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Abstract

The distance Laplacian matrix of a graph G is defined as L(G) = Tr(G)−D(G), where
Tr(G) and D(G) are, respectively, the diagonal matrix of vertex transmissions and the dis-
tance matrix of G. Inside the set Tn of trees with n vertices, we consider the subsets NCn
and NSn containing non-caterpillar trees and non-starlike trees respectively, and study the
graphs with maximum distance Laplacian spectral radii in NCn, in NSn, and in NCn∩NSn.
As a by-product, we pick out the three candidates to attain the fourth biggest maximum
Laplacian spectral radius in Tn.
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1 Introduction

In this paper, we denote by G = (VG, EG) a simple, undirected and connected graph with vertex
set VG = {v1, v2, . . . , vn} and edge set EG = {e1, e2, . . . , em}.

When two vertices u and v are adjacent, we write u ∼ v. The neighborhood N(v) of a
vertex v is the set {u ∈ VG | u ∼ v}. The degree dG(v) of a vertex v is the number |N(v)|,
and the largest vertex degree is denoted by ∆G. When there is no risk of ambiguity we simply
write d(v) and ∆ instead of dG(v) and ∆G. We say that v is a pendant vertex if d(v) = 1. A
pendant path P (of length `(P ) = k) at a vertex u ∈ VG is a path uu1 . . . uk with dG(u) > 3,
dG(ui) = 2 for 1 6 i < k, and dG(uk) = 1.

The distance dG(u, v) between the vertices u and v is the length of a shortest path in G
connecting them. The distance matrix D(G) of G is the n × n matrix whose (i, j)-entry is
dG(vi, vj). The transmission TrG(u) of a vertex u in G is

∑
v∈VG dG(u, v), i.e. the sum of the

distances from u to each other vertex of G.
In 2013, Aouchiche and Hansen introduced two graph matrices [2]: the distance Laplacian

matrix L(G) = Tr(G) − D(G) and the distance signless Laplacian matrix Q(G) = Tr(G) +
D(G), where Tr(G) denotes the diagonal matrix of vertex transmissions of G. Being diagonally
dominant, the eigenvalues of both L(G) and Q(G) are nonnegative. In particular, we denote
by λ(G) := λ1(G) > λ2(G) > · · · > λn(G) = 0 the eigenvalues of L(G). The largest distance
Laplacian eigenvalue λ(G) is the distance Laplacian spectral radius of G.

After less than ten years, the literature on these two distance Laplacian matrices is quite
rich (see, for instance, [1], [7], [9], [16], [17], [18], [21]). The interest for these matrices increased
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even more when computational and numerical evidences showed that L- and Q-spectra could
be finer invariants with respect to L and Q-spectra (here L and Q respectively denote the usual
Laplacian matrix and the signless Laplacian matrix). In fact, by comparing [6, Table 1] and [3,
Table 4], it is reasonable to expect that, for each order n, the number of graphs with n vertices
determined by their L- (resp. Q)-spectrum is considerably higher than the number of those
determined by their L- (resp. Q)-spectrum, even if it is still unclear whether properties like
acyclicity are preserved by L-cospectrality (this topic is discussed in [5]).

The spectral sub-branch of extremal graph theory essentially consists in identifying those
objects which are extremal with respect to a fixed spectral parameter within a given class of
graphs. In this context, many scholars tried to order the set Tn of all trees with n vertices with
respect to the spectral radius of several well-known graph matrices. For instance, the list of
the trees in Tn (with n > 12) attaining the first thirteen largest adjacency spectral radii can be
found in [15]; similarly, one can find in [25] the list of the trees in Tn (with n > 15) attaining
the first thirteen largest L- and Q-spectral radii.

In the last few years, some extremal problems concerning the distance Laplacian spectral
radius have been faced and solved. For instance, it is known that the minimum and the
maximum L-spectral radius in Tn are only attained by the star Sn [1] and the path Pn [14]
respectively.

In [14], H. Lin and B. Zhou also characterized the graph with maximum distance Laplacian
spectral radius among connected graphs given clique number. The same authors found in [12]
the graphs with second and third maximum L-spectral radius in Tn (see Proposition 3.1 in
this paper). The graphs achieving the maximum L-spectral radius among trees in Tn with
given maximum degree have been identified in [4]. Niu et al. detected in [19] the graphs with
minimum L-spectral radius among all bipartite graphs of fixed order with a given matching
number and a given vertex connectivity, respectively. Pirzada and Khan studied the graphs
minimizing the L-spectral radius among all graphs having a sufficiently high fixed chromatic
number [20]. Extremal problems concerning the L-spectral radius of unicyclic and bicyclic
graphs have been considered in [4, 11, 24].

Let NCn and NSn be the subsets of Tn containing the non-caterpillar trees and the non-
starlike trees respectively. The graphs with minimum L-spectral radius in NCn, NSn and
NCn ∩ NSn have been identified in [14]. Extremal results for those three sets with respect
to other graph parameters can be found in [17, 22, 23]. In this paper, we identify the graphs
with maximum L-spectral radii in the same three sets NCn, in NSn and in NCn ∩ NSn (see
Theorems 2.8, 2.10 and 2.11). Moreover, we find the candidates destined to contend for the
fourth, the fifth and the sixth maximum L-spectral radius in Tn (see Theorem 3.2).

2 Maximum distance Laplacian spectral radius

We start by recalling some known results on the L-spectral radius. As usual, we denote by Pn
the path with n vertices.

Proposition 2.1. [14, Theorem 5.1] Let G be a connected graph of order n. Then λ(G) 6 λ(Pn).
The equality holds if and only if G ∼= Pn.

Proposition 2.2. [8] or [1, Theorem 2.8] Let n > 3. Then, λ(T ) > 2n − 1 for each T ∈ Tn.
The equality holds if and only if T is the star Sn.

Let a and n be integers such that 1 < a < n. We denote by Hn,a the broom graph with
maximum vertex degree a, i.e. the tree obtained from the path Pn−a+1 by joining one of its
pendant vertices to a− 1 isolated vertices. Clearly, Hn,2 = Pn and Hn,n−1 = Sn.
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· · · ...

n− a+ 1

a− 1

Figure 1: The broom graph Hn,a.

Proposition 2.3. [4, Theorem 5.6] Among all trees in Tn with maximum vertex degree ∆, the
only graph achieving the maximum L-spectral radius is Hn,∆.

Let a and b be two nonnegative integers, and let u and v be two vertices of a nontrivial
connected graph F such that dF (u, v) 6 1. By definition, if u 6= v, then u ∼ v. We denote by
Fu,v(a, b) the graph obtained by attaching a pendant path of length a at u and a pendant path
of length b at v. Clearly, Fu,v(0, 0) = F ; moreover, if F is a tree, then Fu,v(a, b) is a tree as
well. Additionally, we set Fu(a, b) := Fu,u(a, b).

vu
· · · · · ·
a b

F

u
· · · · · ·
a b

F

Figure 2: The graphs Fu,v(a, b) and Fu(a, b).

The proofs of our main results need three lemmas. Each of them studies how certain graft
transformations, i.e. suitable displacements of edges, affect the L-spectral radius.

Lemma 2.4. [4, Corollary 5.3] or [14, Corollary 3.1] Let u be a vertex of a nontrivial connected
graph F . If k > l > 1, then λ(Fu(k, l)) < λ(Fu(k + 1, l − 1)).

The act of replacing a graph of type Fu(k, l), where k > l > 1, with Fu(k + 1, l − 1) will be
called an LZ-graft transformation (at the vertex u).

Lemma 2.5. [4, Lemma 5.7] Let u and v be two adjacent vertices of a connected graph F 6= P2.
Then, λ(Fu,v(k, l)) < max{λ(Fu,v(k + 1, l − 1)), λ(Fu,v(k − 1, l + 1))}.

Remark 2.6. In the statement of [4, Lemma 5.7], the restriction |VF | ≥ 3 is missing. A careful
reading of its proof shows that the existence of a third vertex in F other than u and v is tacitly
assumed. However, for F = P2 the inequality

λ(Fu,v(k, l)) < max{λ(Fu,v(k + 1, l − 1)), λ(Fu,v(k − 1, l + 1))}

is clearly false, since (P2)u,v(k, l) = (P2)u,v(k + 1, l − 1) = (P2)u,v(k − 1, l + 1) = Pk+l+2.

Lemma 2.7. [14, Theorem 3.2] Let G be a graph with three induced subgraphs G1, G2 and
G3 such that |V (Gi)| > 2 for i = 1, 2, 3, V (Gi) ∩ V (Gj) = {u} for 1 6 i < j 6 3 and
∪3
i=1V (Gi) = V (G). For v ∈ V (G2) \ {u} and y ∈ V (G1) \ {u}, let G′ = G − {uw : w ∈

NG3(u)} + {vw : w ∈ NG3(u)} and G′′ = G − {uw : w ∈ NG3(u)} + {yw : w ∈ NG3(u)}. If
NG(u) = {y, v} ∪NG3(u), then either λ(G) < λ(G′) or λ(G) < λ(G′′).

A caterpillar is a tree such that the removal of all pendant vertices yields a path. In Section 1
we have denoted by NCn the set of all non-caterpillar trees with n vertices. It is straightforward
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Figure 3: The graphs Q(n; i) and W (n; a1, . . . , ar).

to check that a tree T ∈ Tn belongs to NCn if and only if there exists a v ∈ VT such that the
set {u ∈ NT (v) | dT (u) > 2} has more than two elements. The set NCn is non-empty for n > 7.

In order to identify the graph maximizing the L-spectral radius in NCn, we introduce the
two types of graphs depicted in Fig. 3. The tree Q(n; i) (2 6 i 6 n − 3) is obtained by
attaching a pendant path of length two to the vertex ui of the path Pn−2 = u1 . . . un−2. The
tree W (n; a1, . . . , ar) is obtained by selecting a pendant vertex wi on each path in the set
{Pai | 1 6 i 6 r} and joining each wi with a single vertex u. Clearly, W (n; a1, . . . , ar) is a
starlike tree is r > 3.

Let G = (VG, EG) be any graph. We set AG = {v ∈ VG | dG(v) > 3}.

Theorem 2.8. Let n > 7. A graph attaining the maximal L-spectral radius in NCn is isomor-
phic to Q(n; 3).

Proof. Let T be a tree with maximum L-spectral radius inNCn. As for any other non-caterpillar
tree, the diameter t of T is at least 4. Moreover, if Pt+1 = u1u2 . . . ut+1 is a fixed diametral path
of T , there exists a vertex ui ∈ V (Pt+1) ∩ AT with 3 6 i 6 t − 1 and a vertex u ∈ V (T\Pt+1)
such that dT (u, ui) = minuj∈V (Pt+1) dT (u, uj) > 2.We now verify the following claims.

Claim 1. AT = {ui}.
If |A| > 2, we could find a vertex w ∈ V (T )\{ui} ∩AT such that

dT (ui, w) = max
v∈V (T )∩AT

dT (ui, v) > 0.

The way we chose w ensures that d(w) > 3 and there exist at least two pendant paths at w.
We pick two pendant paths M and R at w and denote by m and r (m > r > 1) their respective
length. The subgraph F induced by V (T )\(V (M) ∪ V (R)\{w}) is connected; moreover, it
turns out that T is isomorphic to Fw(m, r). We now consider T ′ = Fw(m + 1, r − 1). By
separately analyzing the cases w ∈ Pt+1 and w 6∈ Pt+1, we check that Fw(m+ 1, r− 1) is also a
non-caterpillar tree. In fact, the replacement of T with T ′ just affects the degree of w (namely,
dT (w)−1 6 dT ′(w) 6 dT (w))). Yet, by Lemma 2.4, λ(T ) = λ(Fw(m, r)) < λ(Fw(m+1, r−1)) =
λ(T ′), contradicting the maximality of T in NCn; hence, A = {ui}.

Claim 2. ∆ = 3.
Since A = {ui}, surely ∆ = dT (ui). Suppose dT (ui) > 4. Then, T consists of ∆ pendant paths
M1,M2, . . . ,M∆ at ui, where `(M1) > `(M2) > · · · > `(M∆). In other words, once we set
mi := `(Mi) for 1 6 i 6 ∆, the tree T is isomorphic to the starlike tree W (n;m1, . . . ,m∆),
where m3 > 2, since T is not a caterpillar. The starlike graph

T ′ = W (n;m1, . . . ,m∆−1 + 1,m∆ − 1)

is still in NCn, since it has at least three rays of length > 2. By Lemma 2.4, λ(T ) < λ(T ′)
against the maximality of T in NCn. That is why ∆ = dT (ui) = 3.
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Figure 4: The graph K(n; i, j).

So far, we have proved that T ∼= W (n;m1,m2,m3) with m1 > m2 > m3 > 2. Moreover, the
maximality of T and Lemma 2.4 imply that the three graphs

W (n;m1,m2 + 1,m3 − 1), W (n;m1 + 1,m2,m3 − 1) and W (n;m1 + 1,m2 − 1,m3)

are all caterpillars. This happens only if T ∼= W (n;n− 5, 2, 2) ∼= Q(n; 3).

It is noteworthy that, in the set NCn, the graph Q(n; 3) also maximizes the distance spectral
radius [23, Theorem 5.2] and the distance signless Laplacian spectral radius [17, Theorem 5.4].

A tree T is said to be non-starlike if |AT | > 2. Theorem 2.10 will show that a graph
maximizing the L-spectral radius in the set NSn of non-starlike trees with n vertices (which is
non-empty for n > 6) must be searched in the set{

K(n; i, j)
∣∣∣ 2 6 i < j 6 n− 3, i 6

⌊n
2

⌋
− 1
}
,

where K(n; i, j) denotes the caterpillar tree obtained from a path Pn−2 = u1 . . . un−2 by attach-
ing two pendant vertices un−1 and un to ui and uj respectively (see Fig. 4).

Lemma 2.9. For each n > 8 and for all 3 6 i 6
⌊
n
2

⌋
− 1, the following inequality holds:

λ(K(n; i− 1, i)) > λ(K(n; i, i+ 1)). (1)

Proof. We use the vertex labeling proposed in Fig. 4. Moreover, we set λn,i := λ(K(n; i, i+ 1)).
Let F be the subgraph of K(n; i, i+ 1)) induced by the vertices ui, ui+1, un−1 and un. Clearly,

F ∼= P4 = xuvy and K(n; i, i+ 1)) ∼= (P4)u,v(i− 1, n− i− 3),

where the integers i− 1 and n− i− 3 are both positive in the range 3 6 i 6
⌊
n
2

⌋
− 1. Therefore,

by applying Lemma 2.5, we obtain

maxSi > λn,i, where Si = {λn,i−1, λn,i+1 }. (2)

For any fixed n > 8, the proof now proceeds by decreasing induction on i. We consider first the
base case i = ι̂ :=

⌊
n
2

⌋
− 1. As observed above,

K(n; ι̂, ι̂+ 1)) ∼= (P4)u,v

(⌊n
2

⌋
− 2, n−

⌊n
2

⌋
− 2
)
.

For n = 2k (k ∈ N), the set Sι̂ is a singleton. In fact,

K(n; ι̂− 1, ι̂) ∼= (P4)u,v(k − 3, k − 1) ∼= (P4)u,v(k − 1, k − 3) ∼= K(n; ι̂+ 1, ι̂+ 2).

Thus, by (2), λn,ι̂−1 > λn,ι̂, proving (1) for i = ι̂ and n even.

For n = 2k + 1 (k ∈ N), we see that

K(n; ι̂+ 1, ι̂+ 2) ∼= (P4)u,v(k − 1, k − 2) ∼= (P4)u,v(k − 2, k − 1) ∼= K(n; ι̂, ι̂+ 1).
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This implies Sι̂ = {λn,ι̂−1, λn,ι̂+1 = λn,ι̂ }. Therefore, Inequality (2) in the case at hand holds
only if λn,ι̂−1 > λn,ι̂.

Now, let i <
⌊
n
2

⌋
−1. The inductive hypothesis says that λn,i > λn,i+1. Hence, Inequality (2)

yields λn,i−1 > λn,i, ending the proof.

Theorem 2.10. Let n > 6. If a tree T in the set NSn of non-starlike trees with n vertices
maximizes the L-spectral radius, then either T ∼= K(n; 2, 3) or K(n; 2, n− 3).

Proof. Suppose the tree T satisfies the hypothesis of the theorem. Since T ∈ NSn, then
|AT | ≥ 2. This implies that, fixed a vertex u ∈ AT , there exists a v ∈ AT \ {u} such that
dT (u, v) > dT (u,w) for all w ∈ AT . By definition of v, in T there are (at least) two pendant
path at v, say M and R, with length m and r respectively. We can assume m > r > 1.
The subgraph F induced by V (T )\(V (M) ∪ V (R)\{v}) is non-empty; in fact, it contains a
non-trivial path P connecting u and v. Moreover, T = Fv(m, r). We now consider the tree
T ′ = Fv(m+ 1, r − 1). Note that

u ∈ AT ′ =

{
AT \ {v} if dT (v) = 3 and r = 1,

AT otherwise.

By Lemma 2.4 and the maximality of T , the graph T ′ = Fv(m + 1, r − 1) cannot belong to
NSn. This only happens if dT (v) = 3, r = 1, AT ′ = {u} and AT = {u, v}.

Repeating the argument above starting from v ∈ AT instead of u, but taking into account
that |AT | = 2 since the beginning, we infer that dT (u) = 3 as well, and, as it happens to v, the
vertex u is adjacent to (at least) one pendant vertex. In other words, T is of type K(n; i, j) for
suitable integers i and j such that 2 6 i < j 6 n− 3 and i 6 bn2 c − 1.

For the rest of the proof we refer to the vertex labeling proposed in Fig. 4. We only need
to show that i = 2 and j ∈ {3, n − 3} in order to complete the proof. We distinguish two
cases, depending whether |i − j| = 1 or not. If |i − j| = 1, then T ∼= K(n; 2, 3). This is
immediate for n ∈ {6, 7}, and it is a consequence of Lemma 2.9 for n > 8. If |i − j| > 1,
we now prove that T ∼= K(n; 2, n − 3). Consider the trees T ′ = T − uiun−1 + ui−1un−1 and
T ′′ = T − uiun−1 + ui+1un−1. By Lemma 2.7, we have λ(T ) < max{λ(T ′), λ(T ′′)}. Since T ′′ is
surely a nonstarlike tree, the maximality of T in NSn implies T ′ 6∈ NSn. This happens only if
i = 2. The argument to prove that j = n− 3 is analogous.

Table 1: λ(K(n; 2, 3)) and λ(K(n; 2, n− 3)).

n 7 8 9 10 11 26 33

λ(K(n; 2, 3)) 21.6345 30.0578 39.8350 50.8858 63.1918 396.4270 646.7090
λ(K(n; 2, n− 3)) 22.8151 31.6125 41.6612 52.9563 65.4942 401.4601 652.6599

Note that K(n; 2, 3) and K(n; 2, n − 3) are the same graph for n = 6. Data collected in
Table 1 are consistent with the inequality

λ(K(n; 2, 3)) < λ(K(n; 2, n− 3)) for n ≥ 7. (3)

Conjecture 1. For n > 7, the first and the second largest L-spectral radius in NSn are only
attained by K(n; 2, n− 3) and K(n; 2, 3) respectively.

We point out that, in the set NSn, the graph K(n; 2, n − 3) also maximizes the distance
spectral radius [23, Theorem 5.1], whereas it is dubious which graph between K(n; 2, n−3) and
K(n; 2, 3) maximizes the signless Laplacian spectral radius (see [17, Theorem 5.3]).
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Figure 5: The graph Y (n; i, j).

We now look for graphs maximizing the L-spectral radius in the set NCn ∩ NSn (which is
non-empty for n > 8), and we shall find them in the set

{Y (n; i, j) | 2 6 i < j 6 n− 5} (see Fig. 5).

The tree Y (n; i, j) is obtained from a path Pn−3 = u1 . . . un−3 by attaching a pendant vertex
to ui and a pendant path of length two to uj .

Theorem 2.11. Let n > 8. If a tree T in NCn ∩ NSn attains the largest L-spectral radius,
then T is one of the graphs in the set Y = {Y (n; 2, 3), Y (n; 2, n− 5), Y (n;n− 6, n− 5)}.

Proof. Let T be a tree in NCn ∩NSn (n > 8) such that L(T ) = max{L(G) | G ∈ NCn ∩NSn}.
Since T belongs in particular to NSn, the set AT = {v ∈ VT | dT (v) > 2} contains at least
two elements. Let u be a fixed vertex in AT and, as in the proof of Theorem 2.10, let v =
maxw∈V (T ) dT (u,w). By definition, there exist at least two pendant paths at v. Let M1,
M2, . . .Mdt(v)−1 be the pendant paths at v in increasing order of their length. We denote by T ′

the output of an LZ-graft transformation at the vertex v involving M1 and M2. By Lemma 2.4
and maximality of T , the tree T ′ cannot belong to NCn ∩NSn. Now we distinguish two cases.

Case 1. T ′ is a starlike tree. This happens only when dT (v) = 3, `(M1) = 1 and AT =
{u, v}. Consequently there exist dT (u)−1 pendant paths at u, say N1, N2, . . . , NdT (u)−1, where
`(Ni) ≤ `(Nj) if i < j. Since T is not a caterpillar, surely

`(NdT (u)−1) > `(NdT (u)−2) > 2. (4)

This implies that we obtain a non-starlike tree T ′′ if we perform an LZ-graft transformation on
T at the vertex u involving N1 and N2. In fact AT ′′ = {u, v}. By Lemma 2.4 and maximality
of T , the tree T ′′ is a caterpillar. This only happens if dT (u) = 3 and 2 = `(N1) 6 `(N2). In
other words, T is a tree of type Y (n; i, j).

Case 2. T ′ is a caterpillar. Recalling how T ′ has been obtained from T , which is not a
caterpillar, we immediately infer that dT (v) = 3 and 2 = `(M1) 6 `(M2). Now, it is clear that
AT just contains u and v, otherwise we could perform an LZ-graft transformation at the vertex
z in AT which is at the largest distance from v, and the outcome would belong NCn ∩ NSn
against the maximality of T . It follows that the tree T has dT (u)− 1 pendant paths at u. Now,
LZ-graft transformations at the vertex u do not create a graph in NCn∩NSn only if dT (u) = 3
and one of the pendant paths attached at u has length 1. Once again, T is a graph of type
Y (n; i, j).

So far, we have seen that there exist suitable i and j such that T ∼= Y (n; i, j) for 2 6 i <
j 6 2n − 5 (note that Y (n; i, 2n − 4) is a caterpillar). In order to finish the proof, we need to
show that T is isomorphic to a graph in the set Y.

Surely i > 2 and |i−j| > 1 cannot be both true. Otherwise, the two trees T̃ ′ = T −uiun−2 +
ui−1un−2 and T̃ ′′ = T − uiun−2 + ui+1un−2 would be both in NCn ∩ NSn, and one of them
would have an L-spectral radius larger L(T ) by Lemma 2.7.
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Moreover, if i = 2 and |i− j| > 1, then j = 2n− 5, otherwise T̂ ′ = T − ujun−1 + uj−1un−1

and T̂ ′′ = T − ujun−1 + uj+1un−1 would be both in NCn ∩ NSn, and one of them would have
an L-spectral radius larger L(T ), again by Lemma 2.7.

Finally, if |i − j| = 1, and (i, j) 6∈ {(2, 3), (n − 6, n − 5)}, we note that T is isomorphic to
(P5)u,v(i−1, n−i−4) , where u and v are adjacent vertices of degree 2 in the path P5, i > 3 and
n−i−4 > 3. Thus, (P5)u,v(i−2, n−i−3) and (P5)u,v(i, n−i−5) would be both in NCn∩NSn,
and one of them would have an L-spectral radius larger L(T ), this time by Lemma 2.5.

Clearly, for n = 8, we have Y (n; 2, 3) = Y (n; 2, n−5) = Y (n;n−6, n−5), and λ(Y (8, 2; 3)) =
25.6156. For n > 8 we guess from Table 2 that λ(Y (n;n − 6, n − 5)) < λ(Y (n; 2, 3)) <
λ(Y (n; 2, n − 5)). Interestingly enough, the graphs Y (n; 2, n − 5) and Y (n; 2, 3) are extremal
in the set NCn ∩ NSn even respect to other graph parameters: they actually attain the first
two largest distance spectral radii (see [22, Theorem 1] and [23, Theorem 5.3]) and the first two
largest distance signless Laplacian spectral radii [17, Theorem 5.5].

Table 2: λ(Y (n; 2, 3)) and λ(Y (n; 2, n− 5)).

n 9 10 11 12 26 33

λ(Y (n; 2, n− 5)) 35.1411 46.0244 58.2032 71.6538 390.6242 640.7190
λ(Y (n; 2, 3)) 35.0266 45.8159 57.8637 71.1632 387.8626 637.0188

λ(Y (n;n− 6, n− 5)) 33.3975 43.6326 55.3868 68.4721 383.2954 631.7463

3 The fourth maximum L-spectral radius in Tn
Let i and n be integers such that 1 < i < n− 1. We denote by P (n; i) the tree obtained from
the path Pn−1 = u1 . . . un−1 by attaching a pendant vertex un to ui. Recently, H. Lin and B.
Zhou proved the following result.

Proposition 3.1. [12, Theorems 3.2 and 3.3] Let Tn be the set of trees with n vertices with
n > 6. The only graphs achieving the second and the third L-spectral radius in Tn are the graphs
P (n; 2) and P (n; 3) respectively.

With the aid of Propositions 2.1, 2.2, 3.1, it is easy to order from the smallest to the largest
L-spectral radius the trees in

T5 = {S4, P (5; 2), P5} and T6 = {S5, H6,4,K(6; 2, 3), P (6; 2), P (6; 3), Pn}.

In fact, it turns out that
λ(S4) < λ(P (5; 2)) < λ(P5)

and
λ(S5) < λ(H6,4) < λ(K(6; 2, 3)) < λ(P (6; 3)) < λ(P (6; 2)) < λ(P6),

since direct calculations show that λ(H6,4) = 15.2151 and λ(K(6; 2, 3)) = 15.2749.
Thus, it is natural to ask which trees attain the fourth maximum L-spectral radius in Tn

for n > 7. The next theorem says that there are just three candidates.

Theorem 3.2. Let n > 7 and Pn = {Pn, P (n; 2), P (n; 3)}. If a tree T in the set Tn \ Pn
maximizes the L-spectral radius, then T ∈ {K(n; 2, 2), K(n; 2, n− 3), P (n; 4)}.
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Figure 6: The graph P (n; i)

Proof. Let T be a tree satisfying the hypothesis of the theorem, and let u ∈ Vt be a vertex
attaining the maximum vertex degree ∆T . Since, in particular, T 6= Pn, then ∆T > 3. We write
N(u) = {u1, u2, . . . , u∆T

} and, denoted by Ti the branch of T containing ui, it is not restrictive
to assume 2 6 |V (T1)| 6 |V (T2)| 6 · · · 6 |V (T∆T

)|. Consider now the trees T ′ = T −u1u+u1u2

and T ′′ = T−u1u+u1u3. By Lemma 2.7 and the hypotheses on T , either T ′ or T ′′ must be in the
set Pn. It is immediately seen that neither of them could be Pn, since T 6= P (n; 2). This implies
that min{∆T ′ ,∆T ′′} = 3. Moreover, since the numbers dT (u) − dT ′(u) = dT (u) − dT ′′(u) =
1, we see that ∆T 6 4. We now distinguish four cases, keeping in mind that the numbers
dT ′(u2)− dT (u2) and dT ′′(u3)− dT (u3) are both equal to 1.

Case 1. T ′ = P (n; 2). Since T 6= P (n; 3), the branches T1 and T2 both have just one edge.
Thus T = K(n; 2, n− 5).

Case 2. T ′ = P (n; 3). We consider separately the occurences dT ′(u1) = 2 and dT ′(u1) = 3.
Case 2.1. dT ′(u1) = 2. In this case T2, and a fortiori T1, contains just two vertices. Now,

if dT (u) = 3 then T = K(n; 2, n− 4). This case cannot occur since

λ(K(n; 2, n− 4)) < max{λ(K(n; 2, 3)), λ(K(n; 2, n− 3))}

by Theorem 2.10. Therefore, dT (u) = 4 and T = K(n; 2, 2).
Case 2.2. dT ′(u1) = 3. In this case, dT (u1) = 2 and the branches T1 and T3 are both paths.

The inequalities |V (T1)| 6 |V (T2)| 6 |V (T3)| yield T = P (n; 4).
Case 3. T ′′ = P (n; 2). This case cannot occur. Otherwise, the vertices u2, u and u3 would

form an induced path in T ′′. Analyzing the two possible instances dT ′′ = 2 an dT ′′ = 3, it is
straightforward to check that n should be at most 6 contradicting the hypothesis.

Case 4. T ′′ = P (n; 3). If dT ′′(u3) = 2, then |V (T1)| = |V (T2)| = |V (T3)| = 2. This means
that dT (u) = 4 and T4, the fourth branch at u, is a path. In other words T = K(n; 2, 2). If
instead dT ′′(u3) = 3, surely dT (u) = 3 and the three branches T1, T2 and T3 are paths. In
particular, dT (u1) ∈ {1, 2}.

Case 4.1. dT (u1) = 1. Since T 6= P (2;n), the vertex u2 is not pendant in T . This implies
that the branch T3 has precisely three edges. Thus, T = P (7; 4) or T = P (8; 4).

Case 4.2. dT (u2) = 1. We are supposing T ′′ = P (n; 3), and the branches rooted in u3

containing u1 and u2 have at least two edges. This implies |ET3 | = 2 and T = Q(7; 2) (see
Fig. 3). This case does not occur, since an LZ-graft transformation at u would convert Q(7; 2)
in P (7; 4), which has a larger L-spectral radius.

Summarizing the results coming from our case analysis, we see that T is one of the three
graphs in the set T ∈ {K(n; 2, 2), K(n; 2, n− 3), P (n; 4)}, as claimed.

Data in Table 3, together with Theorem 3.2, drive us to state the following conjecture.

Conjecture 2. For n > 16, K(n; 2, n − 3), P (n; 4) and K(n; 2, 2) are the only trees in Tn
respectively attaining the fourth, the fifth and the sixth largest L-spectral radius.

It is somehow instructive to compare the data in Tables 1-3 with those in Table 4. As
predicted by Propositions 2.1 and 2.2, λ(Sn) < λ(T ) < λ(Pn) for every T appearing in the first
column of Tables 1-3.
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Table 3: λ(K(n; 2, n− 3)), λ(P (n; 4)) and λ(K(n; 2, 2)).

n 8 9 10 11 15 16 26 33

λ(K(n; 2, n− 3)) 31.6125 41.6612 52.9563 65.4942 128.0212 146.7373 401.4601 652.6599
λ(P (n; 4)) 33.0841 42.7659 53.8105 66.1520 128.0929 146.6855 400.6764 651.0278
λ(K(n; 2, 2)) 31.3575 41.2918 52.4684 64.8864 126.9452 145.5503 399.3205 650.0007

Table 4: λ(Pn) and λ(Sn).

n 8 9 10 11 12 15 16 26 33

λ(Pn) 38.4457 48.8051 60.3856 73.1869 87.2086 136.5950 155.4972 411.6068 663.4548
λ(Sn) 15 17 19 21 23 29 31 51 65
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