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o VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
7
I’y ABSTRACT. In this paper, we consider extensions of linear Volterra integro-differential equations of the
— first and the second kinds and apply the Kamal transform to solve their analytical solutions on convolution
9 type kernels. We also present numerical solutions of the extensions irrelevant to convolution type kernels
10 using Touchard polynomials.
11
12
13 1. Introduction
14

;5 In this research, we consider the following linear Volterra integro-differential equations (or only
.6 VIDEs) with initial conditions. The linear VIDEs of the first kind are given by

!/

7y /Xk1 (e, )™ (1)t = F(x) +/xk2(x,t)u(t)dt,u(0) — a0, (0) = ay, ™ D (0) = @y,
w0 o 0

19 when ky (x,) # ky(x,1) or n # 0 and the linear VIDEs of the second kind are expressed by
20

2 (2) u" (x) = g(x) + /x’% (x,1)u(t)dt,u(0) = bo, ' (0) = by .oyt (0) = by,
22 0

ZE where ki (x,1),ky(x,t) and k3(x,7) are called kernels of the linear VIDEs.

24 The Kamal transform of a function F'(x) is defined by
25

26 K{F(x)} = /OOOF(x)ex/de =G(v),x >0,

27
2E where K is called the Kamal transform operator. F(x) is said to be the inverse Kamal transform of

29 G(v), denoted by F (x) = K~ {G(v) }, where K~ ! is called the inverse Kamal transform operator. Let

%0 us recall some useful results in [3] that shall be used in the next hereinafter.
31 .
— 1. The Kamal transform of some functions:

33[({1}:\/, K{x}:vz, K{xz}:2!v3,
33

37 n+1 ax v . avZ

7K{x"}:n!v ,n>0, K{e }: , K{smax}:ﬁ,

35 1—av 1 +a*v

om 1% . av2 1%
BEK{COSQX}:ﬁ, K{ Slnhd.X}:ﬁ, K{COShClX}:ﬁ.

37 14+a%v 1—a*v 1—a*v

38

39 . . . . . .
—  The author would like to thank the academic referees for the careful reading and helpful comments for improving this
40 paper.
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2.1 K{F(x)} — G(v) then K{F’(x)} - ‘I}G(v) —F(0).
318 K{F ()} = G0) then K{F' (1)} = ‘}ZG@) - ‘I}F(O) _F(0).
1 1

.IfK{F(x)} —G(v )thenK{ FO)(x )} - iG( V)= F(0) = 5 F (0) == F 1 (0),

4
5. The cor_ivolutzon of two functions F(x) and H(x), denoted by F(x) * H(x), is defined by F(x) *
H(x) = /0 F(O)H(x— 1)di — /0 Flx—0H@dr. 1f K{F(x)} = G(v) and K{H(x)} = 1(v) then
K{F( )% H (x )} - K{F(x)}K{H(x)} = GWI).
6.
K
K

\@\m\*\m\m\ﬂw\w\*

—_
o

The inverse Kamal transform of some functions:

RSt Kk} =x, 4 3}_21' 2

K~
—1J n+1 1, -1 v ax 1 v? sinax
{v }:—x,nZO, K { }:e , K { } ,
n! 1 —av 1 +a?v? a

2 .
-1 v _ -1 v __ sinhax . v B
{m}—“’m K {1—a2v2}_ . K {m}—wsh%

E The Touchard polynomial is a polynomial function given by
18 o
= o\ , (o o!
T = =
o alx) é(k)x <k> Ki(a—k)!

o1 where o and k are called the degree and the index of the Touchard polynomial, respectively. Some
oo important results on the Touchard polynomials that shall be referred in the next as the following:

O 1L Ty(x) = ;i[f <Z>xk} -y <Z>kxkl,

—_ | =
m‘—-‘

—_
w

—
»

>

-
(o]

= 2.7y k[/i() 2] k}ﬁ;(g)ﬂk—l)xk—z
370 = G [kZ() )= é(i‘)k(k—l)(k—m“,
;4‘ Ta(s) = Zn Lio (Z)xk} :é@)k(k—1)(k—2)-~(k—n+1)x"",ns .

32 Volterra integro-differential equations are typically mathematical models in many areas of sci-
33 ence and engineering. Solutions of these equations play vital roles in a number of processes and
34 phenomena such as nuclear reactors, circuit analyses, wave propagation, glass forming processes, nano-
35 hydrodynamics, visco elasticity, biological populations, etc. Therefore, there are many researchers
36 who have been interested in the VIDEs and founded numerous methods to solve the analytical and
37 numerical solutions of VIDEs up to the present as follows. Estimated solutions of nonlinear VIDEs
38 of fractional order were investigated applying the Laplace transform and Adomian polynomials by
39 C. Yang and J. Hou in 2013, see [1]. Moreover, the Legendre polynomial approximation was used
40 to find numerical solutions of nonlinear VIDEs of the second kind by M. Gachpazan, M. Erfanian
41 and H. Beiglo in 2014, see [2]. In addition, analytical solutions of linear VIDEs of the second kind
42 were solved using the Kamal transform by S. Aggarwal and A.R. Gupta in 2019, see [3]. The modified
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1 Adomian decomposition method was utilized to explain exact solutions of linear VIDEs of the second

2 kind by J.O. Okai, D.O. Ilejimi and M. Ibrahim in 2019, see [4]. Furthermore, approximate solutions of
‘3 nonlinear VIDEs involving delay were found taking a new higher order method by A. Jhinga, J. Patade
‘4 and V.D. Gejji in 2020, see [5]. Other than those findings, the Sadik transform was applied to figure
‘5 out exact solutions of the first kind VIDEs on convolution type kernels by S. Aggarwal, A. Vyas and
‘6 S.D. Sharma in 2020, see [6]. Numerical solutions of linear VIDEs were estimated using Laguerre and
7 Touchard polynomials by J.T. Abdullah and H.S. Ali in 2020, see [7]. Sofar, some asymtotic behavior
‘g of exact solutions of the nonlinear VIDEs has been studied by M. Cakir, B. Gunes and H. Duru in 2021,
9 see [8]. The quasilinearization technique to different scheme also has been applied to solve estimated
10 solutions of VIDEs in [8]. Recently, the asymtotic behavior of the analytical solutions of the singularly
11 perturbed nonlinear VIDEs has been established by F. Cakir, M. Cakir and H.G. Cakir in 2022, see [9].
12 The uniform difference scheme on a Bakhvalov-Shishkin mesh points according to the boundary layer
13 conditions has been introduced to find numerical solutions of VIDEs as well in [9]. Exact solutions of
14 the Faltung type VIDE:s for the first kind have been solved applying Kushare transform by D.P. Patil,
15 P.S. Nikam and P.D. Shinde in 2022, see [10].
16 In this study, we extend linear Volterra integro-differential equations of the first and the second
17 kinds. Then, we use the Kamal transform to solve exact solutions of these extended equations on
18 convolution type kernels. Besides, we apply Touchard polynomials to figure out numerical solutions of
19 the extensions disconnected to convolution type kernels.

20

21 2. Analytical Solutions of Extended VIDE:s for the First Kind

22 . . : . . . : . e
o For this section, we investigate analytical solutions of an extension of linear VIDEs with initial
oy conditions (1) on convolution type kernels given by

= /xkl(x_t) ") (¢ +/ ko (x — )™ (¢)dt,
26 0
22(3) M(O):Cl(),l/t(())—al, u(n 1) )_an 1

oo When ki (x —1) # ka(x —1) or n # m. For the case m = 0, we can see [6, 10] for more vital results. In
5o this extension, we will apply the Kamal transform to figure out the problem as follows: Taking the
5; Kamal transform to (3), we have

= @ K{ /Oxkl (r— )™ (;)dt} - K{f(x)} +K{ /Oxkz(x_,)u(m) (,)dt}.

fal Working a convolution of the Kamal tranform on (4), we then obtain
35

% (5) K{kl (x)}K{u<"> (x)} - K{ f(x)} +K{k2(x)}K{u(m) (x)}.

37
3s Using the Kamal transform of derivatives on (5) with initial conditions, we also get

i) [} - 2 e
. - (g0} ot} [} -2 2]
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and we receive
[K{kl (x)} - v”*mK{kz(x)H K{u(x)} = K{kl (x)} (aov—l—alvz +eee +an_1v”>
+v”K{f(x)} —K{kz(x)} (aov”*m+l +ap/ —l—am_lv”).

pplying the inverse Kamal transform on (6), we have the solution of initial-value problem (3) as the

following.
P k{ia (o}
W= K {K{kl(x)}v”ml({kz(x)}<
. { vE{f(x)} }
K{kl (x)} - v”‘mK{kz(x)}
K{kz(x)}

-1
17 : {K{kl (x)} - v”*mK{kz(x)}

18

>
N

apv+apv* + - +an_1v”> }

I
[a[=[a[s][=]3]e]e|~]o]a]s|e]|r]|-

-
(o]

(aovn—m+1 +a1vn—m+2+ . —|—am,1v"> }

n

x 1
;% Example 2.1. Solve the Volterra integro-differential problem: / [1 —(x—1)+ E(x - t)z] u (t)dt =
0

P | Xl " ’ "
21 fx2+/ (5 G=02]u" @)t u(0) = 1,6 (0) =2, (0) = 1.
22 2 0o L2

23 Solution. First, applying the Kamal transform to the problem, we have

= x 1 1 xrl ’

> K{/ 1= =)+ S =P ]u" (ar} =k {52} +K{/ S —02]u war}.
oo 0 2 2 0o L2

o7 Then, using a convolution of the Kamal transform, we immediately get

: O O (S N )

80 After that, taking the Kamal transform of derivatives, we obtain
31

o 1 1 1 " 1 1 /
2,3 3,.3

22 (v—v"+v7) [7\/3 K {u(x)} — —vzu(O) —u (0)—u (0)} =V +v [—VZK {u(x)} ——u(0)—u (0)}

34 and using initial conditions, we also have

- =2 ) [k a0} + =2 1] =[x {uw )} + - 2]
v—v +v7) | =K u(x S ———1|=v+v | sKJu(x -—2|.

% V3 vy V2 v

Z% Next, rearranging the equation, we certainly receive

39 (v—v2+v3)K{u(x)}—v4K{u(x)}:(v—v2+v3)(—v+2v2+v3)+v6+v5—2v6

40

4 d tK{ ()} V43—t 3 -2 0t

— and we ge u(x) p = =

42 . v—12 43—yt (1—v)(1+v?)
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Finally, taking the inverse Kamal transform of the equation, we suddenly have an analytical solution

V3 =3t }

u) = Kk EDEED)
2 3

V=V _ v V3 _ —2zV Vz— V3 V4
K_l{(l—v)(1+v2)}+K 1{(1—\/;1—{—\}2)}—'—[( 4 2(1+_2v)(12+v2+)2 }
2

KK ) ) =sine e -2

Xl m 1 2

10 Example 2.2. Solve the Volterra integro-differential problem: / [E(x—t)z} u (t)dt= §x3 + ZX4 +
0

11

E 5 +/0x 4100w @), u(0) = 2.4 (0) = 0,6 (0) = 2.

Slefe|~lofals|e]|r]-

14 Solution. First, applying the Kamal transform to the problem, we have

E P X 21 m drl — 1 2 K xr] Rl p
16 {/0 [E(x_f) }” (t) f}— {3‘x —|—Ex —I——x }—i— {/0 [ﬂ(x—t) }u(t) t}.
17

1s Then, using a convolution of the Kamal transform, we immediately get

o) K{Ex }K{u (x)}:K{yx ot }+K{4‘ }K{u(x)}.

21

. After that, taking the Kamal transform of derivatives, we obtain

ZE Vv [lK{ }——u —fu (0)—u”(0)} =t 20 00 P [EK{u(x)} —u(O)}
24 v3 - Vv

25 e .
— and using initial conditions, we also have
26

z; v [vl}K{u(x)} —‘}224—2} = 20 10 407 [‘I}K{u(x)} —2]

29 Next, rearranging the equation, we certainly receive
30

s K{”(x)}_V4K{”(x)}=2V—2v3+v4+2v5+v6_2v5
32

SFandwe etK{ ( )} =273 v 0 v =23t a0

aq u(x)p = _ ‘

34 g 1 -4 (1—2)(1+2)

35 Finally, taking the inverse Kamal transform of the equation, we suddenly have an exact solution

36

s = T )

39 — vi vt _1 2v— 213 1 v2—v8

% - f {( vz)(1+v>}+K {(1—v2)(1+v2)}_K {(1_v2)<1+v2>}
:; = K { VZ} { _:vz}—K_l{vZ}:sinhx+2cosx—x.
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1 3. Analytical Solutions of Extended VIDEs for the Second Kind

o In this section, we study about analytical solutions of an extension of linear VIDEs with initial
o conditions (2) on convolution type kernels expressed by

= . ,
S ) =g+ /0 s (= )™ (1)dt, u(0) = bo, 1t (0) = by, ™ D (0) = by

_” For the case m = 0, we can see [3, 4] for more comprehensive findings. In this extension, we will
8 utilize the Kamal transform to solve the problem as the following: Applying the Kamal transform to

9 (7), we get

(@8 K@)} = k{ g0} +&{ /0 k(e )l (1)t}

) K{M (x)} - K{g(x)} +K{k3 (x)}K{u<m> (%) }

;, Taking the Kamal transform of derivatives on (9) with initial conditions, we also have

18 1 bg by

: o) 2

20 1 bo b

5 —k{sw}+ K} [ x{uto} - 2% - Db
%2_and we obtain

23

o [1 —vn—’"K{k3(x)HK{u(x)} = by b2+ by

25

o (10) +v”K{g(x)} - K{k3 (x)} <b0vn_mJrl +hp Ty bm,lvn> .

. Operating the inverse Kamal transform on (10), we receive the solution of initial-value problem (7) as
*® follows.
29

30 1

a ulx) = K_l{ <b0v+b1v2+-~-+bn1v">}
31 | —pn-mg kg(x)}

32

S

- vn—mK{k3 (x)}

35

36

3Z — K—l{ K{k3(X)} (bov"_mH+blvn_m+2+”'+bmlvn>}‘
38 1_vn—mK{k3(x)}

39

x "
Li Example 3.1. Solve the Volterra integro-differential problem: u'® (x) = —32+ / 16(x—1)u (t)dt,u(0) =
— ! " n 0
42 —2,u (0) =0,u (0)=16,u (0)=0.
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Solution. First, applying the Kamal transform to the problem, we have

k{uw)} = —k{32} +k{ /0 16(c— 0)u’ (1)t }.

Then, using a convolution of the Kamal transform, we get

s
2
3
A
5 4 "
s K{u()(x)}:—K{32}+K{l6x}K{u (x)}
" After that, taking the Kamal transform of derivatives, we also have

8

B

‘;K{u(x)} - vlu(O) - vlu/(O) _ 1u”(0) —u"(0) = —32v+ 1612 [VIZK{u(x)} ~ Loy =i 0)

3 2 v

10 S . .
— and using initial conditions, we obtain
11

— 1 2 16 1 2
12 —4K{u(x)}+f3—f:—32v+16v2[—2K{u(x)}+7]
13 1% 1% 14 1% 1%
E Next, rearranging the equation, we certainly receive

s K{u(x)} - 16v4K{u(x)} = 204 16v> —320° +320°

16

17 —2v+16v° —2v+16v°
" and we get K{u(x) | = - .
o Andwe get Kyulx) p = e = T (14 47
19 Finally, taking the inverse Kamal transform of the equation, we suddenly have an analytical solution

20 —2v+16V°

: - )

21 ux) (1—42) (1 +42)

22

s _ K*I{ v+4v? }—3K*1{ v—43 }

ot (1 —4v2)(1+4v2) (1 —42)(1+42)

ZZ = K‘l{l_v4v2}—3K_l{TV4v2}:cosh2x—3cos2x.

27 . . . " 1 2 1 3 X "
2’ Example 3.2. Solve the Volterra integro-differential problem: u (x) =9+ 5% 5% + / Bu (t)dt,u(0)=
28 ) 0

2E 2,u (0) =3.

30 Solution. First, applying the Kamal transform to the problem, we have

31

—_— n 1 1 X "

32 K{u (x)}:K{9+§x2—§x3}+K{/ 3u (t)dt}.

o 0

> Then, using a convolution of the Kamal transform, we get

ar " 1 1 ”

s K{u (x)}:K{9+fx2—fx3}+K{3}K{u (x)}

36 2 2

37 After that, taking the Kamal transform of derivatives, we also have

38 1 1 b 3 .4 1 1 /

o EK{u(x)} — u(0) =1 (0) = 9v+v? = 3v* 43y L}—ZK{M(X)} —~u(0) —u (0)}
40 and using initial conditions, we obtain

4t 1 2 3 4 1 2

2 V—ZK{u(x)}—;—3:9v+v —3v +3v[ﬁK{u(x)}—;—3]
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Next, rearranging the equation, we certainly receive

1
2

e K{u(x)} - 3VK{M(X)} =204+ 3v2 4+ 9 1 -3 — 67 — 9

4

— 2v—-3 — 30

5 a ndwegetK{u( )} 4 ‘1 v =3y

5 Finally, taking the inverse Kamal transform of the equation, we suddenly have an exact solution
7

— 25 6

B u(x) = K—1{2V_3V +v’ =3y }

9 1—3v

— 5 6 2

10 1 v (Vv =3V 1 (v—=23v

o O T R e L Gy

" 1—-3v + 1-3v + 1-3v

2 e -1 5} 71{}_3x 14

5 = kM f e bk v = e a1

14

15 4. Numerical Solutions of Extended VIDEs for the First Kind

' For this section, we apply Touchard polynomials to approximate solutions of an extension of the linear
" Volterra integro-differential problem (1) on kernels, which are not convolution types, given by

18

9 / kl(x,t)u( " (t +/ ko (x,t)ut™ (t)dt,
0

_an 1

20

21 (1) u(0) =ao,u'(0) =aj,...,u”

> when ki(x,t) # ka(x,t) or n # m. The approximation using the Touchard polynomials is below:
23 ) . . )
2— Suppose that the function uq (x) is an approximate solution of (11) defined by

Z crTi(x
27

-5 Where Tj(x) are Touchard polynomials and c; are unknown constants, k = 0,1, ...,
-5 constant. Writing equation (12) as a dot product, we then have

— (12)ua =coTo(x) +c1Ti(x) + 2 Ta(x)+ - +caTy(x),mn < a,0<x<p,

> o, and B is a known

29

30

— Co

:1 (]

2 a3 na(¥) = [T(®) Ti(2) B) . Tal)]- |

31

% -0

36 Rearranging the equation (13) in a matrix formula, we also have

37 _ 4 - -
8 boo bo1 boz -+ boa €o
39 0 by bz -+ bia c
40 Ug (X) [1 x x2 X xa]- 0 0 Dby - by |,
a1 A : :
42 |0 0 O bao | | Ca |
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where b;; are known constants. Finding the derivatives of uq(x), we have as follows:

[ boo bo1 boz -+ boa o
0 b1y b1y -+ big 1

ug(x) =10 1! 2x 3x% .. ax® .| 0 0 by - by | .| 2 |,

O 0 0 baa Ca

15 [ boo bor boz - boa o
16 0 b1 bi2 -+ big 1

- "

17 e (x) = [0 02! 6x ... a(a—l)xo‘_z]- 0 0 by by |.| |,

19 0 0 0 - bua Ca

z% [ boo bor box -+ boa o
26 0 b1y bip -+ big 1

27 "

T )= [0 003! ... a(a—l)(a—z)xaﬂ. 0 0 by by |.| |,

5 O O O baa Co

% W) = [oo0o0 . ar .. a(a—l)...(a—n—kl)x“_”}-

8 [ boo bor boz -+ bog €o
. 0 by b -+ big c1
5(14) 0 0 b22 bza . (&%)

42 0 0 0 baa C(x
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Substituting the equation (14) into the equation (11), we receive

e

2 x

3 / kl(x,t){[o 00 .. .. a(a—l)...(a—nﬂ)z“—"].
— 0

4 - -

s boo bo1 boz -+ boa €0

o 0 bt bi -+ bia 1

7 0 0 b22 bza . 2 }d;

E S S :

i | 0 0 0 baa ] B Ca ]

10 X

o :f(x)+/ kz(x,t){[O 00 .. ml .. aflo—1)..(@—m+1)%™
m 0

% [ boo bo1 boa ++ boa | [ co |

o 0 b1 bia -+ big c1

g(15) 0 0 by - by |.| & }dt.

o S S S :

; | 0 0 0 baa ] B Ca ]

— S1mphfy1ng and integrating the equation (15), we then have the new equation with unknown constants
— €0,C1,...,Cq. In order to determine co, ¢y, ..., Cq, using n initial conditions and selecting x; € [0, B],i =
— 1,2,...,a —n+ 1, with substituting in the new equation, we get a system of linear algrbraic equations
> of o + 1 unknown constants. Solving this system by a program, we have the values of the unknown
— constants, that is, the numerical solution of the initial-value problem (11) is obtained.

23 . . .

ou In order to guarantee the convergence of this method, we will verify as follows. Let u(x) be an
- analytical solution of initial-value problem (11) that has derivatives of all orders at x = 0. Then the
o Taylor series of u(x) at x = 0 is defined by

27 / 1 1

28 u(x) = u(0) +u (0)x+ 5“ (0)X2+"'+ au(a)(O)xO‘ 4.

9
5o Thus, by the definition and process to find uq(x), we obtain that

3 » ., !
32 |u(x) —ug(x )|_|(a+1) (0)x +1|+|m

u(a+2) (0)xa+2| 4.

34 Here, it is sufficient to show that %xo‘ converges to 0 as &t — oo to confirm that |u(x) — uq (x)| converges

1\o+1 a 1 1 [0 .
37t00asoc—>oo Slncee( ) ga!geog%) , we get a+1(oﬁf1) Saxagz(%) . Itis easy to
o determine that T+1 ( o ) and 1 (3‘) converge to 0 as as o¢ — oo. This means that %xo‘ converges

. to 0 as & — oo to confirm the convergence.

39 Example 4.1. Approximate the solution of the linear Volterra integro-differential problem using uy (x) :

40 X " 1 1 5 x ! !

o [ Ge—=tu (t)dt = —x?e> + Exezx+ezx+ §x3 — X 1 —I—/ xtu (t)dt,u(0)=1,u (0)=1,0<x<1.
0 0

42 An exact solution is u(x) = e** — x.
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Solution. First, suppose that a function u4(x) is an estimated solution of this problem, that is,
us(x) = coTo(x)+c1Ti(x)+c2Ta(x) 4+ c3T3(x) + caTu(x)
= cot+e1(14x)+ea(1+2x+x2) +c3(143x 436 +x7)
4+ cq(1+4x+6x% +4x° +x4).

Next, finding derivatives of u4(x), we have as follows:

u;(x) =1+ ¢2(242x) +c3(3 4+ 6x 4+ 3x%) + 4 (4 + 12x + 126 +4x°),

ofe|~[ofo]afo]n]-

— Uy (x) = €2(2) + ¢3(6+ 6x) + (12 + 24x + 1242).
10

1, After that, substituting the derivatives into the problem, we obtain

12 /(x—t) [e2(2) + 36+ 61) +ea(12+ 241 +126%)| s

13 0

14 1 1 5

14 2 2x 2x 2x 3

" - — — S B |

. x“e +2xe +e +2x 2x

16 +/ xt[cl+cz(2+2t)+C3(3+6t+3t2)+04(4+12t+12t2+4t3) dr.
17 0

18 Then, simplifying and integrating the equation, we receive the new equation. Selecting x; = 0.25,x; =
19 0.5,x3 =1 to substitute in the new equation with using 2 initial conditions, we get the following

20 System:

2t cot+cr+cr+c3+ces=1,

2 c1+2c+3c3+4cq =1,

o1 —7.8125¢1 +44.270833¢, + 171.142578¢3 +391.40625¢4 = 134.578851,
25 —6.25¢1 +8.333333¢, +53.90625¢3 + 145.625¢4 = 53.078182,

dl —30c; —40c; — 15¢3 4 72¢4 = 30€* — 180.

% Finally, solving the system by a program, we have

2E co =2.406612,c1 = —5.499561,cr, = 7.110917,c3 = —4.349601,c4 = 1.331632.
80 Therefore, the numerical solution is

% us(x) = 2.406612—5.499561(1+x)+7.110917(1 +2x+x2)

- — 4.349601(1 +3x+3x% +x%) + 1.331632(1 4 4x + 6x° 4+ 4x° +x*).

34

35

36

37

38

39

40

41

42
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TABLE 1. Values of exact and approximate u4 (x) solutions for the example 4.1.

1
2

3 x | Exact solution | Approximate solution | Absolute error
4 0.0 1.000000 0.999999 0.000001
5 0.1 1.121403 1.121628 0.000225
6 0.2 1.291825 1.292021 0.000196
7 0.3 1.522119 1.521833 0.000286
5 0.4 | 1.825541 1.824916 0.000625
9 0.5 2.218282 2.218317 0.000035
10 0.6 2.720117 2.722280 0.002163
E 0.7 3.355200 3.360242 0.005042
2 0.8 4.153032 4.158840 0.005808
13 0.9 5.149647 5.147905 0.001742
14 1.0 6.389056 6.360462 0.028594

15

16

v =—e=— Exact solution » Approximate solution

18

o 7.00

‘ nN
N
ulx)
T
(=]
o

23 3.00 -
24 o

— 2.00 g

25 _..--"""—..

— 1.00 R —

o 000 010 020 030 040 050 060 070 030 0950 1.00

— FIGURE 1. Graphs of exact and approximate u4(x) solutions for the example 4.1.

35 5. Numerical Solutions of Extended VIDEs for the Second Kind

36 . . e : . . . .
- In this section, we utilize Touchard polynomials to estimate solutions of an extension of the linear
e Volterra integro-differential problem (2) on kernels, which are not convolution types, expressed by

® (16)  u™(x) = g() —|—/xk3(x,t)u('") (1)dt,u(0) = b, u (0) = by oo, '™ D (0) = by_.
40 0

E For the case m = 0,n = 1, we can see [7] for more important results. The estimation taking by the
42 Touchard polynomials is the same as the first kind of VIDEs, that is, substituting an equation (14) into
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(16), we receive

1

2 [ boo bor box -+ boa Co
3 0 b1 b2 -+ big cl
- [0 00 ..na.. a(a—l)...(oc—n+l)x°"”]- 0 0 by - by |.|
o oo :
7 L O O O baa _ L Ca _
& :g(x)+/ Bn{[000 - m . a(@—1).(@—m+ 1]

9 0

E{: [ boo bor boz -+ boa | [ co |

" 0 bu bz - bia €1

2 (17) 0 0 by - by |.| &2 }dt,

13 oo : :

" (0 0 0 - baa | | ca

15
16 Simplifying and integrating the equation (17), we then have the new equation with unknown constants

17 €0,Cl,...,Cq. Determining co,c1,...,cq and replacing into the equation (12), the numerical solution of
1 the initial-value problem (16) is obtained.

9 Example 5.1. Estimate the solution of the linear Volterra integro-differential problem using us(x) and

X " ! " "
;i uz(x): u™®(x) = sinx—i—ex(sinx—xcosx—i—xZ)—l—/o te*u (t)dt,u(0)=0,u (0)=1,u (0)=-2,u (0)=

22 —1,0 <x < 7. An exact solution is u(x) = sinx — x°.

23 . . . : . . . .
ou Solution. First, suppose that a function us(x) is an approximate solution of this problem, that is,

25 us(x) = coTo(x)+c1Ti(x)+c2Tr(x) + c3T3(x) + caTy(x) + c5T5(x)
26 = cotci(1+x)+ea(14+2x+x2) +c3(1 +3x+3x> +x°)

. 4+ ca(144x+6x7 +4x° +x*) + e5(1 4 5x+ 10x% + 10x° 4 5x* +x°).
28

2o Next, finding derivatives of us(x), we have as follows:

80 u;-(x) = 1+ 2(242x)+ 3034 6x43x%) 4 ca(4 4 12x + 12x% +4x°)
= 4 es(54+20x+30x% +200° +56%),

zj ug(x) = ¢2(2) +¢3(6 4+ 6x) + ¢4 (124 24x + 12x%) 4 ¢5(20 + 60x + 60x> +20x°),
zz s (x) = c3(6) + c4(24 4 24x) + ¢5(60 + 120x + 60x2),

z; ul! (x) = ca(24) + ¢5(120 + 120x).

5o After that, substituting the derivatives into the problem, we receive

40 c4(24) + ¢5(120 + 120x) = sinx + ¢*(sinx — xcosx + x2)

41

X
. +/0 te* [62(2) +¢3(6461) + ca(12 4241 + 1212) + ¢5(20 + 60t -+ 6012 +20t3)]dt.
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1 Then, simplifying and integrating the equation, we obtain the new equation. Selecting x; = 0,x, = 0.5
o> to substitute in the new equation with using 4 initial conditions, we get the following system:

cot+cr+cr+c3+cqa+c5=0,

c1+2c2+3c3+4cs+5¢5 =1,

2¢y) +6¢3+ 12¢4 +20c5 = —2,

6¢c3 +24c4 +60c5 = —1,

—24c¢4 —120c5 =0,

4.121803¢p + 16.487212¢3 — 195.690615¢4 — 1700.046272¢c5 = —9.586004.

-
[Bfefe|~]o]a]s]e

11 Finally, solving the system by a program, we have

12

13 co=—1.841322,¢; =2.539947, ¢, = —0.579894,c3 = —0.086716,c4 = —0.039947, ¢5 = 0.007989.

14 Therefore, the numerical solution is
15

o us(x) = —1.841322+2.539947(1 +x) — 0.579894(1 + 2x + x2)

17 — 0.086716(1 +3x+3x> 4+ x°) —0.039947 (1 + 4x + 6x> +4x> +x*)

8 4 0.007989(1 +5x + 10x2 + 102° + 5x* 4+ x°).

;% For the approximate solution u7(x), we put

2t ur(x) = coTo(x)+c1Ti(x)+ c2Ta(x) + c3T3(x) + caTu(x) + c5T5(x) + c6To(x) + c7T7 (x)
z% = co+cr(14x)+er(1+2x+x2) +e3(143x+3x% +x7)

ot 4+ cq(1+4x+6x% +40° +x*) +e5(1 + 50+ 10x% + 10x° + 5x* +x°)

25 + (14 6x+ 15x% +20x° 4 15x* + 6x° + %)

26 + c7(147x+21x% 4358 4+ 35x* +21x° + 70 +x7).

27
s Then, finding derivatives of u7(x), we have as follows:

29

= u/7(x) = c14+2(242x) +c3(3+6x43x) +c4(4+ 12x + 1247 4+ 4x°)

30

o 4+ e5(5+20x + 3007 + 20x° + 5x*) 4 ¢6(6 + 30x + 60x* 4 60x” + 30x* + 6x7)
2 4+ c7(7 +42x 4+ 105x% 4+ 140x% + 105x* +42x° 4-7x8),

33

34 ur(x) = c2(2)+c3(6+6x)+cs(12+24x + 12:2)

% 4+ ¢5(20 + 60x + 60x> 4 20x7) 4 ¢6(30 4+ 120x + 180x% + 120> + 30x*)
= b (424 2100+ 42047 + 42023 +210x* +424°),

:g n

o w7 (x) = c3(6) +cq(24 4 24x) 4 ¢5(60 + 120x + 60x)

20 4+ ¢6(120+360x + 360x% 4 120x%) 4 ¢7(210 4 840x + 1260x% + 840x> +210x*),

41
2 u® (x) = c4(24) + 5(120 + 120x) + c6(360 -+ 720x + 360x%) + ¢7(840 + 2520x + 2520x> + 840x%).
= "
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Next, substituting the derivatives into the problem, we receive

c4(24) 4 ¢5(120 4 120x) + ¢6(360 + 720x 4 360x%) 4 ¢7(840 4 2520x + 2520x> + 840x>)

= sinx + €*(sinx — xcosx +x%) + /Oxtex [62(2) +¢3(6461) +ca (124241 + 12t2)] dt

1
2
3
T

5 X
& + / te [cs(zo + 60z + 6012 +20¢) 4 c6(30 -+ 120 + 180r% 4 120¢> + 30t4)} dt
7 0
3

X
+ / te [m (4242107 +4201% +4201% 4 2106* 4- 4217 )} dt.
0

2 After that, simplifying and integrating the equation, we receive the new equation. Selecting x; =

10 . . . . . S "
— 0,x =0.5,x3 = 1.5,x4 = 2.5 to substitute in the new equation with using 4 initial conditions, we get
11 :

— the following system:

12

13 cotcit+catcezt+cates+cg+c7=0,

E c1+2c2+3c3+4ca+5¢s5s+6¢c6+Tc7 =1,

s 2¢y +6c3 4+ 12¢4 +20c5 + 30cq +42¢c7 = —2,

g 6¢3 + 24¢4 +60cs + 120¢s +210¢7 = —1,

5 —24¢4 — 120c5 — 360cs — 840c7 = 0,

19 4.121803¢, + 16.487212¢3 — 195.690615¢4 — 1700.046273¢5 — 7895.713129¢4
20 —27957.91347¢7 = —9.586004,

% 10.0838¢; + 60.502802c3 + 225.57406c4 + 579.811585¢5 + 599.303853 ¢4

o —4367.219344¢; = —15.076224,

24 76.140587¢5 4 609.124698¢3 + 3383.29128¢4 + 16045.402¢5 + 69184.63636¢4
2 +277522.4207¢7 = —108.42976.

z% At last, solving the system by a program, we have

28 co = —1.842363,¢; = 2.545356,c, = —0.591238, c3 = —0.074767, ¢4 = —0.046290,
29 cs = 0.009142, ¢ = 0.000251, c7 = —0.000091.

Z% Therefore, the numerical solution is

32 ur(x) = —1.842363+2.545356(1+x) —0.591238(1 + 2x +x?)

3 — 0.074767(1 +3x+3x* 4+ x°) — 0.046290(1 + 4x + 6x> + 42> +x*)

z% +0.009142(1 + 5x+ 10x% + 10x° + 5x* +x°)

% +0.000251(1 4 6x+ 15x% +20x> + 15x* + 6x° +x°)

a7 —0.000091(1 +7x+21x% 4 35x> +35x* +21x6° + 7x° 4+ x7).

38
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TABLE 2. Values of exact and approximate us(x) solutions for the example 5.1.

1
2

3 X Exact solution | Approximate solution | Absolute error
4 0.000000 0.000000 0.000057 0.000057
5 0.261799 0.190280 0.190393 0.000113
6 0.523599 0.225844 0.226031 0.000187
7 0.785398 0.090257 0.090506 0.000249
8 1.047198 | —0.230597 —0.230288 0.000309
9 1.308997 | —0.747547 —0.746921 0.000626
10 1.570796 | —1.467401 —1.465247 0.002154
E 1.832596 | —2.392481 —2.385225 0.007256
2 2.094395 | —3.520465 —3.499740 0.020725
13 2.356194 | —4.844546 —4.793425 0.051121
14 2.617994 | —6.353892 —6.241480 0.112412
15 2.879793 | —8.034390 —7.808496 0.225894
16 3.141593 | —9.869604 —9.447272 0.422332
17

18

19

20 —a—FExact solution s Approximate solution

% 2.00

23 0.00

24 2.00

25 — 400

26 > 600

7 8.00

28

oy -10.00

0 12.00

- 0.00 0.26 0.52 0.79 1.05 1.31 157 1.83 2.09 2.36 2.62 2.88 3.14
. x
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FIGURE 2. Graphs of exact and approximate us(x) solutions for the example 5.1.

230528-Inpoonjai Version 2 - Submitted to Rocky Mountain J. Math.




Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

TABLE 3. Values of exact and approximate u7(x) solutions for the example 5.1.

1
2

3 X Exact solution | Approximate solution | Absolute error
4 0.000000 0.000000 0.000000 0.000000
5 0.261799 0.190280 0.190280 0.000000
6 0.523599 0.225844 0.225850 0.000006
7 0.785398 0.090257 0.090299 0.000042
8 1.047198 | —0.230597 —0.230467 0.000130
9 1.308997 | —0.747547 —0.747284 0.000263
10 1.570796 | —1.467401 —1.466998 0.000403
E 1.832596 | —2.392481 —2.391979 0.000502
2 2.094395 | —3.520465 —3.519919 0.000546
13 2.356194 | —4.844546 —4.843944 0.000602
14 2.617994 | —6.353892 —6.353094 0.000798
15 2.879793 | —8.034390 —8.033200 0.001190
16 3.141593 | —9.869604 —9.868194 0.001410
17

18

19

20 =—e= Exact solution »  Approximate solution

21

o 2.00 .

23 000 — @ --c-...._______‘-"

24 2.00 T

25 o -4.00 \\

26 S 600 8

7 8.00 \

z% -10.00 \
0 12.00

- 0.00 0.26 0.52 0.79 1.05 1.31 1.57 1.83 2.09 2.36 2.62 2.88 3.14
:; x

FIGURE 3. Graphs of exact and approximate u7(x) solutions for the example 5.1.

6. Conclusion
38

39 In this paper, the extensions of linear VIDEs of the first and the second kinds have been introduced
40 already. In general, all results show that the Kamal transform has been effective to solve analytical
41 solutions of the extensions of both kinds on convolution type kernels repeatedly and the Touchard
42 polynomials have been successful to figure out numerical solutions of the extensions of both kinds
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unrelated to convolution type kernels several times. However, Laplace transform is another method that
can be analytically solved on convolution types of the first and second extensions similarly. Moreover,
the main advantage of this analytical method is the fact that it gives the exact solutions in just few
processes and uses very less computational work. We also suggest that this numerical method can be
applicable to singularly perturbed linear VIDESs to obtain accurate approximate solutions.
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