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Abstract

Microbial pesticides can avoid many of negative effects of traditional chemical pes-

ticides. To modelling the inhibiting effect, in this paper we propose a model of

entomopathogenic nematodes killing the target insects, and inhibiting the birth

rate of the target insects simultaneously. In the model, we achieve the purpose

of restricting or eliminating pests by continuously releasing nematodes. The best

solution to control pests is obtained by analyzing the stability and bifurcating peri-

odic solution. Our conclusions are verified by examples and numerical simulations.

Comparison between the pesticide model with and without the inhibiting effect

is given in the conclusion.
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1.1. Research motivation

Pesticides can control agricultural pests and increase food production, but they

also bring many disadvantages [1–3]. After pesticides are applied, part of them

are adhere to plants, or penetrate into the plant body and remain, contaminating

grains, vegetables, fruits, etc., and the other part of them are scatter on the soil

or evaporate, escape into the air, or flow into the rivers with rainwater, polluting

water bodies and aquatic organisms, and eventually entering the human body,

causing various chronic or acute diseases. The unreasonable use of pesticides,

especially organic pesticides, not only poses a serious threat to human health, but

also causes crop phytotoxicity, human and livestock poisoning, excessive residues

of agricultural products, pest resistance and environmental pollution, etc.

Microbial pesticides are made from living microorganisms. In nature, there

are many microorganisms that have pathogenic effects on pests, and using this

pathogenicity to control pests is an effective biological control method. From

these pathogenic microorganisms, select bacteria that are convenient to use, sta-

ble in efficacy, safe to humans, animals, and the environment to make microbial

insecticides. Comparing with chemical synthetic pesticides, microbial pesticides

have many advantages [4–6], including: (1) they are harmless to organisms other

than the target; (2) pests are not easy to develop resistance; (3) they can protect

natural enemies of pests; (4) they do not pollute the environment. These charac-

teristics make microbial pesticides a class of pesticides suitable for integrated pest

control.

Entomopathogenic nematode is a kind of new-type and promising microbial

pesticide [7–9]. It releases a kind of symbiotic bacteria in its intestine into the

blood cavity of the host insect, and then the symbiotic bacteria multiply in the

blood cavity and produce antibacterial substances and toxins, causing the host

insect to suffer from sepsis and die. Guangjun Ren, deputy dean and researcher

of Sichuan Academy of Agricultural Sciences, said, “Entomopathogenic nematode,

as specialized parasitic natural enemies of insects, is a kind of microbial pesticide
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with the dual characteristics of natural enemies and pathogenic microorganisms,

and is an important biological control factor for pests. It can effectively control

pests, and it is safe for non-target organisms and the environment. Therefore, it

has great application potential in the sustainable management of pests”.

1.2. Model formulation

In 2009, Wang and Chen [10] formulated the following mathematical model in

order to investigate the dynamics of nematodes attacking pests:
dx

dt
= rx− cxy,

dy

dt
= cxy2 −my,

(1)

where x(t), y(t) denotes the density of pests and entomopathogenic nematodes,

respectively. r denotes the birth rate of pests and m denotes the death rate

of entomopathogenic nematodes. Moreover, the effects of nematodes’ predation

behavior on pests and nematodes are expressed as −cxy and +cxy2. Subsequently,

Wang and Chen [11] used the Poincaré map to analyze dynamic behaviors of the

impulsive state of model (1). In 2017, Wang et al. [12] considered system (1) with

the Monod growth rate. And in 2021, Wang [13] studied model (1) with density

dependent for pests.

Many studies have shown that some species of microorganism A (or plant

extracts) can inhibit other species of microorganism B (bacteria or fungi) [14–16],

and this inhibiting effect can reduce the birth rate of microorganism B, and the

strength of its influence is proportional to the inhibiting factor and the density of

microorganism A. Consequently, the density of B is inversely proportional to the

density of A. That is, the density of B varies inversely as the density of A. In fact,

this inhibiting effect is similar to the fear effect of predators in larger populations

[17–23]. Thus, using an inverse proportional function to modelling the inhibiting

effect is very reasonable. In this paper, we add an inhibiting factor to the original

model (1) to modify pests birth rate, and establish the following mathematical
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model to modelling a microbial pesticide model with inhibiting effect:
dx

dt
=

rx

1 + ky
− cxy,

dy

dt
= cxy2 −my,

(2)

where 1
1+ky

is the inhibition function, k is the level of inhibition, it means that if

the density of nematodes or the level of inhibition was zero, there was no effect on

pests; with the increase of the density of nematodes or the level of inhibition, the

birth rate of pests would decrease.

Through the analysis of system (2), we derive that in any case, there will

be not a steady state, that is, the density of pests will keep increasing, reach

destructive numbers and take a toll on the economy. Therefore, we will through

continuous release of nematodes to control the density of pests. And then we have

the following model: 
dx

dt
=

rx

1 + ky
− cxy,

dy

dt
= cxy2 −my + u,

(3)

where u is the release rate of entomopathogenic nematodes, other parameters are

the same as in systems (1) and (2). And all parameters r, k, c,m, u are positive.

1.3. Organization of paper

The structure of this paper is organized as follows. Next section is to study

the stability of the equilibria and the nonexistence of limit cycle of system (2). In

Section 3, we prove the existence of Hopf bifurcation of system (3). In Section

4, some numerical simulations are presented to show the feasibility of the main

results. Finally, a conclusion ends the paper.

2. Dynamic behavior of system (2)
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Theorem 1. System (2) always has two equilibria, a boundary equilibrium E0(0, 0)

and a positive equilibrium E1(x1, y1). Furthermore, E0 is a saddle, E1 is an un-

stable node or focus.

Proof. The equilibria of (2) satisfy the system
rx

1 + ky
− cxy = 0,

cxy2 −my = 0.

(4)

Obviously, system (4) has nonnegative solutions

x0 = 0, y0 = 0,

and

x1 =
2km

−c+
√
c2 + 4crk

, y1 =
−c+

√
c2 + 4crk

2ck
.

Consider the Jacobian matrix of system (2)

J =

 r
1+ky

− cy − rkx
(1+ky)2

− cx

cy2 2cxy −m

 .

The Jacobian matrix at E0(0, 0) is

J(E0) =

 r 0

0 −m

 .

It is easy to see that

λ1(E0) = r > 0, λ2(E0) = −m < 0,

thus, E0 is a saddle. The Jacobian matrix at E1(x1, y1) is

J(E1) =

 0 − rkx1

(1+ky1)2
− cx1

cy21 m

 .

According to the relationship between the matrix and its corresponding eigenval-

ues, it can be known

λ1(E1) + λ2(E1) = tr(J(E1)) = m > 0,
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λ1(E1) · λ2(E1) = detJ(E1) = cy21

(
rkx1

(1 + ky1)2
cx1

)
> 0,

and then, we have

Re(λ1(E1)) > 0, Re(λ2(E1)) > 0.

Thus, E1 is an unstable node or focus.

Theorem 2. System (2) has no limit cycle in the first quadrant.

Proof. Set

P (x, y) =
rx

1 + ky
− cxy, Q(x, y) = cxy2 −my.

Choosing Dulac functon

B(x, y) =
1

xy
.

Functions P,Q,B are continuously differentiable in the first quadrant, and

∂(BP )

∂x
+

∂(BQ)

∂y
=

∂

∂x

[
1

y(1 + ky)
− c

]
+

∂

∂y

(
cy − m

x

)
= c > 0.

It follows from Bendixon-Dulac Theorem that there is no limit cycle in the first

quadrant.

From the above analysis, it can be seen that system (2) will not approach

a stable state at any time and under any conditions. This is really bad from

a biological standpoint. The increasing number of pests will cause damage to

the environment and the economy. Therefore, it is necessary to take necessary

measures to improve this situation. Below we discuss dynamic behavior of model

(3) under the condition of continuous release of nematodes.

3. Dynamic behavior of system (3)

At first, we nondimensionalise system (3) by writing

ȳ =
c

r
y, τ = rt,
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then system (3) can be turned into
dx

dτ
=

x

1 + kr
c
ȳ
− xȳ,

dȳ

dτ
= xȳ2 − m

r
ȳ +

cu

r2
.

(5)

Taking

k̄ =
kr

c
, m̄ =

m

r
, ū =

cu

r2
,

and still replace ȳ, τ, k̄, m̄, ū with the original variable y, t, k,m, u, and then, system

(5) becomes 
dx

dt
=

x

1 + ky
− xy,

dy

dt
= xy2 −my + u.

(6)

For convenience, in the following part of this paper, we take u0 = m
√
1+4k−1
2k

.

Theorem 3. System (6) always has a boundary equilibrium E2(0, y2). In addition,

(i) if u < u0, then system (6) has a positive equilibrium E3(x3, y3);

(ii) if u ≥ u0, then system (6) has no other equilibrium except E2.

Proof. The equilibria of system (6) satisfy
x

1 + ky
− xy = 0,

xy2 −my + u = 0.

(7)

By calculations, the above system has a fixed solution

x2 = 0, y2 =
u

m
.

In addition, from 1
1+ky

− y = 0, we have

y3 =

√
1 + 4k − 1

2k
,

and then, it follows from the second equation of system (7) that

x3 =
my3 − u

y23
.
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It can be seen from non-negativity of the equilibria that x3 > 0, i.e., u < my3 =

u0.

Theorem 4. For equilibrium E2(0, y2),

(i) if u < u0, then E2 is a saddle;

(ii) if u > u0, then E2 is a stable node;

(iii) if u = u0, then E2 is an attracting saddle node.

Proof. The Jacobian matrix of system (6) is

J =

 1
1+ky

− y − kx
(1+ky)2

− x

y2 2xy −m

 .

Thus, at E2(0, y2),

J(E2) =

 1
1+ky2

− y2 0

y22 −m

 .

The eigenvalues of J(E2) are

λ1(J(E2)) =
1

1 + ky2
− y2, λ2(J(E2)) = −m < 0.

(i) If y2 < y3, i.e., u < u0, λ1(J(E2)) =
1

1+ky2
− y2 > 0, E2 is a saddle;

(ii) if y2 > y3, i.e., u > u0, λ1(J(E2)) =
1

1+ky2
− y2 < 0, E2 is a stable node;

(iii) if y2 = y3, i.e., u = u0, in where E2 and E3 coincide as a point, at this

time,

λ1(J(E2)) =
1

1 + ky2
− y2 = 0.

In order to recognize the type and stability of E2, at first, translating E2 to the

origin by transformation (X, Y ) = (x, y− y2), and performing Taylor expansion of

system (6) at the origin to the third order, and noticing that

1

1 + ky2
− y2 = 0, my2 − u = 0.

Thus, we have 
dX

dt
= −(ky22 + 1)XY + k2y32XY 2 + o(|X, Y |4),

dY

dt
= y22X −mY + 2y2XY +XY 2.

(8)
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Taking transformation (X̃, Ỹ ) = (X,X − m
y22
Y ), system (8) gives

dX̃

dt
=− y22(ky

2
2 + 1)

m
X̃2 +

y22(ky
2
2 + 1)

m
X̃Ỹ +

k2y72
m2

X̃3 − 2k2y72
m2

X̃2Ỹ +
k2y72
m2

X̃Ỹ 2 + o(|X, Y |4),

dỸ

dt
=−mỸ −

(
y22(ky

2
2 + 1)

m
+ 2y2

)
X̃2 +

(
y22(ky

2
2 + 1)

m
+ 2y2

)
X̃Ỹ +

(
k2y72
m2

− y22
m

)
X̃3

−
(
2k2y72
m2

− 2y22
m

)
X̃2Ỹ +

(
k2y72
m2

− y22
m

)
X̃Ỹ 2 + o(|X, Y |4).

(9)

Now we apply time rescaling τ = −mt, and system (10) is transformed into the

standard form

dX̃

dτ
=
y22(ky

2
2 + 1)

m2
X̃2 − y22(ky

2
2 + 1)

m2
X̃Ỹ − k2y72

m3
X̃3 +

2k2y72
m3

X̃2Ỹ − k2y72
m3

X̃Ỹ 2 + o(|X, Y |4),

dỸ

dτ
=Ỹ +

(
y22(ky

2
2 + 1)

m2
+

2y2
m

)
X̃2 −

(
y22(ky

2
2 + 1)

m2
+

2y2
m

)
X̃Ỹ −

(
k2y72
m3

− y22
m2

)
X̃3

+

(
2k2y72
m3

− 2y22
m2

)
X̃2Ỹ −

(
k2y72
m3

− y22
m2

)
X̃Ỹ 2 + o(|X, Y |4).

(10)

From dỸ
dτ

= 0, we have implicit function Ỹ = ϕ(X̃) = 0, then

dX̃

dτ
=

y22(ky
2
2 + 1)

m2
X̃2 − k2y72

m3
X̃3 + o(|X|4).

In view of
y22(ky

2
2+1)

m2 > 0, E2 is an attracting saddle node, which can be obtained

from [24][Theorem 7.1], and this theorem is a powerful tool to study the bifurcation

of planar system which has been applied to many models in real world [28–32].

Theorem 5. For equilibrium E3(x3, y3),

(i) if u < u0

2
, then E3 is an unstable focus;

(ii) if u0

2
< u < u0, then E3 is a stable focus;

(iii) if u = u0

2
, then E3 is a center type stable focus, and at the moment, system

(6) undergoes a Hopf bifurcation.

Proof. The Jacobian matrix of system (6) at E3 is

J(E3) =

 0 −kx3y
2
3 − x3

y23 2x3y3 −m

 . (11)

9

25 Jul 2023 06:20:00 PDT
230603-XiaYonghui Version 2 - Submitted to Rocky Mountain J. Math.



According to the relationship between the matrix and its corresponding eigenval-

ues, we have

λ1(E3) + λ2(E3) = tr(J(E3)) = 2x3y3 −m,

λ1(E3) · λ2(E3) = detJ(E3) = y23(kx3y
2
3 + x3) > 0.

We first prove (iii), u = u0

2
, i.e., y3 =

2u
m
, in this state,

λ1(E3) + λ2(E3) = 0.

Translating E3 to the origin by transformation (X, Y ) = (x − x3, y − y3), and

performing Taylor expansion of system (6) at the origin to the third order, and

noticing that 2x3y3 = m. Thus, we have
dX

dt
=− x3(ky

2
3 + 1)Y − (ky23 + 1)XY + k2x3y

3
3Y

2 + k2y33XY 2 − k3x3y
4
3Y

3 + o(|X, Y |4),

dY

dt
=y23X + 2y3XY + x3Y

2 +XY 2.

(12)

Noting ω :=
√

x3(ky23 + 1), and taking transformation (X̄, Ȳ ) =
(
y3
ω
X, Y

)
, system

(12) gives
dX̄

dt
=− y3ωȲ − (ky23 + 1)X̄Ȳ +

k2

ω
x3y

4
3Ȳ

2 + k2y33X̄Ȳ 2 − k3

ω
x3y

5
3Ȳ

3 + o(|X̄, Ȳ |4),

dȲ

dt
=y3ωX̄ + 2ωX̄Ȳ + x3Ȳ

2 +
ω

y3
X̄Ȳ 2.

(13)

Replacing the coefficients of X̄ iȲ j (i, j = 0, 1, 2, 3) in dX̄
dt

and dȲ
dt

with Aij and Bij

respectively, then system (13) becomes
dX̄

dt
= −y3ωȲ + A11X̄Ȳ + A02Ȳ

2 + A12X̄Ȳ 2 + A03Ȳ
3 + o(|X̄, Ȳ |4),

dȲ

dt
= y3ωX̄ +B11X̄Ȳ +B02Ȳ

2 +B12X̄Ȳ 2.

(14)

According to the calculation method of the third focus value, we obtain the third
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focus value of system (14) at the origin

π

4y3ω
A12 −

π

4(y3ω)2
(2A02B02 − A11A02 +B11B02)

=
π

4y3ω
× k2y33 −

π

4(y3ω)2

[
2k2

ω
x2
3y

4
3 +

k2

ω
x3y

4
3(ky

2
3 + 1) + 2ωx3

]
=− π

2ω

(
k2

ω2
x2
3y

2
3 +

x3

y23

)
< 0,

which implies E3 is a center type stable focus [25][Chapters 2.3 and 7.1]. In this

state, the eigenvalues of its Jacobian matrix J(E3) are a pair of conjugate pure

virtual eigenvalues λ1,2 = ±iy3ω. When u changes near u0

2
, J(E3) has a pair of

conjugate complex eigenvalues λ1,2 = α(u)± iβ(u), where

α(u) =
1

2
tr(J(E3)) =

1

2
(2x3y3 −m) =

m

2
− u

y3
, β(u) =

√
detJ(E3)− α2(u).

Since α′(u) |u=u0
2
= − 1

y3
< 0, the transversality condition holds, it follows from

Poincaré-Andronov-Hopf bifurcation theory [26][Theorem 3.1.3] that system (6)

undergoes a Hopf bifurcation at E3 when u = u0

2
;

(i) if y3 >
2u
m
, i.e., u < u0

2
, λ1(E3) + λ2(E3) > 0, J(E3) has a pair of conjugate

complex eigenvalues, and the real part is greater than 0, then E3 is an unstable

focus;

(ii) if u
m

< y3 <
2u
m
, i.e., u0

2
< u < u0, λ1(E3) + λ2(E3) < 0, J(E3) has a pair of

conjugate complex eigenvalues, and the real part is less than 0, then E3 is a stable

focus.

Table 1: Equilibria and their stability in system (6)
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Equilibrium Existence Type

E2(0, y2) Always exists

u < u0, saddle

u > u0, stable node

u = u0, attracting saddle node

E3(x3, y3) u < u0

u < u0
2 , unstable focus

u0
2 < u < u0, stable focus

u = u0
2 , center type stable focus

Theorem 6. System (6) undergoes a Hopf bifurcation at E3 when u = u0

2
, fur-

thermore, the Hopf bifurcation is subcritical, and bifurcation periodic solution is

orbitally asymptotic stable.

Proof. Translating E3 to the origin by transformation (X, Y ) = (x − x3, y − y3),

and performing Taylor expansion of system (6) at the origin to the third order,
dX

dt
=− x3(ky

2
3 + 1)Y − (ky23 + 1)XY + k2x3y

3
3Y

2 + k2y33XY 2 − k3x3y
4
3Y

3 + o(|X, Y |4),

dY

dt
=y23X + (2x3y3 −m)Y + 2y3XY + x3Y

2 +XY 2.

Rewriting the above system as dX
dt

dY
dt

 = J(E3)

 X

Y

+

 f(x, y, u)

g(x, y, u)

 , (15)

where J(E3) is as in (11), and

f(x, y, u) = −(ky23 + 1)XY + k2x3y
3
3Y

2 + k2y33XY 2 − k3x3y
4
3Y

3 + o(|X, Y |4),

g(x, y, u) = 2y3XY + x3Y
2 +XY 2.

Define a matrix P =

 1 0

N M

, where N = − α(u)

x3(ky23+1)
, M = β(u)

x3(ky23+1)
. When

u = u0

2
, M = y3√

x3(ky23+1)
> 0. Then when u changes near u0

2
, P is invertible, and
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P−1 =

 1 0

−N
M

1
M

, in addition,

P−1J(E3)P =

α(u) −β(u)

β(u) α(u)

 .

By transformation (X, Y )T = P (ξ, η)T , system (15) becomes dξ
dt

dη
dt

 =

α(u) −β(u)

β(u) α(u)

 ξ

η

+

 F (ξ, η, u)

G(ξ, η, u)

 , (16)

where

F (ξ, η, u) =f(ξ, η, u)

=− (ky23 + 1)ξ(Nξ +Mη) + k2x3y
3
3(Nξ +Mη)2 + k2y33ξ(Nξ +Mη)2

− k3x3y
4
3(Nξ +Mη)3 + o(|ξ, η|4),

G(ξ, η, u) =− N

M
f(ξ, η, u) +

1

M
g(ξ, η, u)

=− N

M
[−(ky23 + 1)ξ(Nξ +Mη) + k2x3y

3
3(Nξ +Mη)2 + k2y33ξ(Nξ +Mη)2

− k3x3y
4
3(Nξ +Mη)3 + o(|ξ, η|4)] + 1

M
[2y3ξ(Nξ +Mη) + x3(Nξ +Mη)2

+ ξ(Nξ +Mη)2].

We can write system (16) into the following polar formṙ = α(u)r + α1(u)r
3 + · · · ,

θ̇ = β(u) + β1(u)r
2 + · · · ,

performing Taylor expansion of the above system at u = u0

2
, we have

ṙ =α′
(u0

2

)(
u− u0

2

)
r + α1

(u0

2

)
r3 + o

((
u− u0

2

)2
r,
(
u− u0

2

)
r3, r5

)
,

θ̇ =β
(u0

2

)
+ β′

(u0

2

)(
u− u0

2

)
+ β1

(u0

2

)
r2 + o

((
u− u0

2

)2
,
(
u− u0

2

)
r2, r4

)
.
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In order to examine the direction of the Hopf bifurcation and the stability of Hopf

bifurcation periodic solution, we have to determine the sign of α1(
u0

2
), where

α1

(u0

2

)
=

1

16
(Fξξξ + Fξηη +Gξξη +Gηηη) +

1

16β
(
u0

2

) [Fξη(Fξξ + Fηη)−Gξη(Gξξ +Gηη)

− FξξGξξ + FηηGηη].

All partial derivatives in the above formula are calculated at (ξ, η, u) =
(
0, 0, u0

2

)
.

By calculating,

Fξξξ = Fξξ = Gξξη = Gηηη = Gξξ = 0,

Fξηη = 2k2y33M
2
(u0

2

)
, Fξη = −(ky23 + 1)M

(u0

2

)
,

Fηη = 2k2x3y
3
3M

2
(u0

2

)
, Gξη = 2y3, Gηη = 2x3M

(u0

2

)
.

Noticing that

M
(u0

2

)
=

β
(
u0

2

)
x3(ky23 + 1)

, β
(u0

2

)
= y3

√
x3(ky23 + 1), y3 =

u0

m
=

√
1 + 4k − 1

2k
.

Therefore, we have

α1

(u0

2

)
=

1

16
Fξηη +

1

16β
(
u0

2

)(FξηFηη −GξηGηη + FηηGηη)

=
1

16

[
2k2y33M

2
(u0

2

)
+

1

β
(
u0

2

) (−2k2x3y
3
3(ky

2
3 + 1)M3

(u0

2

)
− 4x3y3M

(u0

2

)
+4k2x2

3y
3
3M

3
(u0

2

))]
=
x3y3M

(
u0

2

)
4β
(
u0

2

) (
k2y43

ky23 + 1
− 1

)
=
x3y3M

(
u0

2

)
4β
(
u0

2

) (
(
√
1 + 4k − 1)4

4k((
√
1 + 4k − 1)2) + 4k

− 1

)
,

taking variable substitution
√
1 + 4k − 1 := κ, then

α1

(u0

2

)
=
x3y3M

(
u0

2

)
4β
(
u0

2

) (
κ4

((κ+ 1)2 − 1)(κ2 + (κ+ 1)2 − 1)
− 1

)
=
x3y3M

(
u0

2

)
4β
(
u0

2

) (
κ2

(κ+ 2)(2κ+ 2)
− 1

)
< 0.
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The first Lyapunov coefficient

l1

(u0

2

)
= −

α1

(
u0

2

)
α′
(
u0

2

) < 0.

Therefore, the direction of the Hopf bifurcation is subcritical [27][Chapter 3.4],

and bifurcation periodic solution is orbitally asymptotic stable.

4. Examples and their numerical simulations

In this section, we give an example and figures to illustrate our results.

Example 1. Consider the following system
dx

dt
=

2x

1 + 0.5y
− 2xy,

dy

dt
= 2xy2 − 0.4y + u.

(17)

Comparing system (17) with system (3), we see that r = 2, k = 0.5, c = 2,m = 0.4.

Furthermore, ȳ = c
r
y = y, τ = 2t, k̄ = kr

c
= 0.5, m̄ = m

r
= 0.2, ū = cu

r2
= u

2
, and

system (17) becomes 
dx

dτ
=

x

1 + 0.5ȳ
− xȳ,

dȳ

dτ
= xȳ2 − 0.2ȳ + ū.

(18)

For the convenience of marking on the graphs, we still replace ȳ, τ, k̄, m̄, ū with the

original variable y, t, k,m, u until we make a prompt below. And then, model (18)

can be rewritten as 
dx

dt
=

x

1 + 0.5y
− xy,

dy

dt
= xy2 − 0.2y + u.

(19)

By calculating, we obtain y2 =
u
m

= 5u, y3 =
√
1+4k−1
2k

=
√
3− 1, and u0 = my3 =

0.2(
√
3− 1). In the following, we calculate and numerically simulate the dynamic

behavior of system (19) by taking different values for u.

15

25 Jul 2023 06:20:00 PDT
230603-XiaYonghui Version 2 - Submitted to Rocky Mountain J. Math.



(1) Taking u = 0.1(
√
2−1), u < u0

2
, system (19) has two equilibria, E2(0, y2) =

(0, 5u) ≈ (0, 0.207) is a saddle, and E3 =
(

0.2y3−u
y23

, y3

)
≈ (0.196, 0.732) is an

unstable focus. See Fig.1 (a);

(2) taking u = 0.1, u0

2
< u < u0, system (19) has two equilibria, E2(0, y2) =

(0, 5u) = (0, 0.5) is a saddle, and E3 =
(

0.2y3−u
y23

, y3

)
≈ (0.087, 0.732) is a stable

focus. See Fig.1 (b);

(3) taking u = 0.2(
√
3− 1), u = u0, system (19) has a equilibrium, E2(0, y2) =

(0, 5u) ≈ (0, 0.732) is an attracting saddle node. See Fig.1 (c);

(4) taking u = 0.2, u > u0, system (19) has a equilibrium, E2(0, y2) = (0, 5u) =

(0, 1) is a stable node. See Fig.1 (d);

x ’ = x/(1 + k y) − x y
y ’ = x y2 − m y + u  

m = 0.2
u = 0.1 (sqrt(2) − 1)

k = 0.5
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Fig.1 Dynamic behavior of system (19) in the cases that (1)− (4)
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(5) taking u = 0.1(
√
3− 1), u = u0

2
, system (19) has two equilibria, E2(0, y2) =

(0, 5u) ≈ (0, 0.366) is a saddle, and E3 =
(

0.2y3−u
y23

, y3

)
≈ (0.137, 0.732) is a center

type stable focus. In this situation, system (19) undergoes a Hopf bifurcation, and

the Hopf bifurcation periodic solution is asymptotic stable. See Fig.2. Further-

more, from Fig.1(a),(b) and Fig.2, we can see the Hopf bifurcation is subcritical.

x ’ = x/(1 + k y) − x y
y ’ = x y2 − m y + u  

m = 0.2
u = 0.1 (sqrt(3) − 1)

k = 0.5
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Fig.2 The phase diagram of system (19) in the case that u = u0

2
and the time series

diagram of the Hopf bifurcation periodic solution

5. Conclusion

At the beginning of this section, we firstly make a comparison between the mod-

els without continuous release of nematodes (i.e., model (2)) and with continuous

release of nematodes (i.e., model (3)). The following table shows the differences

clearly.

Table 2: Comparison without and with continuous release of nematodes

Model Existence of stable state

Without continuous release of nematodes Not exists

With continuous release of nematodes Always exists

The table shows intuitively that the model without continuous release of nema-

todes (i.e., model (2)) has no stable state, that is, the pests will reach destructive
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numbers if we have not release the entomopathogenic nematodes continuously.

While model (3) always exists stable state, which indicates that we can control

the density of pests within a certain range by continuous release of nematodes.

On the other hand, in order to observe the impact of the addition of inhibit-

ing factor on model (6), we compare the results of this paper with literature [10],

which the authors studied the complexity of the microbial pesticide model with-

out inhibiting effect. It can be seen that the models both with inhibiting effect

and without inhibiting effect have two equilibria — a pest-free equilibrium and a

positive equilibrium. In order to intuitively compare the differences between the

equilibria and stability of the two models, we give two tables in follows, and in

where we use the symbols of this paper uniformly.

Table 3: Comparison at the pest-free equilibria

Equilibrium Existence Stability

Without inhibiting effect (0, u
m) Always exists

u < m, unstable

u > m, stable

With inhibiting effect (0, u
m) Always exists

u < my3, unstable

u > my3, stable

Table 4: Comparison at the positive equilibria

Equilibrium Existence Stability

Without inhibiting effect (m− u, 1) u < m
u < m

2 , unstable

m
2 < u < m, stable

With inhibiting effect (my3−u
y23

, y3) u < my3
u < my3

2 , unstable

my3
2 < u < my3, stable

From the data in the above two tables, the addition of the inhibiting factor

makes the boundary of equilibria change from m to my3 (from
m
2
to my3

2
). It can be
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obtained by calculation that y3 =
√
1+4k−1
2k

decreases monotonically as k increases

and

lim
k→0

y3 = 1, 0 < y3 < 1.

When k = 0, that is, when model (6) has no inhibiting effect, it happens to be

the model in literature [10], and the results are also consistent. As the level of

inhibition k increases, y3 decreases, and model (6) can change from an unstable

state to a stable state when u is smaller. This suggests that the inhibition of

nematodes on pests allows pests populations to be controlled with fewer nematodes

released. And this is also consistent with reality. In addition, we

Review this paper, we discussed the microbial pesticide model with inhibiting

effect in the case that continuous release of nematodes. Through the analysis of

the qualitative and stability of the model, we found the best solution to control

pests. Next, we analyse system (3), and from now on, we will no longer replace

ȳ, τ, k̄, m̄, ū with y, t, k,m, u. From the previous analysis and example verification,

we can get the following conclusions:

(1) Both the pest-free equilibrium and the positive equilibrium are unstable if

u =
c

r2
ū <

c

2r2
u0 =

c2m

4kr4

(√
1 +

4kr

c
− 1

)
;

(2) the pest-free equilibrium is unstable and the positive equilibrium is stable

if

c2m

4kr4

(√
1 +

4kr

c
− 1

)
=

c

2r2
u0 ≤ u <

c

r2
u0 =

c2m

2kr4

(√
1 +

4kr

c
− 1

)
;

(3) the unique equilibrium — pest-free equilibrium is stable if

u ≥ c

r2
u0 =

c2m

2kr4

(√
1 +

4kr

c
− 1

)
.

In summary, if we want to eliminate pests completely, we need to contin-

uously release nematodes, and the speed is not less than c2m
2kr4

(√
1 + 4kr

c
− 1
)
.

While if we only want to control the pests density within a certain range, then
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we only need to continuously release nematodes, and the speed is not less than

c2m
4kr4

(√
1 + 4kr

c
− 1
)
.

Discussion: In this paper, we propose a system to modelling the inhibiting effect

on a microbial pesticide model.

Our results show that the inhibiting effect does affect the global dynamics

of the microbial pesticide model. Since spatiotemporal diffusion may cause the

instability, (see e.g. [33–45]), it would be very interesting to discuss dynamics and

patterns of the diffusion impact on the microbial pesticide model.
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[8] F. Corné, N. Fatouros, J. Kammenga, The potential of entomopathogenic

nematodes to control moth pests of ornamental plantings. Biological Control,

2022, 165: 104815.
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