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Abstract

Consider the following mean curvature equation in the static spacetime

div

(
f(x)∇u√

1− f2(x)|∇u|2

)
+

∇u∇f(x)√
1− f2(x)|∇u|2

= λNH

with Dirichlet boundary condition on a bounded domain. We investigate the exis-
tence and uniqueness of classical solution. By variational method, we also establish
the multiplicity of strong solutions. Moreover, according to the behavior of H near
0, we obtain the global structure of positive solutions for this problem. The sym-
metry of positive solutions is also investigated.
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1 Introduction and main results

Let Ω ⊆ RN with N ≥ 1 be a domain and f be a smooth positive function on Ω.
Denote by M the N + 1-dimensional product manifold I × Ω endowed the Lorentzian
metric

g = −f 2(x)dt2 + dx2.

From Lemma 12.37 of [22], we know that M is static relative to ∂t/f .
For any u ∈ C2(Ω), let M = {(x, u) : x ∈ Ω, u ∈ C2(Ω)}. A spacetime M is static

relative to an observer field U provided U is irrotational and there is a smooth positive
function such that fU is a Killing vector field. Then (M, g) := M is an N -dimensional
hypersurface inM at time t which can be represented by the graph of t = u. M is called
spacelike if f |∇u| < 1 in Ω (see [16]). While, M is called weakly spacelike if f |∇u| ≤ 1
a.e. in Ω. Given mean curvature H for spacelike graph M , we shall derive the following
mean curvature equation in Section 2

div

(
f(x)∇u√

1− f 2(x)|∇u|2

)
+

∇u∇f(x)√
1− f 2(x)|∇u|2

= NH. (1.1)

When f ≡ 1, H ≡ 0 and Ω = RN , Calabi [5] proved that equation (1.1) has only
linear entire solutions for N ≤ 4. Cheng and Yao [7] improved Calabi’s result for all N .
When f ≡ 1 and H is a positive constant, some celebrated results for equation (1.1) were
obtained by Treibergs [26]. If f ≡ 1, Ω is a bounded domain and H is a bounded function
defined on Ω × R, Bartnik and Simon [1] proved that the equation (1.1) with Dirichlet
boundary condition has a spacelike solution. By critical point theory or topological
degree, the authors of [4, 8] studied the nonexistence, existence and multiplicity of positive
solutions in the case of f ≡ 1 and Ω being a bounded domain. When f ≡ 1 and
Ω = BR = BR(0) :=

{
x ∈ RN : |x| < R

}
with R > 0, the authors of [2, 3] obtained some

existence results for positive radial solutions of equation (1.1) with u = 0 on ∂Ω. When
f ≡ 1, in [9], we studied the nonexistence, existence and multiplicity of positive radial
solutions of equation (1.1) with u = 0 on ∂Ω and NH = −λf(x, s) on the unit ball via
bifurcation method, which had been extended to the general domain in [12, 13]. Recently,
we studied equation (1.1) on a ball.

The aim of this paper is to investigate the existence, regularity, uniqueness, symmetry
and multiplicity of spacelike solutions for equation (1.1) on general bounded domain.

By equation (1.1) we have that

−div

(
f 2(x)∇u√

1− f 2(x)|∇u|2

)
= −div

(
f(x) · f(x)∇u√

1− f 2(x)|∇u|2

)

= −f(x)div

(
f(x)∇u√

1− f 2(x)|∇u|2

)
− f(x)

∇u∇f(x)√
1− f 2(x)|∇u|2

= −Nf(x)H.
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When Ω is bounded, we consider the following 0-Dirichlet boundary value problem −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= −λNf(x)H(x, u) in Ω,

u = 0 on ∂Ω,
(1.2)

where λ is a nonnegative parameter which can represent the strength of mean curvature
function. Let d denote the diameter of Ω. For any x ∈ Ω, clearly, we can choose fixed
y ∈ ∂Ω such that |x− y| ≤ d/2. For any solution u ∈ C1

(
Ω
)
, since the graph associated

to u is spacelike, we have that

|u(x)| = |u(x)− u(y)| =
∣∣∣∣f(ξ)∇u(ξ)

(x− y)

f(ξ)

∣∣∣∣ ≤ ∥∥∥∥f(ξ)∇u(ξ)
(x− y)

f(ξ)

∥∥∥∥
∞
≤ d/ (2f0) := δ

for some ξ ∈ Ω, where ‖·‖∞ denotes the usual sup-norm on Ω and f0 = minΩ f(x). It
follows that the image of u lies in [−δ, δ] = Iδ. Thus, we assume that H is a real function
defined on Ω× Iδ.

For convenience, u is called (classical) solution if it belongs to C2(Ω) ∩ C1
(
Ω
)

and
satisfies problem (1.2). We first have the following existence and uniqueness of classical
solution.

Theorem 1.1. Assume that Ω has C2,α boundary ∂Ω for some α ∈ (0, 1). If H ∈
C0,α

(
Ω× Iδ

)
, problem (1.2) with λ = 1 has at least one spacetime solution u ∈ C2,α

(
Ω
)

such that maxΩ (f(x)|∇u|) ≤ 1 − θ for some positive constant θ, which only depends on
N , f , Ω and supΩ×Iδ f(x)|H(x, t)|. Moreover, the solution is unique if H(x, t) is increas-
ing with respect to t.

When f(x) ≡ 1, Theorem 1.1 is just the Theorem 3.6 of [1] with ϕ ≡ 0 on ∂Ω. As we
have pointed out in [13] that the proof of [1, Proposition 1.1] contains a gap. In [13], we
have shown that the uniqueness is right when H is independent on t. Here, we further
show that the uniqueness is also holding when H is increasing with respect to t. So, we
complement the arguments of [1, Proposition 1.1 and Theorem 3.6] even in the case of
f(x) ≡ 1.

The natural question is whether there exist multiple solutions of problem (1.2). We
will use variational method to give a confirmed answer for this question. To show this,
we state the following assumption on H:

(H1) H : Ω × [0, δ] → R satisfies the Carathéodory condition and the L∞-growth
condition

H(x, t) ≤ h(x) for a.e. x ∈ Ω,∀t ∈ [0, δ] (1.3)

for some function h ∈ L∞(Ω).

Following the terminology of [8], a function u ∈ W 2,p(Ω) for some p > N with
‖f(x)∇u‖∞ < 1 satisfying problem (1.2) a.e. in Ω is called a strong (spacelike) solution.
Then, we have the following multiplicity of strong spacelike solutions.

Theorem 1.2. Besides (H1), assume that Ω has C2 boundary ∂Ω and H(x, t) < 0
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for a.e. x ∈ Ω and ∀t ∈ (0, R) with any fixed R ∈ (0, δ) such that

lim
t→0+

H(x, t)

t
= 0 uniformly with a.e. x ∈ Ω. (1.4)

Then, there exists λ∗ > 0 such that problem (1.2) has at least two nontrivial nonnegative
strong spacelike solutions for any λ > λ∗.

Furthermore, if Ω has C2,α boundary and H ∈ C0,α
(
Ω× [0, δ]

)
, following Theorem

1.1, the nontrivial nonnegative strong spacelike solutions obtained in Theorem 1.2 are
also belonging to C2,α

(
Ω
)
.

Now, two natural questions are in order:

Q1. (Global structure of solutions) If we patch those solutions obtained in Theorem
1.2 together, what does it look like?

Q2. (Positive solutions) Whether those solutions obtained in Theorem 1.2 are positive?

We will use bifurcation method to answer Q1. While, Q2 is a directly corollary of the
strong maximum principle (see Lemma 4.1).

(a) H0 = 1 (b) H0 = +∞

(c) H0 = 0

Figure 1: Bifurcation diagrams of Theorem 1.3.

Let λ1 be the first eigenvalue of{
−div (f 2(x)∇u) = λf(x)u in Ω,
u = 0 on ∂Ω.

(1.5)

It is well known that λ1 is simple, isolated and the unique principal eigenvalue.

4

7 Feb 2023 00:37:30 PST
220515-GuoweiDai Version 2 - Submitted to Rocky Mountain J. Math.



Let
X =

{
u ∈ C1

(
Ω
)

: u = 0 on ∂Ω
}

with the norm ‖u‖ := ‖f(x)∇u‖∞. It is not difficult to verify that ‖u‖∞ ≤ (d ‖∇u‖∞) /2
and ‖u‖ /fM ≤ ‖∇u‖∞ ≤ ‖u‖ /f0, where fM = maxΩ f(x). It follows that the norm ‖u‖
is equivalent to the usual norm ‖u‖∞ + ‖∇u‖∞. Let P = {u ∈ X : u > 0 on Ω}. From
now on, following [24], we add the point ∞ to our space R×X.

Then, we have the following theorem, which is also one of the main results of this
paper.

Theorem 1.3. Assume that Ω has C2,α boundary, H ∈ C0,α
(
Ω× [0, δ]

)
such that

H(x, t) < 0 for any x ∈ Ω and t ∈ (0, δ], and there exists H0 ∈ [0,+∞] such that

lim
t→0+

NH (x, t)

t
= −H0

uniformly for x ∈ Ω. Then,

(a) if H0 = 1, there is an unbounded component C of the set of nontrivial solutions
of problem (1.2) bifurcating from (λ1, 0) such that C ⊆ (R× P ) ∪ {(λ1, 0)}, (λ1,+∞) ⊆
prR (C ), ‖uλ‖ < 1 and limλ→+∞ ‖uλ‖ = 1 for (λ, uλ) ∈ C \ {(λ1, 0)}, where prR (C )
denotes the projection of C on R,

(b) if H0 = +∞, there is an unbounded component C of the set of nontrivial solutions
of problem (1.2) emanating from (0, 0) such that C ⊆ (R× P )∪{(0, 0)}, joins to (+∞, 1)
and ‖uλ‖ < 1 for (λ, uλ) ∈ C \ {(0, 0)},

(c) if H0 = 0, there is an unbounded component C of the set of nontrivial solutions
of problem (1.2) such that C ⊆ R × P , joins (+∞, 1) to (+∞, 0) and ‖uλ‖ < 1 for any
(λ, uλ) ∈ C with λ < +∞.

Figure 1 illustrates the global bifurcation branches of Theorem 1.3. The existence
or multiplicity of positive solutions of problem (1.2) can be easily derived from these
diagrams. Again using Theorem 1.1, we see that these positive solutions are also belonging
to C2,α

(
Ω
)
.

Finally, we consider equation (1.1) with more general Dirichlet boundary condition div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= λNf(x)H(x, u) in Ω,

u = ϕ on ∂Ω,
(1.6)

where ϕ : ∂Ω→ R is a given function whose values will be taken in the sense of (1.1) of
[1].

Assume that H : Ω×R→ R satisfies the corresponding assumptions of Theorem 1.1,
ϕ is bounded and has an extension ϕ ∈ C2,α

(
Ω
)

(ϕ ∈ C1
(
Ω
)
) satisfying f |∇ϕ| ≤ 1− θ0

in Ω, for some θ0 > 0. Repeating the argument with obvious changes, we can see that the
conclusion of Theorem 1.1 is also valid for problem (1.6). In this case, θ is also dependent
on θ0.

By Lemma 3.3 (clearly, which is valid for problem (1.6)), if H(x, t) is increasing with
respect to t, classical solution is also the ground state solution of problem (1.6). Con-
versely, the natural question is whether the ground state solution is also the classical
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solution of problem (1.6)? To answer it, we need the following “anti-peeling” theorem,
which extends the corresponding result of [1, Theorem 3.2].

Theorem 1.4. Let u0 be the ground state solution of problem (1.6) with a.e. bounded
H. If there is a line segment x0x1 ⊂⊂ Ω such that

f (xs) |∇u0 (xs)| = 1,∀s ∈ [0, 1], (1.7)

where xs = x0 + s (x1 − x0), then this equality holds for all s ∈ R such that xs ∈ Ω and
x0xs ⊂⊂ Ω.

On the basis of Theorem 1.4, we have the following regularity.

Theorem 1.5. Suppose that ϕ is bounded and has an weakly spacelike extension ψ :
Ω→ R with ψ = ϕ on ∂Ω. Define the singular set

K = {xy : x, y ∈ ∂Ω, x 6= y, xy ⊂ Ω and |ϕ̃(x)− ϕ̃(y)| = |x− y|} ,

where ϕ̃ is determined by f∇ϕ = ∇ϕ̃. Let H be a given function, measurable on
Ω × R and continuous in the R-component, with supΩ×R |H| ≤ Λ < +∞ and H ∈
C0,α ((Ω \K)× R). Then any ground state solution u of problem (1.6) is strictly space-
like on Ω \ K and satisfies the first equation of problem (1.6) on Ω \ K. Furthermore,
f |∇u| ≡ 1 on xy, where xy ∈ K.

The rest of this paper is arranged as follows. In Section 2, we derive the equation
(1.1). In Section 3, we study the uniqueness of solution and present the proof of Theorem
1.1. The proof of Theorem 1.2 will be given in Section 4. Section 5 is mainly concerns
the proof of Theorem 1.3. In Section 6, we give the proofs of Theorems 1.4–1.5. In the
last Section, we show a result concerning the radial symmetry of positive solutions when
Ω is the unit ball.

2 Formulation of equation (1.1)

We denote Minkowski space by LN+1 :=
{

(x, t) : x ∈ RN , t ∈ R
}

, with the flat metric∑N
i=1 dx

2
i − dt2. Let ei, i = 1, . . . , N , denote the natural basis of RN . Choose eN+1 such

that

〈eN+1, ei〉 =

{
−1 if i = N + 1,
0 if i ∈ {1, . . . , N},

where 〈·, ·〉 denotes the flat metric of LN+1. Then, we see that

e1, . . . , eN , feN+1

are the natural basis of M. Let

g∗ = −dt2 +
dx2

f 2
.

Clearly, g∗ = g/f 2 is a conformal metric of g. Correspondingly, we useM∗ to denote the
N + 1-dimensional product manifold I × Ω with the new Lorentzian metric g∗. Clearly,

e1/f, . . . , eN/f, eN+1

6
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are the natural basis ofM∗. From now on, we use a superscript ∗ the geometric quantities
to indicate which are related to the metric g∗.

Assume that u ∈ C2(Ω) and let M = {(x, u(x)) : x ∈ Ω}. Then we have coordinate
tangent vectors Xi = ei + fuieN+1 and X∗i = ei/f + uieN+1, where ui = ∇iu = ∂u/∂xi,
i = 1, . . . , N . Then, the induced metric on M under the metric g is

gij = 〈Xi, Xj〉 = δij − f 2uiuj, i, j ∈ {1, . . . , N},

where δij = 1 (0) if j = i (j 6= i). Similarly, we also have that

g∗ij =
〈
X∗i , X

∗
j

〉
=

1

f 2
〈Xi, Xj〉 =

1

f 2
gij.

It follows that the inverse matrix of g∗ij is f 2gij :=
(
g∗ij
)−1

, where (gij) is the inverse
matrix of (gij).

Let υ be the upward normal to M under the metric g, normalized by 〈υ, υ〉 = −1,

υ =
(f 2∇u, 1)

f
√

1− f 2|∇u|2
.

Similarly, we choose

υ∗ =
(f 2∇u, 1)√
1− f 2|∇u|2

be the upward normal to M under the metric g∗. Obviously, one has that υ∗ = fυ.
It is well known that the second fundamental form can be calculated by

Aij =
〈
Xi,∇Xjυ

〉
, A∗ij =

〈
X∗i ,∇

∗
X∗j
υ∗
〉
,

where∇ and∇∗ are the Levi-Civita connection under g and g∗, respectively. For any point
p := (x, u(x)) ∈ M , we have that p =

∑N
i=1 xiei/f(x) + ueN+1 = (x/f, u) := (x∗, u(x))

under the metric g∗. Then, we have that

∇∗iu = ∇iu
∂xi
∂x∗i

= ∇iu(x)f(x),

where ∇iu(x) = ∂u(x)/∂xi, ∇∗iu(x) = ∂u(x)/∂x∗i . It follows that ∇∗ = f∇, ∇∗ = f∇
and div∗ = fdiv, where ∇∗ means the g∗-gradient and div∗ represents the divergence
operator corresponding to g∗. Then, using Proposition 7.35 of [22], we have that

A∗ij =
〈
X∗i ,∇

∗
X∗j
υ∗
〉

=
〈
Xi,∇X∗j

(fυ)
〉

= f
〈
Xi,∇X∗j

υ
〉

+
〈
Xi, υ∇X∗j

f
〉

= f
〈
Xi,∇X∗j

υ
〉

= f
〈
Xi,∇Xj/fυ

〉
=
〈
Xi,∇Xjυ

〉
= Aij.

The mean curvature of M associated to g is

H =

∑N
i,j=1 g

ijAij

N
.
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Then, related to g∗, we have that

NH∗ =
N∑

i,j=1

(
g∗ij
)−1

A∗ij = f 2

N∑
i,j=1

gijAij = Nf 2H. (2.1)

On the other hand, we have known that

NH∗ = div∗

 ∇∗u√
1− |∇∗u|∗2

 ,

where |∇∗u|∗2 = g∗ (∇∗u,∇∗u). Noting the fact of 1− |∇∗u|∗2 = 1/f 2 − |∇u|2, by some
elementary calculations, we obtain that

NH∗ = div∗

 ∇∗u√
1− |∇∗u|∗2

 = fdiv

 f 2(x)∇u√
1− f 2(x) |∇u|2

 .

Therefore, in view of the relation (2.1), we reach that

div

 f 2(x)∇u√
1− f 2(x) |∇u|2

 = Nf(x)H,

which is equivalent to (1.1).
Another way to derive (1.1) is to obtain it as the Euler-Lagrange equation of a vari-

ational problem. The metric g can be rewritten by

ds2 = ψ(x)
(
−dt2 + gij(x)dxidxj

)
, i, j ∈ {1, . . . , N},

where ψ(x) = f 2(x) and

gij(t) =

{ 1
f2(x)

if i = j,

0 if i 6= j.

Let gij = (gij)
−1. Consider the functional

J(η) =

∫
Ω

(
1− |∇η|2

)1/2
g̃1/2(x)ψn/2(x) dx+N

∫
Ω

(∫ η

0

H(x, t)ψ1/2(x) dt

)
g̃1/2(x) dx

in {
η ∈ H1,∞(Ω) : η = 0 on ∂Ω and |∇η| ≤ 1 a.e. in Ω

}
,

where

|∇η|2 =
N∑

i,j=1

gij(x)∇iη∇jη

and

g̃ = det (gij) =
1

f 2N(x)
.

Next we use the summation convention that repeats indices from 1 to N . The corre-
sponding Euler-Lagrange equation for a spacelike solution u looks like

1

g̃1/2

∂

∂xi
(
g̃1/2υgijDju

)
−υ

2

∂gij

∂t
DiuDju+

gij

2υ

∂gij
∂t

+
N

2υ

∂

∂t
lnψ+

N

2
υDi lnψg

ijDju = N
√
ψH,

(2.2)

8
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where Diu = ∂u/∂xi and

υ =

(
1−

N∑
i,j=1

gij(x)Diu ·Dju

)−1/2

=
(
1− f 2(x)|∇u|2

)−1/2
.

From (2.2), we have that

NfH = fNdiv

(
1

fN
f 2∇u√

1− f 2|∇u|2

)
+

Nf∇f∇u√
1− f 2|∇u|2

= div

(
f 2∇u√

1− f 2|∇u|2

)
− Nf∇f∇u√

1− f 2|∇u|2
+

Nf∇f∇u√
1− f 2|∇u|2

= div

(
f 2∇u√

1− f 2|∇u|2

)
.

We would like to point out that equation (2.2) has been derived in [17]. While, there
lost the term ψ1/2 in functional J . The last gij on the left of (2.2) is also lost in (1.24)
of [17]. So, we give the detailed derivation process here. Clearly, this small gap does not
affect other arguments and results of [17]. In particular, the global gradient estimates
[17, Theorem 2.1 and Theorem 4.1] is valid to problem (1.2).

Define the connected Lorentz ball by

KR(ξ) =
{
x ∈ Ω : xξ ⊂ Ω, l(x, ξ) < R

}
⊂ Ω, (2.3)

where xξ denotes the line segment joining x and ξ, l(x, ξ) =
√
|x− ξ|2 − |u(x)− u(ξ)|2.

By Lemma 2.1 of [1] and the global gradient estimates [17, Theorem 2.1 and Theorem
4.1], we can easily arrive the following estimate.

Corollary 2.1. Let Ω ⊂ RN be a bounded nonempty domain. Assume supΩ×Iδ |H(x, t)| ≤
Λ < +∞. Let u ∈ C2(Ω) ∩ C1

(
Ω
)

be any nontrivial spacelike solution of problem (1.2)
with λ = 1. Let ξ ∈ Ω and R > 0 be such that K2R(ξ) ⊂⊂ Ω. Then there are positive
constants α < 1/N and C depending only on N , such that

Ce

(
NΛ+ f0γ∗√

1−(γ∗)2

)2

R2+1

υα(ξ) ≥ R−N
∫
KR(ξ)

υα+1 dx+R2−N
∫
KR(ξ)

∑
(fjui + fuij)

2 dx,

where γ∗ = 1− θ and υ =
√

1− f 2(x)|∇u|2.

3 Uniqueness

In this section, we always assume that λ = 1. Recall that C0,1(Ω) is the class of locally
Lipschitz functions on Ω. Let

S =
{
w ∈ C0,1(Ω) : w = 0 on ∂Ω and f |∇w| ≤ 1 a.e. in Ω

}
.

Define the energy functional I : S → R by

I(u) =

∫
Ω

(
1−

√
1− f 2(x)|∇u|2

)
dx+N

∫
Ω

(
f(x)

∫ u

0

H(x, t) dt

)
dx.
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For any w ∈ S , as in the Introduction, we can see that |w(x)| ≤ δ for a.e. x ∈ Ω. In this
section, we always assume that H(x, t) : Ω × Iδ → R satisfies the L∞-growth condition
(1.3). So, I is uniformly bounded on S . The equicontinuity of S gives a uniformly
convergent minimizing sequence un ⇒ u ∈ S as n → +∞. Since

√
1− f 2(x)p2 is

concave with respect to p, a semi-continuity theorem of [21, Theorem 1.8.1] shows that

I(u) ≤ lim inf
n→+∞

I (un) .

It follows that u is the ground state (least energy) solution of problem (1.2). Set

A(u) :=

∫
Ω

√
1− f 2(x)|∇u|2 dx−N

∫
Ω

(
f(x)

∫ u

0

H(x, t) dt

)
dx.

Clearly, u is the ground state solution of problem (1.2) if and only if it is a maximizer of
A on S .

Moreover, we have the following uniqueness of the ground state solution.

Lemma 3.1. The ground state solution of problem (1.2) is unique if H(x, s) ≡ H(x) ∈
L∞(Ω), which is denoted by Ψ(H).

Proof. Suppose u, w are two ground state solutions of problem (1.2). By an argu-
ment similar to that of [1, Proposition 1.1], we can obtain that∫

Ω

(√
1− f 2 |∇ut|2 − utNfH(x)

)
dx = (1− t)

∫
Ω

(√
1− f 2 |∇u|2 −NufH(x)

)
dx

+t

∫
Ω

(√
1− f 2 |∇w|2 −NwfH(x)

)
dx,

where ut = u+ t(w − u). It follows that∫
Ω

√
1− f 2(x) |∇ut|2 dx = (1− t)

∫
Ω

√
1− f 2(x) |∇u|2 dx+ t

∫
Ω

√
1− f 2(x) |∇w|2 dx.

Then, the concavity of
√

1− f 2(x)p2 and u = w on ∂Ω imply that u = w in Ω.

Furthermore, by Lemma 3.1 and an argument similar to that of [1, Lemma 1.2] with
obvious changes, we have the following comparison principle for the ground state solution.

Lemma 3.2. Assume that ui, i = 1, 2, is the ground state solution of problem (1.2)
with Hi ∈ L∞(Ω) and H1(x) ≤ H2(x) for a.e. x ∈ Ω. Then, u2 ≤ u1 in Ω.

In addition, we have the following uniqueness for monotonous curvature function.

Proposition 3.1. The ground state solution of problem (1.2) in S is unique if H(x, t)
is increasing with respect to t.

Proof. Let u, w be any two ground state solutions of problem (1.2) in S . By Lemmas
3.1–3.2, we have that

0 ≤ (u− w)2 = (Ψ(H(x, u))−Ψ(H(x,w)))(u− w) ≤ 0.
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It follows that u = w in Ω.

If H is increasing with respect to t, the following lemma roughly says that the classical
solution is also the ground state solution of problem (1.2).

Lemma 3.3. If ∂Ω ∈ C2, H(x, t) is increasing with respect to t, any spacelike solu-
tion u ∈ C1

(
Ω
)
∩ C2(Ω) is also the ground state solution of problem (1.2).

Proof. For any v ∈ S , by the concavity of
√

1− f 2(x)p2 with respect to p, we have
that∫

Ω

√
1− f 2(x)|∇v|2 dx−

∫
Ω

√
1− f 2(x)|∇u|2 dx ≤

∫
Ω

f 2(x)∇u∇(u− v)√
1− f 2(x)|∇u|2

dx.

Multiplying problem (1.2) by v − u and integrating over Ω, we obtain that∫
Ω

div

(
f 2(x)∇u√

1− f 2(x)|∇u|2

)
(v − u) dx = N

∫
Ω

f(x)H(x, u)(v − u) dx.

In view of [17, Theorem 2.1 and Theorem 4.1], using integration by parts, we have that∫
Ω

f 2(x)∇u(∇u−∇v)√
1− f 2(x)|∇u|2

dx = N

∫
Ω

f(x)H(x, u)(v − u) dx.

Since H(x, t) is increasing with respect to t, we obtain that∫
Ω

(∫ v

0

H(x, t) dt−
∫ u

0

H(x, t) dt

)
dx =

∫
Ω

∫ v

u

H(x, t) dt dx

=

∫
u≤v

∫ v

u

H(x, t) dt dx

+

∫
u>v

∫ v

u

H(x, t) dt dx

≥
∫

Ω

H(x, u)(v − u) dx.

Therefore, we have that∫
Ω

√
1− f 2|∇v|2 dx−

∫
Ω

√
1− f 2|∇u|2 dx ≤ N

∫
Ω

f(x)

(∫ v

0

H(x, t) dt−
∫ u

0

H(x, t) dt

)
dx,

that is to say∫
Ω

√
1− f 2(x)|∇v|2 dx−N

∫
Ω

f(x)

∫ v

0

H(x, t) dt dx ≤
∫

Ω

√
1− f 2(x)|∇u|2 dx

−N
∫

Ω

f(x)

∫ u

0

H(x, t) dt dx.

It follows that u is a maximizer of A on S . So, u is the ground state solution of problem
(1.2).
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Using Lemma 3.3 and reasoning as that of [1, Lemma 1.3], we can obtain the follow-
ing result, which roughly says that the limit of the classical solutions is the ground state
solution of problem (1.2).

Lemma 3.4. Suppose that ∂Ω ∈ C2 and there is a sequence {uk}∞1 in C1
(
Ω
)
∩ C2(Ω)

of spacelike functions with mean curvatures Hk, Hk is measurable on Ω and supΩ |Hk| ≤
Λ < +∞, such that {uk} converges uniformly and {Hk}∞1 converges weakly,

uk ⇒ u in C0
(
Ω
)
,

Hk ⇀ H in L2 (Ω) .

Then u is weakly spacelike and is the ground state solution of problem (1.2) with mean
curvature H.

We end this section by presenting the proof of Theorem 1.1, which is a modification
of the argument given in [1, Theorem 3.6].

Proof of Theorem 1.1. For any σ ∈ [0, 1], we consider the following problem div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= Nσf(x)H(x, u) in Ω,

u = 0 on ∂Ω.
(3.1)

For every solution u ∈ C2,α
(
Ω
)

of problem (3.1), from [17, Theorem 2.1 and Theorem 4.1],
we get that there exists a positive constant θ depending on N , f , supΩ×Iδ f(x)|H(x, t)|
and Ω such that maxΩ (f(x)|∇u|) ≤ 1 − θ. Applying Theorem 13.7 of [19], we get a
priori estimate for ‖u‖C1,β(Ω) with some β ∈ (0, 1). Finally, by Theorem 11.4 of [19],

Proposition 3.1 and Lemma 3.3, we obtain the desired conclusions.

4 Existence of solutions via variational method

Define

K0 =
{
u ∈ W 1,∞(Ω) : ‖f∇u‖∞ ≤ 1, u = 0 on ∂Ω

}
.

Let Φ : C
(
Ω
)

:−→ (−∞,+∞] be defined by

Φ(u) =

{ ∫
Ω

(
1−

√
1− f 2(x)|∇u|2

)
dx if u ∈ K0,

∞ otherwise.

Clearly, Φ is convex. Moreover, as that of [4, Lemma 4], we can show that Φ is lower
semicontinuous.

In this section, we assume that H satisfies the Carathéodory conditions on Ω × Iδ
and the L∞-growth condition (1.3). So, for any u ∈ C

(
Ω
)
, the Nemytskii operator

NH(u) := H(x, u(x)) is continuous and maps the bounded sets in C
(
Ω
)

into the bounded

sets in L1(Ω). Clearly, NH(u) ∈ L∞(Ω) for any u ∈ C
(
Ω
)
. Define the functional

H(u) = N

∫
Ω

(
f(x)

∫ u

0

H(x, t) dt

)
dx

12
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on C
(
Ω
)
. Clearly, H is C1 and its derivative is given by

〈H′(u), v〉 = N

∫
Ω

f(x)NHv dx

for all u, v ∈ C
(
Ω
)
. So, I = Φ +H has the structure required by Szulkin’s critical point

theory [25]. Following the definition of [25], u ∈ K0 is critical point of I if it satisfies the
following variational inequality

Φ(v)− Φ(u) + 〈H′(u), v − u〉 ≥ 0 for all v ∈ K0.

According to [25], I is said to satisfy the (PS)-condition if {un} is a sequence contained
in K0 such that I (un)→ c ∈ R and

Φ(v)− Φ (un) + 〈H′ (un) , v − un〉 ≥ −εn ‖v − un‖∞ , ∀v ∈ K0,

where εn → 0+ as n→ +∞, then {un} possesses a convergent subsequence. By Lemma
2 of [4] and the positivity of f , we see that K0 is compact in C

(
Ω
)
. Thus, I satisfies the

(PS)-condition.

To prove Theorem 1.2, we first prove the following preliminary result.

Lemma 4.1. Assume that Ω has C2 boundary ∂Ω and h ∈ L∞(Ω). Then, the prob-
lem  −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= h in Ω,

u = 0 on ∂Ω
(4.1)

has a unique solution u ∈ W 2,p(Ω) for some p > N and there exists a positive constant
θ = θ (f, ‖h‖∞,Ω) such that maxΩ (f(x)|∇u|) ≤ 1 − θ. Moreover, if h ≥ 0 in Ω, then
u ≥ 0 in Ω and u cannot achieve a minimum in Ω unless it is the trivial solution.

Proof. The existence can be obtained from Theorem 5.1 [17]. The uniqueness can
be deduced easily from Lemmas 4.1 and 4.3. Finally, if h ≥ 0 in Ω, by virtue of Theorem
9.1 of [19], we know that u ≥ 0 in Ω. Further, using Theorem 9.6 of [19], we have that u
cannot achieve a minimum in Ω unless it is a constant.

If Ω has C2 boundary ∂Ω and h ∈ L∞(Ω), reasoning as that of Lemma 3.3, we can
show that the solution obtained in Lemma 4.1 is the unique ground state solution of
problem (4.1) in K0. Conversely, if Ω has C2 boundary ∂Ω and u is a critical point of I,
then it is also ground state solution of the following problem −div

(
f2(x)∇w√

1−f2(x)|∇w|2

)
= −NfNH(u) in Ω,

w = 0 on ∂Ω.

So, u is a strong spacelike solution of problem (1.2) with λ = 1.
The first existence result of this section is the following proposition.

Proposition 4.1. Assume that Ω has C2 boundary ∂Ω. Then, problem (1.2) with λ = 1
has a strong spacelike solution, which is also the ground state solution.
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Proof. Since H satisfies the L∞-growth condition, we can easily derive that I is bounded
from below on C

(
Ω
)
. Noting that I satisfies the (PS)-condition, by Theorem 1.7 of [25],

we obtain a critical point u0 ∈ K0 of I such that

I (u0) = inf
u∈C(Ω)

I(u).

So, u0 is a strong spacelike solution of problem (1.2) with λ = 1 and it is also the ground
state solution.

Obviously, the energy functional associated to problem (1.2) is

Iλ(u) = Φ(u) + λN

∫
Ω

(
f(x)

∫ u

0

H(x, t) dt

)
dx

on C
(
Ω
)
. Clearly, one has Iλ(0) = 0. Then, we have the following existence result.

Proposition 4.2. Besides the conditions of Proposition 4.1, we also assume that there
exists R ∈ (0, δ) such that H(x, t) < 0 for a.e. x ∈ Ω and ∀t ∈ (0, R). Then, there exists
λ∗ > 0 such that problem (1.2) has at least one nontrivial strong spacelike solution for
any λ > λ∗ which is a minimizer of Iλ.

Proof. Let x0 ∈ Ω and r ∈ (0, R) such that Br (x0) ⊂ Ω. Like [4, Theorem 2], choose
the bump function

η(x) =

{
e

r2

|x−x0|2−r2 , x ∈ Br (x0) ,
0, x ∈ Ω \Br (x0)

and define
η0(x) = min

{
r, ‖∇η‖−1f−1

M

}
η(x).

It is not difficult to verify that η0 ∈ K0 and 0 ≤ η0(x) < R in Ω. So, we have that

N

∫
Ω

(
f(x)

∫ η0

0

H(x, t) dt

)
dx < 0.

Taking

λ∗ =
−Φ (η0)

N
∫

Ω

(
f(x)

∫ η0
0
H(x, t) dt

)
dx
,

then for λ > λ∗, we have that Iλ (η0) < 0. By Proposition 4.1, we get the desired conclu-
sion.

On the basis of Proposition 4.2, we can present the proof of Theorem 1.2 via the
Mountain Pass Theorem.

Proof of Theorem 1.2. We first extend H continuously to the whole Iδ by taking
H = 0 on Ω × [−δ, 0]. And for simplicity, we’ll still use H to denote the extended func-
tion. For any fixed λ > λ∗, by Proposition 4.2, Iλ has a nontrivial minimizer eλ ∈ K0

such that Iλ (eλ) < 0. To obtain the second critical point of Iλ via the Mountain Pass
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Theorem [25, Theorem 3.2], it is sufficient to show that there exist two positive constants
α and ρ < ‖eλ‖∞ such that

Iλ(u) ≥ α for all u ∈ K0 with ‖u‖∞ = ρ. (4.2)

For any u ∈ K0, by the elementary inequality

1−
√

1− p2 ≥ p2

2

and the Poncaré inequality, we obtain that

Φ(u) ≥ λ1N

2

∫
Ω

f(x)|u|2 dx.

Since (1.4) holds, there exists σ > 0 such that

H(x, t) ≥ −λ1N

2λ
|t| for a.e. x ∈ Ω and ∀t ∈ [−σ, σ].

It follows that

λN

∫
Ω

(
f(x)

∫ u

0

H(x, t) dt

)
dx ≥ −λ1N

4

∫
Ω

f(x)|u|2 dx.

So, we obtain that

Iλ(u) ≥ λ1N

4

∫
Ω

f(x)|u|2 dx

for any u ∈ K0 with ‖u‖∞ ∈ [−σ, σ]. Letting ρ ∈ (0,min {σ, ‖eλ‖∞}), by an argument
similar to that of [4, Theorem 3], we can show that

0 < inf
u∈K0,‖u‖∞=ρ

∫
Ω

f(x)|u|2 dx := γ,

which implies (4.2) with α = (λ1Nγ) /4. Therefore, using the Mountain Pass Theorem,
we obtain a critical point uλ ∈ C

(
Ω
)

of Iλ such that α ≤ Iλ (uλ) < +∞. It follows that
uλ ∈ K0 \ {eλ} is the nontrivial solution of problem (1.2). Finally, we show that eλ and
uλ are nonnegative. In fact, for any strong spacelike solution u, setting u− = min{0, u},
multiplying the first equation of problem (1.2) by u− and integrating over Ω, we find that∫

Ω

f 2(x)|∇u−|2√
1− f 2(x)|∇u|2

dx = 0.

Hence u− ≡ 0 and u is a nonnegative solution.

Example 4.1. We consider the case of H(x, t) = −tp for any t ∈ [0, δ]. If p ∈ (0, 1],
then by Proposition 4.2 there exists at least one nontrivial nonnegative strong spacelike
solution for any λ > λ∗. If p > 1, according to Theorem 1.2, problem (1.2) possesses at
least two nontrivial nonnegative strong spacelike solutions for any λ > λ∗.
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5 Bifurcation

For any t ∈ (0, 1], we consider the following auxiliary problem −div

(
f2(x)∇u√

1−tf2(x)|∇u|2

)
= g(x) in Ω,

u = 0 on ∂Ω
(5.1)

for a given g ∈ Cα
(
Ω
)

with some α ∈ (0, 1). Setting v =
√
tu, problem (5.1) is equivalent

to  −div

(
f2(x)∇v√

1−f2(x)|∇v|2

)
=
√
tg(x) in Ω,

v = 0 on ∂Ω.
(5.2)

By Theorem 1.1, we know that problem (5.2) has a unique spacelike solution v ∈ C2,α (Ω)
which is denoted by Ψ(

√
tg). So, u = Ψ(

√
tg)/
√
t is the unique solution of problem (5.1).

We also consider the following auxiliary problem{
−div (f 2(x)∇u) = g(x) in Ω,
u = 0 on ∂Ω.

(5.3)

By Theorem 8.34 of [19], we know that problem (5.3) has a unique solution u ∈ C1,α
(
Ω
)

for some constant α ∈ (0, 1), which is denoted by Φ(g). Clearly, Φ : Cα
(
Ω
)
−→ C1,α

(
Ω
)

is continuous and linear. So, Φ : Cα
(
Ω
)
−→ C1

(
Ω
)

is completely continuous and linear.
Define

G(t, g) =

{
Ψ(
√
tg)√
t

if t ∈ (0, 1],

Φ (g) if t = 0.

Then, we have that:

Lemma 5.1. G : [0, 1]× Cα
(
Ω
)
−→ X is completely continuous.

Proof. We first show the continuity of G. For any gn, g ∈ Cα
(
Ω
)

and tn, t ∈ [0, 1]

with gn → g in Cα
(
Ω
)

and tn → t in [0, 1] as n → +∞, it is sufficient to show that
un := G (tn, gn)→ u := G(t, g) in X.

If t > 0, without loss of generality, we assume that tn > t/2 for any n ∈ N. By
Theorem 1.1, un

√
tn := vn, u

√
t := v ∈ C2,α

(
Ω
)

and ‖vn‖ ≤ 1 − θ < 1 for any n ∈ N
and some positive constant θ which is independent on n. Theorem 13.7 of [19] gives an
a priori estimate for ‖vn‖C1,α(Ω) for some α ∈ (0, 1). So, there exist w ∈ C1

(
Ω
)

and a

subsequence vnk such that vnk → w in C1
(
Ω
)

as k → +∞. From Lemma 3.4, we have
that w is the maximum point of

A(w) =

∫
Ω

(√
1− f 2(x)|∇w|2 −

√
tg(x)w

)
dx

in S . Further, Lemma 3.1 implies that w is also the unique maximum point of A. From
Lemma 3.3, we get that w = v. It follows that unk → u in X as k → +∞. Furthermore,
we claim that un → u in X as n→ +∞. Indeed, if there exist a subsequence umk of un
and ε0 > 0 such that ‖umk − u‖ ≥ ε0 for any k ∈ N, similar to the discussion above, we
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can obtain that umk contains a further subsequence umkj such that umkj → u in X as

j → +∞, which is a contradiction.
If t = 0 and there exists a subsequence tni of tn such that tni = 0, then uni =

G (tni , gni) = Φ (gni) → Φ (g) = u in X as i → +∞. So, next we assume that t = 0 and
tn > 0 for any n ∈ N. From Theorem 1.1, we know that problem (5.2) has only the trivial
solution when t = 0. Reasoning as above, we can show that vn → 0 in X as n→ +∞.

Note that un satisfies{
−
∑N

i,j=1 a
ijuij −

∑N
i=1 b

iui = gn(x) in Ω,

un = 0 on ∂Ω,
(5.4)

where

aij = δij
f 2(x)√

1− f 2(x) |∇vn|2
+

f 4∇ivn∇jvn(
1− f 2(x) |∇vn|2

)3/2
, bi =

2ffi − f 3fi |∇vn|2(
1− f 2(x) |∇vn|2

)3/2
.

Since ‖vn‖ ≤ 1− θ < 1, the above problem is a priori uniformly elliptic. Thus, Theorem
3.7 of [19] implies an a priori estimate for ‖un‖C0(Ω). Further, by Theorem 6.6 of [19], we

have that ‖un‖C2,α(Ω) ≤ C for some positive constant C independent of n. So, up to a

subsequence, there exists w ∈ C2
(
Ω
)

such that un → w in C2
(
Ω
)

as n→ +∞. Letting
n→ +∞ in (5.4), we obtain that{

−div (f 2(x)∇w) = g(x) in Ω,
w = 0 on ∂Ω.

It follows that w = Φ(g) = G(0, g) = u. Then, similarly to the case of t > 0, we obtain
that un → u in X as n→ +∞.

Next, we show the compactness of G. For any (tn, gn) ∈ [0, 1] × Cα
(
Ω
)

where gn is

bounded in Cα
(
Ω
)

for any n ∈ N, it is enough to show that {G (tn, gn)} possesses a con-
vergent subsequence. Without loss of generality, we assume that tn → t0 ∈ [0, 1]. Clearly,
G(t, ·) is compact for any t ∈ [0, 1]. So, {G (t1, gn)} has a convergent subsequence. Hence,

there exists a subsequence
{
g

(1)
n

}
of {gn} such that the diameter of

{
G
(
t1, g

(1)
n

)}
less

than 1. Similarly, there exists
{
g

(2)
n

}
⊆
{
g

(1)
n

}
such that the diameter of

{
G
(
t2, g

(2)
n

)}
less than 1/2. In general, there exists

{
g

(k)
n

}
⊆
{
g

(k−1)
n

}
such that the diameter of{

G
(
tk, g

(k)
n

)}
less than 1/k, k ≥ 3.

We claim that for any ε > 0 and g ∈ Cα
(
Ω
)
, there exists δ = δ (ε, t0) > 0 such

that ‖G (t, g)−G (t0, g)‖ < ε/3 when |t− t0| < δ with any t ∈ [0, 1]. Suppose, by
contradiction, that there exist ε0 > 0, g0 ∈ Cα

(
Ω
)

such that for any n ∈ N, existing
t′n ∈ [0, 1] with |t′n − t0| < 1/n such that

‖G (t′n, g0)−G (t0, g0)‖ ≥ ε0. (5.5)

Up to a subsequence, we have that t′n → t0 ∈ [0, 1] as n → +∞. Letting n → +∞ in
(5.5) and noting the continuity of G, we obtain that

0 = lim
n→+∞

‖G (t′n, g0)−G (t0, g0)‖ ≥ ε0,
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which is a contradiction.
Now we show that

{
G
(
tn, g

(n)
n

)}
is convergent. Obviously, there exists an N0 > 3/ε

such that |tn − t0| < δ for any n > N0. Hence, when m > n > N0, we have that∥∥G (tm, g(m)
m

)
−G

(
tn, g

(n)
n

)∥∥ <
∥∥G (tm, g(m)

m

)
−G

(
t0, g

(m)
m

)∥∥
+
∥∥G (t0, g(m)

m

)
−G

(
tn, g

(m)
m

)∥∥
+
∥∥G (tn, g(m)

m

)
−G

(
tn, g

(n)
n

)∥∥
<

ε

3
+
ε

3
+

1

n
< ε.

So,
{
G
(
tn, g

(n)
n

)}
is the Cauchy sequence. Consequently, G

(
tn, g

(n)
n

)
→ u0 for some

u0 ∈ X.

Finally, we show that G
(
t
(n)
n , g

(n)
n

)
→ u0. Obviously, there exists an N1 > 0 such

that |tn − t0| < δ,
∣∣∣t(n)
n − t0

∣∣∣ < δ and
∥∥∥G(tn, g(n)

n

)
− u0

∥∥∥ < ε/3 for any n > N1. So, when

n > N1, we have that∥∥G (t(n)
n , g(n)

n

)
− u0

∥∥ <
∥∥G (t(n)

n , g(n)
n

)
−G

(
t0, g

(n)
n

)∥∥
+
∥∥G (t0, g(n)

n

)
−G

(
tn, g

(n)
n

)∥∥
+
∥∥G (tn, g(n)

n

)
− u0

∥∥
<

ε

3
+
ε

3
+
ε

3
< ε.

Therefore, we obtain that G
(
t
(n)
n , g

(n)
n

)
→ u0 in X.

For any fixed λ, we consider the following problem −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= λf(x)u in Ω,

u = 0 on ∂Ω.
(5.6)

Obviously, problem (5.6) is equivalent to the operator equation u = Ψ(λu) := Ψλ(u). By
virtue of Lemma 5.1, we can obtain the following topological degree jumping result.

Lemma 5.2. For any r > 0, we have that

deg (I −Ψλ, Br(0), 0) =

{
1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ)

for some δ > 0, where Br(0) = {w ∈ X : ‖w‖ < r}.

Proof. Choose δ small enough such that there is no any eigenvalue of problem (1.5)
in (λ1, λ1 + δ). We claim that the Leray-Schauder degree deg (I −G(t, λ·), Br(0), 0) is
well defined for any λ ∈ (0, λ1 + δ) \ {λ1} and t ∈ [0, 1]. The claim is obvious for t = 0.
So, it is enough to show that u = G(t, λu) has no solution with ‖u‖ = r for r suf-
ficiently small and any t ∈ (0, 1]. Otherwise, there exists a sequence {un} such that
un = Ψλ

(√
tfun

)
/
√
t and ‖un‖ → 0 as n→ +∞. Let wn := un/ ‖un‖, then by an argu-

ment similar to that of Lemma 5.1, we can show that for some convenient subsequence
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wn → w as n → +∞ and w verifies problem (1.5) with ‖w‖ = 1. This implies that λ is
an eigenvalue of problem (1.5), which is a contradiction.

By the invariance of the degree under homotopies and Lemma 5.1, we obtain that

deg (I −Ψλ, Br(0), 0) = deg (I −G(1, λ·), Br(0), 0)

= deg (I −G(0, λ·), Br(0), 0) = deg (I − λΦ, Br(0), 0) .

By Theorem 8.10 of [15], we have that

deg (I − λΦ, Br(0), 0) =

{
1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ) ,

which implies the desired conclusion.

Now we present the proof of Theorem 1.3.

Proof of Theorem 1.3. (a) Let ξ : Ω× [0, δ]→ R be such that

−NH(x, s) = s+ ξ(x, s)

with

lim
s→0+

ξ(x, s)

s
= 0

uniformly for x ∈ Ω. Then, problem (1.2) is equivalent to −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= λf(x)u+ λf(x)ξ(x, u) in Ω,

u = 0 on ∂Ω.
(5.7)

Define

F (λ, u) = λf(x)u+ λf(x)ξ(x, u) + div

(
f 2(x)∇u√

1− f 2(x)|∇u|2

)
for any (λ, u) ∈ R×X. Then, by some simple calculations, we have that

Fu(λ, 0)v = lim
t→0

F (λ, tv)

t
= λf(x)v + div(f 2(x)∇v).

It follows that if (µ, 0) is a bifurcation point of problem (5.7), then µ is an eigenvalue of
problem (1.5).

Consider the following problem −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= λf(x)u+ λsf(x)ξ(x, u) in Ω,

u = 0 on ∂Ω
(5.8)

for any s ∈ [0, 1]. Clearly, problem (5.8) is equivalent to

u = Ψ (λf(x)u+ λsf(x)ξ(x, u)) := Fλ(s, u).

In view of Lemma 5.1, Fλ : [0, 1] × X −→ X is completely continuous. In particular,
Hλ := Fλ(1, ·) : X → X is completely continuous.
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Let
ξ̃(x,w) = max

0≤s≤w
|ξ(x, s)| for any x ∈ Ω.

Then, ξ̃ is nondecreasing with respect to w and

lim
w→0+

ξ̃(x,w)

w
= 0. (5.9)

It follows from (5.9) that∣∣∣∣ξ(x, u)

‖u‖

∣∣∣∣ ≤ ξ̃(x, u)

‖u‖
≤ ξ̃ (x, ‖u‖∞)

‖u‖
≤ δ

ξ̃(x, δ‖u‖)
δ‖u‖

→ 0 as ‖u‖ → 0 (5.10)

uniformly in x ∈ Ω.
By (5.10) and an argument similar to that of Lemma 5.2 with obvious changes, we

can show that the Leray-Schauder degree deg (I − Fλ(s, ·), Br(0), 0) is well defined for
λ ∈ (0, λ1 + δ) \ {λ1}. By the invariance of the degree under homotopies, we have that

deg (I −Hλ, Br(0), 0) = deg (I − Fλ(1, ·), Br(0), 0) = deg (I − Fλ(0, ·), Br(0), 0)

= deg (I −Ψλ, Br(0), 0) .

From Lemma 5.2, we obtain that

deg (I −Hλ, Br(0), 0) =

{
1 if λ ∈ (0, λ1) ,
−1 if λ ∈ (λ1, λ1 + δ) .

By the global bifurcation theorem of [23], there exists a continuum C of nontrivial
solution of problem (1.2) bifurcating from (λ1, 0) which is either unbounded or C ∩
(R \ {λ1} × {0}) 6= ∅. Since u ≡ 0 is the only solution of problem (1.2) for λ = 0 and
0 is not an eigenvalue of problem (1.5), so C ∩ ({0} ×X) = ∅. By Lemma 4.1, we have
u ≥ 0 in Ω for any (λ, u) ∈ C .

We claim that C ∩ (R \ {λ1} × {0}) = ∅. Otherwise, there exists a nontrivial solution
sequence (λn, un) ∈ C \ {(λ1, 0)} such that λn → µ and un → 0 as n → +∞. Letting
wn := un/ ‖un‖, by (5.10) and reasoning as that of Lemma 5.1, we can show that wn → w
as n→ +∞ and w verifies problem (1.5) with ‖w‖ = 1. It follows that µ = λ1, which is
a contradiction. So, C is unbounded. Moreover, using Lemma 4.1 again, we know that
u > 0 in Ω for any (λ, u) ∈ C \ {(λ1, 0)}. The fact of ‖u‖ < 1 for any fixed (λ, u) ∈ C
implies that the projection of C on R+ is unbounded.

Finally, we show the asymptotic behavior of uλ as λ→ +∞ for (λ, uλ) ∈ C \{(λ1, 0)}.
Otherwise, there exist a constant δ > 0 and (λn, un) ∈ C \ {(λ1, 0)} with λn → +∞ as
n→ +∞ such that ‖un‖2 ≤ 1− δ2 for any n ∈ N.

Our assumptions on H imply that there exists a positive positive ρ > 0 such that

−NH(x, un(x))

un(x)
≥ ρ

for any x ∈ Ω and n ∈ N. Let ϕ1 be a positive eigenfunction associated to λ1. Multiplying
the first equation of problem (1.2) by ϕ1, we obtain after integrations by parts that

λ1

δ

∫
Ω

f(x)unϕ1 dx =
1

δ

∫
Ω

f 2(x)∇un∇ϕ1 dx ≥
∫

Ω

f 2(x)∇un∇ϕ1√
1− f 2(x) |∇un|2

dx

= λn

∫
Ω

f(x)
−NH (x, un)

un
unϕ1 dx ≥ λnρ

∫
Ω

f(x)unϕ1 dx.
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It follows that λn ≤ λ1/ (δρ), which is a contradiction.
(b) For any n ∈ N, define

Hn(x, s) =


−ns, s ∈

[
0, 1

n

]
,

n
(
H
(
x, 2

n

)
+ 1
) (
s− 1

n

)
− 1, s ∈

(
1
n
, 2
n

)
,

H(x, s), s ∈
[

2
n
,+∞

)
.

Clearly, we see that limn→+∞H
n(x, s) = H(x, s) and Hn

0 = n. Consider the following
approximation problem −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= −λNf(x)Hn(x, u) in Ω,

u = 0 on ∂Ω.
(5.11)

By the conclusion of (a), there exists a sequence unbounded continua Cn of the set of
nontrivial solutions of problem (5.11) emanating from (λ1/n, 0) and joining to (+∞, 1)
such that

Cn ⊆ ((R+ × P ) ∪ {(λ1/n, 0)}) .
Taking z∗ = (0, 0), clearly, one has that z∗ ∈ lim infn→+∞ Cn. The compactness of Ψ
implies that

(
∪+∞
n=1Cn

)
∩ BR is pre-compact, where BR = {z ∈ R×X : ‖z‖ < R} for any

R > 0. By Theorem 2.1 of [10], C = lim supn→+∞ Cn is unbounded and connected such
that z∗ ∈ C and (+∞, 1) ∈ C .

For any (λ, u) ∈ C , the definition of superior limit (see [27]) shows that there exists
a sequence (λn, un) ∈ Cn such that (λn, un)→ (λ, u) as n→ +∞. Clearly, one has that

un = Ψ (λnNf(x)Hn (x, un)) .

Letting n→ +∞, in view of Lemma 5.1, we get that

u = Ψ (−λNf(x)H (x, u)) ,

which shows that u is a solution of problem (1.2). Obviously, u is nonnegative for any
(λ, u) ∈ C because un ≥ 0 in Ω. We claim that C ∩ ((0,+∞) × {0}) = ∅. Suppose, by
contradiction, that there exists µ > 0 such that (µ, 0) ∈ C . There exists N0 such that
µ > λ1/n for any n > N0, which implies that (µ, 0) 6∈ Cn for any n > N0. We then have
that (µ, 0) 6∈ C , which is impossible. Therefore, by virtue of Lemma 4.1, we have that
u > 0 in Ω for any (λ, u) ∈ C \ {(0, 0)}.

(c) For any n ∈ N, define

Hn(x, s) =


− 1
n
s, s ∈

[
0, 1

n

]
,(

H
(
x, 2

n

)
+ 1

n2

)
n
(
s− 1

n

)
− 1

n2 , s ∈
(

1
n
, 2
n

)
,

H(x, s), s ∈
[

2
n
,+∞

)
.

Next, we consider the following problem −div

(
f2(x)∇u√

1−f2(x)|∇u|2

)
= −λNf(x)Hn(x, u) in Ω,

u = 0 on ∂Ω.
(5.12)

It is easy to see that limn→+∞Hn(x, s) = H(x, s) and

lim
s→0+

Hn(x, s)

s
=

1

n
uniformly for x ∈ Ω.
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By the conclusion of (a), there exists a sequence unbounded continua Cn of positive
solutions set of problem (5.12) in R+ × X emanating from (λ1n, 0) for any n ∈ N and
joining to (+∞, 1) := z∗.

Taking z∗ = (+∞, 0), clearly, we have that z∗ ∈ lim infn→+∞ Cn with ‖z∗‖R×X = +∞.
Let

S = {(+∞, u) : 0 < ‖u‖ < 1} .

For fixed n ∈ N, we claim that Cn∩S = ∅. Suppose, by contradiction, that there exists a
sequence (λm, um) ∈ Cn such that (λm, um)→ (+∞, u∗) ∈ S with ‖u∗‖ ∈ (0, 1). Then, as
that of (a), we obtain that λm ≤ cn for some positive constant cn, which is a contradiction.
It follows that

(
∪+∞
n=1Cn

)
∩ S = ∪+∞

n=1 (Cn ∩ S) = ∅. Letting C = lim supn→+∞ Cn, since
C ⊆ ∪+∞

n=1Cn, we have that C ∩ S = ∅. And then we get that C ∩ {∞} = {z∗, z∗}.
Now, we show that C \ {∞} 6= ∅. It is enough to show that the projection of C

on R is nonempty. From the argument of (a), we have known that Cn has unbounded
projection on R for any fixed n ∈ N. By Proposition 2 of [11], for any fixed σ > 0 there
exists an N1 > 0 such that for every n > N1, Cn ⊂ Vσ (C ), where Vσ (C ) denotes the
σ-neighborhood of C in R×X. It follows that

(λ1n,+∞) ⊆ prR (Cn) ⊆ prR (Vσ (C )) .

So, we have that (nλ1 + σ,+∞) ⊆ prR (C ), which implies C \ {∞} 6= ∅. Using Lemma
3.1 of [13], we obtain that C is connected. By an argument similar to that of (b), we can
show that C ∩ ([0,+∞)× {0}) = ∅ and u is a positive solution of problem (1.2) for any
(λ, u) ∈ C .

Finally, we show a result concerning the nonexistence of positive solution.

Theorem 5.1. Assume that supΩ×Iδ |H(x, t)| ≤ Λ < +∞ and there exists a positive
constant % such that

−NH(x, s)

s
≤ %

for any s ∈ Iδ \ {0} and a.e. x ∈ Ω. Then there exists %∗ > 0 such that problem (1.2)
has no any positive classical solution for λ ∈ (0, %∗).

Proof. Assume that u is a positive classical solution of problem (1.2) with some λ > 0.
Multiplying the first equation of problem (1.2) by u, in view of [17, Theorem 2.1 and
Theorem 4.1], by integrating by parts we obtain that∫

Ω

f 2(x) |∇u|2 dx ≤
∫

Ω

f 2(x) |∇u|2√
1− f 2(x)|∇u|2

dx = λ

∫
Ω

f(x)
−NH(x, u)

u
u2 dx

≤ λ%

∫
Ω

f(x)u2 dx ≤ λ%

λ1

∫
Ω

f 2(x) |∇u|2 dx,

which follows that λ ≥ λ1/%.

6 Proofs of Theorems 1.4–1.5
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Now, we present the proofs of Theorems 1.4–1.5. Here, we borrowed some ideas of [1,
Theorem 4.1].

Proof of Theorem 1.4. By Lemma 3.4, there exists a sequence {uk}∞1 in C1
(
Ω
)
∩

C2(Ω) of spacelike functions with mean curvatures Hk, Hk is measurable on Ω × R and
supΩ×R |Hk| ≤ Λ < +∞, such that {uk} converges uniformly and {Hk}∞1 converges
weakly,

uk ⇒ u0 in C0
(
Ω
)
,

Hk (x, uk(x)) ⇀ H(x, u(x)) in L2 (Ω) .

Hence, the desired conclusion can be obtained from [17, Theorem 3.1] immediately.

Proof of Theorem 1.5. By mollification, we can construct C2,α approximants Ωk,
ψk such that

Ωk ⊂ Ω, dist (Ωk, ∂Ω) ≤ 1/k,

sup
Ωk

|∇ψk| ≤ 1− θk for some θk > 0,

sup
Ωk

|ψ − ψk| ≤ 1/k.

Meantime, choose Hk ∈ C0,α
(
Ω× R

)
such that Hk → H in L2 (Ω× [−a, a]) for every

a > 0. By Theorem 1.1, we have a strictly spacelike solution u(k) ∈ C2,α
(
Ωk

)
to the

problem on Ωk withHk and ψk, where (k) denotes a superscript. Passing to a subsequence,
we find a weakly spacelike w ∈ C0,1

(
Ω
)

such that u(k) ⇒ w and supΩk

∣∣u(k) − w
∣∣ ≤ 1/k.

We could rearrange w such that it identically equal to u.
Let f (x) |∇u (x)| = |∇v(x)| and f (x)

∣∣∇u(k) (x)
∣∣ = |∇v(k)(x)|. Then, we can see that

v(k) ⇒ v in C0,1
(
Ω
)
.

Let l(x, y) be the Lorentz distance function with respect to v,

l(x, y) =
√
|x− y|2 − (v(x)− v(y))2, x, y ∈ Ω.

And let KR(x) be the projected Lorentz ball defined by (2.3). The corresponding objects

with respect to v(k) will be denoted by l(k) and K
(k)
R .

For any fixed x0 ∈ Ω, if there exists y ∈ ∂Ω such that l (x0, y) = 0 and x0y ⊂ Ω, noting
that l is increasing on outward rays from x0 (see [1, page 138]), Theorem 1.4 shows that
this segment extends to the boundary ∂Ω. Another point of intersection is denoted by x.
So, we have that f |∇u| ≡ 1 on xy, which implies that xy ∈ K and x0 ∈ K. Therefore,
if x0 6∈ K, one has that l (x0, ∂Ω) > 0. Hence, there is R > 0 such that K4R (x0) ⊂⊂ Ω.
From the argument of [1, Theorem 4.1], we have known that there is r ∈ (0, R/4) and k1

such that for |x− x0| < r and k > k1, KR/r (x0) ⊂ Kk
R/2(x) ⊂ KR (x0) and Kk

2R(x) ⊂⊂ Ω.

Applying Corollary 2.1 to v(k), using these inclusions and noting that Br (x0) ⊂ Kr (x0),
we obtain that∫

K
(k)
R/2

(x)

N∑
i,j=1

(
v

(k)
ij

)2

dx ≤ c
(
N,Λ, R, f 0,Ω

) (
υ(k)(x)

)α
, x ∈ Br = Br (x0) , (6.1)
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∫
Br(x0)

N∑
i,j=1

(
v

(k)
ij

)2

dx ≤ c
(
N,Λ, R, f 0,Ω

)
, (6.2)

‖υ(k)‖L2(Br) ≤ ‖υ(k)‖L2(KR/4(x0)) ≤ c
(
N,Λ, R, f 0,Ω

) (
υ(k)(x)

)α
, x ∈ Br. (6.3)

The estimate (6.2) shows that
{
v(k)
}

is bounded in the space W 2,2 (Br). So, by Rellich’s
theorem and the weak compactness of bounded sets in W 2,2, there is a subsequence
converging strongly in W 1,2 (Br) and weakly in W 2,2 (Br). Up to a subsequence, we
obtain that

v(k) → v in W 1,2 (Br) , (6.4)

v(k) ⇀ v in W 2,2 (Br) . (6.5)

Obviously, (6.4) implies that ‖υ(k)‖L2(Br) → ‖υ‖L2(Br). If ‖υ‖L2(Br) = 0, (6.1) and (6.5)
show that

‖vij‖L2(Br) ≤ lim inf
k→∞

‖v(k)
ij ‖L2(Br) ≤ c lim inf

k→∞

(
inf
Br

(
υ(k)
)α)

= 0.

It follows that ∇v is constant in Br. Since |∇v| = 1 a.e. in Br, v|Br is linear with slope
1. Using Theorem 1.4 as before, we have that l (x0, ∂Ω) = 0, which is a contradiction.
Thus, ‖υ‖L2(Br) > 0, and then (6.3) indicates that υ(k)(x) ≥ c > 0 for all x ∈ Br and
k ≥ k1, for some constant c. Hence, one has that

|∇v|2 ≤ 1− c2 < 1, ∀x ∈ Br.

Applying [19, Theorem 8.24] to ∇v on Br, we have that ∇v is Hölder continuous in
a smooth neighbourhood Ω0 ⊂ Br of x0. So, one has that v ∈ C1,β

(
Ω0

)
for some

β > 0. By [19, Theorem 11.4] and the arbitrary of x0, for some α ∈ (0, 1), we have that
u ∈ C2,α(Ω \K) is strictly spacelike on Ω \K and satisfies the first equation of problem
(1.6) on Ω \K.

Proceed exactly as in Theorem 1.5, we can show the following corollary.

Corollary 6.1. Suppose that ϕ : ∂Ω → R is bounded. Let H ∈ C0,α (Ω× R) with
supΩ×R |H| ≤ Λ < +∞. Then there is a strictly spacelike u ∈ C2,α(Ω) satisfying (1.6) if
and only if there is a spacelike function ψ : Ω→ R with ψ = ϕ on ∂Ω.

7 Radial symmetry of positive solutions

The aim of this section is to provide sufficient conditions on the prescription function
to ensure that any eventual positive solution of problem (1.2) must be radially symmetric
when Ω is the unit ball B. More precisely, we shall use the moving plane method (see
[6, 18]) to show the following result.

Theorem 7.1. Assume that f is radially symmetric and decreasing on (0, 1). Also
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assume that H is radially symmetric, increasing on (0, 1) with respect to the first variable
and satisfies the following uniformly Lipschitz condition in the second variable

|H(x, p)−H(x, q)| ≤ C0|p− q|

for any x ∈ B and some constant C0. Then, any positive solution u of problem (1.2) with
∇f · ∇u ≥ 0 in B is radially symmetric and monotone decreasing about the origin.

Proof. For convenience, we assume Nλ = 1. Let u be any positive solution of problem
(1.2). By [17, Theorem 2.1 and Theorem 4.1], we know that f |∇u| ≤ θ < 1 on B. We
define the truncated function

ϕ(t) =


1√
1−t if t ∈ [0, θ2] ,

α(t) if t ∈ (θ2, 1) ,
c if t ≥ 1,

where the function α and the constant c make ϕ ∈ C1 (R+) increasing and convex, where
R+ = [0,+∞).

Then, consider the following problem{
− 1
f(x)

div (ϕ (f 2|∇u|2) f 2∇u) = −H(x, u) in B,

u = 0 on ∂B.
(7.1)

Set

F
(
x,∇u,D2u

)
:= div

(
ϕ
(
f 2|∇u|2

)
f 2∇u

) 1

f(x)
.

It is not difficult to show that

F
(
x,∇u,D2u

)
=

N∑
i,j=1

f ij(x)uij + 2f 2ϕ′
(
f 2|∇u|2

)
|∇u|2∇f∇u+ 2ϕ

(
f 2|∇u|2

)
∇f∇u,

where
f ij(x) = ϕ

(
f 2|∇u|2

)
fδij + 2f 3ϕ′

(
f 2|∇u|2

)
uiuj.

Observe that both ϕ and ϕ′ are bounded on R+. It is easy to see that there exist two
constants m and M such that

0 < m|ξ|2 ≤
N∑

i,j=1

f ij(x)ξiξj ≤M |ξ|2 (7.2)

for all ξ ∈ RN \ {0}. Hence, F is uniformly elliptic.
Without loss of generality, we choose a direction to be the x1-direction and let

Tλ =
{
x ∈ RN : x1 = λ

}
, Σλ = {x ∈ B : x1 < λ} .

For any fixed z ∈ RN−1 with (0, z) ∈ B, define

lz = {(x1, z) : x1 ∈ (−1, 1)} .

Clearly, lz ⊂ B. Then, the reflection of x = (x1, z) ∈ lz ∩ Σλ about Tλ is

xλ = (2λ− x1, z) .
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Let uλ(x) = u
(
xλ
)

and wλ(x) = uλ(x)−u(x). Then, it is easy to see that uλ also satisfies
problem (7.1). Note that uiuj = u2

1 ≥ 0 on lz ∩ Σλ. Further, due to the monotone of f
and ∇f · ∇u ≥ 0 in B, we have that

H
(
xλ, uλ

)
−H(x, u) = −

(
F
(
x,∇u,D2u

)
− F

(
xλ,∇uλ, D2uλ

))
≥ −

(
F
(
x,∇u,D2u

)
− F

(
x,∇uλ, D2uλ

))
= −

∫ 1

0

d

dτ
F
(
x,∇u,D2

(
τu+ (1− τ)uλ

))
dτ

=
N∑

i,j=1

(∫ 1

0

Fzij dτ

)
wλij

=
N∑

i,j=1

f ij(x)wλij,

where zij = τuij + (1− τ)uλij. It follows from the monotone of H with respect to x that

−
N∑

i,j=1

f ij(x)wλij +H
(
x, uλ

)
−H(x, u) ≥ 0.

Let

c(x) = c(x, λ) =

{
H(x,uλ)−H(x,u)

wλ
if wλ 6= 0,

0 if wλ = 0.

The Lipschitz condition implies that |c(x)| ≤ C0. Apparently, for λ close to −1, we have
that

wλ(x) ≥ 0, x ∈ ∂ (lz ∩ Σλ) .

By Corollary of [18], in view of (7.2), we obtain that

wλ(x) ≥ 0, x ∈ lz ∩ Σλ

for λ near −1. By the arbitrary of z, we reach that

wλ(x) ≥ 0, x ∈ Σλ

Define

λ = sup
{
λ : wλ(x) ≥ 0,∀x ∈ Σλ

}
.

We claim that λ ≥ 0. Otherwise, the reflection of ∂Σλ∩∂B falls inside B. It follows that

wλ(x) ≥ 0, 6≡ 0 on ∂Σλ.

By the strong maximum principle [20, Theorem 2.7], we have that

wλ(x) > 0 in Σλ. (7.3)
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Let d be the maximum width of the narrow regions so that we can employ Corollary of
[18]. Set δ =: min

{
−λ, d/2

}
. We investigate function wλ+δ(x) on the narrow region (see

Figure 2)

Ωδ = Σλ+δ ∩
{
x : x1 > λ− d

2

}
.

We have shown that

−
N∑

i,j=1

f ij(x)wλ+δ
ij + c

(
x, λ+ δ

)
wλ+δ ≥ 0 in lz ∩ Ωδ.

Furthermore, we claim that

wλ+δ ≥ 0 on ∂Ωδ.

In particular, this claim follows that

wλ+δ ≥ 0 on ∂ (lz ∩ Ωδ) .

First, because λ + δ ≤ 0, the reflection of the two curved parts of ∂Ωδ falls inside B.
Hence, we have wλ+δ ≥ 0 on ∂Ωδ ∩ ∂B. Obviously, we have wλ+δ = 0 on the flat part
of ∂Ωδ where λ1 = λ + δ. So, it suffices to show that wλ+δ ≥ 0 on the flat part of ∂Ωδ

where λ1 = λ− δ/2. while, inequality (7.3) indicates that there exists a positive constant
c such that

wλ(x) ≥ c, x ∈ Σλ−d/2.

By the continuity of wλ with respect to λ, we have that

wλ+δ(x) ≥ 0, x ∈ Σλ−d/2

for sufficiently small δ.

Figure 2: Narrow region Ωδ.
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Now we can apply the narrow region principle of [18, Corollary] to derive that

wλ+δ(x) ≥ 0, x ∈ lz ∩ Ωδ.

By the arbitrary of z, we have that

wλ+δ(x) ≥ 0, x ∈ Ωδ.

Thus,

wλ+δ(x) ≥ 0, x ∈ Σλ+δ,

which contradicts the definition of λ. Therefore, we verify that λ ≥ 0. It follows that

u (x1, x
′) ≤ u (−x1, x

′) , ∀x1 ≤ 0. (7.4)

Similarly, moving the plane from near x1 = 1 to the left, we can derive

u (−x1, x
′) ≥ u (x1, x

′) , ∀x1 ≥ 0.

It follows that

u (x1, x
′) ≥ u (−x1, x

′) , ∀x1 ≤ 0. (7.5)

Combining (7.4) and (7.5), we obtain that u is symmetric about the plane T0. The ar-
bitrariness of the x1-direction leads to the radial symmetry of u about the origin. The
monotonicity comes directly from the above argument.

We would like to point out that the conclusion of Theorem 7.1 cannot be deduced
from Theorem 2.1′ or Corollary 1 of [18] because F does not satisfy the condition (c) or
(c′2) when f(x) is not a constant. Here we overcome this difficulty by introducing the line
lz.
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