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1 Introduction

This paper deals with the problem of at least one positive periodic solution for the generalized Lennard-

Jones potential with indefinite weights

x′′ =
h(t)

xρ
− g(t)

xµ
, (1.1)

where ρ and µ are two positive constants, h and g ∈ L1(R/TZ), and T is a positive constant. In eq. (1.1),

the sign of the functions h(t) and g(t) are allowed to change. This means that the singularity associated

with h(t)
xρ −

g(t)
xµ at x = 0 is an indefinite type.
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The Lennard-Jones potential [15] is a very well-known empirical model in molecular dynamics to

model the interaction potential between a pair of electrically neutral molecules or atoms. Its generalized

expression is

Vn,m(x) =
A

|x|n
− B

|x|m
.

On the right end of the equation, it presents two different terms. The first term describes the short-

range repulsive force caused by overlapping electron orbitals (the so-called Pauli repulsion), while the

second term models the long-range attractive force (van der Waals force). Thus, the generalized Lennard-

Jones potential can be seen as differential equation (1.1) with attractive-repulsive singularities, see [1,16].

Furthermore in a different physical setting, positive periodic solutions of eq. (1.1) is equivalent to a similar

breathing period controlled by the scattering length in a Bose-Einstein condensed state (the mathematical

model is a nonlinear Schrödinger equation with cubic terms, see [18] for details). A third potential area

of application is pulse propagation in nonlinear fibers, as described in [19, Section 5.4].

By this reason, this problem has been examined by many scholars before and several papers have

given sufficient conditions for the existence of positive periodic solutions of eq. (1.1), see for instance

[2, 5–8, 11–13, 17, 19] and the reference therein. First, Hakl and Torres paved the way for solving such

formal problems in [11]. Chu et al. [7] in 2016 then further spread the results of [11] and proved in their

Theorem 4.3 that eq. (1.1) had at least one twist periodic solution. The proof of [7] and [11] is based on

the method of lower and upper functions and h and g ∈ L1(R/TZ) are positive. Later in [13], Hakl and

Zamora in 2017 investigated the existence of positive periodic solutions for a special form eq. (1.1) (i.e.,

Emden-Fowler equation)

x′′ =
h(t)

xρ
, (1.2)

where h ∈ L1(R/TZ) and ρ ≥ 1. After that, this attribute was extended by Godoy and Zamora in [8].

They obtained the existence of positive periodic solutions of eq. (1.2) if 0 < ρ < 1. We also note that

the proofs of [8] and [13] rely on a direct application of Leray-Schauder degree theory.

Originally motivated by the pioneer papers [7, 8, 11, 13], the objective of this paper is to consider eq.

(1.1) in a unified way and then to derive new sufficient conditions when h(t) and g(t) are of indefinite sign.

The main tools are Krasnoselskĭi’s-Guo fixed point theorem and the positivity of the associated Green

function. Moreover, based on the sign of functions h(t) and g(t), we discuss eq. (1.1) in the following

two cases:

(i) the case of sign-constant h ∈ L1(R/TZ) and sign-changing g ∈ L1(R/TZ) (in section 3);

(ii) the case of sign-changing h ∈ L1(R/TZ) and sign-changing g ∈ L1(R/TZ) (in section 4).

Finally, we finish the introduction with a statement. In this paper, since the functions h and g are

Lebesgue integrable, i.e., they may be equal to infinity in some points or even undefined on some set of

zero measure. Therefore, the solutions of eq. (1.1) are understood in a Carathéodory sense, and and all
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the equalities and inequalities in this paper are understood almost everywhere.

2 Preliminaries

We can now start by introducing the Krasnoselskĭi’s-Guo fixed point theorem [10, P. 94], which will be

used in the proofs of many of the theorems below.

Lemma 2.1. Let X be a Banach space and K be a cone in X. Assume that Ω1 and Ω2 are open subsets

of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let

Φ : K ∩ (Ω2\Ω1)→ K

be a completely continuous operator such that one of the following conditions holds:

(i) ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2;

(ii) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2.

Then Φ has a fixed point in K ∩ (Ω2\Ω1).

The second important tool in the proof process is the concept of Green function. In what follows,

we recall two lemmas about Green function and can be noted in [14, Lemmas 2.1-2.5]. Against this

background, the usual structural mechanism of the Green functions is described in [3, 4].

Lemma 2.2. If N > 0 is such that N 6= 2kπ
T for any natural number k, then for any f ∈ L1(R/TZ) the

equation

x′′ +N2x = f(t)

admits a unique T -periodic solution, which can be written as follows

x(t) =

∫ T

0

G1(t, s)f(s)ds,

where the Green’s function G1(t, s) has the following form

G1(t, s) =


cosN(t− s− T

2 )

2N sin NT
2

, 0 ≤ s ≤ t ≤ T,

cosN(t− s+ T
2 )

2N sin NT
2

, 0 ≤ t < s ≤ T.

Moreover, if N < π
T , then G1(t, s) > 0 for any (t, s) ∈ [0, T ]× [0, T ] and

∫ T
0
G1(t, s)N2ds ≡ 1.

Lemma 2.3. If N > 0, then for any f ∈ L1(R/TZ) the equation

−x′′ +N2x = f(t)

admits a unique T -periodic solution, which can be written as follows

x(t) =

∫ T

0

G2(t, s)f(s)ds,
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where the Green’s function G2(t, s) has the following form

G2(t, s) =


exp(−N(s− t)) + exp(N(s− t− T ))

2N(1− exp(−NT ))
, 0 ≤ t < s ≤ T,

exp(−N(s− t+ T )) + exp(N(s− t))
2N(1− exp(−NT ))

, 0 ≤ s ≤ t ≤ T.

Moreover, G2(t, s) > 0 for any (t, s) ∈ [0, T ]× [0, T ] and
∫ T
0
G2(t, s)N2ds ≡ 1.

Define

A1 := min
0≤s,t≤T

G1(t, s) =
1

2N
cot

NT

2
, B1 := max

0≤s,t≤T
G1(t, s) =

1

2N sin NT
2

,

A2 := min
0≤s,t≤T

G2(t, s) =
exp(−NT2 )

N(1− exp(−NT ))
, B2 := max

0≤s,t≤T
G2(t, s) =

1 + exp(−NT )

2N(1− exp(−NT ))
,

σ1 :=
A1

B1
, σ2 :=

A2

B2
.

(2.1)

It is evident that 0 < A1 ≤ B1 and 0 < σ1 ≤ 1 from N < π
T , 0 < A2 ≤ B2 and 0 < σ2 ≤ 1. Define

Ki := {x ∈ CT : min
t∈R

x(t) ≥ σi‖x‖}, i = 1, 2,

where CT := {x ∈ C(R,R) : x(t + T ) = x(t), for all t ∈ R} with norm ‖x‖ := max
t∈R
|x(t)|. It is easily

verified that K1 and K2 are cones in CT .

Finally, for a given periodic function g(t), we denote

g+(t) := max{0, g(t)}, g−(t) := −min{0, g(t)}, g :=
1

T

∫ T

0

g(t)dt.

3 The case of sign-constant h ∈ L1(R/TZ)

In this section, we used the Krasnoselskĭi’s-Guo fixed point theorem to prove the existence of a positive

periodic solution for eq. (1.1) in the case where h ∈ L1(R/TZ) is a sign-constant function and g ∈

L1(R/TZ) is a sign-changing function. According to the sign of the function h, we study the following

two cases.

3.1 h(t) ≥ 0 for a.e. t ∈ [0, T ] and h > 0

Case 1 ρ > µ

Theorem 3.1. Let h(t) ≥ 0 for a.e. t ∈ [0, T ], h > 0, and g ∈ L1(R/TZ) be a sign-changing function.

Assume that there exists 0 < N < π
T such that

g− < σ1+µ
1 g+ and h >

1

A1Tσ
1+ρ
1

(
‖g+‖∞
N2

) 1+ρ
1+µ

, (3.1)

where ‖g+‖∞ = ess sup{g+(t) : t ∈ [0, T ]}.

If ρ > µ, then there exists at least one positive periodic solution to eq. (1.1).
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Proof . Writing eq. (1.1) as

x′′ +N2x =
h(t)

xρ
− g(t)

xµ
+N2x, (3.2)

a T -periodic solution of eq. (3.2) is just a fixed point of the map Φ : CT → CT defined by

(Φx)(t) :=

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds, (3.3)

and we know that G1(t, s) > 0 for all (t, s) ∈ [0, T ]× [0, T ] from Lemma 2.2.

Now we define two open sets

Ω1 := {x ∈ CT : ‖x‖ < r1} and Ω2 := {x ∈ CT : ‖x‖ < R1}.

Note that Φ is well-defined in the set K1 ∩ (Ω2\Ω1), and it is a completely continuous operator by a

standard application of Ascoli-Arzelà Theorem.

By (3.1), the positive constants r1 and R1 can be fixed such that

R1 > r1 = (A1Th)
1

1+ρ >
1

σ1

(
‖g+‖∞
N2

) 1
1+µ

.

Step 1. We assert that Φ(K1 ∩ (Ω2\Ω1)) ⊂ K1. In fact, for any x ∈ K1 ∩ (Ω2\Ω1), we have

σ1r1 ≤ x(t) ≤ R1, for all t ∈ R.

Since r1 >
1
σ1

(
‖g+‖∞
N2

) 1
1+µ

, we arrive at

h(t)

xρ(t)
− g(t)

xµ(t)
+N2x(t) =

h(t)

xρ(t)
− g+(t)

xµ(t)
+
g−(t)

xµ(t)
+N2x(t)

>− g+(t)

xµ(t)
+N2x(t)

>− ‖g
+‖∞

(σ1r1)µ
+N2(σ1r1)

>0,

(3.4)

for all t ∈ R. It follows from (3.4) that

min
t∈R

(Φx)(t) = min
t∈R

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

≥A1

∫ T

0

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

=σ1B1

∫ T

0

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

≥σ1 max
t∈R

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

≥σ1‖Φx‖.

Therefore, we get that Φ(K1 ∩ (Ω2\Ω1)) ⊂ K1.
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Step 2. We demonstrate that

‖Φx‖ ≤ ‖x‖, for x ∈ K1 ∩ ∂Ω2. (3.5)

In fact, for any x ∈ K1 ∩ ∂Ω2, it is evident that ‖x‖ = R1 and

σ1R1 ≤ x(t) ≤ R1, for all t ∈ R.

It follows from (2.1) and
∫ T
0
G1(t, s)N2ds ≡ 1 that

(Φx)(t) =

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

=

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

≤ B1Th

(σ1R1)ρ
− A1Tg+

Rµ1
+

B1Tg−

(σ1R1)µ
+R1

≤R1,

where B1Th
(σ1R1)ρ

− A1Tg+

Rµ1
+ B1Tg−

(σ1R1)µ
≤ 0 holds, i.e.,

B1h

σρ1
≤

(
A1g+ −

B1g−

σµ1

)
Rρ−µ1

for sufficiently large R1 and A1g+ > B1g−

σµ1
from g− < σ1+µ

1 g+. This implies that (3.5) holds.

Step 3. Let us demonstrate that

‖Φx‖ ≥ ‖x‖, for x ∈ K1 ∩ ∂Ω1. (3.6)

Since x ∈ K1 ∩ ∂Ω1, we know that ‖x‖ = r1 and

σ1r1 ≤ x(t) ≤ r1, for all t ∈ R.

As can be seen from (2.1) and (3.4), we conclude that

(Φx)(t) =

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

>

∫ T

0

G1(t, s)
h(s)

xρ(s)
ds

≥A1Th

rρ1
= r1

since r1 = (A1Th)
1

1+ρ from definition of r1. Hence, (3.6) holds.

It follows from Lemma 2.1 that Φ has a fixed point x ∈ K1 ∩ (Ω2\Ω1). Obviously, the fixed point is a

positive periodic solution of eq. (1.1) satisfying x ∈ [σ1r1, R1].

Remark 3.1. In the respect of (2.1), it is major to note that A1 and σ1 are functions of N and T . In

fact, the sufficient condition (3.1) has an explicit (but rather cumbersome) expression as

g− < cos1+µ
(
NT

2

)
g+ and h >

2N sin
(
NT
2

)
T cos2+ρ

(
NT
2

) (‖g+‖∞
N2

) 1+ρ
1+µ

. (3.7)
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It is obvious that N plays an important role regarding (3.7). It is natural to wonder whether we

can give an optimal N such that (3.7) holds. Taking T = π, ρ = 2 and µ = 1, and let F (N) :=

2N sin(Nπ2 )
T cos4(Nπ2 )

(
1
N2

) 3
2 , G(N) := cos2

(
Nπ
2

)
. It is easy to verify that Fmin := min{F (N) : N ∈ (0, 1)} and

Gmax := max{G(N) : N ∈ (0, 1)} are optimal value about (3.7). To facilitate the consideration of F (N)

and G(N), we give the following figure

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

N

F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N

G

                                                   (a)                                                                                                                                                                                                                           (b)

Fmin (0.429, 42.397)

Figure 1: (a) The motion profile of F (N), Fmin = 42.397 and N = 0.429. (b) G(N) is monotonically

decreasing about N .

By Figure 1, we can get that N = 0.429 may be an optimal point to (3.7). Furthermore, it is easy to

construct explicit examples. For instance, from the above analysis, taking T = π, N = 1
2 , ρ = 2, µ = 1

and the functions

h(t) = cos 2t+ 120,

and

g(t) =


2π cos 2t, t ∈ [−π4 ,

π
4 ],

cos 2t, t ∈ [π4 ,
3π
4 ].

Then, we give

h =
1

T

∫ π

0

(cos 2t+120)dt = 120, g+ =
1

T

∫ π
4

−π4
2π cos 2tdt = 2, g− = − 1

T

∫ 3π
4

π
4

cos 2tdt =
1

π
, ‖g+‖∞ = 2π.

Furthermore, we have

g− =
1

π
< cos1+µ

(
NT

2

)
g+ = 1 and h = 120 >

2N sin NT
2

T cos2+ρ
(
NT
2

) (‖g+‖∞
N2

) 1+ρ
1+µ

≈ 113.437.

The above computations show that (3.7) holds and the eq. (1.1) admits at least one positive π-periodic

solution.

Case 2 ρ < µ

Theorem 3.1 requires that ρ > µ. In what follows, the existence of a positive periodic solution for eq.

(1.1) is investigated under the condition of ρ < µ.

71 Dec 2023 16:43:36 PST
221113-Cheng Version 3 - Submitted to Rocky Mountain J. Math.



Theorem 3.2. Let h(t) ≥ 0 for a.e. t ∈ [0, T ], h > 0, and g ∈ L1(R/TZ) be a sign-changing function.

Assume that there exists 0 < N < π
T such that

g− < σ1+µ
1 g+ and

1

σ1

(
‖g+‖∞
N2

) 1
1+µ

<

(
σ1+µ
1 g+ − g−

hσµ−ρ1

) 1
µ−ρ

< (A1Th)
1

1+ρ . (3.8)

If ρ < µ, then there exists at least one positive periodic solution to eq. (1.1).

Proof . Define

Ω3 := {x ∈ CT : ‖x‖ < r2} and Ω4 := {x ∈ CT : ‖x‖ < R2}.

By (3.8), the positive constants r2 and R2 can be fixed such that

R2 = (A1Th)
1

1+ρ >

(
σ1+µ
1 g+ − g−

hσµ−ρ1

) 1
µ−ρ

> r2 >
1

σ1

(
‖g+‖∞
N2

) 1
1+µ

.

By an analogous reasoning as in Step 1 of Theorem 3.1, we get that Φ(K1 ∩ (Ω4\Ω3) ⊂ K1, here Φ is

defined in (3.3).

Next, we demonstrate that

‖Φx‖ ≤ ‖x‖, for x ∈ K1 ∩ ∂Ω3. (3.9)

In fact, for any x ∈ K1 ∩ ∂Ω3, we see that ‖x‖ = r2 and

σ1r2 ≤ x(t) ≤ r2, for all t ∈ R.

As can be seen from (2.1) and
∫ T
0
G1(t, s)N2ds ≡ 1 that

(Φx)(t) =

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

=

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

≤ B1Th

(σ1r2)ρ
− A1Tg+

rµ2
+
B1Tg−

(σ1r2)µ
+ r2

≤r2,

where B1Th
(σ1r2)ρ

− A1Tg+

rµ2
+ B1Tg−

(σ1r2)µ
≤ 0 holds, i.e.,

rµ−ρ2

B1h

σρ1
≤

(
A1g+ −

B1g−

σµ1

)

because g− < σ1+µ
1 g+ and r2 <

(
σ1+µ
1 g+−g−

hσµ−ρ1

) 1
µ−ρ

. This implies that (3.9) holds.

Finally, we demonstrate that

‖Φx‖ ≥ ‖x‖, for x ∈ K1 ∩ ∂Ω4. (3.10)

Since x ∈ K1 ∩ ∂Ω4, it is evident that ‖x‖ = R2 and

σ1R2 ≤ x(t) ≤ R2, for all t ∈ R.
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According to (2.1) and (3.4), we arrive at

(Φx)(t) =

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

>

∫ T

0

G1(t, s)
h(s)

xρ(s)
ds

≥A1Th

Rρ2
= R2

since R2 = (A1Th)
1

1+ρ from definition of R2. Hence, (3.10) holds. The proof is completed.

Remark 3.2. Sufficient condition (3.8) can be written explicitly as

g− < cos1+µ
(
NT

2

)
g+ and

1

cos
(
NT
2

) (‖g+‖∞
N2

) 1
1+µ

<

(
cos1+µ

(
NT
2

)
g+ − g−

h cosµ−ρ
(
NT
2

) ) 1
µ−ρ

<

(
Th

2N
cot

(
NT

2

)) 1
1+ρ

.

(3.11)

From where it is easy to construct explicit examples. For instance, taking T = π
40 , N = 10, ρ = 1, µ = 2

and the functions

h(t) = cos 80t+ 20,

and

g(t) =


20π sin 80t, t ∈ [0, π80 ],

π sin 80t, t ∈ [ π80 ,
π
40 ].

Then, we give

h =
1

T

∫ π
40

0

(cos 80t+20)dt = 20, g+ =
1

T

∫ π
80

0

20π sin 80tdt = 20, g− = − 1

T

∫ π
40

π
80

π sin 80tdt = 1, ‖g+‖∞ = 20π.

Furthermore, we have

g− = 1 < cos1+µ
(
NT

2

)
g+ ≈ 19.999,

and

1

cos
(
NT
2

) (‖g+‖∞
N2

) 1
1+µ

=
1

cos
(
π
8

) (π
5

) 1
3 ≈ 0.857

<

(
cos1+µ

(
NT
2

)
g+ − g−

h cosµ−ρ
(
NT
2

) ) 1
µ−ρ

=

(
20 cos3

(
π
8

)
− 1

20 cos
(
π
8

) )
≈ 0.950

<

(
Th

2N
cot

(
NT

2

)) 1
1+ρ

=
( π

40
cot
(π

8

)) 1
1+ρ ≈ 3.385.

The above computations show that (3.11) holds and the eq. (1.1) admits at least one positive π
40 -periodic

solution.

Remark 3.3. It should be emphasised here that the assumption ρ 6= µ is crucial for the main result of

this paper. The conditions in Theorems 3.1 and 3.2 cannot be applied in the case ρ = µ or, equivalently,
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in the case h ≡ 0. Moreover, when ρ = µ, eq. (1.1) simplifies to the classical generalized Emden-Fowler

equation

x′′ =
f(t)

xρ
, (3.12)

where f := h(t)− g(t) ∈ L1(R/TZ). The existence of periodic solutions to eq. (3.12) needs to be further

investigated, and the published articles include [8, 9, 13,20,21].

3.2 h(t) ≤ 0 for a.e. t ∈ [0, T ] and h < 0

Case 1 ρ > µ

Theorem 3.3. Let h(t) ≤ 0 for a.e. t ∈ [0, T ], h < 0, and g ∈ L1(R/TZ) be a sign-changing function.

Assume that there exists N > 0 such that

g+ < σ1+µ
2 g− and |h| > 1

A2Tσ
1+ρ
2

(
‖g−‖∞
N2

) 1+ρ
1+µ

. (3.13)

If ρ > µ, then there exists at least one positive T -periodic solution to eq. (1.1).

Proof . Writing eq. (1.1) as

− x′′ +N2x = −h(t)

xρ
+
g(t)

xµ
+N2x, (3.14)

a T -periodic solution of eq. (3.14) is just a fixed point of the map Ψ defined by

(Ψx)(t) :=

∫ T

0

G2(t, s)

(
− h(s)

xρ(s)
+

g(s)

xµ(s)
+N2x(s)

)
ds, (3.15)

and we know that G2(t, s) > 0 for all (t, s) ∈ [0, T ] × [0, T ] by Lemma 2.3. In this respect, the steps of

the proof are the same as in Theorem 3.1.

Remark 3.4. Sufficient condition (3.13) can be written explicitly as

g+ <

(
2 exp

(
−NT

2

)
1 + exp(−NT )

)1+µ

g− and |h| > N(1− exp(−NT ))(1 + exp(−NT ))1+ρ

21+ρT
(
exp

(
−NT

2

))2+ρ (
‖g−‖∞
N2

) 1+ρ
1+µ

.(3.16)

In fact, taking T = π, N = 1
2 , ρ = 2, µ = 1 and the functions

h(t) = sin 2t− 1000,

and

g(t) =


π cos 2t, t ∈ [−π4 ,

π
4 ],

10π cos 2t, t ∈ [π4 ,
3π
4 ].

Then, we give

|h| =
∣∣∣∣ 1T
∫ π

0

(sin 2t− 1000)dt

∣∣∣∣ = 1000, g+ =
1

T

∫ π
4

−π
4

π cos 2tdt = 1, g− = − 1

T

∫ 3π
4

π
4

10π cos 2tdt = 10, ‖g−‖∞ = 10π.
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Furthermore, we have

g+ = 1 <

(
2 exp

(
−NT2

)
1 + exp(−NT )

)1+µ

g− = 5.699

and

|h| = 1000 >
N(1− exp(−NT ))(1 + exp(−NT ))1+ρ

21+ρT
(
exp

(
−NT

2

))2+ρ (
‖g−‖∞
N2

) 1+ρ
1+µ

≈ 905.291.

The above computations show that (3.16) holds and the eq. (1.1) admits at least one positive π-periodic

solution.

Case 2 ρ < µ

Theorem 3.4. Let h(t) ≤ 0 for a.e. t ∈ [0, T ], h < 0, and g ∈ L1(R/TZ) be a sign-changing function.

Assume that there exists N > 0 such that

g+ < σ1+µ
2 g− and

1

σ2

(
‖g−‖∞
N2

) 1
1+µ

<

(
σ1+µ
2 g− − g+

|h|σµ−ρ2

) 1
µ−ρ

< (A2T |h|)
1

1+ρ . (3.17)

If ρ < µ, then there exists at least one positive periodic solution to eq. (1.1).

Similar to the method of proof in Theorems 3.2, Theorem 3.4 can be obtained.

Remark 3.5. Sufficient condition (3.17) can be written explicitly as

g+ <

(
2 exp

(
−NT

2

)
1 + exp(−NT )

)1+µ

g−

and

1 + exp(−NT )
2 exp

(
−NT

2

) (‖g−‖∞
N2

) 1
1+µ

<


(

2 exp(−NT2 )
1+exp(−NT )

)1+µ

g− − g+

|h|
(

2 exp(−NT2 )
1+exp(−NT )

)µ−ρ


1
µ−ρ

<

(
T |h| exp

(
−NT

2

)
N(1− exp(−NT ))

) 1
1+ρ

.

Remark 3.6. It is worth mentioning that the cases “g is positive and ρ > µ” and “g is positive and

ρ < µ” are equivalent to the cases “h is negative and ρ < µ and “h is negative and ρ > µ”, respectively.

Also the cases for “g is negative” are equivalent to the cases for “h is positive”. Indeed, it is sufficient to

swap g with h and ρ with µ.

Remark 3.7. Note that in [11], among others, the equation

x′′ =
h(t)

xρ
− g(t)

xµ

is considered with h(t) ≥ 0 and g(t) ≥ 0 for a.e. t ∈ [0, T ], h > 0, and g > 0. Corollary 3.2 in [11] deals

with the case ρ < µ, while Corollary 3.4 deals with the case ρ > µ. Therefore, Theorems 3.1 and 3.4 are

more general than the corresponding Corollary 3.4 of [11]. Similarly, Theorems 3.2 and 3.3 extend and

improve the corresponding Corollary 3.2 of [11].
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4 The case of sign-changing h ∈ L1(R/TZ)

In this section, we used the Krasnoselskĭi’s-Guo fixed point theorem to prove the existence of a positive

periodic solution for eq. (1.1) in the case where h and g ∈ L1(R/TZ) are sign-changing.

4.1 The case ρ > µ

Theorem 4.1. Let h and g ∈ L1(R/TZ) be sign-changing functions. Assume that there exist 0 < N < π
T

and α ∈ (0, 1) such that

g− < σ1+µ
1 g+ and h+ >

1

A1Tσ
1+ρ
1

max

{
‖h−‖∞
αN2

,

(
‖g+‖∞

(1− α)N2

) 1+ρ
1+µ

}
. (4.1)

If ρ > µ, then there exists at least one positive periodic solution to eq. (1.1).

Proof . Now we define two open sets

Ω5 := {x ∈ CT : ‖x‖ < r3} and Ω6 := {x ∈ CT : ‖x‖ < R3}.

By (4.1), the positive constants r3 and R3 can be fixed such that

R3 > r3 = (A1Th+)
1

1+ρ >
1

σ1
max

{(
‖h−‖∞
αN2

) 1
1+ρ

,

(
‖g+‖∞

(1− α)N2

) 1
1+µ

}
.

By an analogous reasoning as in Step 1 proof of Theorem 3.1, Φ(K1 ∩ (Ω6\Ω5) ⊂ K1 is easily verified,

where Φ is defined in (3.3).

Next, let us demonstrate that

‖Φx‖ ≥ ‖x‖, for x ∈ K1 ∩ ∂Ω5. (4.2)

Since x ∈ K1 ∩ ∂Ω5, we see that ‖x‖ = r3 and

σ1r3 ≤ x(t) ≤ r3, for all t ∈ R.

Since r3 >
1
σ1

max

{(
‖h−‖∞
αN2

) 1
1+ρ

,
(
‖g+‖∞

(1−α)N2

) 1
1+µ

}
, we deduce

h(t)

xρ(t)
− g(t)

xµ(t)
+N2x(t) =

h+(t)

xρ(t)
− h−(t)

xρ(t)
− g+(t)

xµ(t)
+
g−(t)

xµ(t)
+N2x(t)

>− h−(t)

xρ(t)
− g+(t)

xµ(t)
+N2x(t)

>− ‖h
−‖∞

(σ1r3)ρ
+ αN2(σ1r3)− ‖g

+‖∞
(σ1r3)µ

+ (1− α)N2(σ1r3)

>0,

(4.3)
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for all t ∈ R. From (2.1) and (4.3), we get

(Φx)(t) =

∫ T

0

G1(t, s)

(
h+(s)

xρ(s)
− h−(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

>

∫ T

0

G1(t, s)
h+(s)

xρ(s)
ds

≥A1Th+

rρ3
= r3

since r3 = (A1Th+)
1

1+ρ from definition of r3. Thus, (4.2) holds.

Finally, we demonstrate that

‖Φx‖ ≤ ‖x‖, for x ∈ K1 ∩ ∂Ω6. (4.4)

In fact, for any x ∈ K1 ∩ ∂Ω6, it is evident that ‖x‖ = R3 and

σ1R3 ≤ x(t) ≤ R3, for all t ∈ R.

As can be seen from (2.1) and
∫ T
0
G1(t, s)N2ds ≡ 1 that

(Φx)(t) =

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

=

∫ T

0

G1(t, s)

(
h+(s)

xρ(s)
− h−(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

≤ B1Th+

(σ1R3)ρ
− A1Th−

Rρ3
− A1Tg+

Rµ3
+

B1Tg−

(σ1R3)µ
+R3

≤R3,

where B1Th+

(σ1R3)ρ
− A1Th−

Rρ3
− A1Tg+

Rµ3
+ B1Tg−

(σ1R3)µ
≤ 0 holds, i.e.,

h+ − σ1+ρ
1 h− ≤ (σ1+µ

1 g+ − g−)(σ1R3)ρ−µ,

for sufficiently large R3 and g− < σ1+µ
1 g+. This implies that (4.4) holds. The proof is finished.

From Theorem 4.1, we know that 0 < N < π
T . In the following, we give a result similar to Theorem

4.1, in the absence of any restriction on N > 0.

Theorem 4.2. Let h and g ∈ L1(R/TZ) be sign-changing functions. Assume that there exist N > 0 and

β ∈ (0, 1) such that

g+ < σ1+µ
2 g− and h− >

1

A2Tσ
1+ρ
2

max

{
‖h+‖∞
βN2

,

(
‖g−‖∞

(1− β)N2

) 1+ρ
1+µ

}
.

If ρ > µ, then there exists at least one positive periodic solution to eq. (1.1).

Writing eq. (1.1) in the form of (3.14). Define the map Ψ, where Ψ is introduced in (3.15). The steps

of the proof are the same as in Theorem 4.1.
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Remark 4.1. Notice that in the proof of Theorem 4.1, i.e., while passing through (4.3), the term N2x is

divided into αN2x and (1−α)N2x with α ∈ (0, 1) in order to be compared with h− and g+, respectively.

It is natural to wonder whether we can give an optimal α such that (4.1) holds. Obviously, the optimal

choice of α depends on h and g. In particular, the optimal α is such that(
‖h−‖∞
αN2

) 1
1+ρ

=

(
‖g+‖∞

(1− α)N2

) 1
1+µ

.

we can obtain that such an α exists and it is unique, provided h− and g+ are not zero function. Similar

to the above analysis, we can find the optimal value of β, which exists and is unique, provided that h+

and g− are nonzero functions.

Next, we try to find the specific optimal value α by an example. Taking T = π, N = 1
2 , ρ = 2, µ = 1

and the functions

h(t) =


140π sin 2t, t ∈ [0, π2 ],

sin 2t, t ∈ [π2 , π].

and

g(t) =


2π cos 2t, t ∈ [−π4 ,

π
4 ],

cos 2t, t ∈ [π4 ,
3π
4 ].

Then, we give

h+ = 140, ‖h−‖∞ = 1, g+ = 2, g− =
1

π
, ‖g+‖∞ = 2π.

At this point, the optimal α is such that(
4

α

) 1
3

=

(
8π

(1− α)

) 1
2

.

Based on the software Matlab, we get the optimal value α ≈ 0.0303. Further, we have

g− =
1

π
< cos1+µ

(
NT

2

)
g+ = 1 and h+ = 140 >

1

A1Tσ
1+ρ
1

max

{
‖h−‖∞
αN2

,

(
‖g+‖∞

(1− α)N2

) 1+ρ
1+µ

}
≈ 118.854.

The above computations show that (4.1) holds and the eq. (1.1) admits at least one positive π-periodic

solution.

4.2 The case ρ < µ

Theorem 4.3. Let h and g ∈ L1(R/TZ) be sign-changing functions. Assume that there exist 0 < N < π
T

and α ∈ (0, 1) such that

g− < σ1+µ
1 g+ and

1

σ1
max

{(
‖h−‖∞
αN2

) 1
1+ρ

,

(
‖g+‖∞

(1− α)N2

) 1
1+µ

}
<

(
σ1+µ
1 g+ − g−

(h+ − σ1+ρ
1 h−)σµ−ρ1

) 1
µ−ρ

< (A1Th+)
1

1+ρ .

(4.5)

If ρ < µ, then there exists at least one positive periodic solution to eq. (1.1).
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Proof . Define

Ω7 := {x ∈ CT : ‖x‖ < r4} and Ω8 := {x ∈ CT : ‖x‖ < R4}.

By (4.5), the positive constants r4 and R4 can be fixed such that

R4 = (A1Th+)
1

1+ρ >

(
σ1+µ
1 g+ − g−

(h+ − σ1+ρ
1 h−)σµ−ρ1

) 1
µ−ρ

> r4 >
1

σ1
max

{(
‖h−‖∞
αN2

) 1
1+ρ

,

(
‖g+‖∞

(1− α)N2

) 1
1+µ

}
.

By an analogous reasoning as in Steps of Theorem 4.1, we get that Φ(K1 ∩ (Ω8\Ω7) ⊂ K1, where Φ

is defined in (3.3).

Next, we demonstrate that

‖Φx‖ ≤ ‖x‖, for x ∈ K1 ∩ ∂Ω7. (4.6)

Since x ∈ K1 ∩ ∂Ω7, it is evident that ‖x‖ = r4 and

σ1r4 ≤ x(t) ≤ r4, for all t ∈ R.

As can be seen from (4.3) and
∫ T
0
G1(t, s)N2ds ≡ 1 that

(Φx)(t) =

∫ T

0

G1(t, s)

(
h(s)

xρ(s)
− g(s)

xµ(s)
+N2x(s)

)
ds

=

∫ T

0

G1(t, s)

(
h+(s)

xρ(s)
− h−(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

≤B1Th+

(σ1r4)ρ
− A1Th−

(σ1r4)ρ
− A1Tg+

rµ4
+
B1Tg−

(σ1r4)µ
+ r4

≤r4,

where B1Th+

(σ1r4)ρ
− A1Th−

(σ1r4)ρ
− A1Tg+

rµ4
+ B1Tg−

(σ1r4)µ
≤ 0 holds, i.e.,

rµ−ρ4

(
B1h+

σρ1
−A1h−

)
≤

(
A1g+ −

B1g−

σµ1

)

because g− < σ1+µ
1 g+ and r4 <

(
σ1+µ
1 g+−g−

(h+−σ1+ρ
1 h−)σµ−ρ1

) 1
µ−ρ

. This implies that (4.6) holds.

Finally, we demonstrate that

‖Φx‖ ≥ ‖x‖, for x ∈ K1 ∩ ∂Ω8. (4.7)

Since x ∈ K1 ∩ ∂Ω8, it is evident that ‖x‖ = R4 and

σ1R4 ≤ x(t) ≤ R4, for all t ∈ R.

According to (2.1) and (4.3), we arrive at

(Φx)(t) =

∫ T

0

G1(t, s)

(
h+(s)

xρ(s)
− h−(s)

xρ(s)
− g+(s)

xµ(s)
+
g−(s)

xµ(s)
+N2x(s)

)
ds

>

∫ T

0

G1(t, s)
h+(s)

xρ(s)
ds

≥A1Th+

Rρ4
= R4

since R4 = (A1Th+)
1

1+ρ from definition of R4. Hence, (4.7) holds. The proof is completed.
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By Theorems 4.2 and 4.3, we can derive the following conclusion.

Theorem 4.4. Let h and g ∈ L1(R/TZ) be sign-changing functions. Assume that there exist N > 0 and

β ∈ (0, 1) such that

g+ < σ1+µ
2 g− and

1

σ2
max

{(
‖h+‖∞
βN2

) 1
1+ρ

,

(
‖g−‖∞

(1− β)N2

) 1
1+µ

}
<

(
σ1+µ
2 g− − g+

(h− − σ1+ρ
2 h+)σµ−ρ2

) 1
µ−ρ

< (A2Th−)
1

1+ρ .

If ρ < µ, then there exists at least one positive periodic solution to eq. (1.1).

Remark 4.2. It is worth to mention that the cases h− ≡ 0 and h+ ≡ 0 can be treated as a limit cases

with α = 0 and β = 0, respectively. In such a way one can naturally get the results of Section 3 from

those established for the general cases in Section 4. That is, when α = 0, we have that h− ≡ 0, one can

naturally derive the result of Theorems 3.1 and 3.2 from Theorems 4.1 and 4.3, respectively. Similarly,

when β = 0, we have that h+ ≡ 0, it is evident that Theorems 4.2 and 4.4 are generalized versions of

Theorems 3.3 and 3.4, respectively.
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[18] Montesinos, G., Perez-Garćıa, V., Torres, P.: Stabilization of solitons of the multidimensional non-

linear Schrödinger equation: Matter-wave breathers. Phys. D. 191, 193-210 (2004)

[19] Torres, P.: Mathematical models with singularities-A zoo of singular creatures. Atlantis Press, 2015.
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