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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

ABSTRACT. In this paper, we consider extensions of linear Volterra integro-differential equations of the
first and the second kinds and apply the Kamal transform to solve their analytical solutions on convolution
type kernels. We also present numerical solutions of the extensions irrelevant to convolution type kernels
using Touchard polynomials.

1. Introduction

In this research, we consider the following linear Volterra integro-differential equations (or only
VIDEs) with initial conditions. The linear VIDEs of the first kind are given by∫ x

0
k1(x, t)u(n)(t)dt = f (x)+

∫ x

0
k2(x, t)u(t)dt,u(0) = a0,u

′
(0) = a1, ...,u(n−1)(0) = an−1(1)

when k1(x, t) ̸= k2(x, t) or n ̸= 0 and the linear VIDEs of the second kind are expressed by

u(n)(x) = g(x)+
∫ x

0
k3(x, t)u(t)dt,u(0) = b0,u

′
(0) = b1, ...,u(n−1)(0) = bn−1,(2)

where k1(x, t),k2(x, t) and k3(x, t) are called kernels of the linear VIDEs.
The Kamal transform of a function F(x) is defined by

K
{

F(x)
}
=

∫
∞

0
F(x)e−x/vdx = G(v),x ≥ 0,

where K is called the Kamal transform operator. F(x) is said to be the inverse Kamal transform of
G(v), denoted by F(x) = K−1

{
G(v)

}
, where K−1 is called the inverse Kamal transform operator. Let

us recall some useful results in [3] that shall be used in the next hereinafter.
1. The Kamal transform of some functions:
K
{

1
}
= v, K

{
x
}
= v2, K

{
x2
}
= 2!v3,

K
{

xn
}
= n!vn+1, n ≥ 0, K

{
eax

}
=

v
1−av

, K
{

sinax
}
=

av2

1+a2v2 ,

K
{

cosax
}
=

v
1+a2v2 , K

{
sinhax

}
=

av2

1−a2v2 , K
{

coshax
}
=

v
1−a2v2 .

...
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2. If K
{

F(x)
}
= G(v) then K

{
F

′
(x)

}
=

1
v

G(v)−F(0).

3. If K
{

F(x)
}
= G(v) then K

{
F

′′
(x)

}
=

1
v2 G(v)− 1

v
F(0)−F

′
(0).

4. If K
{

F(x)
}
= G(v) then K

{
F(n)(x)

}
=

1
vn G(v)− 1

vn−1 F(0)− 1
vn−2 F

′
(0)−·· ·−F(n−1)(0).

5. The convolution of two functions F(x) and H(x), denoted by F(x) ∗H(x), is defined by F(x) ∗
H(x) =

∫ x

0
F(t)H(x− t)dt =

∫ x

0
F(x− t)H(t)dt. If K

{
F(x)

}
= G(v) and K

{
H(x)

}
= I(v) then

K
{

F(x)∗H(x)
}
= K

{
F(x)

}
K
{

H(x)
}
= G(v)I(v).

6. The inverse Kamal transform of some functions:
K−1

{
v
}
= 1, K−1

{
v2
}
= x, K−1

{
v3
}
=

1
2!

x2,

K−1
{

vn+1
}
=

1
n!

xn, n ≥ 0, K−1
{ v

1−av

}
= eax, K−1

{ v2

1+a2v2

}
=

sinax
a

,

K−1
{ v

1+a2v2

}
= cosax, K−1

{ v2

1−a2v2

}
=

sinhax
a

, K−1
{ v

1−a2v2

}
= coshax.

The Touchard polynomial is a polynomial function given by

Tα(x) =
α

∑
k=0

(
α

k

)
xk,

(
α

k

)
=

α!
k!(α − k)!

,

where α and k are called the degree and the index of the Touchard polynomial, respectively. Some
important results on the Touchard polynomials that shall be referred in the next as the following:

1. T
′

α(x) =
d
dx

[ α

∑
k=0

(
α

k

)
xk
]
=

α

∑
k=1

(
α

k

)
kxk−1,

2. T
′′

α (x) =
d2

dx2

[ α

∑
k=0

(
α

k

)
xk
]
=

α

∑
k=2

(
α

k

)
k(k−1)xk−2,

3. T
′′′

α (x) =
d3

dx3

[ α

∑
k=0

(
α

k

)
xk
]
=

α

∑
k=3

(
α

k

)
k(k−1)(k−2)xk−3,

4. T (n)
α (x) =

dn

dxn

[ α

∑
k=0

(
α

k

)
xk
]
=

α

∑
k=n

(
α

k

)
k(k−1)(k−2) · · ·(k−n+1)xk−n,n ≤ α.

Volterra integro-differential equations are typically mathematical models in many areas of sci-
ence and engineering. Solutions of these equations play vital roles in a number of processes and
phenomena such as nuclear reactors, circuit analyses, wave propagation, glass forming processes, nano-
hydrodynamics, visco elasticity, biological populations, etc. Therefore, there are many researchers
who have been interested in the VIDEs and founded numerous methods to solve the analytical and
numerical solutions of VIDEs up to the present as follows. Estimated solutions of nonlinear VIDEs
of fractional order were investigated applying the Laplace transform and Adomian polynomials by
C. Yang and J. Hou in 2013, see [1]. Moreover, the Legendre polynomial approximation was used
to find numerical solutions of nonlinear VIDEs of the second kind by M. Gachpazan, M. Erfanian
and H. Beiglo in 2014, see [2]. In addition, analytical solutions of linear VIDEs of the second kind
were solved using the Kamal transform by S. Aggarwal and A.R. Gupta in 2019, see [3]. The modified

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

8 Aug 2023 02:07:41 PDT
230528-Inpoonjai Version 2 - Submitted to Rocky Mountain J. Math.



ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS3

Adomian decomposition method was utilized to explain exact solutions of linear VIDEs of the second
kind by J.O. Okai, D.O. Ilejimi and M. Ibrahim in 2019, see [4]. Furthermore, approximate solutions of
nonlinear VIDEs involving delay were found taking a new higher order method by A. Jhinga, J. Patade
and V.D. Gejji in 2020, see [5]. Other than those findings, the Sadik transform was applied to figure
out exact solutions of the first kind VIDEs on convolution type kernels by S. Aggarwal, A. Vyas and
S.D. Sharma in 2020, see [6]. Numerical solutions of linear VIDEs were estimated using Laguerre and
Touchard polynomials by J.T. Abdullah and H.S. Ali in 2020, see [7]. Sofar, some asymtotic behavior
of exact solutions of the nonlinear VIDEs has been studied by M. Cakir, B. Gunes and H. Duru in 2021,
see [8]. The quasilinearization technique to different scheme also has been applied to solve estimated
solutions of VIDEs in [8]. Recently, the asymtotic behavior of the analytical solutions of the singularly
perturbed nonlinear VIDEs has been established by F. Cakir, M. Cakir and H.G. Cakir in 2022, see [9].
The uniform difference scheme on a Bakhvalov-Shishkin mesh points according to the boundary layer
conditions has been introduced to find numerical solutions of VIDEs as well in [9]. Exact solutions of
the Faltung type VIDEs for the first kind have been solved applying Kushare transform by D.P. Patil,
P.S. Nikam and P.D. Shinde in 2022, see [10].

In this study, we extend linear Volterra integro-differential equations of the first and the second
kinds. Then, we use the Kamal transform to solve exact solutions of these extended equations on
convolution type kernels. Besides, we apply Touchard polynomials to figure out numerical solutions of
the extensions disconnected to convolution type kernels.

2. Analytical Solutions of Extended VIDEs for the First Kind

For this section, we investigate analytical solutions of an extension of linear VIDEs with initial
conditions (1) on convolution type kernels given by∫ x

0
k1(x− t)u(n)(t)dt = f (x)+

∫ x

0
k2(x− t)u(m)(t)dt,

u(0) = a0,u
′
(0) = a1, ...,u(n−1)(0) = an−1(3)

when k1(x− t) ̸= k2(x− t) or n ̸= m. For the case m = 0, we can see [6, 10] for more vital results. In
this extension, we will apply the Kamal transform to figure out the problem as follows: Taking the
Kamal transform to (3), we have

K
{∫ x

0
k1(x− t)u(n)(t)dt

}
= K

{
f (x)

}
+K

{∫ x

0
k2(x− t)u(m)(t)dt

}
.(4)

Working a convolution of the Kamal tranform on (4), we then obtain

K
{

k1(x)
}

K
{

u(n)(x)
}
= K

{
f (x)

}
+K

{
k2(x)

}
K
{

u(m)(x)
}
.(5)

Using the Kamal transform of derivatives on (5) with initial conditions, we also get

K
{

k1(x)
}[ 1

vn K
{

u(x)
}
− a0

vn−1 −
a1

vn−2 −·· ·−an−1

]
= K

{
f (x)

}
+K

{
k2(x)

}[ 1
vm K

{
u(x)

}
− a0

vm−1 −
a1

vm−2 −·· ·−am−1

]
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and we receive[
K
{

k1(x)
}
− vn−mK

{
k2(x)

}]
K
{

u(x)
}
= K

{
k1(x)

}(
a0v+a1v2 + · · ·+an−1vn

)
+vnK

{
f (x)

}
−K

{
k2(x)

}(
a0vn−m+1 +a1vn−m+2 + · · ·+am−1vn

)
.(6)

Applying the inverse Kamal transform on (6), we have the solution of initial-value problem (3) as the
following.

u(x) = K−1

{
K
{

k1(x)
}

K
{

k1(x)
}
− vn−mK

{
k2(x)

}(
a0v+a1v2 + · · ·+an−1vn

)}

+ K−1

{
vnK

{
f (x)

}
K
{

k1(x)
}
− vn−mK

{
k2(x)

}}

− K−1

{
K
{

k2(x)
}

K
{

k1(x)
}
− vn−mK

{
k2(x)

}(
a0vn−m+1 +a1vn−m+2 + · · ·+am−1vn

)}
.

Example 2.1. Solve the Volterra integro-differential problem:
∫ x

0

[
1− (x− t)+

1
2
(x− t)2

]
u
′′′
(t)dt =

1
2

x2 +
∫ x

0

[1
2
(x− t)2

]
u
′′
(t)dt,u(0) =−1,u

′
(0) = 2,u

′′
(0) = 1.

Solution. First, applying the Kamal transform to the problem, we have

K
{∫ x

0

[
1− (x− t)+

1
2
(x− t)2

]
u
′′′
(t)dt

}
= K

{1
2

x2
}
+K

{∫ x

0

[1
2
(x− t)2

]
u
′′
(t)dt

}
.

Then, using a convolution of the Kamal transform, we immediately get

K
{

1− x+
1
2

x2
}

K
{

u
′′′
(x)

}
= K

{1
2

x2
}
+K

{1
2

x2
}

K
{

u
′′
(x)

}
.

After that, taking the Kamal transform of derivatives, we obtain

(v− v2 + v3)
[ 1

v3 K
{

u(x)
}
− 1

v2 u(0)− 1
v

u
′
(0)−u

′′
(0)

]
= v3 + v3

[ 1
v2 K

{
u(x)

}
− 1

v
u(0)−u

′
(0)

]
and using initial conditions, we also have

(v− v2 + v3)
[ 1

v3 K
{

u(x)
}
+

1
v2 −

2
v
−1

]
= v3 + v3

[ 1
v2 K

{
u(x)

}
+

1
v
−2

]
.

Next, rearranging the equation, we certainly receive

(v− v2 + v3)K
{

u(x)
}
− v4K

{
u(x)

}
= (v− v2 + v3)(−v+2v2 + v3)+ v6 + v5 −2v6

and we get K
{

u(x)
}
=

−v2 +3v3 −2v4 +2v5

v− v2 + v3 − v4 =
−v+3v2 −2v3 +2v4

(1− v)(1+ v2)
.
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Finally, taking the inverse Kamal transform of the equation, we suddenly have an analytical solution

u(x) = K−1
{−v+3v2 −2v3 +2v4

(1− v)(1+ v2)

}
= K−1

{ v2 − v3

(1− v)(1+ v2)

}
+K−1

{ v+ v3

(1− v)(1+ v2)

}
+K−1

{−2v+2v2 −2v3 +2v4

(1− v)(1+ v2)

}
= K−1

{ v2

1+ v2

}
+K−1

{ v
1− v

}
−2K−1

{
v
}
= sinx+ ex −2.

Example 2.2. Solve the Volterra integro-differential problem:
∫ x

0

[1
2
(x− t)2

]
u
′′′
(t)dt =

1
3!

x3+
2
4!

x4+

1
5!

x5 +
∫ x

0

[ 1
4!
(x− t)4

]
u
′
(t)dt,u(0) = 2,u

′
(0) = 0,u

′′
(0) =−2.

Solution. First, applying the Kamal transform to the problem, we have

K
{∫ x

0

[1
2
(x− t)2

]
u
′′′
(t)dt

}
= K

{ 1
3!

x3 +
2
4!

x4 +
1
5!

x5
}
+K

{∫ x

0

[ 1
4!
(x− t)4

]
u
′
(t)dt

}
.

Then, using a convolution of the Kamal transform, we immediately get

K
{1

2
x2
}

K
{

u
′′′
(x)

}
= K

{ 1
3!

x3 +
2
4!

x4 +
1
5!

x5
}
+K

{ 1
4!

x4
}

K
{

u
′
(x)

}
.

After that, taking the Kamal transform of derivatives, we obtain

v3
[ 1

v3 K
{

u(x)
}
− 1

v2 u(0)− 1
v

u
′
(0)−u

′′
(0)

]
= v4 +2v5 + v6 + v5

[1
v

K
{

u(x)
}
−u(0)

]
and using initial conditions, we also have

v3
[ 1

v3 K
{

u(x)
}
− 2

v2 +2
]
= v4 +2v5 + v6 + v5

[1
v

K
{

u(x)
}
−2

]
.

Next, rearranging the equation, we certainly receive

K
{

u(x)
}
− v4K

{
u(x)

}
= 2v−2v3 + v4 +2v5 + v6 −2v5

and we get K
{

u(x)
}
=

2v−2v3 + v4 + v6

1− v4 =
2v−2v3 + v4 + v6

(1− v2)(1+ v2)
.

Finally, taking the inverse Kamal transform of the equation, we suddenly have an exact solution

u(x) = K−1
{2v−2v3 + v4 + v6

(1− v2)(1+ v2)

}
= K−1

{ v2 + v4

(1− v2)(1+ v2)

}
+K−1

{ 2v−2v3

(1− v2)(1+ v2)

}
−K−1

{ v2 − v6

(1− v2)(1+ v2)

}
= K−1

{ v2

1− v2

}
+2K−1

{ v
1+ v2

}
−K−1

{
v2
}
= sinhx+2cosx− x.
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3. Analytical Solutions of Extended VIDEs for the Second Kind

In this section, we study about analytical solutions of an extension of linear VIDEs with initial
conditions (2) on convolution type kernels expressed by

u(n)(x) = g(x)+
∫ x

0
k3(x− t)u(m)(t)dt,u(0) = b0,u

′
(0) = b1, ...,u(n−1)(0) = bn−1.(7)

For the case m = 0, we can see [3, 4] for more comprehensive findings. In this extension, we will
utilize the Kamal transform to solve the problem as the following: Applying the Kamal transform to
(7), we get

K
{

u(n)(x)
}
= K

{
g(x)

}
+K

{∫ x

0
k3(x− t)u(m)(t)dt

}
.(8)

Using a convolution of the Kamal transform to (8), we then obtain

K
{

u(n)(x)
}
= K

{
g(x)

}
+K

{
k3(x)

}
K
{

u(m)(x)
}
.(9)

Taking the Kamal transform of derivatives on (9) with initial conditions, we also have

1
vn K

{
u(x)

}
− b0

vn−1 −
b1

vn−2 −·· ·−bn−1

= K
{

g(x)
}
+K

{
k3(x)

}[ 1
vm K

{
u(x)

}
− b0

vm−1 −
b1

vm−2 −·· ·−bm−1

]
and we obtain [

1− vn−mK
{

k3(x)
}]

K
{

u(x)
}
= b0v+b1v2 + · · ·+bn−1vn

+vnK
{

g(x)
}
−K

{
k3(x)

}(
b0vn−m+1 +b1vn−m+2 + · · ·+bm−1vn

)
.(10)

Operating the inverse Kamal transform on (10), we receive the solution of initial-value problem (7) as
follows.

u(x) = K−1

{
1

1− vn−mK
{

k3(x)
}(

b0v+b1v2 + · · ·+bn−1vn
)}

+ K−1

{
vnK

{
g(x)

}
1− vn−mK

{
k3(x)

}}

− K−1

{
K
{

k3(x)
}

1− vn−mK
{

k3(x)
}(

b0vn−m+1 +b1vn−m+2 + · · ·+bm−1vn
)}

.

Example 3.1. Solve the Volterra integro-differential problem: u(4)(x)=−32+
∫ x

0
16(x−t)u

′′
(t)dt,u(0)=

−2,u
′
(0) = 0,u

′′
(0) = 16,u

′′′
(0) = 0.
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Solution. First, applying the Kamal transform to the problem, we have

K
{

u(4)(x)
}
=−K

{
32
}
+K

{∫ x

0
16(x− t)u

′′
(t)dt

}
.

Then, using a convolution of the Kamal transform, we get

K
{

u(4)(x)
}
=−K

{
32
}
+K

{
16x

}
K
{

u
′′
(x)

}
.

After that, taking the Kamal transform of derivatives, we also have
1
v4 K

{
u(x)

}
− 1

v3 u(0)− 1
v2 u

′
(0)− 1

v
u
′′
(0)−u

′′′
(0) =−32v+16v2

[ 1
v2 K

{
u(x)

}
− 1

v
u(0)−u

′
(0)

]
and using initial conditions, we obtain

1
v4 K

{
u(x)

}
+

2
v3 −

16
v

=−32v+16v2
[ 1

v2 K
{

u(x)
}
+

2
v

]
.

Next, rearranging the equation, we certainly receive

K
{

u(x)
}
−16v4K

{
u(x)

}
=−2v+16v3 −32v5 +32v5

and we get K
{

u(x)
}
=

−2v+16v3

1−16v4 =
−2v+16v3

(1−4v2)(1+4v2)
.

Finally, taking the inverse Kamal transform of the equation, we suddenly have an analytical solution

u(x) = K−1
{ −2v+16v3

(1−4v2)(1+4v2)

}
= K−1

{ v+4v3

(1−4v2)(1+4v2)

}
−3K−1

{ v−4v3

(1−4v2)(1+4v2)

}
= K−1

{ v
1−4v2

}
−3K−1

{ v
1+4v2

}
= cosh2x−3cos2x.

Example 3.2. Solve the Volterra integro-differential problem: u
′′
(x)= 9+

1
2

x2− 1
2

x3+
∫ x

0
3u

′′
(t)dt,u(0)=

2,u
′
(0) = 3.

Solution. First, applying the Kamal transform to the problem, we have

K
{

u
′′
(x)

}
= K

{
9+

1
2

x2 − 1
2

x3
}
+K

{∫ x

0
3u

′′
(t)dt

}
.

Then, using a convolution of the Kamal transform, we get

K
{

u
′′
(x)

}
= K

{
9+

1
2

x2 − 1
2

x3
}
+K

{
3
}

K
{

u
′′
(x)

}
.

After that, taking the Kamal transform of derivatives, we also have
1
v2 K

{
u(x)

}
− 1

v
u(0)−u

′
(0) = 9v+ v3 −3v4 +3v

[ 1
v2 K

{
u(x)

}
− 1

v
u(0)−u

′
(0)

]
and using initial conditions, we obtain

1
v2 K

{
u(x)

}
− 2

v
−3 = 9v+ v3 −3v4 +3v

[ 1
v2 K

{
u(x)

}
− 2

v
−3

]
.
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS8

Next, rearranging the equation, we certainly receive

K
{

u(x)
}
−3vK

{
u(x)

}
= 2v+3v2 +9v3 + v5 −3v6 −6v2 −9v3

and we get K
{

u(x)
}
=

2v−3v2 + v5 −3v6

1−3v
.

Finally, taking the inverse Kamal transform of the equation, we suddenly have an exact solution

u(x) = K−1
{2v−3v2 + v5 −3v6

1−3v

}
= K−1

{ v
1−3v

}
+K−1

{v5 −3v6

1−3v

}
+K−1

{v−3v2

1−3v

}
= K−1

{ v
1−3v

}
+K−1

{
v5
}
+K−1

{
v
}
= e3x +

1
4!

x4 +1.

4. Numerical Solutions of Extended VIDEs for the First Kind

For this section, we apply Touchard polynomials to approximate solutions of an extension of the linear
Volterra integro-differential problem (1) on kernels, which are not convolution types, given by∫ x

0
k1(x, t)u(n)(t)dt = f (x)+

∫ x

0
k2(x, t)u(m)(t)dt,

u(0) = a0,u
′
(0) = a1, ...,u(n−1)(0) = an−1(11)

when k1(x, t) ̸= k2(x, t) or n ̸= m. The approximation using the Touchard polynomials is below:
Suppose that the function uα(x) is an approximate solution of (11) defined by

uα(x) =
α

∑
k=0

ckTk(x) = c0T0(x)+ c1T1(x)+ c2T2(x)+ · · ·+ cαTα(x),m,n ≤ α,0 ≤ x ≤ β ,(12)

where Tk(x) are Touchard polynomials and ck are unknown constants, k = 0,1, ...,α , and β is a known
constant. Writing equation (12) as a dot product, we then have

uα(x) =
[
T0(x) T1(x) T2(x) ... Tα(x)

]
·


c0
c1
c2
...

cα

 .(13)

Rearranging the equation (13) in a matrix formula, we also have

uα(x) =
[
1 x x2 x3 ... xα

]
·


b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα

 ,
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS9

where bi j are known constants. Finding the derivatives of uα(x), we have as follows:

u
′
α(x) =

[
0 1! 2x 3x2 ... αxα−1

]
·


b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα

 ,

u
′′
α(x) =

[
0 0 2! 6x ... α(α −1)xα−2

]
·


b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα

 ,

u
′′′
α(x) =

[
0 0 0 3! ... α(α −1)(α −2)xα−3

]
·


b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα

 ,

u(n)α (x) =
[
0 0 0 ... n! ... α(α −1)...(α −n+1)xα−n

]
·

b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα

 .(14)
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS10

Substituting the equation (14) into the equation (11), we receive∫ x

0
k1(x, t)

{[
0 0 0 ... n! ... α(α −1)...(α −n+1)tα−n

]
·

b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα


}

dt

= f (x)+
∫ x

0
k2(x, t)

{[
0 0 0 ... m! ... α(α −1)...(α −m+1)tα−m

]
·

b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα


}

dt.(15)

Simplifying and integrating the equation (15), we then have the new equation with unknown constants
c0,c1, ...,cα . In order to determine c0,c1, ...,cα , using n initial conditions and selecting xi ∈ [0,β ], i =
1,2, ...,α −n+1, with substituting in the new equation, we get a system of linear algrbraic equations
of α +1 unknown constants. Solving this system by a program, we have the values of the unknown
constants, that is, the numerical solution of the initial-value problem (11) is obtained.

In order to guarantee the convergence of this method, we will verify as follows. Let u(x) be an
analytical solution of initial-value problem (11) that has derivatives of all orders at x = 0. Then the
Taylor series of u(x) at x = 0 is defined by

u(x) = u(0)+u
′
(0)x+

1
2!

u
′′
(0)x2 + · · ·+ 1

α!
u(α)(0)xα + · · · .

Thus, by the definition and process to find uα(x), we obtain that

|u(x)−uα(x)| ≤ | 1
(α +1)!

u(α+1)(0)xα+1|+ | 1
(α +2)!

u(α+2)(0)xα+2|+ · · · .

Here, it is sufficient to show that 1
α!x

α converges to 0 as α →∞ to confirm that |u(x)−uα(x)| converges
to 0 as α → ∞. Since e

(
α

e

)α ≤ α! ≤ e
(

α+1
e

)α+1, we get 1
α+1

( ex
α+1

)α ≤ 1
α!x

α ≤ 1
e

( ex
α

)α . It is easy to
determine that 1

α+1

( ex
α+1

)α and 1
e

( ex
α

)α converge to 0 as as α → ∞. This means that 1
α!x

α converges
to 0 as α → ∞ to confirm the convergence.

Example 4.1. Approximate the solution of the linear Volterra integro-differential problem using u4(x):∫ x

0
(x−t)u

′′
(t)dt =−x2e2x+

1
2

xe2x+e2x+
1
2

x3− 5
2

x−1+
∫ x

0
xtu

′
(t)dt,u(0) = 1,u

′
(0) = 1,0 ≤ x ≤ 1.

An exact solution is u(x) = e2x − x.
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS11

Solution. First, suppose that a function u4(x) is an estimated solution of this problem, that is,

u4(x) = c0T0(x)+ c1T1(x)+ c2T2(x)+ c3T3(x)+ c4T4(x)

= c0 + c1(1+ x)+ c2(1+2x+ x2)+ c3(1+3x+3x2 + x3)

+ c4(1+4x+6x2 +4x3 + x4).

Next, finding derivatives of u4(x), we have as follows:

u
′
4(x) = c1 + c2(2+2x)+ c3(3+6x+3x2)+ c4(4+12x+12x2 +4x3),

u
′′
4(x) = c2(2)+ c3(6+6x)+ c4(12+24x+12x2).

After that, substituting the derivatives into the problem, we obtain∫ x

0
(x− t)

[
c2(2)+ c3(6+6t)+ c4(12+24t +12t2)

]
dt

=−x2e2x +
1
2

xe2x + e2x +
1
2

x3 − 5
2

x−1

+
∫ x

0
xt
[
c1 + c2(2+2t)+ c3(3+6t +3t2)+ c4(4+12t +12t2 +4t3)

]
dt.

Then, simplifying and integrating the equation, we receive the new equation. Selecting x1 = 0.25,x2 =
0.5,x3 = 1 to substitute in the new equation with using 2 initial conditions, we get the following
system:

c0 + c1 + c2 + c3 + c4 = 1,

c1 +2c2 +3c3 +4c4 = 1,

−7.8125c1 +44.270833c2 +171.142578c3 +391.40625c4 = 134.578851,

−6.25c1 +8.333333c2 +53.90625c3 +145.625c4 = 53.078182,

−30c1 −40c2 −15c3 +72c4 = 30e2 −180.

Finally, solving the system by a program, we have

c0 = 2.406612,c1 =−5.499561,c2 = 7.110917,c3 =−4.349601,c4 = 1.331632.

Therefore, the numerical solution is

u4(x) = 2.406612−5.499561(1+ x)+7.110917(1+2x+ x2)

− 4.349601(1+3x+3x2 + x3)+1.331632(1+4x+6x2 +4x3 + x4).
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS12

TABLE 1. Values of exact and approximate u4(x) solutions for the example 4.1.

x Exact solution Approximate solution Absolute error
0.0 1.000000 0.999999 0.000001
0.1 1.121403 1.121628 0.000225
0.2 1.291825 1.292021 0.000196
0.3 1.522119 1.521833 0.000286
0.4 1.825541 1.824916 0.000625
0.5 2.218282 2.218317 0.000035
0.6 2.720117 2.722280 0.002163
0.7 3.355200 3.360242 0.005042
0.8 4.153032 4.158840 0.005808
0.9 5.149647 5.147905 0.001742
1.0 6.389056 6.360462 0.028594

FIGURE 1. Graphs of exact and approximate u4(x) solutions for the example 4.1.

5. Numerical Solutions of Extended VIDEs for the Second Kind

In this section, we utilize Touchard polynomials to estimate solutions of an extension of the linear
Volterra integro-differential problem (2) on kernels, which are not convolution types, expressed by

u(n)(x) = g(x)+
∫ x

0
k3(x, t)u(m)(t)dt,u(0) = b0,u

′
(0) = b1, ...,u(n−1)(0) = bn−1.(16)

For the case m = 0,n = 1, we can see [7] for more important results. The estimation taking by the
Touchard polynomials is the same as the first kind of VIDEs, that is, substituting an equation (14) into
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS13

(16), we receive

[
0 0 0 ... n! ... α(α −1)...(α −n+1)xα−n

]
·


b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα


= g(x)+

∫ x

0
k3(x, t)

{[
0 0 0 ... m! ... α(α −1)...(α −m+1)tα−m

]
·

b00 b01 b02 · · · b0α

0 b11 b12 · · · b1α

0 0 b22 · · · b2α

...
...

...
. . .

...
0 0 0 · · · bαα

 ·


c0
c1
c2
...

cα


}

dt.(17)

Simplifying and integrating the equation (17), we then have the new equation with unknown constants
c0,c1, ...,cα . Determining c0,c1, ...,cα and replacing into the equation (12), the numerical solution of
the initial-value problem (16) is obtained.

Example 5.1. Estimate the solution of the linear Volterra integro-differential problem using u5(x) and

u7(x): u(4)(x)= sinx+ex(sinx−xcosx+x2)+
∫ x

0
texu

′′
(t)dt,u(0)= 0,u

′
(0)= 1,u

′′
(0)=−2,u

′′′
(0)=

−1,0 ≤ x ≤ π . An exact solution is u(x) = sinx− x2.

Solution. First, suppose that a function u5(x) is an approximate solution of this problem, that is,

u5(x) = c0T0(x)+ c1T1(x)+ c2T2(x)+ c3T3(x)+ c4T4(x)+ c5T5(x)

= c0 + c1(1+ x)+ c2(1+2x+ x2)+ c3(1+3x+3x2 + x3)

+ c4(1+4x+6x2 +4x3 + x4)+ c5(1+5x+10x2 +10x3 +5x4 + x5).

Next, finding derivatives of u5(x), we have as follows:

u
′
5(x) = c1 + c2(2+2x)+ c3(3+6x+3x2)+ c4(4+12x+12x2 +4x3)

+ c5(5+20x+30x2 +20x3 +5x4),

u
′′
5(x) = c2(2)+ c3(6+6x)+ c4(12+24x+12x2)+ c5(20+60x+60x2 +20x3),

u
′′′
5 (x) = c3(6)+ c4(24+24x)+ c5(60+120x+60x2),

u(4)5 (x) = c4(24)+ c5(120+120x).

After that, substituting the derivatives into the problem, we receive

c4(24)+ c5(120+120x) = sinx+ ex(sinx− xcosx+ x2)

+
∫ x

0
tex

[
c2(2)+ c3(6+6t)+ c4(12+24t +12t2)+ c5(20+60t +60t2 +20t3)

]
dt.
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ANALYTICAL AND NUMERICAL SOLUTIONS OF EXTENSIONS OF LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS14

Then, simplifying and integrating the equation, we obtain the new equation. Selecting x1 = 0,x2 = 0.5
to substitute in the new equation with using 4 initial conditions, we get the following system:

c0 + c1 + c2 + c3 + c4 + c5 = 0,

c1 +2c2 +3c3 +4c4 +5c5 = 1,

2c2 +6c3 +12c4 +20c5 =−2,

6c3 +24c4 +60c5 =−1,

−24c4 −120c5 = 0,

4.121803c2 +16.487212c3 −195.690615c4 −1700.046272c5 =−9.586004.

Finally, solving the system by a program, we have

c0 =−1.841322,c1 = 2.539947,c2 =−0.579894,c3 =−0.086716,c4 =−0.039947,c5 = 0.007989.

Therefore, the numerical solution is

u5(x) = −1.841322+2.539947(1+ x)−0.579894(1+2x+ x2)

− 0.086716(1+3x+3x2 + x3)−0.039947(1+4x+6x2 +4x3 + x4)

+ 0.007989(1+5x+10x2 +10x3 +5x4 + x5).

For the approximate solution u7(x), we put

u7(x) = c0T0(x)+ c1T1(x)+ c2T2(x)+ c3T3(x)+ c4T4(x)+ c5T5(x)+ c6T6(x)+ c7T7(x)

= c0 + c1(1+ x)+ c2(1+2x+ x2)+ c3(1+3x+3x2 + x3)

+ c4(1+4x+6x2 +4x3 + x4)+ c5(1+5x+10x2 +10x3 +5x4 + x5)

+ c6(1+6x+15x2 +20x3 +15x4 +6x5 + x6)

+ c7(1+7x+21x2 +35x3 +35x4 +21x5 +7x6 + x7).

Then, finding derivatives of u7(x), we have as follows:

u
′
7(x) = c1 + c2(2+2x)+ c3(3+6x+3x2)+ c4(4+12x+12x2 +4x3)

+ c5(5+20x+30x2 +20x3 +5x4)+ c6(6+30x+60x2 +60x3 +30x4 +6x5)

+ c7(7+42x+105x2 +140x3 +105x4 +42x5 +7x6),

u
′′
7(x) = c2(2)+ c3(6+6x)+ c4(12+24x+12x2)

+ c5(20+60x+60x2 +20x3)+ c6(30+120x+180x2 +120x3 +30x4)

+ c7(42+210x+420x2 +420x3 +210x4 +42x5),

u
′′′
7 (x) = c3(6)+ c4(24+24x)+ c5(60+120x+60x2)

+ c6(120+360x+360x2 +120x3)+ c7(210+840x+1260x2 +840x3 +210x4),

u(4)7 (x) = c4(24)+ c5(120+120x)+ c6(360+720x+360x2)+ c7(840+2520x+2520x2 +840x3).
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Next, substituting the derivatives into the problem, we receive

c4(24)+ c5(120+120x)+ c6(360+720x+360x2)+ c7(840+2520x+2520x2 +840x3)

= sinx+ ex(sinx− xcosx+ x2)+
∫ x

0
tex

[
c2(2)+ c3(6+6t)+ c4(12+24t +12t2)

]
dt

+
∫ x

0
tex

[
c5(20+60t +60t2 +20t3)+ c6(30+120t +180t2 +120t3 +30t4)

]
dt

+
∫ x

0
tex

[
c7(42+210t +420t2 +420t3 +210t4 +42t5)

]
dt.

After that, simplifying and integrating the equation, we receive the new equation. Selecting x1 =
0,x2 = 0.5,x3 = 1.5,x4 = 2.5 to substitute in the new equation with using 4 initial conditions, we get
the following system:

c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7 = 0,

c1 +2c2 +3c3 +4c4 +5c5 +6c6 +7c7 = 1,

2c2 +6c3 +12c4 +20c5 +30c6 +42c7 =−2,

6c3 +24c4 +60c5 +120c6 +210c7 =−1,

−24c4 −120c5 −360c6 −840c7 = 0,

4.121803c2 +16.487212c3 −195.690615c4 −1700.046273c5 −7895.713129c6

−27957.91347c7 =−9.586004,

10.0838c2 +60.502802c3 +225.57406c4 +579.811585c5 +599.303853c6

−4367.219344c7 =−15.076224,

76.140587c2 +609.124698c3 +3383.29128c4 +16045.402c5 +69184.63636c6

+277522.4207c7 =−108.42976.

At last, solving the system by a program, we have

c0 =−1.842363,c1 = 2.545356,c2 =−0.591238,c3 =−0.074767,c4 =−0.046290,

c5 = 0.009142,c6 = 0.000251,c7 =−0.000091.

Therefore, the numerical solution is

u7(x) = −1.842363+2.545356(1+ x)−0.591238(1+2x+ x2)

− 0.074767(1+3x+3x2 + x3)−0.046290(1+4x+6x2 +4x3 + x4)

+ 0.009142(1+5x+10x2 +10x3 +5x4 + x5)

+ 0.000251(1+6x+15x2 +20x3 +15x4 +6x5 + x6)

− 0.000091(1+7x+21x2 +35x3 +35x4 +21x5 +7x6 + x7).
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TABLE 2. Values of exact and approximate u5(x) solutions for the example 5.1.

x Exact solution Approximate solution Absolute error
0.000000 0.000000 0.000057 0.000057
0.261799 0.190280 0.190393 0.000113
0.523599 0.225844 0.226031 0.000187
0.785398 0.090257 0.090506 0.000249
1.047198 −0.230597 −0.230288 0.000309
1.308997 −0.747547 −0.746921 0.000626
1.570796 −1.467401 −1.465247 0.002154
1.832596 −2.392481 −2.385225 0.007256
2.094395 −3.520465 −3.499740 0.020725
2.356194 −4.844546 −4.793425 0.051121
2.617994 −6.353892 −6.241480 0.112412
2.879793 −8.034390 −7.808496 0.225894
3.141593 −9.869604 −9.447272 0.422332

FIGURE 2. Graphs of exact and approximate u5(x) solutions for the example 5.1.
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TABLE 3. Values of exact and approximate u7(x) solutions for the example 5.1.

x Exact solution Approximate solution Absolute error
0.000000 0.000000 0.000000 0.000000
0.261799 0.190280 0.190280 0.000000
0.523599 0.225844 0.225850 0.000006
0.785398 0.090257 0.090299 0.000042
1.047198 −0.230597 −0.230467 0.000130
1.308997 −0.747547 −0.747284 0.000263
1.570796 −1.467401 −1.466998 0.000403
1.832596 −2.392481 −2.391979 0.000502
2.094395 −3.520465 −3.519919 0.000546
2.356194 −4.844546 −4.843944 0.000602
2.617994 −6.353892 −6.353094 0.000798
2.879793 −8.034390 −8.033200 0.001190
3.141593 −9.869604 −9.868194 0.001410

FIGURE 3. Graphs of exact and approximate u7(x) solutions for the example 5.1.

6. Conclusion

In this paper, the extensions of linear VIDEs of the first and the second kinds have been introduced
already. In general, all results show that the Kamal transform has been effective to solve analytical
solutions of the extensions of both kinds on convolution type kernels repeatedly and the Touchard
polynomials have been successful to figure out numerical solutions of the extensions of both kinds
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unrelated to convolution type kernels several times. However, Laplace transform is another method that
can be analytically solved on convolution types of the first and second extensions similarly. Moreover,
the main advantage of this analytical method is the fact that it gives the exact solutions in just few
processes and uses very less computational work. We also suggest that this numerical method can be
applicable to singularly perturbed linear VIDEs to obtain accurate approximate solutions.
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