 which implies that (2.4) holds. Moreover, by a standard argument, it is easy to show that J; €
7 CY(E,R). O
18

1o Definition 2.3. We say that J), satisfies the Palais-Smale condition at level ¢ (PS)., i.e., any sequence

o0 {un} has a convergent subsequence in E whenever

21

2 (2.8) Ja(un) = ¢ and  J;(uy) — 0, as n — oo.
23
o4 Let X be a Banach space with the norm || - || and X = @ X; with dimX; < oo for each i € N.

o5 Further, we set

26

k )
- YZe=pXx, zZ=px.
i=1 i=k

Z% To prove Theorem 1.1 we state the following mountain pass theorem (see [[14] Theorem 1.17]).

:ﬁ Theorem 2.4 (Mountain Pass Theorem). Let X be a Banach space, I € C'(X,R), I(0) = 0, and assume
31 that
%2 (8y) there exist two positive real numbers o and p such that I(u) > o for all ||ju|| = p

B (8,) there exists e € X with ||e|| > p such that I(e) <0,

S% If I satisfies the (PS).-condition for

36 ¢ = inf sup I(y(z)),

37 Yelielo,1] )

?Ewith

o I'={rec([0,1],X) : (0) = 0,¥(1) = e},

40 o
o then c is critical value of I and ¢ > a.

42 In order to deduce our results, the following Fountain theorem is a very useful tool.
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i Theorem 2.5 (Fountain theorem, Bartsch [14]). Let I € C'(X,R) satisfy I(—u) = I(u). Assume that,
2 forevery k €N, there exists py > Y. > 0 such that

i

hd

h

S (A) = max I(u)<0,

7 UEYy|ull=px

g (A2) by:= inf  I(u) = +ooas k — +oo.
— UEZp ||l =

2

0

8 3. Proof of Theorems 1.1
19

20 We begin verifying the follow compactness lemma which shows that the functional J; satisfies (PS)-
o1 condition

22

23

24

25

*° Lemma 3.1. Let assumptions (V), (h1) and (f1) — (fa) hold. Then for every A € R, any Palais-Smale
27 sequence of J), is bounded.
28

29

30

31

32
’BE Proof. Let {u,} C E be any Palais-Smale sequence of J,. Then, up to a subsequence, there exists
34 ¢ € R such that

35

36

37

38

39

40

41

42 Ji (un) = ¢, and Jj (u,) — 0.
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For n large enough, by (f3) we have

s

2 L,

3 c+ 1+ ||ull 2']/1(”11)_1<J/1("‘n)7“n>

A 1 1 .

? N RN RN

% —l/ﬁ(x,un) dx

E 1 1

10 27/(|Aun|2+a|Vun\2) dx+f/V(x)u%dx—B u? dx
v 4 4 4

12 _ -

o + [Pl de— 121 [ ) dr

14 Ay RN

15 1 2 2 1 2 1 2
o 21/(|Aun| +a|Vuy|”) dx+1/V(x)undx—§/Voundx
— N N N

7

e + [ Flean) ar=12] [ Hxu) dx

9 Ay RN

20 1 ) ) 1 ) 1 )
21 21/(|Aun| +a|Vuy|”) dx+Z/V(x)undx—§/Voundx
22 RN RN RN

23 ~ -

" +/F(x,u,,)dx—w/RNH(x,un)dx

25

-l | B
2 > s>+ /V i dx+/Fx ) —w/H(x,un) dr,
27 16 16

- RN RN

28 - -

29 where F(x,uy) = 5 f (X,un) tn — F (X, 1), H(x,u) = H (x,u) — 2h(x,u,)u, and A, = {x e RV : [u,| <
30 L}.

31 By (A1), (2.1) and Holder’s inequality we can obtain

32

33

o ~ 1

il /H(x,un) = /(H(x,un)—h(x,un)un>

35 4

- N N

® 1

7 (3.1) < /|H(x,un)\+|1h(x,un)un|

8. RN

a S 118

o <Y (§5+3) 166z,

41 l

42 Hence
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(3.2)
1

m 1 s s 1 1 -
1+l +1413S (5 3 ) 18601 208 ol e ol + [ VO art [ P an
=\ o -5 16 16
RN AN
For any € > 0, by (f1), (f2), there exists C(€) > 0 such that

|f (e0)| < 2ee| + pC(e)le|P !, V(xr) ERV xR,
1

|F(x,0)| < [|f(x,st)t|ds < e|t|> +C(e)|t|P, V(x,t) € RN xR.
0

~
W
(OS]
~

-
[Bfefe|~]ofo]s]w]n]-

% For x € RN and |u,| < L, by (3.3), we have

~ 1
1 7 (k)| < L0 ot + [ )
14
- 5 5
15 <=¢luy|* + 2C(€) |un|”
e <2 el +5C(e) )
_ 5 _
7 =2 [+ C(€)|un]" 2] |t 2
s :
o <7 [e+CEL ] |un|?
20 4 ’
2T §C3’Mn’ 9

22 Take M > max {16C3,Vy}, then

23

) IV

zi(3-4) F(x,un)Z—E]un] , VxeRY |u,| <L

26 ~
o, Let A= {xeRV:V(x) <M}. By (V) we know that meas(A) < +eco. On the other hand, it follows
g from (3.4) that

— 1 - 1
o o [V avr [Fem) arz oo [ @) =Ml a
I RN Ay |un| <L
32
ll 1
3 >— | (V(x)—M)L* dx
16
34 (3.5) oA
35
= 1 ~
36 > (Vo —M)L*meas(ANA,)
37
° 1 ~
38 > E(V() —M)L?meas(A).
i% Combining (3.2) and (3.5), we get that
et ALY (D) 18 ¥ > L ulP - (Vo — M) £ meas(R)
42 = 6 4 s 2 — 16 16 ’
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1 which implies that {u,} is bounded in E. Thus, this completes the proof. O

— Lemma 3.2. Let assumptions (V), (hy) and (f1) — (fa) hold and {u,} is a bounded Palais-Smale
— sequence of J), then for every A € R, {u, } has a strongly convergent subsequence in E.

Proof. Since {u,} is bounded in E, then there exists a constant M > 0 such that

(3.6) lual| <M, VneN.

o Going if necessary to a subsequence, we may assume that there is a u € E such that

1 u, —~ 1ink,
2 3.7 up, —u in L (RV) (2 <s<2%),

— U, —u a.e. on RV,

'S By (2.4), we have
16

17

. <J§L () —Ji (u),up, — u>

19

20 —/ Auty — Au)? +V (x) |, — u|* dx + a+b/\Vu,,]2 /Vu,, U, —u) dx
21 RN

22

2 — a+b/|Vu]2 /Vu V(uy —u) dx— /(f(x,un)—f(x,u))(un—u)dx
24

- RN

E —/1/ (6, ) — t,10)) (1 — ) lx

27

28

2E :/(Aun—Au)z—kV(x)\un—u]zdx—f— a—f—b/\Vu”]de /\V(un—u)zdx
:2 RN RN

51

2 - /|Vu|2dx—/|Vun]2dx /Vu-V(un—u)dx—/(f(x,un)—f(x,u))(un—u)dx
37 N RN RN RN

) / (1) — (%, 1)) (g — 1)

36

o

N (R/Vuzdx/Vunzdx —/Vu-V(un—u)dx

g N ]RN RN

@ = [P = £) (=) e = [ (hCt) =) (=)

42 RN RN
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Therefore, one has

h

2

Sl < ) — T () — ) b /yvu\zdx—/\vunyzdx /VuV(un—u)dx
? N RN RN

6 —l—/(f(x,un)—f(x,u))(un—u) dx+l/(h(x,un)—h()@u))(un—u) dx.
L RN

8

g Then, it follows from (3.3), (3.6), and the Holder inequality that

10

11

v J 1 o) = £l ]

E N

e < [0 (w1 ) ) o — ]

o R

2 /2e () it — ] x+-pCe) [ (el 410 ) = ] i

E RN

9 (3.8) 3

20 2 2

. <2¢ || [ 1wl ax /|r /|un—u\

22 N

23 o o >

2 4 pCle /|unyp | + /]u|pdx /]un—u]p dx

ei N N

23

27 <2e(MM + |ul2) l|un —ull, + pC(e) (L~ MP~" + [ul~") luy — ul|, = 0,n — oo,

o Let ¢, : E — R such that ¢,(v) = [ Vu-Vvdx. Since ¢,(v) < [jul/||v||, we can deduce that ¢, is
- R3

80 continuous (linear and bounded) on E, using (3.7), then we have

31

32

33 (3.9) /Vu Vu, dx = ¢y (un) — @, (u /Vu Vudx, asn-—oo.
il RN RN

35

35 Thus, we get from u,, — u in H, (3.9), and the boundedness of {u, } that

37

38
2 (3.10) b /ywyz /yvun|2 /VuV —u) d — 0, as n — oo.
40

N

41
zg By (h1), (2.1), and (3.6), using the Holder inequality, we can conclude
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/|h(x,un) — () | — u]dx

/|hx " ||un—u]dx+/\hx )|t — uldx
]RN

/Z@ wﬁ‘mﬁmm+/za (), —

I
|2[@[s[=]3]e]e]~]o]a]s]e]|r]|-~

6—1
<Z‘§t |"‘n|2 |“‘2 ) n — ul2
sZ\él 2

02 M 4l — ulo.

15

E Therefore, it follows from (3.7) that
17

P 311 /h(x,un)—h(x,u)(un—u)dx—>0, as n — .

E Clearly,

24

25
o6 (3.12) <J§L (un)—Ji(u),u,,—u> — 0, asn — oo,
27

2E It follows from (3.8), (3.10), (3.11) and (3.12) that ||u, — u|| — 0. O
29

{Lemma 33. If (V), (h1), (fi) —(f3) hold, then there exist o, p and A > 0 such that J; (u) > o
31 whenever ||u|]| = p and A € [, A].

32
PE Proof. (hy) together with (2.1) and Holder’s inequality imply that

34

®

36 5
- /wa<2/2—@ e
:g l_lRN i=

— S

39 (3.13) m oy 2

= 5
40 5161 2l
41 i=1 o

42 < C4||u||5"’,
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for ||u|| large enough. It follows from (3.3) and (3.13) that
2
1, b 2
=S+ 5 | [1val | = [P -2 [ Heow
N RN RN

1
> Sl = [Pl —12] [ Hix
RN RN

1
> f||u||2—/(8|u|2+C(8)|ul”)—IMC4HMH5’"
RN

1 5
> §||M||2—87722HMHZ—C(S)%’HMHP— || Cafu]|

1 _ 5 _
= P (5 - end — Clengll 2 - aicalul 2.

— For e < -1, we have

6 4ns’

. 1

w 520 2 P = Clemmglul 2~ aICalul2).
19

20 Let

o

~ G4 g(t) = Cst? 2+ [A|Cyr® 2, 1>0,

24 and then we get zgrf g(t) = lim g(t) = +eo, which implies that g(¢) is bounded below, thus g(r)
e 0 t—0
25 admits a minimizer fo :

26 i
27 ' <M|C4(5m—2))!’5m
27 0= :
- Cs(2—p)
o9 1t follows from (3.14) that
30 inf ¢(r) = g(10)
a1 1€[0,+o0)
an p=2 Om—2
= =Cs (M|C4(5m - 2)> ron +[A[Cy <|)’|C4(5m — 2)) P=om
= Cs(2—p) Cs(2—p)
il p=2
35 = |A|r-m G,
= CalBn—2)\ b Cal6n-2)\ 25
7 with G =G5 < 5‘5(2{1’) )P "t G ( C45(2m*p) )P '
pgm
5o Thenfor [A] < (z) 72 := A, we have
40 1
40
_ fp) < R
41 g (to) 4

‘E thus, whenever A € [—4, ], there exists p = 7y > 0 such that ||u| = p and J; (1) > a > 0=J,(0). O
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1 Lemma 3.4. Assume that (hy), (fi) — (f3) hold, then there exists e € E, such that J)(e) < 0 with
2 el >p.

3
-, Proof. For every M > 0, by (f1) — (f3), there exists C(M) > 0 such that

5

°.(3.15) F(x,t) >Mt|* —=C(M)|t]?, V(x,1) e RN xR.
7

E Choose ¢ € E with |¢|4 = 1, then for 7 > 0, we have
9
10

2

- 2 4b

" 509 =S 162+ (R/ VoPdx| — [ Fleig) -2 [ Hxig)
N RN RN

12

13

12 *b
1 S5||¢||2+THW‘—Mt4|¢|3+f2C(M)|¢|§+f5"’|7LIC4||¢||5’”-

15
16 which implies J) (t¢) — —oo as t — +oo by taking M > 2||¢||*. So, there exists e = fo¢ such that
17 |le|| > p and Jy (e) < 0=J,(0). O
18

19 Proof of Theorems 1.1. We have J, € C'(E,R) and J, (0) = 0. On the other hand, condition (S}) is
20 satisfied whenever |A| < A due to Lemma 3.3, and the functional J, satisfies the conditions (S,) due to
21 Lemma 3.4. Moreover, by Lemmas 3.1, 3.2 J satisfies the (PS). condition. Therefore, the functional
22 J; has at least one nontrivial solution u € E , whenever |4 < 4. O
23

24 4. Proof of Theorems 1.2

25
s In this section, we prove the existence of sequence of solutions with high energy to problem 1.1.

> Since E — L?, and L? is a separable Hilbert space, E has a countable orthogonal basis {ei};,. Set

28

= k =
29 E; = span{e;}, Y= @Ei, 7y = @ E;, keN~.
30 i=1 i=k+1

31

s2 Then, E = @, E; and Y} is finite dimensional.

33

> Lemma 4.1 ([14], Lemma 3.8). If2 < s < 2* then we have that

. Br:= sup |uly—0, ask—oo.
% UEZ, Jull=1

37
25 Proof. Ttis clear that 0 < By < B, so B — B = 0(k — o). For every k € N (by the definition of f3;

29 ), there exists uy € Z such that ||ug|| = 1 and

40
41

» (4.1) |ug|, > g > 0.
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For any v = Y v;e;, we have, by the Cauchy-Schwartz inequality,

i=1
we, Yy viei )| = (g, Y, viei
i=1 i=k+1

< lwll|] Y vie
i=k+1

- 1/2
. = < Z v,2> — 0,

i=k+1
11

i, as k — oo, which implies that uy — 0 in E. The compact embedding of £ — L (RN ) (2<s<2%)

13 implies that
i . N N *
" ue—0 inL*(RY)(2<s<2").

15 Hence, letting k — o in (4.1), we get B = 0, which completes the proof. O

' Lemma 4.2. Assume that (V), (h1), (f1) and (f>) hold, then there exist A > 0 and Y, > 0 such that
17

5 inf  Jy(u) > +ooask — oo,

[ {ux, v)| =

[efe|~]ofo]s]e]n]-

—_

e ueZ, =
19 R

21 whenever A € [—A,A].

21 Proof. Lemma 4.1 implies that

Zi

241(4.2) uls < Bellull, 1<s<2%.

o5 Thus, by (3.13), (3.3), Lemma 3.1 and (4.2) we have,

26 2

— 1 b

gl B =S+ | [1vaP | = [P -2 [ Hew
28

I N RN RN

il 1

0 2iHuHZ—/F(x,u)—ﬂL/H(x,u)

2 R B

- > Sl [ (el +CCe)ul”) — IR iCalul

% =2

34 RN

1
35
3? > o [lull® = enllull® - C(e) B |lu]” ~ [A|Ca P

o | ) 7
3% = [|u]? (2 —end —C()BY||ullP2 — | A|Cal ] 2) .
*_ Taking & < #, we have

40 5

4 ] i )

2 i () > [|ue]® <4—C(s)[3,f’||uy|l’ 2 _ |2 |Cal || 2)_
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Since By — 0,1 < §,, <2and 4 < p < 2* thus

by — 400, ask — oo,

1 Choose

—_— 1

2 |A|Ca (8 —2) \ P=0m
3 Ye= Py _ '
3 C(e)B (2—p)

“*_ such that

5 1
— = inf  Jy(u)>-v.
° %%Whnl()_gﬁ
e

8

9

—_
o

il O
11

E Lemma 4.3. Assume that (V), (h1), and (f1) — (f3) hold, then for any finite dimensional subspace
138 Y CE, there holds

14 max J; (u) <0.

15 u€Yy, [[ull=px

E Proof. Let Y} be any finite dimensional subspace of E, by (3.13) and (3.15) we have
17

2
= Ju@:;wﬁ+i /WMZ —/F@W—A/H@m
. g A £
o < P+ 0l = [ af*+con) [P+ 131 [ #Gx
ZE 1 , RN RN RN
2 < 5 P+l = b M3l 2]l

25
s Since on the finite dimensional space Y} all norms are equivalent, so we can choose a constant ¢, > 0

-7 such that

28 lula > callul|, YueYy.

29 Therefore, one has
30

on Lo, by 49,114 201,112 B
31 Ja(u) < 5 lull™+ o lleel” = Mes[Ju]|* + CO) M [l + [A ][>
32

SE Hence, choosing M > é, we conclude that there exists px > % > 0 such that

34

— max J; (u) <O0.

3 UEYy,[|ull=p

® O
37

g Proof of Theorems 1.2. Evidently, the functional J) defined in (2.3) is an even functional in view of
39 (f5) and (hy) with J; (0) = 0. Besides, Lemma 2.2 shows that J, € C'(E,R) and satisfies conditions
40 (A1) and (A3) in Theorem 2.5. Thus, by Theorem 2.5, we get a sequence of nontrivial critical points
41 {ur} C E of Jy, satisfying Jj (ux) — 0 as k — o and ux — 0 in E as k — co. whenever |A| < A, that is,
42 problem 1.1 possesses infinitely many solutions. This ends the proof. 0J
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Proof of Corollary 1.3. 1t is sufficient to show that (f3), (f) imply (f3), (f1). Indeed, For any
(x,z) € RN xR, set

(1) ::F(x,flz) ", Vre {l,m] .
r

By (f3), for |z] > r, one has
fa-1(e3) (-
o)1)
10 Thus, ;

" il 2 X
() s S S

% Hence, for any x € RV and |z| > r, by (f3), one has

)t“ +uF (x, ;) H+n

| a1+ ot

~ 1 Tl

Slefe|[~lofala]e]|r]-~
NG

. 2l |, dlzP? d|z|* 2w ()|

16 F =) >z - _

) (re) = s(n) 2 o () o 2 A WOy

— M dlz|# H

" (43) o pen (H) AR YO

19 XERN |t|=r r (u—2)rH= r#

21 Z C7 ’Z’u7

21

22 where C7 = #—W—%,Q > (0 in view of d € [O,W#).

23 'We obtain from (4.3) that

24

- F

25 (4.4) WD > Cofert, vxeRY and fo >

— Z

z% Noticing that u > 4, then (4.4) implies (f3). Furthermore, it follows from (4.4) and (f;) that
m AF(02) = f(2)e= LF(2) = f(n 0+ (4= w)F (x,2) < dfzf + oy — (1 = 4)Calz!
2 forall x € RN and |z| > r. This, together with y > 4, shows there exists L > 0 such that

30

v 4F (x,2) — f(x,2)2<0 VxRN and || > L,

32 which implies (f1). O

3

3
o Proof of Corollary 1.4. The proof of this Corollary is almost the same to the one of Corollary 1.3. So

5 we omit it here. O

SE Corollary 4.4. The conclusion of Corollary 1.4 holds if we replace ( f:) by the following condition:
() t = flx0)/)e|* Y is increasing on (—e0,0) and (0, +oo).
38

39 Proof. In fact, if t > 0, from ( f4) we have
40

41 ! U f(x,st) _ V() ) oue 1 d
= (45) F _ — [ LMY -1 </7’uu1 < = ~ g2
g( 5) F(x,t1) /O fx,st)t ds /0 (st)“_lt sFThds < TR ds_uf(x,t)t+u|z|
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Otherwise, if t < 0, then

1

2

3 1 L f(x,st)

— F(x,t) = Deds=— | 2L (—p)Hgt=1g
N (o) = [ Sl = = |1 E I st dg
5 1 t

. - 710(x,s_)|l‘|'usll_1 ds
46 o st

7 @0 Vfx,e) 1

8 <- u’—l |t|*st " ds

5 0 ]

o 1 d

0 < —flx, )+ —t]?

0 < uf( ) u‘ |

'2_ Therefore, (4.5) and (4.6) show that (f; ) holds. O
13

E Corollary 4.5. If the following condition ( f;”) is used in palace of ( f;/) of Corollary 1.4.
'S (fy) There exist 4 < a < 2* such that

16
— . . Flx,u .

17 liminf (x,u) > 0, uniformly for x € R,
18 [a] o0 |M|O£

E then Corollary 1.4 remains true.

20
21 Proof. We only need to prove ( fé’). Indeed, by (fé”), we can take a @ € <0,limianEtxblf)> small

oo || =0
— enough such that

2 F(x,u) > o|ul*, for |u| large enough.

5 then though the above inequality, we know that ( fg/) implies ( fg). It means that Corollary 1.4
o generalizes Corollary 4.5. This proof ends. O
27

28 References

29 [1] P.J. McKenna and W. Walter; Traveling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715.

30 [2] D. Burgreen; Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech. 18 (1951),

31 135-139.

3o [3] J. G. Eisley; Nonlinear vibrations of beams and rectangular plates, 7. Angew. Math. Phys. 15 (1964), 167-175.
~.— [4] S. Woinowsky-Krieger; The effect of axial force on the vibration of hinged bars, J. Appl. Mech. 17 (1950), 35-36.

® [5] J. Ball; Initial-boundary value for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.

3 [6] HB. Zhang, W. Guan; Least energy sign-changing solutions for fourth-order Kirchhoff-type equation with potential
35 vanishing at infinity, J. Appl. Math. Comput. 64 (2020), 157-177.

36 [7] H. Song, C. Chen; Infinitely many solutions for Schrodinger—Kirchhoff-type fourth-order elliptic equations, Proc Edinb.
37 Math. Soc. 4 (2017), 1-18.

3g  [8] L. Xu, H. Chen; Multiple solutions for the nonhomogeneous fourth order elliptic equations of Kirchhoff-type, Taiwan.
29 J. Math. 19 (2015), 1-12.

— [9] S. Khoutir,H. Chen; Ground state solutions and least energy sign-changing solutions for a class of fourth order
40 Kirchhoff-type equations in RN, Arab Journal of Mathematical Sciences. 23 (2016).

41 [10] Y. Chahma, H. Chen; Infinitely many small energy solutions for Fourth-Order Elliptic Equations with p-Laplacian in
42 RN, Appl. Math. Lett. 144 (2023).

6 Mar 2024 19:04:39 PST
231014-Chahma Version 2 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

EXISTENCE OF INFINITELY MANY HIGH ENERGY SOLUTIONS FOR A FOURTH-ORDER KIRCHHOFF TYPE EQUATIO2

[11] T. Bartsch, Z. Q. Wang, M. Willem; The Dirichlet problem for superlinear elliptic equations, In: M. Chipot, P. Quittner
(Eds.), Stationary partial differential equations, 2, Handbook of Differential Equations (Chapter 1), Elsevier, 1-55
(2005).

[12] T. Bartsch, Z.Q. Wang, W. Willem; The Dirichlet Problem for Superlinear Elliptic Equations. In: Chipot, M. and
Quitter, P., Eds., Handbook of Differential Equations: Stationary Partial Differential Equations, 2, Elsevier, Amsterdam,
1-55 (2005).

[13] Y. Chahma, H. Chen; Infinitely many high energy solutions for fourth-order elliptic equations with p-Laplacian in
bounded domain, J. Math. Comput. SCI-JM. 32 (2024), 109-121.

[14] M. Willem; Minimax Theorems, Birkhauser, Berlin, (1996).

[15] J. Zuo, T. An, Y. Ru, et al. Existence and Multiplicity of Solutions for Nonhomogeneous Schrodinger—Kirchhoff-Type
Fourth-Order Elliptic Equations in RN, Mediterr. J. Math. 16 (2019), 123.

0 [16] L. Xu, H. Chen; Nontrivial solutions for Kirchhoff-type problems with a parameter, J. Math. Anal. Appl. 433 (2016),

m 455-472.

12 [17] B. Cheng, A New Result on Multiplicity of Nontrivial Solutions for the Nonhomogenous Schrodinger—Kirchhoff Type

13 Problem in RY . Mediterr. J. Math. 13 (2016), 1099-1116.

14 [18] Y. Chahma, H. Chen; Sign-changing solutions for p-Laplacian Kirchhoff-type equations with critical exponent, J.

5 Ellipt. Parab. Equa. 9 (2023), 1291-1317.

— [19] A Cabada, G. M. Figueiredo, A generalization of an extensible beam equation with critical growth in RN, Nonlinear

6 Analysis: Real World Applications, 20 (2014), 134-142.

17 [20] F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, Journal of

18 Mathematical Analysis and Applications, 409 (2014), 140-146.

19 [21] Yuling Yin, Xian Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations, Journal of

20 Mathematical Analysis and Applications, 375 (2011), 699-705.

[efe|~]ofo]s]e]n]-

21
Z SCHOOL OF MATHEMATICS AND STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA, P.R. CHINA

22
5 FACULTY OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY HOUARI BOUMEDIENE, PB 32, EL-
; ALIA,BAB EZZOUAR, ALGIERS, ALGERIA.

2? Email address: chahma .youssouf@csu.edu.cn

26 SCHOOL OF MATHEMATICS AND COMPUTATIONAL SCIENCE, XIANGTAN UNIVERSITY, XIANGTAN, P.R. CHINA

o7 Email address: khassaniassia@smail.xtu.edu.cn

2i SCHOOL OF MATHEMATICS AND STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA, P.R. CHINA

29 Email address: math_chb@csu.edu.cn

30

31

32

33

34

35

36

37

38

39

40

41

42

6 Mar 2024 19:04:39 PST
231014-Chahma Version 2 - Submitted to Rocky Mountain J. Math.



	1. Introduction
	2. Preliminaries
	3. Proof of Theorems 1.1
	4. Proof of Theorems 1.2
	References

