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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS

AKBAR ALI, BORIS FURTULA∗, AND IVAN GUTMAN

ABSTRACT. In order to enhance quantitative-structure property-relationships investigations, Vukičević
and Gašperov in 2010 proposed numerous novel vertex-degree-based graph invariants. After their
examination, they found that only twenty of these are reasonably efficient predictors of physicochemical
properties of chemical substances. The inverse sum indeg (ISI) index is one of these twenty invariants.
The primary purpose of the present survey is to collect the known mathematical properties of ISI index,
mainly bounds and extremal results. Some open problems and conjectures are also stated.

1. Prologue

As explained in detail in Section 3, a large number of “bond incident degree” (BID) graph invariants
are being considered in the present-day literature. Their general formula is Eq. (2). The simplest and
oldest such BID-index is the “first Zagreb index”, in which φ(du,dv) = du +dv. It was introduced as
early as in the 1970s [61], and was eventually extensively studied [21, 54]. An immediate modification
of this index would be to replace the degree of each vertex by its inverse (“indegree“). This would result
in a “sum indeg” invariant, for which φ(du,dv) =

1
du
+ 1

dv
. It is easy to show that the respective BID

index is equal to the number of vertices. Thus, such a “sum indeg” index would be fully insensitive to
the structure of the underlying graph and therefore of no applicative value. A possible way out of this
difficulty is the replacing of 1

du
+ 1

dv
by its inverse, i.e., setting φ(du,dv) =

[ 1
du
+ 1

dv

]−1. This leads to
the “inverse sum indeg” index, ISI. Indeed, this modification of the original first Zagreb index showed
to possess interesting mathematical properties and to be of value in (mainly chemical) applications. In
what follows, we survey the main mathematical results that have accumulated since 2010, when this
graph invariant was conceived [116].

2. Introduction

A graph invariant is a property of a graph that remains the same under graph isomorphism [49]. A
graph invariant may be a number (for example, the number of vertices of a graph), a sequence (for
example, the degree sequence of a graph), etc. In chemical graph theory, the graph invariants that take
only numerical values are usually referred to as topological indices.

Let G be a simple graph with vertex set V (G) and edge set E(G), such that |V (G)|= n is the order
and |E(G)|= m the size of G.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 2

For additional (chemical-)graph-theoretical notation and terminology see Section 3 and the books
[20, 22, 49, 112, 117].

In order to enhance quantitative-structure property-relationships investigations, Vukičević and
Gašperov [116] proposed numerous novel vertex-degree-based topological indices. After their exami-
nation, they found that only twenty of these are efficient predictors of physicochemical properties of
chemical substances. The inverse sum indeg (ISI) index is one among those twenty chemically usable
graph invariants.

For a graph G, its ISI index is defined as

(1) ISI(G) = ∑
uv∈E(G)

du dv

du +dv
,

where du denotes the degree (= number of first neighbors) of the vertex u of G.
The inverse sum indeg index did not show an impressive predictive power in the seminal paper, but

its nice and simple definition attracted researchers, leading to numerous publications. Among them,
the papers dealing with its chemical application rarely appear. There have been some attempts to use
ISI index to predict the physicochemical properties of anticancer drugs [13, 30] and antivirals used in
the treatment of the COVID-19 [28, 74]. Apart from these applications of ISI index in the medicinal
chemistry, we found only one paper assessing the energetic properties of monocarboxylic acids by the
inverse indeg index [29]. Recently, there have been several attempts to enhance the application potential
in chemical investigations of the inverse sum indeg index by slightly modifying its formula. These
endeavors exhibited promising results that need to be further investigated. Since the modifications of
the ISI index are beyond the scope of this review article, they will not be further elaborated. However,
a reader interested in these modified versions of the ISI index should see [34, 92, 96] and the references
quoted therein.

The mathematical aspects of the ISI index were extensively investigated, and a large number of
papers is devoted to this topic. In particular, extensively studied are its extremal problems and bounds.
It may be useful (at least for the newcomers to chemical graph theory) to have a source providing a
collection of known mathematical results on the ISI index, in order to identify which mathematical
aspects of this topological index have yet to be studied or which existing mathematical work on
this index is incomplete. Therefore, the main goal of this review is to provide a summary of the
existing bounds and extremal results on the ISI index.

This paper is organized as follows. The next section gives definitions and notations to be used in
the subsequent parts of the paper. Extremal results concerning the ISI index are summarized in the
Section 4. Some open problems and conjectures are also given in this section. Section 5 consists of
two subsections; the first is about lower bounds, whereas the second is concerned with upper bounds.

3. Preliminaries

A graph of order at least 2 is known as a non-trivial graph. The path, star, cycle, and complete graphs
of order n are denoted by Pn, Sn, Cn, and Kn, respectively. A degree of a vertex u equals the number of
edges that are incident to this vertex, and is labeled by du. The smallest and the largest among vertex
degrees in a graph G are the minimum vertex degree (δ ) and the maximum vertex degree (∆). A graph
with the maximum vertex degree at most 4 is often referred to as a molecular graph. A connected
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 3

graph of order n and size n+k−1 is a connected k-cyclic graph. For k = 1,2, such graphs are referred
to as connected unicyclic, bicyclic graphs, respectively. By an n-order graph, we mean a graph of
order n. A graph containing no cycle of length 3 is referred to as a triangle-free graph.

A bipartite graph is a graph whose vertex set can be partitioned into two sets A1,A2, in such a way
that no two vertices from each of these two sets are adjacent; the sets A1 and A2 are the partite sets of
the respective bipartite graph. If, in addition, every vertex of the set Ai is adjacent to all the vertices of
the other partite set for i = 1,2, then the bipartite graph under consideration is the complete bipartite
graph. The complete bipartite graph with p vertices in its one partite set and q vertices in its second
partite set is denoted by Kp,q. A bipartite graph G is said to be (s, t)-semiregular bipartite (or simply
semiregular bipartite) if every vertex in one of the partite sets of G has degree s and every vertex in the
other partite set of G has degree t, where s ̸= t.

The complement of G, denoted by G, is the graph with the same vertices as G, provided that two
vertices in G are adjacent if and only if they are not adjacent in G.

The degree set of G is the set consisting of all different elements of the degree sequence of G. The
graph G is said to be regular if the degree set of G is a singleton set; if this singleton set is {t} then G
is said to be t-regular. If two vertices u and v of G are adjacent, then each of them is called a neighbor
of the other. A vertex u of G is said to be a pendent vertex if du = 1. A vertex u of G of degree zero
is an isolated vertex. By the minimum non-pendent vertex degree of G, we mean the least degree of
non-pendent vertices of G. For an edge uv ∈ E(G), the number du+dv−2 is the degree of uv. The least
and largest numbers among the degrees of edges of G are the minimum and maximum edge degrees
of G, respectively; they are denoted by δe and ∆e, respectively. By an edge-regular graph, we mean a
graph in which all edges have the same degree.

The distance d(u,v) between two vertices u and v of G is the length of any shortest path in G
connecting u and v. The eccentricity of a vertex u of G is defined as maxx∈V (G) d(u,x). The radius of
G is the least eccentricity of all vertices of G.

A subset S of the vertex set (respectively, edge set) of a graph is said to be an independent set (respec-
tively, matching) if the elements of S are pairwise non-adjacent. An independent set (respectively, a
matching) consisting of the maximum possible vertices (respectively, edges) of a graph G is a maximum
independent set (respectively, maximum matching) of G. The cardinality of a maximum independent
set (respectively, maximum matching) of a graph G is the independence number (respectively, matching
number) of G.

The vertex connectivity of a non-trivial connected graph is the minimum number of vertices whose
removal results in a disconnected or trivial graph. The edge connectivity of a non-trivial connected
graph is the minimum number of edges whose removal results in a disconnected graph.

The chromatic number of G is the minimum number of colors needed to color the vertices of G so
that no two adjacent vertices have the same color. The clique number of G is the maximum order of a
complete subgraph of G. A covering set C of G is a subset of V (G), such that at least one end-vertex
of every edge of G belongs to C. The covering number of G is the least cardinality of all covering
sets of G. The least number of vertices whose deletion from G results in a bipartite graph is the vertex
bipartiteness (or bipartite vertex frustration of G, [44, 120]).
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 4

Most of the topological indices defined via vertex degrees of a graph, found in the present-day
literature, satisfy the following general setting [67, 116]:

(2) BIDφ (G) = ∑
uv∈E(G)

φ(du,dv),

where φ is a real-valued symmetric function defined on the Cartesian square of the degree set of G.
For instance, the choices φ(du,dv) = ln(du+dv) and φ(du,dv) = ln(dudv) in Eq. (2) yield the natural

logarithm of the multiplicative-sum Zagreb index Π∗
1 (see [41, 55]) and the natural logarithm of the

multiplicative second Zagreb index Π2 (see [50, 55]), respectively.
The topological indices of the form (2) are referred to as bond incident degree (BID) indices [114].

Another frequently used name for such indices is vertex-degree-based (VDB) topological indices
[27, 35].

Remark 3.1. Since the higher-order connectivity indices [72, 73] are VDB topological indices but not
BID indices, the class of BID indices form a proper subclass of the class of VDB topological indices.
Therefore, for the sake of preciseness we prefer to call the topological indices of the form (2) as BID
indices instead of VDB topological indices.

In Table 1 several choices of the function φ for which Eq. (2) corresponds to the most popular
topological indices (mentioned particularly in Section 5). Here α stands for a real number and p ̸= 0.
The topological indices 0R2, R1, R−1, and 0R3 are known as the first Zagreb index [21, 54, 56, 61], the
second Zagreb index [21, 31, 59], the modified second Zagreb index [99], and the forgotten topological
index [46], respectively.

We note here that the general zeroth-order Randić index is named in the literature also as “general
first Zagreb index” [79] and “variable first Zagreb index” [93]. The general Randić index is identical to
what sometimes is called “variable second Zagreb index” [93].

We also mention here that the topological indices R−1/2, 2 ·χ−1 , χ−1/2 , χ2 , and SO−1 are identical
with the Randić index [78, 103], the harmonic index [12, 42], the sum-connectivity index [12, 122], the
hyper-Zagreb index [12, 109], and the ISI index, respectively. As usual, for the sake of simplicity, we
use the notions R, H, and χ for R−1/2, 2 ·χ−1 and χ−1/2 , respectively.

Remark 3.2. In the recent literature on BID indices, often the “reciprocal“ of a particular index is
considered, defined as

(3) BIDφ ,rec(G) = ∑
uv∈E(G)

1
φ(du,dv)

.

In the case of ISI, such “reciprocal ISI index” would be trivial, since bearing in mind the definition of
ISI, Eq. (1), we get

ISIrec(G) = ∑
uv∈E(G)

du +dv

du dv
= ∑

uv∈E(G)

[
1
du

+
1
dv

]

= ∑
u∈V (G)

du
1
du

= n
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 5

where we applied the identity [40, 51]

∑
uv∈E(G)

[
g(u)+g(v)

]
= ∑

u∈V (G)

d(u)g(u)

valid for any function g of the vertices of the graph G.

TABLE 1. Some BID indices considered in the present article.

Function φ(du,dv) Eq. (2) corresponds to Symbol

(du)
α−1 +(dv)

α−1 general zeroth-order Randić index [7, 68] 0Rα

(du dv)
α general Randić index [19, 111] Rα

(du +dv)
α general sum-connectivity index [12, 123] χ

α

(du −dv)
2 sigma index [2, 47, 60] σ

|du −dv| Albertson’s irregularity index [1, 39] Airr√
(du)2 +(dv)2 Sombor index [52, 84] SO(
(du)

p +(dv)
p
)1/p

p-Sombor index [84, 105] SOp

2
√

du dv(du +dv)
−1 geometric-arithmetic index [32, 101, 115] GA(

(du)
2 +(dv)

2
)
(dudv)

−1 symmetric division deg index [8, 116] SDD

4. Extremal Results

The mathematical study of the ISI index was initiated in the paper [107], where several extremal results
were reported. We start presenting a result concerning the minimum ISI index of molecular trees.

Theorem 4.1. [107] The path graph Pn uniquely attains the minimum ISI index over the class of
n-order molecular trees, for every n ∈ {6,7, . . .}.

For most of the topological indices, the following property holds: if the path Pn graph has the
maximum/minimum value of the considered topological index in the class of all n-order molecular
trees, then Pn also attains the maximum/minimum value, respectively, of the considered topological
index in the class of all n-order trees, provided n is sufficiently large. However, this property does not
hold for the case of the ISI index; as it can be seen from the next result.

Theorem 4.2. [107] Among n-order trees, the star graph Sn uniquely attains the minimum ISI index
for every n ∈ {4,5, . . .}.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 6

For n− k ≥ 2, let Bn,k be the tree obtained from the path Pn−k by attaching k pendent vertices to one
of its pendent vertices. (In the literature, the graph Bn,k is sometimes referred to as broom or comet.)

Theorem 4.3. [107] Over the class of n-order trees with maximum degree ∆, the graph Bn,∆ uniquely
attains the minimum ISI index for every n ∈ {4,5, . . .}.

The extremal graph mentioned in Theorem 4.3 is extremal also in the next result.

Theorem 4.4. [107] Over the class of n-order trees with p pendent vertices, the graph Bn,p attains the
minimum ISI index for every n ∈ {4,5, . . .}.

Note that Theorem 4.4 does not provide all trees with minimum ISI index among the considered
trees. For example, for n ≥ 7, the tree depicted in Figure 1 has the same ISI-value as Bn,4.

FIGURE 1. An n-order tree having the same ISI-value as the graph Bn,4, for n ≥ 7.

In [107], it was proved that if v and w are non-adjacent vertices of a graph G, and if G+ vw denotes
the graph obtained from G by adding the edge vw, then

(4) ISI(G)< ISI(G+uv) .

Inequality (4) and Theorem 4.2 yield the following result.

Theorem 4.5. [107] Among n-order connected graphs, the complete graph Kn uniquely attains
the maximum ISI index, while the star graph Sn uniquely attains the minimum ISI index, for every
n ∈ {4,5, . . .}.

In [107], the authors posed the next two problems and determined extremal trees of order up to 20
corresponding to each of these problems.

Problem 1. [107] Characterize the graphs having maximum ISI index in the class of all molecular
trees of fixed order.

Problem 2. [107] Characterize the graphs having maximum ISI index in the class of all trees of fixed
order.

Although Problem 1 has now been solved, Problem 2 is still open. In what follows, several results
concerning the solutions to these problems are given.

The next result gives a solution to Problem 1 when the maximum degree is at most 3.

Theorem 4.6. [9] Among n-order trees of maximum degree at most 3,
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 7

(i): trees containing no vertex of degree 2 are the only graphs with maximum ISI index, where n
is an even integer greater than 3;

(ii): trees containing exactly one vertex of degree 2, which is adjacent to a pendent vertex, are
the only graphs with maximum ISI index, where n is an odd integer greater than 4.

Let mi, j be the number of the edges (of a graph) whose one end vertex has degree i and the other end
vertex has degree j. Denote by T ∗

n the class of the n-order molecular trees satisfying the following
conditions:

m4,4 = k−1,m4,3 = 2k−1+
⌊ r

2

⌋
,

m4,1 = 3−
⌈ r

2

⌉
,

m3,3 = m3,2 = m2,2 = 0,

m3,1 = 4k−2+2
⌊ r

2

⌋
,

m4,2 = m2,1 =

0 if r ∈ {0,2,4,6},

1 if r ∈ {1,3,5},

where n = 7k+ r ≥ 8 provided that k is a positive integer and 0 ≤ r ≤ 6. The next result gives the
complete solution to Problem 1.

Theorem 4.7. [70] The members of the class T ∗
n are the only graphs attaining maximum ISI index

among all n-order molecular trees, for every n ∈ {8,9, . . .}.

Problem 2 was attacked in [24], where not only several structural properties of the desired extremal
tree were reported, but also a related problem and three conjectures were posed. (Problem 2 was also
solved in [24] for n ≤ 150.)

Before presenting the first result towards the solution of Problem 2, we specify some terminology.
Let (d0,d1, . . . ,dn−1) be a non-increasing degree sequence of a connected graph G with vertex set

V (G) = {v0,v1, . . . ,vn−1}, where di = dvi for i = 0,1, . . . ,n−1. Following Li et al. [76], we introduce
an ordering of the vertices of G induced by breadth-first search (BFS): create a sorted list of vertices
beginning with v0; append all neighbors u1,u2, . . . ,ud0 of v0 sorted by decreasing degrees; then append
all neighbors of u1 that are not already in the list, also sorted by decreasing degrees; continue recursively
with u2,u3, . . ., until all vertices of G are processed. In this way, we get a rooted graph, with root v0.
The distance d(v,v0) is called the height h(v) of a vertex v ∈V (G).

Let G be a connected rooted graph with root v0. A well ordering ≺ of the vertices is called breadth-
first searching ordering [18, 121] with non-increasing degrees (BFS ordering for short) if the following
conditions hold for all vertices u,v ∈V (G):
(i) u ≺ v implies h(u)≤ h(v);
(ii) u ≺ v implies d(u)≥ d(v);
(iii) let uv,xy ∈ E(G) and uy,xv ̸∈ E(G) with h(u) = h(x) = h(v)−1 = h(y)−1. If u ≺ x , then v ≺ y.

A graph having a BFS ordering of its vertices is known as a BFS graph.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 8

Theorem 4.8. [24] Among connected graphs with fixed degree sequence, there exists a BFS graph
with the maximum ISI index.

A BFS graph that is a tree is also known as a greedy tree. For every fixed degree sequence π , there
exists a unique greedy tree with the degree sequence π . Thus, Theorem 4.8 implies the next result.

Corollary 4.9. [24] Among trees with fixed degree sequence, the greedy tree attains the maximum ISI
index.

Before stating the next result towards the solution of Problem 2, we mention here that two results
similar to Corollary 4.9 for unicyclic and bicyclic graphs of minimum degree 1 were reported in [25].

We remark here that a graph with maximum ISI index in the classes of graphs mentioned in Theorem
4.8 and Corollary 4.9 needs not to be a BFS graph, and a BFS graph in the class of connected graphs
with fixed degree sequence may or may not have maximum ISI index [24]; see the two examples given
in [81].

The next result provides a step closer to the solution of Problem 2.

Theorem 4.10. [24] Let T be a tree with maximum ISI index among n-order trees and let d be a
positive integer satisfying 1 ≤ d ≤ n−1. Then the subgraph of T , induced by its vertices of degree
greater than or equal to d is also a tree.

Now, we state a problem and a conjecture, posed in [24], concerned with the solution of Problem 2.

Problem 3. [24] Let T be a tree with maximum ISI index among all n-order trees. Characterize the
degree sequence of T .

Conjecture 1. [24] Let T be a tree with maximum ISI index among all n-order trees. This tree T is
unique. Also, if n ≥ 20, then T is obtained from the star graph S∆+1 by attaching pendent vertices to
some vertices of S∆+1.

The next result settles Conjecture 4.2 of [24], which provides further a step closer to the solution of
Problem 2.

Theorem 4.11. [80] Let T be a tree with maximum ISI index among n-order trees, where n ≥ 20. Then
T has no vertex of degree 2.

The next result settles Conjecture 4.4 of [24], which provides a further contribution towards the
solution of Problem 2.

Theorem 4.12. [80] Let T be a tree with maximum ISI index among non-trivial n-order trees and let
∆ be the maximum degree of T . Then ISI(T )< 2n−2−∆.

The next result is yet another contribution towards the solution of Problem 2.

Theorem 4.13. [80] Let T be a tree with maximum ISI index among n-order trees, where n ≥ 137.
Then ISI(T )> 3n/2.

Theorems 4.12 and 4.13 imply:
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 9

Corollary 4.14. [80] Let T be a tree with maximum ISI index among n-order trees, where n ≥ 11.
Then the maximum degree of T is less than n/2.

By a branching vertex in a tree, we mean a vertex of degree greater than 2. We now state another
conjecture, posed in [80], concerned with Problem 2.

Conjecture 2. [80] Let T be a tree with maximum ISI index among all n-order trees. Then the number
of branching vertices of T is at most ∆+1.

Observe that if the word “trees” is replaced with “connected graphs” in Theorems 4.1–4.4, then the
resulting statements remain valid because of (4). This observation also implies:.

Theorem 4.15. [107] Among n-order connected graphs with minimum degree 1, the star graph Sn
uniquely attains the minimum ISI-value, for every n ∈ {4,5, . . .}.

A graph whose degree set consists of only two elements is a bidegreed graph.

Theorem 4.16. [96, 107] In the class of connected n-order graphs of minimum degree δ ≥ 2,
• If δ n is even, then only δ -regular graphs attain minimum ISI index.
• If δ n is odd, then only the bidegreed graphs in which one vertex has degree δ +1 and all other

vertices have degree δ , attain minimum ISI index.

The next result may be considered as a maximal version of Theorems 4.15 and 4.16.

Theorem 4.17. [107] Let KDn,δ be the graph obtained from the complete graph Kn−1 by adding a
new vertex, adjacent to exactly δ vertices of Kn−1. Among n-order connected graphs with minimum
degree δ , KDn,δ uniquely attains the maximum ISI index, for every n ∈ {4,5, . . .}.

The problem of finding graphs with minimum and maximum values of ISI in the class of molecular
graphs of fixed order and minimum degree was attacked in [63].

The next result may be considered as a variant of Theorem 4.16.

Theorem 4.18. [96, 107] In the class of n-order graphs with maximum degree ∆ ≥ 2,
• If ∆n is even, then only ∆-regular graphs attain the maximum ISI index.
• If ∆n is odd, then only the bidegreed graphs in which one vertex has degree ∆−1 and all other

vertices have degree ∆, attain the maximum ISI index.

By (4), a graph having minimum ISI index in the class of n-order connected graphs of maximum
degree ∆ must be a tree. Hence, by Theorem 4.3, such a tree is Bn,∆. The graphs having minimum ISI
index among all graphs (including disconnected ones) of a given maximum degree, without isolated
vertices, were reported in [96].

For k ≥ 1 and for the sequence of non-negative integers q1, . . . ,qk, the graph Hq1,...,qk is obtained
from the complete graph Kk on the vertex set {1, . . . ,k} by attaching qi new pendent vertices to vertex
i for each i = 1, . . . ,k. Further, for given k ≥ 1 and p ≥ 0, let KPk,p = Hq1,...,qk where q1, . . . ,qk are
chosen so that ∑

k
i=1 qi = p and qi ∈

{⌊ p
k

⌋
,
⌈ p

k

⌉}
for each i = 1, . . . ,k.

Theorem 4.19. [107] Among n-order graphs with p pendent vertices, the graph KPn−p,p uniquely
attains the maximum ISI index.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 10

Following [25], we define a special extremal BFS graph as follows. A connected k-cyclic BFS graph
with vertex set {v1,v2, . . . ,vn} and with non-increasing degree sequence (d1,d2, . . . ,dn) is said to be a
special extremal BFS graph if the vertices v1,v2,v3, form a triangle, where k ≥ 1, di = dvi , dn = 1 and
n ≥ 3.

Theorem 4.20. [25] Among all connected graphs with minimum degree 1 and with fixed degree
sequence, there exists a special extremal BFS graph having maximum ISI index.

The paper [23] examines the problems of characterizing graphs having maximum ISI index in
the classes of connected graphs of fixed order and (i) vertex connectivity, (ii) edge connectivity, (iii)
chromatic number, (iv) clique number, (v) independence number, (vi) covering number, and (vii) vertex
bipartiteness. Similar problems concerning (I) matching number, (II) independence number, and (III)
vertex connectivity, were attacked also in [14] independently.

A cactus graph is a connected graph in which every edge lies on at most one cycle. Let Cn,k be
the class of n-order cactus graphs with k cycles, such that every graph in Cn,k satisfies the conditions:
m2,2 = n−5k+5, m2,3 = 6k−6, and mi, j = 0 for (i, j) ̸∈ {(2,2),(2,3),(3,2)}.

Theorem 4.21. [71] The members of the class Cn,k are the only graphs attaining minimum ISI index
among n-order cacti with k cycles, for k ≥ 1 and n ≥ 6k−3.

If “k cycles, for k ≥ 1 and n ≥ 6k− 3” in Theorem 4.21 is replaced by “k = 2 cycles”, then the
resulting statement remains valid; see [71]. Because of this observation and the condition n ≥ 6k−3
mentioned in Theorem 4.21, it is natural to pose the following problem.

Problem 4. Characterize the graphs attaining minimum ISI index in the class of n-order cacti with k
cycles, for k ≥ 3 and n < 6k−3.

In [71], the following conjecture related to Problem 4 was also stated

Conjecture 3. [71] The members of the class Cn,k are the only graphs attaining minimum ISI index
among n-order cacti with k cycles, for k ≥ 3 and 5k−3 ≤ n < 6k−3.

Let Hn,k be the class of connected k-cyclic graphs of order n, such that every graph in Cn,k satisfies
the conditions: m2,2 = n−5k+5, mi, j = 0 for (i, j) ̸∈ {(2,2),(2,3),(3,2)} and m2,3 = 6k−6.

Theorem 4.22. [71] The members of the class Hn,k are the only graphs attaining minimum ISI index
among connected k-cyclic graphs of order n, for k ≥ 1 and n ≥ 6k−3.

In view of Theorem 4.22, there is a problem and a conjecture corresponding to Problem 4 and
Conjecture 3.

Since every tree is a bipartite graph, from (4) and Theorem 4.2, it follows that Sn uniquely attains
the minimum ISI index over the class of n-order bipartite connected graphs. However, in Theorem 2
of [110] it was erroneously stated that Pn is the extremal graph. The next theorem may be considered
as the maximal version of this result.

Theorem 4.23. [110] In the class of n-order bipartite graphs, the complete bipartite graph K⌊n/2⌋,⌈n/2⌉
has maximum ISI-value for n ≥ 2.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 11

The graphs attaining the maximum and second-maximum ISI-value in the classes of n-order bipartite
graphs of fixed diameter and n-order bipartite graphs, respectively, were also determined [110].

Next, we give some extremal results regarding k-polygonal systems.
By a k-polygonal system, we mean a connected geometric figure obtained by concatenating congruent

regular k-polygons side to side in a plane in such a way that the figure divides the plane into one infinite
(external) region and several finite (internal) regions, and all internal regions are congruent regular
k-polygons. In a given k-polygonal system, two polygons having a common side are said to be adjacent
polygons. The characteristic graph of a k-polygonal system is a graph CG whose vertices correspond
to k-polygons of the system and two vertices of CG are adjacent if and only if the corresponding
k-polygons are adjacent. By a k-polygonal chain, we mean a k-polygonal system whose characteristic
graph is a path graph. In a k-polygonal chain, a k-polygon adjacent to exactly one (respectively, two) k-
polygon(s) is said to be external (respectively, internal) k-polygon. For k = 3,4,5,6, the corresponding
k-polygonal chains/systems are known as triangular, polyomino, pentagonal, hexagonal chains/systems,
respectively. (Hexagonal systems (also referred to as benzenoid systems) are of outstanding importance
in chemical graph theory; for example, see [36, 53].)

Every k-polygonal system can be represented by a graph, in which the edges correspond to the
sides of a k-polygon and the vertices represent the points where two sides of a k-polygon meet. In
what follows, by a k-polygonal chain/system we mean the graph corresponding to the k-polygonal
chain/system.

In a polyomino chain, an internal square having a vertex of degree 2 is known as a kink. In a
pentagonal chain, a kink is an internal pentagon containing an edge connecting the vertices of degrees
2. A polyomino/pentagonal chain having at least 3 squares is said to be a zigzag polyomino/pentagonal
chain if it consists of only kinks and external squares.

A segment in a polyomino/pentagonal chain is a maximal linear sub-chain, including the kinks
and/or external squares/pentagons at its ends. The number of squares/pentagons in a segment is called
its length. A segment is said to be internal if it contains no external square/pentagon.

Theorems 2.10 and 2.12 of [10] give the next result.

Theorem 4.24. Among all polyomino chains with n squares, the linear chain uniquely attains the
minimum ISI index for n ≥ 3. For n ≥ 3, the zigzag chain uniquely achieves the maximum ISI index in
the class of polyomino chains with n squares in which no internal segment of length three has an edge
connecting the vertices of degree three.

For n ≥ 3, let Ωn be the class of all those pentagonal chains with n pentagons in which every internal
segment of length 3 (if it exists) contains no edge with end-vertices of degrees 3. Theorems 3.6 of [11]
implies the next result.

Theorem 4.25. In the class Ωn, The linear and zigzag chains uniquely attain the minimum and
maximum values, respectively, of the ISI index.

None of the general results reported in [3] imply any extremal result concerning triangular chains.
Thus, we pose:.

Problem 5. Characterize the graphs having the minimum and maximum values of ISI index in the
class of all triangular chains with a given number of triangles.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 12

A fluoranthene system F is a molecular graph constructed from two hexagonal systems, say H1 and
H2, in the following way. Let u and v be degree 2 vertices of H1 having a common neighbor of degree
3. Let x and y be adjacent degree 2 vertices of H2. Then F is obtained from H1 and H2 by adding two
edges ux and vy. Fluoranthene systems have also been extensively studied in chemical graph theory;
for details see [55].

The problem of characterizing systems having maximum and minimum values of the ISI index in
the class of all fluoranthene systems with a given number of hexagons, under certain conditions, was
attacked in [65]; see also [114].

It is important to note that there are numerous articles in the literature presenting general results
on BID indices (or VDB indices) of hexagonal systems (and other analogous systems) and general
graphs, with specific restrictions. For example, see the recent survey paper [77] (and its references
related to the mentioned topic) for general graphs, and the references related to the indicated topic in
the survey papers [4, 6, 12]. We leave it to the interested readers to check which such general results
yield extremal results (as special cases) for ISI.

5. Bounds

Observe that every result given in Section 4 gives either a lower bound or an upper bound on the ISI
index in terms of certain graph invariants (for example, order, maximum degree, etc.). For every such
extremal graph invariant, there exists at least one graph attaining it. In this section, we list those bounds
that do not satisfy this property. That is, for every bound given in the present section, there exist some
values of the graph invariants for which no graph attains the considered bound. For instance, for the
bounds stated in Theorem 5.1, there exists no graph with n = 10 and m = 11; generally, if m ̸= n, then
the mentioned bound is not attained.

5.1. Lower Bounds. The very first lower bound on the ISI index was reported in [107].

Theorem 5.1. [107] If G is an n-order graph of size m, then

ISI(G)≥ 2m−n

with equality if and only if G is a 2-regular graph.

Since
m2

n
− (2m−n) =

(n−m)2

n
≥ 0,

the next result is better than Theorem 5.1.

Theorem 5.2. [43] If G is an n-order graph of size m, then

ISI(G)≥ m2

n
with equality if and only if G is either a regular graph or a semiregular bipartite graph.

Theorem 5.3. [43] Let G be a graph with m edges and p pendent vertices, and with the minimum
non-pendent vertex of degree δ1. Then

ISI(G)≥ δ1(m− p)
2

+
δ1 p

δ1 +1
,
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 13

with equality if and only if either G is regular or the degree set of G is {1,∆}.

The next result is the corrected version of Theorem 2.6 of [100].

Theorem 5.4. [16] Let G be a non-trivial connected graph of size m, with p pendent vertices, maximum
degree ∆, and minimum non-pendant vertex degree δ1. Then

ISI(G)≥ pδ1

∆+1
+(m− p)

√
2∆δ 6

1

∆6 +2δ 5
1 +4δ 2

1 ∆3

with equality if and only if G ∈ {Cn,Pn,Sn}.

Theorem 5.5. [98] Let G be a non-trivial graph of size m, maximum degree ∆ and minimum degree δ .
Then

ISI(G)≥ m
[

1+ ln
(

δ 2

2∆

)]
with equality if and only if G is 2-regular.

Next, we present a few lower bounds on the ISI index involving the topological indices given in
Table 1.

Theorem 5.6. [89] If G is a non-trivial connected graph with m edges, then

(5) ISI(G)≥ H(G) ·R1(G)

2m
with equality if and only if G is either a regular graph or a semiregular bipartite graph.

The next result is the corrected version of Theorem 2.7 of [100].

Theorem 5.7. [16, 87, 102] Let G be a non-trivial connected graph with m edges, maximum degree ∆

and minimum degree δ . Then

(6) ISI(G)≥
√

∆3 δ 3

m(∆3 +δ 3)
H(G) ·R1(G)

with equality if and only if G is regular.

The right-hand side of (6) depends on five parameters, including all the three parameters of the
right-hand side of (5). Also, it holds that

H(G) ·R1(G)

2m
≥

√
∆3 δ 3

m(∆3 +δ 3)
H(G) ·R1(G) .

Moreover, the class of graphs attaining the equality in (6) is a subclass of the class of the graphs
attaining the equality in (5). Thus, the inequality (5) is better than (6).

Theorem 5.8. [43] The inequalities

ISI(G)≥ δ 2

m
χ(G)2 and ISI(G)≥ m2 δ 2

0R2(G)
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 14

hold for every connected graph G of size m and minimum degree δ . Also, the inequality

ISI(G)≥ R1(G)

2∆

holds for every connected graph G with the maximum degree ∆. Furthermore, the inequalities

ISI(G)≥ δ 2H(G)

2
and ISI(G)≥

0R2(G)

2
−

0R3(G)

4δ

holds for connected graph G the minimum degree δ . Equality in any of the inequalities given in the
present theorem holds if and only if G is a regular graph.

All inequalities of Theorem 5.8, except the last one, follow from the inequality given in Theorem
5.2; see [57]. Also, the last inequality of Theorem 5.8 follows from the one given in the next theorem
(see [89]).

Theorem 5.9. [89] If G is a non-trivial connected graph with minimum edge degree δe, then

ISI(G)≥
0R2(G)

2
−

0R3(G)

2(δe +2)

with equality if and only if G is either a regular graph or a semiregular bipartite graph.

Theorem 5.10. [57] Let G be a connected graph with minimum edge degree δe and maximum edge
degree ∆e. Then

ISI(G)≥ 4R−1(G) ·R1(G)+(∆e +2)(δe +2)H(G)2

4(∆e +δe +4)R−1(G)

with equality if and only if G is regular or semiregular bipartite.

Theorem 5.11. [57] Let G be a connected graph of size m, minimum edge degree δe and maximum
edge degree ∆e. Then

ISI(G)≥ R1(G)[SDD(G)+2m]+m2(∆e +2)(δe +2)
[SDD(G)+2m] (∆e +δe +4)

and

ISI(G)≥ 4mR1(G)+(∆e +2)(δe +2)GA(G)2

4m(∆e +δe +4)
where the equality in either of these two inequalities holds if and only if for every pair of edges
st,uv ∈ E(G), the following condition holds:

ds

dt
+

dt

ds
=

du

dv
+

dv

du
.

The inequality given in the next result follows from the first inequality of Theorem 5.11.

Corollary 5.12. [33] Let G be a connected graph of size m ≥ 2 and minimum edge degree δe. Then

ISI(G)≥ m2(δe +2)
SDD(G)+2m

with equality if and only if G is either regular or semiregular bipartite.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 15

Theorem 5.13. [33] Let G be a connected graph of size m ≥ 2 and maximum edge degree ∆e. Then

ISI(G)≥
[

0R2(G)
]2

(∆e +2)[SDD(G)+2m]

with equality if and only if G is either regular or semiregular bipartite.

Theorem 5.14. [43] If G is an n-order tree, then

ISI(G)≥ R1(G)

n
with equality if and only if G ∼= Sn.

In Theorem 5.14, if G is any triangle-free connected graph of order n ≥ 2, then the inequality given
there still holds [106], where the equality (in that case) holds if and only if G is a complete bipartite
graph.

Theorem 5.15. [43] The inequality

ISI(G)≥ χ(G)2

R−1(G)

holds for every connected graph G. If the graph G has m edges then

ISI(G)≥ m m

√
Π2(G)

Π∗
1(G)

.

In addition, if the graph G has minimum degree δ and maximum degree ∆, then

ISI(G)≥ m2
√

δ∆

(δ +∆)R(G)
.

Equality in any of these inequalities holds if and only if G is either a regular graph or a semiregular
bipartite graph.

The last inequality of Theorem 5.15 follows from the one given in Theorem 5.2; see [57].

Theorem 5.16. [43] For any connected graph G with at least 3 vertices,

ISI(G)≥ H(G)

holds with equality if and only if G is the path graph with 3 vertices.

If the size of the graph G is not less than its order, then the inequality of Theorem 5.16 follows from
the one given in Theorem 5.2 (see [57]).

Theorem 5.17. [95] If G is any non-trivial connected graph, then

ISI(G)≥ GA(G)2

2H(G)

with equality if and only if G is an edge-regular graph.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 16

Theorem 5.18. [95] If G is a connected graph of size m ≥ 2, minimum edge degree δe, and maximum
edge degree ∆e, then

ISI(G) ≥
R1/2(G)

2(m−1)

[
GA(G)− 2mΠ2(G)1/m

R1/2(G)Π∗
1(G)1/m

−
(√

∆e +2−
√

δe +2
)2 R1/2(G)

2(∆e +2)(δe +2)

]
with equality if and only if G is an edge-regular graph.

Theorem 5.19. [58] If G is a graph with minimum degree at least 1 and if 0 < α < 1, then

ISI(G)≥ Rα(G)1/α

[χα/(1−α)(G)](1−α)/α

with equality if and only if

(di +d j)(di d j)
α−1 = (du +dv)(du dv)

α−1

for every pair of edges i j,uv ∈ E(G).

The inequality given in Theorem 5.19 was independently derived in [57] for α = 1/2.

Theorem 5.20. [58] If α > 1 and if G is a graph with maximum degree ∆ and minimum degree δ ≥ 1,
then

ISI(G)≥
[Rα(G)]1/α [χ−α/(α−1)(G)](α−1)/α

cα

(
δ (2α2−α)/(α−1),∆(2α2−α)/(α−1)

)
with equality if and only if G is regular, where

cp(ω,Ω) = max

{
1
p

(
ω

Ω

)1/q
+

1
q

(
Ω

ω

)1/p

,
1
p

(
Ω

ω

)1/q

+
1
q

(
ω

Ω

)1/p
}
,

with q = p/(p−1). In addition,

ISI(G)≥ R2(G)+4∆3 δ 3 χ−2(G)

2(∆3 +δ 3)

with equality if and only if every component of G is either δ -regular or ∆-regular.

Theorem 5.21. [58] If G is a graph of size m, maximum degree ∆, and minimum degree δ ≥ 1, then

ISI(G)≥

(
2∆3 δ 3

∆6 +δ 6

√
R4(G)χ−4(G)+m(m−1)

Π2(G)2/m

Π∗
1(G)2/m

)1/2

with equality if and only if G is regular. Also, if α > 0, then it holds that

ISI(G)≥
√

∆δ

∆+δ
m
(

m
R−α(G)

)1/(2α)

with equality if and only if G is either a regular graph or a semiregular bipartite graph.
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Theorem 5.22. [45] Let G be a connected graph with minimum degree at least 8. If the condition
du ≤ dv ≤

√
2du holds for every edge uv ∈ (G), then ISI(G)> SDD(G).

Theorem 5.23. [34] If G is a graph with maximum degree ∆ ≥ 1, then

(7) ISI(G)≥ NI(G)

∆
,

where

NI(G) = ∑
uv∈E(G)

S(u)S(v)
S(u)+S(v)

and S(w) = ∑
xw∈E(G)

dx .

If G is connected, then equality in (7) holds if and only if G is regular.

Theorem 5.24. [66] If G is any graph, then

ISI(G)>
1
2

(
0R2(G)−SO(G)

)
.

Additional lower bounds on the ISI index can be found in [17, 62, 75, 88, 97, 100]. Also, lower
bounds on the ISI index concerning graph operations can be found in [38, 86, 100, 104, 118].

5.2. Upper Bounds. The mathematical study of the ISI index was initiated in [107], where, among
other results, the following upper bound on the ISI index has been obtained.

Theorem 5.25. [107] If G is a graph of size m and maximum degree ∆, then ISI(G) ≤ ∆m/2 with
equality if and only if G is ∆-regular.

Corollary 5.26. [107] If G is an n-order molecular graph, then

ISI(G)≤ 4n

with equality if and only if G is 4-regular.

Theorem 5.27. [43] Let G be a graph with m edges and p pendent vertices, and with maximum degree
∆. Then

ISI(G)≤ ∆(m− p)
2

+
p∆

∆+1
,

with equality if and only if either G is a regular graph or the degree set of G is {1,∆}.

Theorem 5.28. [58] If G is an n-order graph with size m, maximum degree ∆, and minimum degree
δ ≥ 1, then

ISI(G)≤ (∆+δ )2

4∆δ

m2

n
,

with equality if and only if G is regular. Also, it holds that

ISI(G)≤
[

1+
1
4

(
1− 1+(−1)m+1

2m2

)
(∆−δ )2

∆δ

]
m2

n
.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 18

Theorem 5.29. [43] If G is a connected n-order graph of size m, then

ISI(G)≤ 2nm−ξ (G)

4
and ISI(G)≤ m(n− rad(G))

2
,

with equality if and only if either G ∼= Kn or G is the graph obtained from Kn by removing a perfect
matching, where rad(G) is the radius of G and ξ (G) is the eccentric connectivity index [108], defined
as

ξ (G) = ∑
u∈V (G)

duεu .

Theorem 5.30. [34] If G is a graph with minimum degree δ ≥ 1, then

(8) ISI(G)≤ NI(G)

δ
,

where NI(G) is defined in Theorem 5.23. If G is connected, then equality in (8) holds if and only if G
is regular.

In the remaining part of this section, we provide upper bounds on the ISI index involving topological
indices defined in Table 1.

Theorem 5.31. [107] For any graph G, the inequality

ISI(G)≤
0R2(G)

4
holds, where equality holds if and only if every component of G is regular.

The inequality given in the next theorem was obtained also in [91] from a more general inequality.

Theorem 5.32. [43] For every connected graph G, it holds that

ISI(G)≤ 1
2

R1/2(G) ,

with equality if and only if G is regular.

Theorem 5.33. [43] The inequality

ISI(G)≤
√

m ·R1(G)

2
holds for every connected graph G with m edges. Also, the inequalities

ISI(G)≤ R1(G)

2δ
and ISI(G)≤

0R3(G)

4δ

hold for every connected graph G with minimum degree δ . Moreover, the inequalities

ISI(G)≤ ∆2

2
R(G), ISI(G)≤

√
∆3

2
χ(G) ,

and

ISI(G)≤ ∆2H(G)

2
and ISI(G)≤

0R2(G)

2
−

0R3(G)

4∆

hold for every connected graph G with maximum degree ∆. Equality in any of the inequalities given in
the present theorem holds if and only if G is regular.
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The last inequality of Theorem 5.33 follows also from the one given in the next theorem (see [89]).

Theorem 5.34. [89] If G is a non-trivial connected graph with maximum edge degree ∆e, then

ISI(G)≤
0R2(G)

2
−

0R3(G)

2(∆e +2)
with equality if and only if G is either a regular graph or a semiregular bipartite graph.

Theorem 5.35. [85] For any graph G, it holds that

ISI(G)≤ 2−
(

1
p+1

)
SOp(G) ,

with equality if and only if G is regular.

Theorem 5.36. [58] Let G be a graph with minimum degree δ ≥ 1. Then

ISI(G)≤
0R3(G)

4δ
− Airr(G)2

2 0R2(G)
,

ISI(G) ≤ 2−α−1
δ

1−α
χα(G), if α ≥ 1,(9)

ISI(G) ≤ 1
2δ 2α−1 Rα(G), if α > 1/2,(10)

ISI(G) ≤
0Rα(G)

4δ α−2 , if α ≥ 2,(11)

where equality in any of the above inequalities is attained if and only if G is regular.

We remark here that (9) is a generalized version of the inequality given in Theorem 5.31. Also, (10)
and (11) are generalized versions of the second and third inequalities of Theorem 5.33, respectively.

Theorem 5.37. [90] If G is a non-trivial connected graph, then

ISI(G)≤ 1
4

(
0R2(G)− Airr(G)2

0R2(G)

)
with equality if and only if there exists a real number ε such that the condition |du−dv|

du+dv
= ε holds for

every edge uv ∈ E(G).

Theorem 5.38. [94] If G is any non-trivial connected graph, then

ISI(G)≤ 1
2

(
0R2(G)− SO(G)2

0R2(G)

)
.

Also, if the graph G has size m, then

ISI(G)≤ 1
2

(
0R2(G)− SOred(G)2

0R2(G)
+H(G)−2m

)
,

where SOred is the reduced Sombor index [52] defined as

SOred(G) = ∑
uv∈E(G)

√
(du −1)2 +(dv −1)2 .
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In addition, if the graph G has order n, then

ISI(G)≤ 1
2

(
0R2(G)− SOavr(G)2

0R2(G)
+

4m2

n2 H(G)− 4m2

n2

)
and

ISI(G)≤ 1
2

(
0R2(G)−

SO
(
G
)2

0R2(G)
+

(n−1)2

2
H(G)−m(n−1)

)
,

where SOavr is the reduced Sombor index [52] defined as

SOavr(G) = ∑
uv∈E(G)

√(
du −

2m
n

)2

+

(
dv −

2m
n

)2

.

Equality in any of the above four inequalities holds if and only if G is an edge-regular graph.

Theorem 5.39. [106] If G is a non-trivial triangle-free connected graph of order n, then

ISI(G)≤ 1
4

(
0R2(G)− σ(G)

n

)
with equality if and only if G is a complete bipartite graph.

Theorem 5.40. [66] If G is any graph, then

ISI(G)≤ 1
2
√

2

(√
2 0R2(G)−SO(G)

)
with equality if and only if every component of G is regular.

Theorem 5.41. [58] Let G be a graph of minimum degree at least 1 and maximum degree ∆. Then

ISI(G) ≤ ∆ ·GA(G)

2
,

ISI(G) ≤ 2−α−1
∆

1−α
χα(G), if 0 ≤ α < 1,(12)

ISI(G) ≤ Rα(G)

2∆2α−1 , if 0 ≤ α ≤ 1/2,(13)

ISI(G) ≤
0Rα(G)

4∆α−2 , if 1 ≤ α < 2,(14)

where equality in any of the above inequalities is attained if and only if G is regular.

Note that (12) and (14) are generalized versions of the inequality given in Theorem 5.25. Also, (13)
is a generalized version of the inequality given in Theorem 5.32.

Theorem 5.42. [100] If G is any connected graph of size m, the

ISI(G)≤
√

m ·χ2(G)

4
with equality if and only if G is a regular graph.
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INVERSE SUM INDEG INDEX: BOUNDS AND EXTREMAL RESULTS 21

It was proved in [89] that all the inequalities given in Theorems 5.33 and 5.42 follow directly from
the one given in Theorem 5.32.

Theorem 5.43. [89] If G is a connected graph of size m ≥ 2, minimum edge degree δe, and maximum
edge degree ∆e, then

ISI(G)≤ (δe +∆e +4)2 R1(G)2

4m(∆e +2)(δe +2)(Π2(G))1/m (
Π∗

1(G)
)1/m

with equality if and only if G is either a regular graph or a semiregular bipartite graph.

Corollary 5.44. [89] If G is a non-trivial connected graph of order n, size m, minimum degree δ ,
maximum degree ∆, minimum edge degree δe, and maximum edge degree ∆e, then

ISI(G)≤ n(δe +∆e +4)2 R1(G)2

4m2(∆e +2)(δe +2)
(
Π∗

1(G)
)2/m ≤ n(∆+δ )2R1(G)2

4m2∆δ
(
Π∗

1(G)
)2/m

where the equality in the first inequality holds if and only if G is either a regular graph or a semiregular
bipartite graph, whereas in the second inequality if G is regular.

Theorem 5.45. [89] If G is a non-trivial connected graph of size m, minimum edge degree δe, and
maximum edge degree ∆e, then

ISI(G)≤ 1
2(δe +2)

(
m(Π∗

1(G))2/m − 0R3(G)+m2 (∆e −δe)
2 ·α(m)

)
with equality if and only if G is either a regular graph or a semiregular bipartite graph, where

α(m) =
1
m

⌊m
2

⌋(
1− 1

m

⌊m
2

⌋)
=

1
4

(
1− (−1)m+1 +1

2m2

)
.

Corollary 5.46. [89]

ISI(G)≤ 1
2(δe +2)

(
n2

m
(Π2(G))2/m − 0R3(G)+m2 (∆e −δe)

2 ·α(m)

)
with equality if and only if G is either a regular graph or a semiregular bipartite graph.

Theorem 5.47. [89] If G is a non-trivial connected graph of size m, minimum edge degree δe and
maximum edge degree ∆e, then

ISI(G)≤
0R2(G)2 −m · 0R3(G)+m2 (∆e −δe)

2 ·α(m)

2m(δe +2)

with equality if and only if G is either a regular graph or a semiregular bipartite graph, where α(m) is
defined in Theorem 5.45.

Theorem 5.48. [89] If G is a non-trivial connected graph of size m, minimum degree δ , maximum
degree ∆, minimum edge degree δe, and maximum edge degree ∆e, then

ISI(G)≤ H(G) ·R1(G)

2m
+

m(∆e −δe)
(
∆2 −δ 2

)
·α(m)

(δe +2)(∆e +2)
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with equality if and only if G is either a regular graph or a semiregular bipartite graph, where α(m) is
defined in Theorem 5.45.

The next result (similar to Theorem 5.48) is the corrected version of Theorem 2.2 of [100].

Theorem 5.49. [16, 102] Let G be a non-trivial connected graph with m edges, maximum degree ∆

and minimum degree δ . Then

ISI(G)≤ H(G) ·R1(G)

2m
+

(∆−δ )2 (∆+δ )αm

2m∆δ

with equality if and only if G is regular, where

αm = m
[m

2

](
1− 1

m

[m
2

])
.

Theorem 5.50. [9] If G is a non-trivial connected graph of order n, minimum edge degree δe, and
maximum edge degree ∆e, then

(15) ISI(G)≤ n(∆e +δe +4)R1(G)− 0R2(G)2

n(∆e +2)(δe +2)
and

(16) ISI(G)≤ n(∆e +δe +4)2 R1(G)2

4(∆e +2)(δe +2)0R2(G)2 ,

where equality in both inequalities holds if and only if G is regular or semiregular bipartite. Also, if G
is a non-trivial connected graph with order n, minimum degree δ , and maximum degree ∆, then

(17) ISI(G)≤ n(∆+δ )2R1(G)2

4∆δ 0R2(G)2 .

We remark here that both (16) and (17) follow from (15); see [9].

Theorem 5.51. [9] If G is a non-trivial connected graph of size m, minimum edge degree δe, and
maximum edge degree ∆e, then

(18) ISI(G)≤ (∆e +δe +4)R(G)2 H(G)R1(G)−2m4

(∆e +2)(δe +2)R(G)2 H(G)
,

(19) ISI(G)≤ (∆e +δe +4)2 H(G)R(G)2 R1(G)2

8(∆e +2)(δe +2)m4 ,

(20) ISI(G)≤ (∆e +δe +4)χ(G)2 R−1(G)R1(G)−m4

(∆e +2)(δe +2)χ(G)2 R−1(G)
,

(21) ISI(G)≤ (∆e +δe +4)2
χ(G)2 R−1(G)R1(G)2

4(∆e +2)(δe +2)m4 ,

(22) ISI(G)≤ (∆e +δe +4)R1(G)−m(Π∗
1(G))1/m (Π2(G))

1
m

(∆e +2)(δe +2)
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and

(23) ISI(G)≤ n(∆e +δe +4)R1(G)−m2 (Π∗
1(G))2/m

n(∆e +2)(δe +2)
,

where the equality in any of these inequalities holds if and only if G is regular or semiregular bipartite.
Also, if G is a non-trivial connected graph of size m, minimum degree δ , and maximum degree ∆, then

ISI ≤ (∆+δ )2 H(G)R(G)2 R1(G)2

8∆δm4 .

Note that both (19) and (20) follow from (18). Also, (21) follows from (20), whereas (23) follows
from (22); for details, see [9].

Theorem 5.52. [58] If α > 1 and G is a graph with minimum degree at least 1, then

ISI(G)≤ Rα(G)1/α [χ−α/(α−1)(G)](α−1)/α .

If G is connected, then equality is attained if and only if G is either a regular graph or a semiregular
bipartite graph.

Theorem 5.53. [58] If G is a graph of size m and minimum degree at least 1, then

ISI(G)≤ 1
2

R1(G) ·H(G)−m(m−1)
(

Π2(G)

Π∗
1(G)

)1/m

with equality if and only if G is either a regular graph or a semiregular bipartite graph. In addition,

ISI(G)≤ m
2

(
Rα(G)

m

)1/(2α)

for α ≥ 1/2 .

with equality if and only if
• G is regular, when α > 1/2 ;
• each connected component of G is regular, when α = 1/2.

The next result provides an inequality similar to the first inequality of Theorem 5.53.

Theorem 5.54. [48] If G is a graph of size m, maximum degree ∆, and minimum degree at least 1, then

ISI(G)≤ ∆

2
GA(G)2 −m(m−1)

(
Π2(G)

Π∗
1(G)

)1/m

with equality if and only if G is regular.

Theorem 5.55. [33] Let G be a graph of size m ≥ 1, maximum degree ∆, and minimum degree δ . Then

ISI(G)≤
(a1 +a2)

√
(m−1)0R2(G)+mΠ∗

1(G)1/m −2m−SDD(G)

a1 a2

with equality if and only if G is regular, where

a1 =

√
8
∆

and a2 =

√
∆

δ 2 +
1
∆
+

6
δ
.

Additional upper bounds on ISI can be found in [15, 17, 62, 75, 88, 97, 100]. In addition, upper
bounds on ISI related to graph operations can be found in [37, 38, 64, 86, 98, 100, 104, 118].
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6. Epilogue

In this review we presented most of the mathematical results that until now have been established for
the ISI-index. As made clear in Section 3, ISI is just one among the multitude of presently investigated
BID-type graph invariants, Eq. (2). In a number of studies, the general properties of BID-indices
were studied, either for any real-valued symmetric function φ , or by assuming that φ possesses some
additional properties; see the most recent works along these lines [26, 69, 82, 83, 113, 119] and the
references cited therein. Needles to say, all such results imply, as a special case, a corresponding result
for the ISI-index.

By the present review we hope to make the ISI-index familiar to colleagues interested in graph
invariants, and to help them to do their own research in this area. More research is not only welcome,
but is necessary since the theory of the ISI-index is far from being completed.
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[36] A. A. Dobrynin, I. Gutman, S. Klavžar, and P. Žigert, “Wiener index of hexagonal systems”, Acta Appl. Math. 72

(2002), 247–294.
[37] A. Doley and A. Bharali, “Some bounds on inverse sum indeg index of some graph operations”, Adv. Appl. Discr.

Math. 21 (2019), 119–137.
[38] A. Doley and A. Bharali, “The inverse sum indeg index for R-sum of graphs”, in: S. Bhattacharyya, J. Kumar, K.

Ghoshal (Eds.), Mathematical Modeling and Computational Tools, Springer, Singapore, 2020, pp. 347–357.
[39] S. Dorjsembe, L. Buyantogtokh, I. Gutman, B. Horoldagva, and T. Réti, “Irregularity of graphs”, MATCH Commun.
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