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Abstract. We revisit an argument due to Lesch [12, 13] for proving the cobor-

dism invariance of the index of Dirac operators on even-dimensional closed
manifolds and combine this with recent work by the author [11] to show van-

ishing results for the spectral flow for families of selfadjoint Fredholm realiza-
tions of elliptic operators in case the family is induced on the boundary by an

elliptic operator on a compact space. This work is motivated by studying the

behavior of the index of realizations of elliptic operators under cobordisms of
stratified iterated wedge spaces.

1. Introduction

One of the original proofs of the Atiyah-Singer Index Theorem is based on showing
that the index of Dirac type operators is invariant under cobordisms, see Palais
[18]. This proof is analytic in nature and rooted in the classical theory of elliptic
boundary value problems. Other proof strategies for the index theorem such as the
heat equation proof have generally been favored because these proofs require less
sophisticated analytic techniques than the original cobordism proof.

Higson [10] gave a proof of the cobordism invariance of the index by attaching an
infinite half-cylinder to the boundary and extending the operator from the manifold
with boundary to the manifold with cylindrical end. The Dirac type operator on
the resulting odd-dimensional complete manifold is essentially selfadjoint, and the
analytic arguments involved in Higson’s proof are considerably simpler compared
to the original proof. Lesch [12], on the other hand, gave a proof by attaching a
(generalized) cone to the boundary and extended the operator from the manifold
with boundary to a cone operator; while conic manifolds are incomplete and thus
dealing with domains of realizations of the resulting conic Dirac type operator is
needed, Lesch’s approach is still much simpler from a functional analytic point of
view than the original proof because the maximal and minimal domains of L2-
based realizations in the conic case differ only by a finite-dimensional space – the
price to pay is the more intricate analysis to deal with the singularity which at
this juncture has been introduced artificially. Several other analytic proofs of the
cobordism invariance of the index [4, 17], a K-theory proof [6], and generalizations
[5, 9, 15, 21] appear in the literature.

This note is motivated by recent advances in elliptic theory on smoothly stratified
spaces with incomplete iterated wedge metrics [1, 2, 3, 7, 8, 16, 20], and gives
an application of the spectral flow formula for indicial operators obtained in our
recent paper [11]. Stratified cobordisms and the cobordism invariance of the index
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2 THOMAS KRAINER

for the signature operator on such spaces have been studied in [1, 2, 3], where
especially in [2, 3] the operator is no longer essentially selfadjoint and suitable
boundary conditions associated with the singular strata are considered; stratified
cobordism and the invariance of the index are used in an essential way to establish
the independence of the analytic signature of a Cheeger space from the boundary
conditions considered in these papers.

From our point of view Lesch’s proof [12, 13] of the cobordism invariance of the
index is very natural in the context of elliptic theory on stratified iterated wedge
spaces because, unlike in the classical smooth case, singular analysis and dealing
with boundary conditions associated with singular strata already are essential fea-
tures of the investigations here.

In this note we will revisit and extend Lesch’s proof from the Dirac case to more
general operators of any order, and what amounts to the vanishing of the index in
the Dirac case (for null-cobordisms) will accordingly generalize to the vanishing of
the spectral flow for indicial families. Our recent paper [11] on indicial operators,
which are abstract functional analytic model operators associated to generalized
conical singularities, is the basis for this. We will only be concerned with null-
cobordisms and proving vanishing results here; more general notions of cobordisms
and cobordism invariance follow upon reduction to this case.

We now give an outline of the argument:

Let (M̂, g) be a connected smooth Riemannian manifold with boundary Y = ∂M̂ .
Assume that there is an ε > 0 and a collar neighborhood map that furnishes an
isometry

Û(Y ) = {m ∈ M̂ ; dist(m,Y ) < ε} ∼= ([0, ε)× Y, dx2 + gY ).

Let M = M̂ \ Y be the interior of M̂ , and let M̃ be its completion as a metric
space. We have a disjoint union

M̃ =M ⊔ Y ⊔ ∂singM,

and, writing similarly Ỹ for the closure of Y in M̃ , we get Ỹ = Y ⊔ ∂singY .

For this discussion assume that M̃ is compact. The collar neighborhood map
extends to an isometry of metric spaces

U(Ỹ ) = {m ∈ M̃ ; dist(m, Ỹ ) < ε} ∼= [0, ε)× Ỹ ,

and we have U(Ỹ ) ∩ ∂singM ∼= [0, ε)× ∂singY .

Let E → M̂ be a Hermitian vector bundle such that E
∣∣
Û(Y )

∼= π∗
Y E isometrically,

where E → Y is a Hermitian vector bundle, and πY : [0, ε)×Y → Y is the canonical
projection. We note that E may not be defined on ∂singM .

Analysis of operators takes place over the interior M . Let

A : C∞
c (M ;E ) → C∞

c (M ;E )

be an elliptic differential operator of order µ ≥ 1 that is symmetric with respect to
the inner product induced by the Riemannian and Hermitian metrics, and suppose
that A is in U(Y ) := Û(Y ) \ Y of the form

A ∼= A∧ = x−1

µ∑
j=0

aj(y,Dy)(xDx)
j : C∞

c ((0, ε)×Y ;π∗
Y E) → C∞

c ((0, ε)×Y ;π∗
Y E),
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where aj(y,Dy) ∈ Diffµ−j(Y ;E). Let

p(σ) =

µ∑
j=0

aj(y,Dy)σ
j : C∞

c (Y ;E) → C∞
c (Y ;E), σ ∈ C,

be the indicial family. Now suppose that

Amin : Dmin(A) ⊂ L2(M ;E ) → L2(M ;E ) (1.1)

is some closed symmetric extension of A : C∞
c (M ;E ) ⊂ L2(M ;E ) → L2(M ;E ),

and let Amax : Dmax(A) ⊂ L2(M ;E ) → L2(M ;E ) be the adjoint – we point out
here that Amin is not necessarily the minimal extension of A from C∞

c (M ;E ), and
therefore Amax is not the largest L2-based closed extension either, i.e. we only have

Dmin(A) ⊃ {u ∈ L2(M ;E ); ∃uk ∈ C∞
c (M ;E ), uk → u in L2(M ;E ),

and Auk ⊂ L2(M ;E ) Cauchy},
Dmax(A) ⊂ {u ∈ L2(M ;E ); ∃v ∈ L2(M ;E ) :

⟨Aϕ, u⟩L2(M ;E ) = ⟨ϕ, v⟩L2(M ;E ) ∀ϕ ∈ C∞
c (M ;E )},

and these inclusions are generally proper. The reader ought to think of these
domains as determined by previously chosen boundary conditions for A associated
with ∂singM .

One of the main points now is that under suitable localization and compatibility
assumptions these extensions of A should localize to U(Y ) and be fully captured
by the extensions of the indicial operator

A∧ : C∞
c (R+;E1) ⊂ L2(R+ × Y ;π∗

Y E) → L2(R+ × Y ;π∗
Y E). (1.2)

Here
Hµ

comp(Y ;E) ⊂ E1 ⊂ Hµ
loc(Y ;E)

is the common domain for the indicial family p(σ) : E1 ⊂ E0 → E0, σ ∈ C,
where E0 = L2(Y ;E), giving rise to a holomorphic family of unbounded Fredholm
operators that are selfadjoint for σ ∈ R. The reader ought to think of E1 as deter-
mined by the lateral boundary conditions (along ∂singY ) coming from localizing the
previously chosen boundary conditions for A associated with ∂singM to the collar

neighborhood U(Y ); recall that ∂singM ∩U(Ỹ ) ∼= [0, ε)× ∂singY . Moreover, the lo-
calization and compatibility assumptions are such that the boundary conditions for
A along ∂singM are selfadjoint away from Y in the sense that we obtain a unitary
equivalence(

Dmax(A)/Dmin(A), [·, ·]A
) ∼= (Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
of finite-dimensional indefinite inner product spaces by passing to representatives
supported in U(Y ) ∼= (0, ε)×Y , thus allowing transitioning betweenM and R+×Y ;
here

[·, ·]A : Dmax(A)×Dmax(A) → C,

[u, v]A =
1

i

[
⟨Amaxu, v⟩L2 − ⟨u,Amaxv⟩L2

]
is the adjoint pairing, and likewise for [·, ·]A∧ , while Dmin(A∧) is the domain of the
closure A∧,min of (1.2), andDmax(A∧) is the domain of the adjoint A∧,max = A∗

∧,min.
In particular, we have

sgn
(
Dmax(A)/Dmin(A), [·, ·]A

)
= sgn

(
Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
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4 THOMAS KRAINER

for the signatures of these spaces. On the one hand, using the spectral flow formula
from [11], we have

sgn
(
Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
= SF[ p(σ) : E1 ⊂ E0 → E0, −∞ < σ <∞ ],

while on the other hand sgn
(
Dmax(A)/Dmin(A), [·, ·]A

)
= 0 if (1.1) is Fredholm or

the embedding Dmax(A) ↪→ L2(M ;E ) is compact, which combined leads to the
desired conclusion that

SF[ p(σ) : E1 ⊂ E0 → E0, −∞ < σ <∞ ] = 0.

In the Dirac case the spectral flow of the indicial family is easily seen to equal
the Fredholm index of the operator D : D(D) ⊂ L2(Y ;E−) → L2(Y ;E+) on the
even-dimensional boundary Y , thus recovering cobordism invariance of the index
in this context.

The structure of this paper is as follows: In Section 2 we briefly review what is
needed from extension theory of symmetric operators, in particular the criteria that
ensure that

(
Dmax(A)/Dmin(A), [·, ·]A

)
is finite-dimensional with signature zero. In

Section 3 we review results from our paper [11] on indicial operators in the form in
which they are needed here; we also address in this section how indicial operators of
first order that model the Dirac case fit into this framework in order to obtain the
desired conclusions about the cobordism invariance of the index when specializing
to such operators. In Section 4 we fill in the details of the outline above and prove
the null-cobordism theorem (Theorem 4.2). Finally, in Appendix A, we discuss the
null-cobordism theorem for closed manifolds; assumptions appear much weaker here
on the geometry and the participating objects because the analytic tools available
in this case are rich enough to create the preconditions needed to apply the null-
cobordism theorem rather than having to assume them from the outset.

2. Preliminaries from extension theory

Let H be a separable complex Hilbert space, and suppose Amin : Dmin ⊂ H → H
is closed, densely defined, and symmetric. Let Amax := A∗

min : Dmax ⊂ H → H be
the adjoint. We equip Dmax with the graph inner product

⟨u, v⟩Amax
= ⟨u, v⟩+ ⟨Amaxu,Amaxv⟩

and associated graph norm. Then Dmin ⊂
(
Dmax, ∥ · ∥Amax

)
is a closed subspace,

and

Dmax = Dmin ⊕ ker(Amax + i)⊕ ker(Amax − i)

by von Neumann’s formulas. The dimensions

n± = dimker(Amax ∓ λi) ∈ N0 ∪ {∞}, λ > 0,

are the deficiency indices of the operator Amin and independent of λ > 0. The
operators

Amin ± iλ : Dmin ⊂ H → H, λ > 0,

are injective and have closed range, and we have n± < ∞ if and only if Amin ± iλ
is Fredholm, in which case n± = − ind(Amin ± iλ). The adjoint pairing

[·, ·]A : Dmax ×Dmax → C,

[u, v]A =
1

i

[
⟨Amaxu, v⟩ − ⟨u,Amaxv⟩

]
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descends to a nondegenerate Hermitian sesquilinear form (indefinite inner product)

[·, ·] : Dmax/Dmin ×Dmax/Dmin → C.

If dimDmax/Dmin < ∞, i.e. if Amin has finite deficiency indices, the signature of
the adjoint pairing is given by

sgn
(
Dmax/Dmin, [·, ·]

)
= n+ − n−.

The following criteria are standard and useful for verification that n+ = n− <∞.

Proposition 2.1. Suppose Amin : Dmin ⊂ H → H is Fredholm. Then Amin has
finite and equal deficiency indices, and therefore

sgn
(
Dmax/Dmin, [·, ·]

)
= 0.

Proof. Because Amin : Dmin ⊂ H → H is Fredholm there exists ε > 0 such that
Amin + iλ : Dmin ⊂ H → H is Fredholm for −ε < λ < ε, and consequently both
n± <∞ and Amin + iλ is Fredholm for all λ ∈ R. Now

R ∋ λ 7→ Amin + iλ : Dmin ⊂ H → H

is a continuous Fredholm function and therefore has constant index. Thus

n+ = − ind(Amin + i) = − ind(Amin − i) = n−.

□

Proposition 2.2. If the embedding
(
Dmax, ∥ · ∥Amax

)
↪→ H is compact then Amin

has finite and equal deficiency indices.

Proof. The norms ∥·∥Amax and ∥·∥H are equivalent on ker(Amax±i), and the identity
map

(
ker(Amax ± i), ∥ · ∥Amax

)
→
(
ker(Amax ± i), ∥ · ∥H

)
is compact by assumption.

Thus dimker(Amax ± i) < ∞. Now Amin ± i : Dmin ⊂ H → H are both Fredholm,
and because Dmin ↪→ H is compact we have ind(Amin − i) = ind(Amin + i). The
proposition is proved. □

3. Indicial operators

We consider indicial operators of the form

A∧ = x−1

µ∑
j=0

aj(xDx)
j : C∞

c (R+;E1) ⊂ L2(R+;E0) → L2(R+;E0), (3.1)

where µ ∈ N and E0 and E1 are separable complex Hilbert spaces such that E1 ↪→
E0 is continuous and dense, and the operators aj : E1 → E0 are continuous for
j = 0, . . . , µ. Let

p(σ) =

µ∑
j=0

ajσ
j : E1 → E0, σ ∈ C (3.2)

be the indicial family associated with A∧. We make the following assumptions:

(i) p(σ) : E1 ⊂ E0 → E0 is closed, densely defined, and Fredholm for σ ∈ C, and
the map C ∋ σ 7→ p(σ) ∈ L (E1, E0) is holomorphic.

(ii) We have p(σ)∗ = p(σ) : E1 ⊂ E0 → E0 as unbounded operators in E0.
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(iii) For (λ, σ) ∈ R2 and |λ, σ| ≥ R ≫ 0 sufficiently large p(σ) + iλ : E1 → E0 is
invertible with

sup
|λ,σ|≥R

{
(1 + λ2 + σ2µ)

1
2

∥∥(p(σ) + iλ
)−1∥∥

L (E0)
+
∥∥(p(σ) + iλ

)−1∥∥
L (E0,E1)

}
<∞,

and for every k ∈ {1, . . . , µ} we have

sup
|λ,σ|≥R

(1 + λ2 + σ2µ)
k
2µ

∥∥[∂kσp(σ)](p(σ) + iλ
)−1∥∥

L (E0)
<∞.

In [11] we systematically studied operators of the kind (3.1) under such assumptions.
We summarize some of the findings below:

(1) The operator (3.1) is symmetric and densely defined in L2(R+;E0). Let
A∧,min be its closure, and A∧,max = A∗

∧,min be the adjoint. Then

dimDmax(A∧)/Dmin(A∧) <∞,

i.e., A∧ has finite deficiency indices.
(2) The boundary spectrum

specb(p) = {σ ∈ C; p(σ) : E1 → E0 is not invertible} ⊂ C
is discrete, and every strip |ℑ(σ)| ≤ K, K > 0, contains only finitely many
elements of specb(p). The elements of the boundary spectrum are generally
referred to as indicial roots.

(3) Fix an arbitrary cut-off function ω ∈ C∞
c (R+) with ω ≡ 1 near x = 0. For

each indicial root σ0 ∈ specb(p) let

Eσ0(p) =
{
u = ω

k∑
j=0

ej log
j(x)xiσ0 ; k ∈ N0 and ej ∈ E1,

and p(σ)(Mu)(σ) is holomorphic at σ = σ0

}
,

(3.3)

where (
Mu

)
(σ) =

∫ ∞

0

x−iσu(x)
dx

x

is the Mellin transform of u. This space is finite-dimensional for every σ0,
and we have

Dmax(A∧) = Dmin(A∧)⊕
⊕

σ0∈specb(p)

− 1
2<ℑ(σ0)<

1
2

Eσ0
(p). (3.4)

(4) We have

x
1
2 H (R+;E1) ∩ L2(R+;E0) ↪→ Dmin(A∧),

and Dmin(A∧) = x
1
2 H (R+;E1)∩L2(R+;E0) if and only if p(σ) : E1 → E0

is invertible for all ℑ(σ) = − 1
2 .

The space H (R+;E1) is the completion of C∞
c (R+;E1) with respect to

the norm

∥u∥2H =

∫
R
∥p(σ + iγ0)(Mu)(σ)∥2E0

dσ,

where γ0 ∈ R is arbitrary such that p(σ + iγ0) : E1 → E0 is invertible for
all σ ∈ R. We have

H (R+;E1) ↪→ Hµ
b (R+;E0) ∩ L2

b(R+;E1),
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and in typical situations these spaces are equal; this is the case, for instance,
if

sup
σ∈R

∥p(σ + iγ0)(⟨σ⟩µ + iΛ)−1∥L (E0) <∞, (3.5)

where Λ : E1 ⊂ E0 → E0 is selfadjoint (e.g. for Λ = p(0)).
(5) While not discussed in [11] it is not hard to see that, under the added

assumption that the embedding E1 ↪→ E0 is compact, multiplication by a
cut-off function ω ∈ C∞

c (R+) with ω ≡ 1 near x = 0 induces a compact
operator ω : xαH (R+;E1) → L2

b(R+;E0) for every α > 01.
Consequently, if additionally p(σ) : E1 → E0 is invertible for all ℑ(σ) =

− 1
2 , we obtain a compact map ω : Dmax(A∧) → L2(R+;E0), and a bounded

map 1 − ω : Dmax(A∧) → Dmin(A∧). The latter is based on the identity

Dmin(A∧) = x
1
2 H (R+;E1)∩L2(R+;E0) and localization properties of the

space H (R+;E1) (see [11, Proposition 7.6]).
(6) The adjoint pairing

[·, ·]A∧ : Dmax(A∧)×Dmax(A∧) → C,

[u, v]A∧ =
1

i

[
⟨A∧,maxu, v⟩L2(R+;E0) − ⟨u,A∧,maxv⟩L2(R+;E0)

]
induces a nondegenerate Hermitian sesquilinear form

[·, ·] : Dmax(A∧)/Dmin(A∧)×Dmax(A∧)/Dmin(A∧) → C,

and its signature is given by the spectral flow of the indicial family (3.2)
along the real line:

sgn
(
Dmax(A∧)/Dmin(A∧), [·, ·]

)
= SF[ p(σ) : E1 ⊂ E0 → E0, −∞ < σ <∞ ].

(3.6)
Note that p(σ) : E1 → E0 is invertible for |σ| ≥ T ≫ 0 large enough,
σ ∈ R, and the spectral flow in (3.6) then refers to p(σ) on the interval
−T ≤ σ ≤ T . Only crossings of real indicial roots contribute terms to the
spectral flow.

The focus in this paper is on the signature of the adjoint pairing, and by (3.6)
only real indicial roots are relevant. In order to obtain simple expressions for the
minimal domain and the maximal domain (3.4) of A∧ it is sometimes convenient
to introduce a scaling parameter t > 0 to remove any small non-real indicial roots
from the strip |ℑ(σ)| ≤ 1

2 . This leads to

A∧,t = x−1

µ∑
j=0

ajt
j(xDx)

j : C∞
c (R+;E1) ⊂ L2(R+;E0) → L2(R+;E0)

with indicial family

pt(σ) = p(tσ) : E1 ⊂ E0 → E0, σ ∈ C,

1The function a0(x, σ) = xαω(x)p(σ + iγ0)−1 is a Mellin symbol taking values in the com-
pact operators E0 → E0, and we have sup{⟨log(x)⟩j⟨σ⟩µ+k∥(xDx)l∂k

σa0(x, σ)∥L (E0); (x, σ) ∈
R+ × R} < ∞ for all j, k, l ∈ N0. Thus the Mellin pseudodifferential operator opM(a0) :

L2
b(R+;E0) → L2

b(R+;E0) is compact, which implies compactness of the multiplication opera-

tor ω : xαH (R+;E1) → L2
b(R+;E0) as asserted.
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and the standing assumptions on p(σ) imply that the analogous properties are also
satisfied for pt(σ), and all estimates are locally uniform with respect to t > 0. In
particular, the spectral flow

SF[ pt(σ) : E1 ⊂ E0 → E0, −∞ < σ <∞ ]

is independent of t > 0 by homotopy invariance, and thus

sgn
(
Dmax(A∧,t)/Dmin(A∧,t), [·, ·]

)
is independent of t > 0. For 0 < t ≤ t0 small enough, pt(σ) : E1 ⊂ E0 → E0 is
invertible for all 0 < |ℑ(σ)| ≤ 1

2 . We then have

Dmin(A∧,t) = x
1
2 H (R+;E1) ∩ L2(R+;E0),

where the definition of H (R+;E1) is accordingly based on pt(σ), and

Dmax(A∧,t) = Dmin(A∧,t)⊕
⊕

σ0∈specb(pt)∩R

Eσ0(pt).

If (3.5) holds for p(σ) it is true for all pt(σ), and in this case the space

H (R+;E1) = Hµ
b (R+;E0) ∩ L2

b(R+;E1)

is independent of t > 0; thus the minimal domain

Dmin(A∧) = x
1
2Hµ

b (R+;E0) ∩ x
1
2L2

b(R+;E1) ∩ L2(R+;E0)

is independent of 0 < t ≤ t0.

Operators of first order. Let D : D(D) ⊂ H1 → H2 be closed and densely
defined, and let D∗ : D(D∗) ⊂ H2 → H1 be the adjoint. Write

E0 =
H1

⊕
H2

and E1 =
D(D)
⊕

D(D∗)
↪→ E0.

We assume that D (and therefore also D∗) is Fredholm, and that the embeddings
for both domains D(D) ↪→ H1 and D(D∗) ↪→ H2 are compact. Consider then

D∧ = x−1

[[
1 0
0 −1

]
(xDx)+

[
0 D∗

D 0

]]
: C∞

c (R+;E1) ⊂ L2(R+;E0) → L2(R+;E0)

with indicial family

D(σ) =

[
σ D∗

D −σ

]
: E1 ⊂ E0 → E0, σ ∈ C.

Now D(σ) satisfies the assumptions previously stated for indicial families with
µ = 1, including (3.5) with Λ = D(0); see Lemma 3.8 for the required estimates.
Therefore the conclusions summarized above hold for D∧, and by Lemma 3.9 we
have

sgn
(
Dmax(D∧)/Dmin(D∧), [·, ·]

)
= ind[D : D(D) ⊂ H1 → H2]. (3.7)

The only real indicial root is σ0 = 0, and after possibly introducing a sufficiently
small scaling parameter t > 0 and replacing D∧ by

D∧,t = x−1

[
t

[
1 0
0 −1

]
(xDx) +

[
0 D∗

D 0

]]
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we have

Dmin(D∧,t) = x
1
2H1

b (R+;E0) ∩ x
1
2L2

b(R+;E1) ∩ L2(R+;E0),

Dmax(D∧,t) = Dmin(D∧,t)⊕ E0(Dt).

In this case E0(Dt) = E0(D) is also independent of t > 0, and we have

E0(D) =
{
u = ω

[
k
k∗

]
; k ∈ ker(D), k∗ ∈ ker(D∗)

}
.

This follows from (3.3) in view of

D(σ)−1 = σ

[
1 0
0 −1

]
[D(0)2 + σ2]−1 + D(0)[D(0)2 + σ2]−1

=

[
ΠD 0
0 −ΠD∗

]
1

σ
+ holomorphic

near σ = 0, where ΠD : H1 → ker(D) and ΠD∗ : H2 → ker(D∗) are the orthogonal
projections onto the kernels of D and D∗, respectively. For sufficiently small t > 0
a brief calculation shows that the adjoint pairing is given by[

ω

[
k1
k∗1

]
, ω

[
k2
k∗2

]]
D∧,t

= t
(
⟨k1, k2⟩H1 − ⟨k∗1 , k∗2⟩H2

)
for kj ∈ ker(D) and k∗j ∈ ker(D∗), j = 1, 2, which provides a direct justification for
(3.7) for D∧,t (for small t > 0) that does not rely on the spectral flow.

Lemma 3.8. For (λ, σ) ∈ R2 write z = σ + iλ ∈ C and consider

D(z) = D(σ) + iλ =

[
z D∗

D −z

]
: E1 ⊂ E0 → E0.

Then D(z) is invertible for all z ∈ C \ {0}, and

sup
|z|≥1

{|z| · ∥D(z)−1∥L (E0) + ∥D(z)−1∥L (E0,E1)} <∞.

Proof. We have D(z)∗ = D(z), and

D(z)∗D(z) = D(z)D(z)∗ =

[
|z|2 +D∗D 0

0 |z|2 +DD∗

]
= D(0)2 + |z|2.

This operator is invertible for z ∈ C \ {0}, and consequently D(z) is invertible with

D(z)−1 = D(z)∗[D(z)D(z)∗]−1 = [zΠ1−zΠ2][D(0)2+|z|2]−1+D(0)[D(0)2+|z|2]−1,

where Πj : E0 → Hj ⊂ E0 is the orthogonal projection, j = 1, 2. In view of
D(0)[zΠ1 − zΠ2] = [zΠ2 − zΠ1]D(0) we have

D(0)D(z)−1 = [zΠ2 − zΠ1]D(0)[D(0)2 + |z|2]−1 + D(0)2[D(0)2 + |z|2]−1.

The Spectral Theorem implies

sup
|z|≥1

{∥D(0)2[D(0)2+|z|2]−1∥+∥zD(0)[D(0)2+|z|2]−1∥+∥z2[D(0)2+|z|2]−1∥} <∞,

where ∥ · ∥ = ∥ · ∥L (E0). The lemma now follows. □

Lemma 3.9. We have

ind[D : D(D) ⊂ H1 → H2] = SF
[
D(σ) : E1 ⊂ E0 → E0, σ ∈ R

]
.
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10 THOMAS KRAINER

Proof. Let K = ker(D(0)) = ker(D)⊕ ker(D∗). Then

D(σ) =

[
DK(σ) 0

0 DK⊥(σ)

]
:

K
⊕

K⊥ ∩ E1

→
K
⊕
K⊥

, σ ∈ R.

Now DK(σ) : K → K, σ ̸= 0, has eigenvalues σ,−σ of multiplicities dimker(D) and
dimker(D∗), respectively, and DK⊥(σ) is invertible for all σ ∈ R. Thus

indD = dimker(D)− dimker(D∗)

= SF
[
DK(σ) : K → K, σ ∈ R

]
= SF

[
D(σ) : E1 ⊂ E0 → E0, σ ∈ R

]
.

□

4. The null-cobordism theorem

We now revisit the setting discussed in the introduction to prove the null-cobordism
theorem. As mentioned there the motivation for this study comes from recent ad-
vances in the analysis of elliptic operators on (certain) stratified spaces. Differ-
ential topology and geometry of stratified spaces is intricate with different kinds
of inequivalent definitions and conditions, see [19]. Our approach in this paper
is functional analytic; the analytic and geometric details of how the domains of
realizations of operators are specified remain implicit, affording us the advantage
of not having to discuss these intricacies further. Our results are thus potentially
applicable to elliptic operators on more general kinds of singular spaces.

We make the following product type assumptions on the geometry and the operator:

Let (M̂, g) be a connected smooth Riemannian manifold with boundary Y = ∂M̂ ,
and assume that there is a collar neighborhood map that furnishes an isometry

Û(Y ) = {m ∈ M̂ ; dist(m,Y ) < ε} ∼= ([0, ε)× Y, dx2 + gY )

for some ε > 0. Let M = M̂ \Y be the interior of M̂ , and write U(Y ) = Û(Y ) \Y .

Let E → M̂ be a Hermitian vector bundle such that E
∣∣
Û(Y )

∼= π∗
Y E isometrically,

where E → Y is a Hermitian vector bundle, and πY : [0, ε)×Y → Y is the canonical
projection. Let

A : C∞
c (M ;E ) → C∞

c (M ;E )

be an elliptic differential operator of order µ ≥ 1 that is symmetric with respect to
the inner product induced by the Riemannian and Hermitian metrics, and suppose
that A is in U(Y ) of the form

A ∼= A∧ = x−1

µ∑
j=0

aj(y,Dy)(xDx)
j : C∞

c ((0, ε)×Y ;π∗
Y E) → C∞

c ((0, ε)×Y ;π∗
Y E),

where aj(y,Dy) ∈ Diffµ−j(Y ;E). Let

p(σ) =

µ∑
j=0

aj(y,Dy)σ
j : C∞

c (Y ;E) → C∞
c (Y ;E), σ ∈ C,

be the indicial family. We assume that p(σ) : E1 ⊂ E0 → E0 satisfies the assump-
tions stated in Section 3 with E0 = L2(Y ;E) and some domain

Hµ
comp(Y ;E) ⊂ E1 ⊂ Hµ

loc(Y ;E).
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COBORDISM INVARIANCE OF THE INDEX REVISITED 11

We also assume that the embedding E1 ↪→ E0 is compact, and that p(σ) : E1 → E0

is invertible for 0 < |ℑ(σ)| ≤ 1
2 ; as explained in Section 3, the latter can generally

be achieved by introducing a scaling parameter (which for geometric operators
typically corresponds to scaling the metric). The closed extensions of the indicial
operator

A∧ : C∞
c (R+;E1) ⊂ L2(R+ × Y ;π∗

Y E) → L2(R+ × Y ;π∗
Y E)

are then described as explained in Section 3. Let

Amin : Dmin(A) ⊂ L2(M ;E ) → L2(M ;E )

be a closed symmetric extension of A : C∞
c (M ;E ) ⊂ L2(M ;E ) → L2(M ;E ), and

let Amax : Dmax(A) ⊂ L2(M ;E ) → L2(M ;E ) be the adjoint; as discussed in the
introduction, Amin is generally not the minimal extension of A from C∞

c (M ;E ),
and thus Amax is not the largest L2-based closed extension. By elliptic regularity
we have

Hµ
comp(M ;E ) ⊂ Dmin(A) ⊂ Dmax(A) ⊂ Hµ

loc(M ;E ).

By a cut-off function we mean any function ω ∈ C∞
c ([0, ε)) such that ω ≡ 1 near

x = 0, and we consider ω a function on M supported in U(Y ). We make the
following localization and compatibility assumptions between A and A∧:

• For every cut-off function ω, multiplication by 1 − ω gives a continuous
operator Dmax(A) → Dmin(A). We also assume that 1 − ω : Dmin(A) →
L2(M ;E ) is compact.

• For every cut-off function ω, multiplication by ω gives continuous operators
Dmin(A) → Dmin(A∧) and Dmin(A∧) → Dmin(A).

To make sense of the mappings above note that

M ⊃ U(Y ) ∼= (0, ε)× Y ⊂ R+ × Y,

which allows transitioning both ways between functions on M supported in U(Y )
and functions on R+ × Y supported in (0, ε) × Y . We will use these transitions
freely in what follows.

Proposition 4.1. Let ω ∈ C∞
c ([0, ε)) be any cut-off function. The map

Dmax(A)/Dmin(A) ∋ u+Dmin(A) 7−→ ωu+Dmin(A∧) ∈ Dmax(A∧)/Dmin(A∧)

is well-defined, and induces a unitary equivalence between the indefinite inner prod-
uct spaces (

Dmax(A)/Dmin(A), [·, ·]A
) ∼= (Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
.

Proof. We first prove that multiplication by ω gives a well-defined map

Dmax(A) ∋ u 7→ ωu ∈ Dmax(A∧).

Note that with u also ωu ∈ Dmax(A) by our localization assumption. Now pick
another cut-off function ω̃ ∈ C∞

c ([0, ε)) such that ω̃ ≡ 1 in a neighborhood of
supp(ω). Let ϕ ∈ Dmin(A∧) be arbitrary, and write ϕ = ω̃ϕ+ (1− ω̃)ϕ. Since

Dmin(A∧) = x
1
2 H (R+;E1) ∩ L2(R+;E0)

as a consequence of our assumptions we have that both ω̃ϕ, (1− ω̃)ϕ ∈ Dmin(A∧),
see Section 3. We also have ω̃ϕ ∈ Dmin(A) by our localization and compatibility as-
sumption with respect to the minimal domains. Using the locality of the differential
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12 THOMAS KRAINER

operators A∧ and A we get

⟨A∧ϕ, ωu⟩ = ⟨A∧(ω̃ϕ), ωu⟩ = ⟨A(ω̃ϕ), ωu⟩ = ⟨ω̃ϕ,Amax(ωu)⟩
= ⟨ϕ, ω̃Amax(ωu)⟩ = ⟨ϕ,Amax(ωu)⟩.

As this is valid for all ϕ ∈ Dmin(A∧) we see that ωu ∈ Dmax(A∧) with A∧,max(ωu)
given as the restriction of Amax(ωu) to U(Y ) and extended trivially to R+×Y . As
for u ∈ Dmin(A) we also have ωu ∈ Dmin(A∧) by assumption, we thus obtain that
the map

Dmax(A)/Dmin(A) ∋ u+Dmin(A) 7−→ ωu+Dmin(A∧) ∈ Dmax(A∧)/Dmin(A∧)

is well-defined.
Conversely, multiplication by ω likewise gives a well-defined map

Dmax(A∧) ∋ u 7→ ωu ∈ Dmax(A).

Note that if u ∈ Dmax(A∧) then ωu ∈ Dmax(A∧) and (1 − ω)u ∈ Dmin(A∧) by
Section 3. Now let ω̃ ∈ C∞

c ([0, ε)) be such that ω̃ ≡ 1 in a neighborhood of
supp(ω). Let ϕ ∈ Dmin(A) be arbitrary, and write ϕ = ω̃ϕ + (1 − ω̃)ϕ; by the
localization and compatibility assumptions both terms are in Dmin(A), and we also
have ω̃ϕ ∈ Dmin(A∧). We get

⟨Aϕ, ωu⟩ = ⟨A(ω̃ϕ), ωu⟩ = ⟨A∧(ω̃ϕ), ωu⟩ = ⟨ω̃ϕ,A∧,max(ωu)⟩
= ⟨ϕ, ω̃A∧,max(ωu)⟩ = ⟨ϕ,A∧,max(ωu)⟩.

This shows that ωu ∈ Dmax(A) with Amax(ωu) given by A∧,max(ωu) in U(Y ) and
extended trivially to M . We thus obtain a map

Dmax(A∧)/Dmin(A∧) ∋ u+Dmin(A∧) 7−→ ωu+Dmin(A) ∈ Dmax(A)/Dmin(A),

and both maps are inverses of each other.
Finally, as for both A and A∧ each class in Dmax/Dmin has a representative

supported in U(Y ), and by the standing product type assumptions both adjoint
pairings agree on those representatives, the proposition follows. □

Theorem 4.2 (Null-Cobordism Theorem). Under the stated product type, local-
ization, and compatibility assumptions we have

SF[ p(σ) : E1 ⊂ E0 → E0, −∞ < σ <∞ ] = 0.

If moreover

p(σ) =

[
σ D∗

D −σ

]
:

D(D)
⊕

D(D∗)
⊂ L2

(
Y ;

E−
⊕
E+

)
→ L2

(
Y ;

E−
⊕
E+

)
with an elliptic Fredholm operator of first order

D : D(D) ⊂ L2(Y ;E−) → L2(Y ;E+),

then ind[D : D(D) ⊂ L2(Y ;E−) → L2(Y ;E+)] = 0.

Proof. By Proposition 4.1 we have a unitary equivalence between the indefinite
inner product spaces(

Dmax(A)/Dmin(A), [·, ·]A
) ∼= (Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
.

Because

sgn
(
Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
= SF[ p(σ) : E1 ⊂ E0 → E0, −∞ < σ <∞ ]

29 Jan 2024 08:24:47 PST
230103-Krainer Version 3 - Submitted to Rocky Mountain J. Math.



COBORDISM INVARIANCE OF THE INDEX REVISITED 13

by (3.6) it suffices to show that

sgn
(
Dmax(A)/Dmin(A), [·, ·]A

)
= 0,

and by Proposition 2.2 this will be the case if the embedding Dmax(A) ↪→ L2(M ;E )
is compact. Because A has finite deficiency indices we only need to prove that
Dmin(A) ↪→ L2(M ;E ) is compact. Now let ω, ω̃ ∈ C∞

c ([0, ε)) be cut-off functions
such that ω̃ ≡ 1 in a neighborhood of supp(ω). By assumption the multiplication
operator

1− ω : Dmin(A) → L2(M ;E )

is compact, and

ω̃ : Dmin(A) → Dmin(A∧)

is continuous. Now

Dmin(A∧) = x
1
2 H (R+;E1) ∩ L2(R+;E0),

and because E1 ↪→ E0 is compact, multiplication by ω is a compact operator

ω : Dmin(A∧) → L2(R+;E0),

see Section 3. Consequently, using the product type assumptions, the composition

ω = ωω̃ : Dmin(A) → L2(M ;E )

is compact, which shows that the embedding ι = ω+(1−ω) : Dmin(A) → L2(M ;E )
is compact. Finally, the vanishing of the index in the special case of operators of
first order follows from (3.7). □

Appendix A. The null-cobordism theorem for closed manifolds

In this appendix we discuss a version of the null-cobordism Theorem 4.2 for closed
manifolds. Most of the previous assumptions no longer explicitly appear in this
version, e.g., we do not assume product type geometry, and there isn’t an operator
A on M at the outset, but symbolic assumptions instead. As mentioned in the
introduction this is due to the richness of analytic tools available for this situation
that allows to create the preconditions needed to apply Theorem 4.2 instead of
having to assume them from the outset.

Let Y be a closed, compact Riemannian manifold and E → Y be a Hermitian
vector bundle, and consider a family

p(σ) =

µ∑
j=0

aj(y,Dy)σ
j : C∞(Y ;E) → C∞(Y ;E), σ ∈ R, (A.1)

where aj(y,Dy) ∈ Diffµ−j(Y ;E), and µ ≥ 1. We assume that the parameter-
dependent principal symbol

σσ(p)(y, η;σ) =

µ∑
j=0

σσ(aj)(y, η)σ
j : Ey → Ey (A.2)

is invertible on
(
T ∗Y × R

)
\ 0, and that p(σ) = p(σ)∗ is (formally) selfadjoint. By

elliptic and analytic Fredholm theory,

R ∋ σ 7→ p(σ) : Hµ(Y ;E) ⊂ L2(Y ;E) → L2(Y ;E)
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14 THOMAS KRAINER

is a family of selfadjoint unbounded Fredholm operators acting in L2(Y ;E) that
is invertible for all σ ∈ R except at finitely many points, and it makes sense to
consider the spectral flow

SF[p(σ)] := SF[p(σ) : Hµ(Y ;E) ⊂ L2(Y ;E) → L2(Y ;E), −∞ < σ <∞] ∈ Z

associated with p(σ).

Lemma A.3. The spectral flow is an invariant of the principal symbol (A.2) in
the sense that if pj(σ), j = 1, 2, are two elliptic selfadjoint families of order µ ≥ 1
of the form (A.1) with σσ(p1)(y, η;σ) = σσ(p2)(y, η;σ) then SF[p1(σ)] = SF[p2(σ)].

Proof. Let R > 0 be such that

p1(σ) + s[p2(σ)− p1(σ)] : H
µ(Y ;E) ⊂ L2(Y ;E) → L2(Y ;E)

is invertible for |σ| ≥ R > 0 and all 0 ≤ s ≤ 1. Consequently, this family is a ho-
motopy of selfadjoint Fredholm functions on [−R,R], invertible at both endpoints,
and by the homotopy invariance of the spectral flow for such families we see that
SF[p1(σ)] = SF[p2(σ)]. □

Suppose there exists a compact Riemannian manifoldM with ∂M = Y . Utilizing
the geodesic flow from the boundary in the direction of the inner normal vector field
shows that there exists ε > 0 and a collar neighborhood map U(Y ) ∼= [0, ε) × Y
near the boundary such that the metric in U(Y ) takes the form dx2 + gY (x) with
a smooth family of metrics gY (x) on Y , 0 ≤ x < ε, and such that gY (0) = gY is
the given metric on Y . Moreover, by choosing ε > 0 small enough, there exists a
defining function for ∂M on M that in U(Y ) is represented by projection onto the
coordinate in [0, ε). We’ll also denote this global defining function by x :M → R+.
In particular,

T ∗M
∣∣
Y
= T ∗Y ⊕ span{dx

∣∣
Y
}

subject to these choices, and we can split variables (y, η;σ) ∈ T ∗M
∣∣
Y

accordingly.

Theorem A.4 (Null-Cobordism Theorem). LetM be a compact Riemannian man-
ifold M with ∂M = Y , and let E →M be a Hermitian vector bundle with E

∣∣
Y
= E.

Let T ∗M
∣∣
Y
∼= T ∗Y ×R subject to the choices described above, and suppose there ex-

ists a symmetric, elliptic, differential principal symbol a ∈ C∞(T ∗M \0; End(π∗E ))
of order µ such that

a(y, η;σ) = σσ(p)(y, η;σ) for (y, η;σ) ∈
(
T ∗M \ 0

)∣∣
Y
,

where π : T ∗M →M is the canonical projection. Then SF[p(σ)] = 0.

With the family p(σ) from (A.1) we associate the indicial operator

A∧ = x−1

µ∑
j=0

aj(y,Dy)(xDx)
j : C∞

c (R+×Y ;E) ⊂ L2(R+×Y ;E) → L2(R+×Y ;E).

(A.5)
Here we also write E for its pull-back to R+×Y with respect to the projection onto
Y , and equip R+ × Y with the product metric dx2 + gY . Then A∧ is symmetric
and densely defined. Let Dmin(A∧) be the domain of the closure, and Dmax(A∧)
be the domain of the adjoint.
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Proof of Theorem A.4. In the previously fixed collar neighborhood U(Y ) ∼= [0, ε)×
Y we utilize standard deformations of the Riemannian metric on M , the Hermitian
metric on E , and the principal symbol a to reduce to a product type structure near
the boundary, as follows:

Pick an isomorphism E
∣∣
U(Y )

∼= π∗
Y E that is the identity over Y , where πY :

[0, ε) × Y → Y is the projection map. With respect to the pull-back of the given
Hermitian metric on E to π∗

Y E, the metric on E
∣∣
U(Y )

under this isomorphism is

then represented by h(x, y) ∈ C∞([0, ε)× Y ; End(π∗
Y E)) such that h = h∗ > 0 and

h(0, y) = Id. Choose C∞-functions ϕ, ψ : [0, ε) → R with

ϕ ≡ 0 on 0 ≤ x ≤ ε
3 , 0 < ϕ < 2ε

3 on ε
3 < x < 2ε

3 , and ϕ ≡ x on 2ε
3 ≤ x < ε;

ψ ≡ x on 0 ≤ x ≤ ε
3 , ψ > 0 on ε

3 < x < 2ε
3 , and ψ ≡ 1 on 2ε

3 ≤ x < ε.

We then deform the Riemannian metric on U(Y ) and Hermitian metric on E
∣∣
U(Y )

to

g̃ = dx2 + gY (ϕ(x)) and h̃(x, y) = h(ϕ(x), y) ∈ C∞([0, ε)× Y ; End(π∗
Y E)),

respectively, which both connect seamlessly with the Riemannian metric on M
outside U(Y ), and the Hermitian metric on E . We also change the principal symbol
in

◦
U(Y ) to

ã(x, y, η;σ) = ψ(x)−1a(ϕ(x), y, η;ψ(x)σ) : Ey → Ey (A.6)

for (x, y, η;σ) ∈ T ∗((0, ε)×Y )\0 with the obvious identifications of variables, which
again connects seamlessly outside the collar neighborhood. The new homogeneous
principal symbol ã ∈ C∞(T ∗ ◦

M \ 0,End(π∗E )) is symmetric with respect to the
new metric on E , and elliptic over

◦
M . In

◦
U(Y ) we have

ã(x, y, η;σ) = x−1 σσ(p)(y, η;xσ) : Ey → Ey for 0 < x < ε
3

by construction, which aligns with the principal symbol of A∧ from (A.5). Let
now A ∈ Diffµ(

◦
M ;E ) be symmetric C∞

c (
◦
M ;E ) → C∞

c (
◦
M ;E ) with respect to the

L2-inner product associated with the modified metrics on M and E , respectively,
such that the principal symbol σσ(A) = ã on T ∗ ◦

M \ 0, and such that in
◦
U(Y ) we

have A = A∧ on C∞
c ((0, ε4 )× Y ;E). Then

A = x−1P : C∞
c (

◦
M ;E ) ⊂ L2(M ;E ) = x−

1
2L2

b(M ;E ) → x−
1
2L2

b(M ;E )

is symmetric, and P ∈ Diffµ
b (M ;E ) is b-elliptic (see [14]). Moreover, by construction

p(σ) is the indicial family of the operator P .
By analytic Fredholm theory p(σ) : Hµ(Y ;E) → L2(Y ;E) is invertible for σ ∈ C

except for the discrete set specb(p). In the sequel it will be convenient to assume
that specb(p) ∩ {σ ∈ C; 0 < |ℑ(σ)| ≤ 1

2} = ∅. As explained in Section 3, this
can be achieved by replacing p(σ) by p(tσ) for sufficiently small t > 0 if necessary,
which does not impact the spectral flow. Moreover, the assumptions of the theorem
pertaining to the principal symbol of p(σ) also hold for p(tσ); to see this pick a
C∞-function χ : [0, ε) → R with

χ ≡ t on 0 ≤ x ≤ ε
3 , χ > 0 on ε

3 < x < 2ε
3 , and χ ≡ 1 on 2ε

3 ≤ x < ε,

and alter the principal symbol (A.6) in
◦
U(Y ) to

ã(x, y, η;σ) = ψ(x)−1a(ϕ(x), y, η;ψ(x)χ(x)σ) : Ey → Ey
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16 THOMAS KRAINER

for (x, y, η;σ) ∈ T ∗((0, ε)×Y
)
\ 0. We may thus proceed without loss of generality

under the assumption that specb(p) ∩ {σ ∈ C; 0 < |ℑ(σ)| ≤ 1
2} = ∅. In view of

Section 3 for A∧ and by invoking elliptic regularity for A we then get

Dmin(A∧) = x
1
2Hµ

b (R+;L
2(Y ;E)) ∩ x 1

2L2
b(R+;H

µ(Y ;E)) ∩ L2(R+ × Y ;E),

Dmin(A) = x
1
2Hµ

b (M ;E ),

and

Dmax(A∧) = Dmin(A∧)⊕
⊕

σ0∈specb(p)∩R

Eσ0
(p),

Dmax(A) = Dmin(A)⊕
⊕

σ0∈specb(p)∩R

Eσ0
(p),

where Eσ0
(p) is defined as in (3.3) based on a cut-off function ω ∈ C∞

c ([0, ε4 )) with
ω ≡ 1 near x = 0 so that elements in Eσ0

(p) can interchangeably be regarded both
as sections of E on R+ × Y , as well as sections of E on M supported near the
boundary. In particular, this implies that(

Dmax(A)/Dmin(A), [·, ·]A
) ∼= (Dmax(A∧)/Dmin(A∧), [·, ·]A∧

)
because [u, v]A∧ = [u, v]A for u, v ∈

⊕
σ0∈specb(p)∩R

Eσ0
(p) by construction. Finally, it

remains to note that Dmax ↪→ x−
1
4Hµ

b (M ;E ), and the embedding x−
1
4Hµ

b (M ;E ) ↪→
x−

1
2L2

b(M ;E ) = L2(M ;E ) is compact. □

Theorem A.4 and Lemma 3.9 imply:

Corollary A.7 (Cobordism Invariance of the Index). Suppose that E = E− ⊕E+

is an orthogonal direct sum, and that the family (A.1) is of the form

D(σ) =

[
σ D∗

D −σ

]
: C∞

(
Y ;

E−
⊕
E+

)
→ C∞

(
Y ;

E−
⊕
E+

)
, σ ∈ R,

where D : C∞(Y ;E−) → C∞(Y ;E+) is an elliptic differential operator of first
order, and D∗ : C∞(Y ;E+) → C∞(Y ;E−) is its (formal) adjoint. Then

SF[D(σ)] = indD = dimker(D)− dimker(D∗).

In particular, if the assumptions of Theorem A.4 hold, then ind(D) = 0.
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