ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Vol., No., YEAR

= vol., NO., TEAK

https://doi.org/rmj.YEAR..PAGE

A GAUGE THEORETIC ASPECT OF PARABOLIC BUNDLES OVER REAL CURVES

SANJAY AMRUTIYA AND AYUSH JAISWAL

ABSTRACT. In this article, we study the gauge theoretic aspects of real and quaternionic parabolic bundles over a real curve (X, σ_X) , where X is a compact Riemann surface and σ_X is an anti-holomorphic involution. For a fixed real or quaternionic structure on a smooth parabolic bundle, we examine the orbits space of real or quaternionic connection under the appropriate gauge group. The corresponding gauge-theoretic quotients sit inside the real points of the moduli of holomorphic parabolic bundles having a fixed parabolic type on a compact Riemann surface X.

1. Introduction

In [13], Narasimhan and Seshadri proved that the vector bundles associated with irreducible unitary representations of the fundamental group of a compact Riemann surface are precisely the stable vector bundles on a compact Riemann surface. In [9], Donaldson proved the Narasimhan-Seshadri theorem using the results of [24]. When a compact Riemann surface X is equipped with an anti-holomorphic involution σ_X , an analogue of Narasimhan-Seshadri theorem for real and quaternionic bundles is studied in [22], see also [7].

The notion of parabolic bundles on compact Riemann surfaces was first introduced by C. S. Seshadri 23 and their moduli was constructed in [12], using GIT, by Mehta and Seshadri. In [12], they have proved 24 that stable parabolic bundles of degree zero on a compact Riemann surface are precisely those vector 25 bundles associated with irreducible unitary representations of the fundamental group of a punctured 26 Riemann surface. In [4], Biquard improved (allowing real parabolic weights) the result of Mehta 27 and Seshadri following [9] by considering appropriate Sobolev spaces using results of [11]. See also 28 [10, 15, 8] for a gauge-theoretic approach to parabolic bundles. The parabolic bundles over a real curve 29 (X, σ_X) is studied in [2, 3, 6]. In [6], Biswas and Schaffhauser established a bijective correspondence 30 between the isomorphism classes of polystable real and quaternionic parabolic vector bundles and the 31 equivalence classes of real and quaternionic unitary representations of the orbifold fundamental group 32 of (X, σ_X) . 33

This paper studies the gauge-theoretic aspects of parabolic bundles over a real curve. Section 2 reviews some basic concepts and results concerning parabolic bundles on compact Riemann surfaces. In Section 3, we examine the stability of real (resp. quaternionic) parabolic bundles and *S*-equivalence classes of such bundles. In Section 4, we study the induced real structure on the space of connection and parabolic gauge group. We show that the corresponding quotients parametrize the real *S*-equivalence classes of semistable real (resp. quaternionic) parabolic bundles.

39

⁴⁰ SA was supported by the SERB-DST under project no. YSS/2015/001182 and MTR/2018/000475.

- 41 2020 Mathematics Subject Classification. Primary: 14H60; Secondary: 53C07, 30F50.
- 42 *Key words and phrases.* Moduli spaces; Real and quaternionic parabolic bundles.

2. Preliminaries

This section recalls some basic notions and results about parabolic bundles. More details can be found in [12, 4].

5 2.1. *Parabolic bundles.* Let *X* be a compact Riemann surface and *S* a finite subset of *X*. Let *E* be a smooth complex vector bundle of rank *r* on *X*. A quasi-parabolic structure on *E* at a point $x \in S$ is a 7 strictly decreasing flag

11

1

$$E_x = F^1 E_x \supseteq F^2 E_x \dots F^{k_x} E_x \supseteq F^{k_x+1} E_x = 0$$

10 of linear subspaces in E_x . We define

$$r_i^x = \dim F^j E_x - \dim F^{j+1} E_x$$

The integer k_x is called the flag's length, and the sequence $(r_1^x, \dots, r_{k_x}^x)$ is called the flag type. The points in S are called parabolic points.

A parabolic structure in *E* at *x* is a quasi-parabolic structure at *x* as above, together with a sequence of real numbers $0 \le \alpha_1^x < \cdots < \alpha_{k_x}^x < 1$. We call $r_1^x, \ldots, r_{k_x}^x$ the multiplicities of $\alpha_1^x, \ldots, \alpha_{k_x}^x$. The α_j are called the weights, and we set

18 19

$$d_x(E) = \sum_{j+1}^{k_x} r_j \alpha_j$$
 and $\operatorname{wt}(E) = \sum_{x \in S} d_x E$.

We say that *E* is a holomorphic parabolic bundle with a parabolic structure on *S* if given a parabolic structure on the underlying smooth complex vector bundle *E* at each point $x \in S$. We denote it by $E_{23} = (E, F^i E(x), \alpha_i^x)_{x \in P}$.

By a *parabolic type* τ_p , we mean a fixed flag type $(r_1, \ldots r_{k_x})$, fixed weights $0 \le \alpha_1^x < \cdots < \alpha_{k_x}^x < 1$ and degree *d*.

The parabolic degree is defined by

(2.1)
$$\operatorname{pardeg}(E) = \operatorname{deg}(E) + \operatorname{wt}(E).$$

 $\frac{28}{29}$ We set

$$\frac{30}{31} (2.2) \qquad \qquad \operatorname{par}\mu(E) = \frac{\operatorname{pardeg}(E)}{\operatorname{rank}(E)}.$$

A holomorphic parabolic bundle E_{\bullet} is called *semi-stable* (resp. *stable*) if for all sub-bundles F of $\overline{33}_{4}$ E, we have $\operatorname{par}\mu(F) \leq \operatorname{par}\mu(E)$ (resp. $\operatorname{par}\mu(F) \leq \operatorname{par}\mu(E)$), where F has induced parabolic structure $\overline{34}_{4}$ from E_{\bullet} .

Let $M_X^{ss}(\tau_p)$ be the set of S-equivalence classes of semi-stable parabolic bundles on X having parabolic type τ_p .

Theorem 2.1. [12] There exists a natural structure of a normal projective variety on $M_X^{ss}(\tau_p)$ of dimension $r^2(g-1) + 1 + \sum_{x \in S} \frac{1}{2}(r^2 - \sum_{i=1}^{k_x} (r_i^x)^2)$.

⁴⁰ **Theorem 2.2.** [12] A holomorphic parabolic bundle E_{\bullet} of parabolic degree 0 is stable if and only if ⁴¹ there is an irreducible unitary representation $\rho : \pi_1(X \setminus S) \longrightarrow U(r)$ such that $E_{\bullet} \cong E_{\bullet}^{\rho}$, where E_{\bullet}^{ρ} is a

42 holomorphic parabolic bundle associated to ρ .

1 2.2. Gauge theoretic formulation. For a smooth complex parabolic vector bundle *E* of rank *r* on *X* with parabolic type τ_p , let \mathscr{C} denote the space of holomorphic structure on *E*, more precisely, the space of operators

$$\overline{\partial}_E : A^0(E) \longrightarrow A^{0,1}(E); \quad \overline{\partial}_E(fs) = f\overline{\partial}_E(s) + (\overline{\partial}f)s$$

⁵ Throughout the article, $A^p(E)(A^{p,q}(E))$, respectively) denotes space of smooth p(smooth (p,q)), respec-⁶ tively) forms on base space with values in bundle. Then, there is a bijective correspondence between ⁷ \mathscr{G}_{par} -orbits in \mathscr{C}_E and the isomorphism classes of holomorphic parabolic bundles on X having parabolic ⁸ type τ_p , where

15 16 17

24 25 26

31 32

34 35

4

 $\mathscr{G}_{\text{par}} := \{ g \in C^{\infty}(\text{Aut}(E)) \mid g \text{ respect the flag of } E_x, \text{ for all } x \in S \}.$

¹¹ Let us first review Biquard's formulation of Mehta-Seshadri theorem [12, 4].

¹²/₁₃ *Sobolev spaces.* Let E_{\bullet} be a smooth complex vector bundle on X with parabolic structure over S. The weighted Sobolev norm for $s \in A^{\ell}(E)$ is defined as

$$\|s\|_{W^{k,p}_{\delta}} := \sum_{j=0}^{k} \|\nabla^{j} s\|_{L^{p}_{\delta}}$$

where $\|\cdot\|_{L^p_{\delta}}$ weighted L^p norm with weight δ (for more details, see [11, 4]). We denote by $W^{k,p}_{\delta}(E)$ the completion of $A^{\ell}(E)$ with respect to the weighted Sobolev norm $\|\cdot\|_{W^{k,p}_{\delta}}$.

For $\delta = k - 2/p$, we let $W_k^p := W_{\delta}^{k,p}$.

Let $F = \mathbb{D} \times \mathbb{C}^r$ be a trivial vector bundle with the standard metric. Let $0 \le \alpha_1 < \alpha_2 \cdots < \alpha_\ell < 1$ be the fixed real numbers, let α be the matrix

$$lpha = egin{pmatrix} ilde{lpha}_1 & & \ & \ddots & \ & & ilde{lpha}_r \end{pmatrix}$$

where $0 \le \tilde{\alpha}_1 \le \tilde{\alpha}_2 \cdots \le \tilde{\alpha}_r < 1$ in which α_i are re-labeled according to their multiplicities.

Consider the decomposition of *F* by the eigenspaces E_{α_i} of $\alpha = \text{diag}(\tilde{\alpha}_1, \dots, \tilde{\alpha}_r)$. Then, for any $u \in \text{End}(E)$, we have

$$u^D \in \bigoplus_i \operatorname{Hom}(E_{\alpha_i}, E_{\alpha_i}) \text{ and } u^H \in \bigoplus_{i \neq j} \operatorname{Hom}(E_{\alpha_i}, E_{\alpha_j}).$$

 $\frac{33}{2}$ Consider the space

$$\mathscr{D}_k^p(\mathrm{End}(F)) = \{ u \in \mathrm{End}(F) \mid u^D \in L_k^p(\mathrm{End}(F)), \ u^H \in W_k^p(\mathrm{End}(F)) \}$$

36 with the norm $||u||_{\mathscr{D}^p_{k}} = ||u^D||_{L^p_{k}} + ||u^H||_{W^p_{k}}$.

Let E_{\bullet} be a smooth complex parabolic vector bundle on X with parabolic structure over S. Let $x \in S$, and let z be a local coordinate on X at p such that z(x) = 0. Let $\{s_i\}$ be a local frame of E at x. We say that a local frame $\{s_i\}$ of E at p respect the flag structure at x if $F^jE(x)$ is generated by $\{s_i(x)\}_{i \ge r-\dim F^jE(x)+1}$.

⁴¹ Consider a Hermitian metric *h* in $E_{|X-S}$. We say that a metric *h* is α -adapted if for any parabolic ⁴² point $x \in S$, the following holds: Choose a local coordinate *z* and a local frame $\{e_i\}$ of *E* near *x* which respect the flag structure at x. Then, there is a gauge transformation g near x such that in the local frame $\{g(e_i)\}$, one has

(2.3)
$$h = \begin{pmatrix} |z|^{2\alpha_1} & 0 \\ & \ddots & \\ 0 & |z|^{2\alpha_\ell} \end{pmatrix}$$

Let (E_{\bullet},h) be a smooth Hermitian vector bundle on X with parabolic structure over S, where h is an adapted Hermitian metric with respect to the given parabolic structure over S.

Recall that the Chern connection associated with the adapted hermitian metric on holomorphic 10 parabolic bundle E is

$$d^h = d + h^{-1}\partial h = d + \alpha \frac{dz}{z}$$

12 13 14 15 With respect to the adapted frame $\left(\frac{e_i}{|z|^{\alpha_i}}\right)$, we have

11

16 17 18

19

25

28 29

33 34

39

41

42

$$l^h(\frac{e_i}{|z|^{\alpha_i}}) = e_i d(\frac{1}{|z|^{\alpha_i}}) + \frac{1}{|z|^{\alpha_i}} d^h(e_i)$$

$$= -e_i \cdot \frac{\alpha_i}{2|z|^{\alpha_i+2}} (\overline{z}dz + zd\overline{z}) + e_i \frac{\alpha_i}{z|z|^{\alpha_i}} dz$$

$$=rac{e_i}{|z|^{lpha_i}}rac{lpha_i}{2}ig(rac{dz}{z}-rac{dar z}{ar z}ig)$$
 .

20 From this, it follows that $d^h = d + \frac{\alpha}{2} \left(\frac{dz}{z} - \frac{d\overline{z}}{\overline{z}} \right)$ in the adapted frame $\left(\frac{e_i}{|z|\alpha^i} \right)$. 21

22 Let \mathscr{A} denote the space of *h*-unitary connections associated with the holomorphic structure $\overline{\partial}_E \in \mathscr{C}$. 23 Consider the unitary gauge group of (E, h) defined by 24

$$\mathscr{G}_h = \{g \in \mathscr{G}_{\text{par}} \mid g_{|_{X-S}} \text{ is } h\text{-unitary}\}.$$

Let \mathscr{C}^p be the space of Daulbault operator $\overline{\partial}_E$ of class L_1^p on X - S and is of the form 26 27

$$\bar{\partial} - \frac{1}{2} lpha \frac{d\bar{z}}{\bar{z}} + a$$

near $x \in S$ in any local frame adapted to E with $a \in \mathscr{D}_1^p$. Let $\mathscr{G}_{\mathbb{C}}^p$ be the space of Sobolev gauge transformations of E of class L_2^p on X - S and of class \mathscr{D}_2^p near $x \in S$. 30 31

Let \mathscr{A}^p be the space of *h*-unitary Sobolev connections on *E* of class L_1^p on X - S and is of the form 32

$$d + \alpha \frac{dz}{z} + a$$

35 near $x \in S$ in any local frame adapted to E with $a \in \mathscr{D}_1^p$. We denote by \mathscr{G}_h^p a group of unitary Sobolev 36 gauge transformations. 37

The action of the Lie group \mathscr{G}^p on a connection $A = D + a \in \mathscr{A}^p$ is given by 38

$$g(D+a) = D + gag^{-1} - (Dg)g^{-1}$$

40 The curvature of a connection $A = D + a \in \mathscr{A}^p$ is given by

 $F_A = F_D + Da + \frac{1}{2}[a,a].$

10

11

14

15

16 17

18

19 20

21

22 23

24

25

26 27

28

29 30

31 32

33 34

35 36 37

38 39

A GAUGE THEORETIC ASPECT OF PARABOLIC BUNDLES OVER REAL CURVES

1 If $p \in (1,2)$, then $D_1^p(A^1(\mathfrak{u}(E,h))) = L_1^p(A^1(\mathfrak{u}(E,h)))$, and hence we have the curvature map $F : \mathscr{A}^p \longrightarrow \mathscr{A}^p$ $\frac{1}{2} \begin{array}{c} \prod p \in (1, 2), \text{ then } D_1(A^*(\mathfrak{u}(E, h))) = \\ \frac{2}{2} L^p(A^2(\mathfrak{u}(E, h))) ([24, \text{ Lemma 1.1}]). \\ 3 \\ \text{Let } p \in (1, 2) \text{ satisfying} \\ \frac{4}{5} \\ \frac{5}{6} \\ (2.4) \\ \frac{7}{8} \\ \frac{9}{9} \end{array}$ Then, the operator $\bar{\partial}_E : D_2^p(\operatorname{End}(E)) \longrightarrow D_1^p(A^{0,1} \otimes \operatorname{End}(E))$ is Fredholm. Using Fredholmness of this operator, it follows that any operator $\bar{\partial}_E \in \mathscr{C}^p$ is equivalent under the complex gauge group $\mathscr{G}_{\mathbb{C}}^p$ to a smooth operator on X (i.e. which is in \mathscr{C}) [4, Proposition 2.8] (cf. [1, Lemma 14.8]). There are bijective correspondences $\mathscr{A}^p/\mathscr{G}_h^p \simeq \mathscr{A}/\mathscr{G}_h \simeq \mathscr{C}/\mathscr{G}_{\text{par}}.$ **Theorem 2.3.** [4] Let \mathcal{E}_{\bullet} be an indecomposable parabolic bundle with an adapted Hermitian metric h. Then \mathcal{E}_{\bullet} is parabolic stable if and only if there exists on \mathcal{E} a connection $A \in \mathscr{A}$ satisfying $\star F_A = -2\pi\sqrt{-1} \operatorname{par} \mu(E)$. This connection is unique up to the action of the gauge group \mathcal{G}_h . Let $\mathscr{C}_{s} := \{ \bar{\partial}_{E} \in \mathscr{C} \mid (E_{\bullet}, \bar{\partial}_{E}) \text{ is stable parabolic bundle} \}$ and $\mathscr{A}_{ss}^{p} := F^{-1}(2\pi\sqrt{-1}\mathrm{par}\boldsymbol{-}\boldsymbol{\mu}(E))$ $\mathscr{A}_{s}^{p} := \{A \in \mathscr{A}_{ss}^{p} \mid d_{A} \text{ is irreducible}\}$ Then, we have the following commutative diagram $\begin{array}{ccc} \mathscr{C}_{\mathsf{S}} & \xrightarrow{\mathfrak{l}} & \mathscr{A}_{\mathsf{S}}^{p} \\ q \\ \downarrow & & & \downarrow \pi \end{array}$ $M^s_X(\tau_p) \longrightarrow \mathscr{A}^p_s / \mathscr{G}^p_h$

40 The set $M_X^s(\tau_p) := \mathscr{C}^s/\mathscr{G}_{par} \cong \mathscr{A}_s^p/\mathscr{G}_h^p$ has a natural structure of Kähler manifold. In fact, Konno 41 [10] studied the moduli of more general objects, namely parabolic Higgs bundles, using the weighted 42 Sobolev spaces defined by Biquard [4].

1 2.3. Vector bundles on real curves. By a real curve we will mean a pair (X, σ_X) , where X is a Riemann surface, and σ_X is an anti-holomorphic involution on *X*. Let $\sigma_{\mathbb{C}} : \mathbb{C} \longrightarrow \mathbb{C}$ be the conjugate 3 map $z \mapsto \overline{z}$.

A real (resp. quaternionic) holomorphic vector bundle $E \longrightarrow X$ is a holomorphic vector bundle, together with an anti-holomorphic involution (resp. anti-involution) σ^E of the total space E making 6 the diagram

13

18

25

26

32 33 34

37

7 8 9 10 11 12 commutative, and such that, for all $x \in X$, the map $\sigma^E|_{E(x)} : E(x) \longrightarrow E(\sigma_X(x))$ is \mathbb{C} -antilinear:

$$\sigma^{E}(\lambda \cdot \eta) = \overline{\lambda} \cdot \sigma^{E}(\eta)$$
, for all $\lambda \in \mathbb{C}$ and all $\eta \in E(x)$.

14 15 We refer to the map σ^E as the *real structure* of E. Giving a real structure σ^E on E is equivalent to giving a \mathbb{C} -linear isomorphism $\phi : \sigma_X^* \overline{E} \longrightarrow E$ such that $\sigma_X^* \overline{\phi} \circ \phi = \mathrm{Id}_E$. 16 17

A homomorphism between two real bundles (E, σ^E) and $(E', \sigma^{E'})$ is a homomorphism

 $f: E \longrightarrow E'$

of holomorphic vector bundles over *X* such that $f \circ \sigma^E = \sigma^{E'} \circ f$.

20 A holomorphic subbundle F of a real holomorphic vector bundle E is said to be a real subbundle of 21 *E* if $\sigma^E(F) = F$.

22 23 We refer to [7] for topological classification of real and quaternionic bundles. See also [21] for discussion on the stability of such bundles over a real curve. 24

3. Parabolic bundles over real curves

Let (E, σ^E) be a smooth real (resp. quaternionic) vector bundle over a real curve (X, σ_X) . Let S be a 27 finite subset of *X* such that $\sigma_X(S) = S$. 28

29 **Definition 3.1.** A parabolic structure on (E, σ^E) over S is a quasi-parabolic structure on (E, σ^E) over 30 *S*: 31

• for each $x \in S$, there is a strictly decreasing flag

$$E(x) = F^{1}E(x) \supset F^{2}E(x) \supset \cdots \supset F^{k_{x}}E(x) \supset F^{k_{x}+1}E(x) = 0$$

of linear subspaces in E(x) satisfying $\sigma_x^E(F^iE(x)) = F^iE(\sigma_X(x))$

35 together with a sequence of real numbers $0 \le \alpha_1^x < \cdots < \alpha_{k_x}^x < 1$, with the following property: 36

• the weights over x and $\sigma_X(x)$ are same.

A smooth real (resp. quaternionic) vector bundle (E, σ^E) together with a parabolic structure as in 38 ³⁹ Definition 3.1 will be referred to as a smooth real (resp. quaternionic) parabolic vector bundle, and we 40 denoted it by (E_{\bullet}, σ^E) . A real (resp. quaternionic) holomorphic vector bundle (E, σ^E) together with a parabolic structure as in Definition 3.1 will be referred to as a real (resp. quaternionic) parabolic vector 41 42 bundle.

Remark 3.2. Let E_{\bullet} be a holomorphic parabolic bundle on (X, S). Then, $\sigma_X^*\overline{E}$ gets an induced parabolic structure, and the resulting holomorphic parabolic bundle is denoted by $\sigma_X^*\overline{E}_{\bullet}$. If (E_{\bullet}, σ^E) is a real parabolic bundle over (X, σ_X) , then there is an isomorphism $\phi : E_{\bullet} \longrightarrow \sigma_X^*\overline{E}_{\bullet}$ of holomorphic parabolic bundles such that $\sigma^*\overline{\phi} \circ \phi = \mathrm{Id}_E$ (see [6]). A similar statement holds in the quaternionic case.

Let us recall the definition of real parabolic semi-stable bundles over a real curve (see [2, 6]). A real parabolic bundle (E, σ^E) is called *real semistable* if for every real parabolic subbundle *F* of *E*, we have

9 (3.1)
$$p\mu(F) \le p\mu(E).$$

¹⁰/₁₁ We say that a real parabolic bundle (E, σ^E) is *real stable* if the inequality (3.1) is strict, i. e., $\mu(E) = \mu(E)$ for every proper real subbundle F of E.

¹³ **Proposition 3.3.** Let (E, σ^E) be a real (resp. quaternionic) semistable parabolic bundle on (X, σ_X) . ¹⁴ Then, the underlying holomorphic parabolic bundle E_{\bullet} is parabolic semistable.

Proof. Let $\phi: E_{\bullet} \longrightarrow \sigma^* \overline{E}_{\bullet}$ be an isomorphism of holomorphic parabolic bundles such that $\sigma^* \overline{\phi} \circ \phi = 17$ Id_E. If E_{\bullet} is not parabolic semistable, then by [19, Theorem 8], there exists a unique maximal destabilizing subbundle *F* of *E*. Note that $\phi(\sigma_X^* \overline{F})$ and *F* are subbundles of *E* having same rank and parabolic degree with respect to the induced parabolic structure. Since *F* is the maximal destabilizing subsheaf of *E* (for parabolic semistability), it follows that $\phi(\sigma_X^* \overline{F})$ is the maximal destabilizing subsheaf of $\phi(\sigma_X^* \overline{E})$. Hence, by the uniqueness, we have $\phi(\sigma_X^* \overline{F}) = F$. Since (E, σ^E) is real (resp. quaternionic) semistable parabolic bundles, we have $p\mu(F) \leq p\mu(E)$, which is a contradiction.

The following result is a generalization of [21, Proposition 2.7] to real parabolic bundles. The proof is identical, with some additional arguments.

Proposition 3.4. Let (E, σ^E) be a real (resp. quaternionic) stable parabolic bundle on (X, σ_X) . Then, one of the following holds:

- (1) The underlying holomorphic parabolic bundle E_{\bullet} is stable parabolic.
- (1) The inderiging intermet phase of the value E_{\bullet} is share p

³² *Proof.* If the underlying holomorphic parabolic bundle E_{\bullet} is not stable parabolic, then there exists a ³³ non-zero subbundle F of E such that $p\mu(F) \ge p\mu(E)$. By Proposition 3.3, E_{\bullet} is parabolic semistable, ³⁴ and hence we have $p\mu(F) = p\mu(E)$. In particular, F_{\bullet} is parabolic semistable. Let E' be the subbundle ³⁵ generated by σ^{E} -invariant subsheaf $F \cap \sigma_{X}^{*}\overline{F}$ of E, and E'' be the subbundle generated by σ^{E} -invariant ³⁶ subsheaf $F + \sigma_{X}^{*}\overline{F}$ of E.

³⁷ Consider the short exact sequence

38 39

28

 $0 \longrightarrow E'_{\bullet} \longrightarrow F_{\bullet} \oplus (\sigma_X^* \overline{F})_{\bullet} \longrightarrow E''_{\bullet} \longrightarrow 0$

of parabolic bundles, where the map $F_{\bullet} \oplus (\sigma_X^* \overline{F})_{\bullet} \longrightarrow E_{\bullet}''$ is a morphism of real parabolic bundles, where $F \oplus (\sigma_X^* \overline{F})$ is endowed with real structure $\tilde{\sigma}^+$ (resp. quaternionic structure $\tilde{\sigma}^-$) (see [21, page 22]). Since E' and E'' are σ^E -invariant subbundles of E, and (E, σ^E) is real stable parabolic bundle, we

1	have		
2	$\deg(E') + \operatorname{wt}(E') \qquad \operatorname{pu}(E') < \operatorname{pu}(E) \qquad \operatorname{pu}(E)$		
3	$\frac{1}{\operatorname{rank}(E')} = p\mu(E') < p\mu(E') = p\mu(F')$		
4	and		
5	$\deg(F'') \perp \operatorname{wt}(F'')$		
6	$\frac{\operatorname{deg}(E') + \operatorname{wt}(E')}{\operatorname{renk}(E'')} = p\mu(E'') < p\mu(E) = p\mu(F)$		
7	$\operatorname{Tallk}(E^{*})$		
8	Hence, we have		
9	(2.2) $\operatorname{renk}(E)(\operatorname{deg}(E') + \operatorname{wt}(E')) < \operatorname{renk}(E')(\operatorname{deg}(E) + \operatorname{wt}(E))$		
10	(3.2) $\operatorname{Tallk}(\Gamma)(\operatorname{deg}(E) + \operatorname{wt}(E)) < \operatorname{Tallk}(E)(\operatorname{deg}(\Gamma) + \operatorname{wt}(\Gamma))$		
11			
12	(3.3) $\operatorname{rank}(F)(\operatorname{deg}(E'') + \operatorname{wt}(E'')) < \operatorname{rank}(E'')(\operatorname{deg}(F) + \operatorname{wt}(F))$		
13	Note that $deg(E') + deg(E'') = 2deg(E)$ and $reall(E') + reall(E'') = 2reall(E)$. Heing this from (2.2)		
14	Note that $\deg(E) + \deg(E) = 2\deg(F)$ and $\operatorname{rank}(E) + \operatorname{rank}(E) = 2\operatorname{rank}(F)$. Using this, from (5.2) and (2.2) we have $\operatorname{wt}(E') + \operatorname{wt}(E'') < \operatorname{wt}(E)$ which is a contradiction. Hence, $E' = 0$ and $E'' = E$ (if		
15	and (3.5), we have wi(E) + wi(E) < wi(F), which is a contradiction. Hence, $E = 0$ and $E = E$ (if E''_{L} is a measure without the effective matrix E''_{L} is a measure without the effective matrix E''_{L} is a measure without the effective matrix E''_{L} .		
16	<i>E</i> is a proper subbundle of <i>E</i> , then we will have $p\mu(E) < p\mu(F)$. From this, one has		
17	$\deg(F) + \operatorname{wt}(F) \qquad \deg(E'') + \operatorname{wt}(E'') \qquad \deg(F) + \operatorname{wt}(F)$		
18	$\frac{-\underline{c(r)}}{\operatorname{rank}(F)} = \frac{-\underline{c(r)}}{\operatorname{rank}(E'')} < \frac{-\underline{c(r)}}{\operatorname{rank}(F)}$		
19			
20	i.e. $\deg(F) + \operatorname{wt}(F) < \deg(F) + \operatorname{wt}(F)$, a contradiction).		
21			
22	From the above result, we can deduce the following result that real stability implies simplicity in the		
23	category of real semistable parabolic bundles.		
24 25	Corollary 3.5. Let (E, σ^E) be a real stable parabolic bundles on (X, σ_X) .		
26	(1) If the underlying holomorphic bundle E_{\bullet} is parabolic stable, then the set of real parabolic		
27	endomorphism of (E, σ^E) is		
28	τ^E		
29	$(\operatorname{ParEnd}(E_{ullet}))^{\mathbf{o}^{-}} = \{\lambda \mid \lambda \operatorname{Id}_{E} \in \mathbb{R}\} \cong_{\mathbb{R}} \mathbb{R}.$		
30	(2) If (F, σ^E) is isomorphic to $F \oplus (\overline{\sigma^* F})$ as real parabolic bundle, then		
31	(2) If (E, \mathbf{O}^{-}) is isomorphic to $\mathbf{P}_{\bullet} \oplus (\mathbf{O}_{X}^{T})_{\bullet}$ as real parabolic bunale, then		
32	$(\operatorname{ParEnd}(E_{\bullet}))^{\sigma^{E}} = \{(\lambda, \overline{\lambda}) \mid \lambda \in \mathbb{C}\} \cong_{\mathbb{D}} \mathbb{C}$		
33	$(\operatorname{I} \operatorname{and}(\operatorname{I} \circ))$ $((\operatorname{I} \circ))$ $((I$		
34	<i>Proof.</i> If E_{\bullet} is parabolic stable, then it is known that		
35			
36	$\operatorname{ParEnd}(E_{\bullet}) = \{\lambda \mid \lambda \operatorname{Id}_E \in \mathbb{C}\} \cong \mathbb{C}.$		
37	The induce real structure on ParEnd is given by $\lambda \rightarrow \overline{\lambda}$ and hence		
38	The induce real structure on ranking given by $\mathcal{X} \mapsto \mathcal{X}$, and hence		
39	$(\operatorname{ParEnd}(E_{\bullet}))^{\sigma^{E}} = \{\lambda \mid \lambda \operatorname{Id}_{F} \in \mathbb{R}\} \cong_{\mathbb{R}} \mathbb{R}.$		
40			
41	The proof of (2) follows in the same way as that of [21, page 9] using the fact that the homothety gives		
42	the parabolic endomorphism of a stable parabolic bundle. \Box		

1 Jordan-Hölder filtrations. In this section, we study Jordan-Hölder filtrations of real (resp. quater-2 nionic) semistable parabolic bundles of fixed type τ_p .

If E_{\bullet} is a holomorphic semistable parabolic bundle, then there exists a filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_\ell = E$$

6 such that for each $i = 1, 2, ..., \ell$, the parabolic quotient bundle $(E_i/E_{i-1})_{\bullet}$ is stable with $p\mu(E_i/E_{i-1}) = p\mu(E)$. Such a filtration is called a Jordan-Hölder filtration of E_{\bullet} , which generally may not be unique. 8 However, the associated graded object

11

22 23 24

4

$$\operatorname{gr}(E_{\bullet}) := \bigoplus_{i=1}^{\ell} (E_i/E_{i-1})_{\bullet}$$

¹² is unique up to isomorphism. A holomorphic parabolic vector bundle, which is a direct sum of stable ¹³ parabolic bundles of the equal parabolic slope, is called a poly-stable parabolic bundle. Note that the ¹⁴ associated graded $gr(E_{\bullet})$ is a poly-stable parabolic bundle.

¹⁵ We say that two semistable parabolic bundles E_{\bullet} and F_{\bullet} are *S*-equivalent if the associated graded ¹⁶ objects $gr(E_{\bullet})$ and $gr(F_{\bullet})$ are isomorphic as parabolic bundles. The isomorphism class of an associated ¹⁷ graded object of E_{\bullet} is called the *S*-equivalence class of E_{\bullet} .

Definition 3.6. A real (resp. quaternionic) parabolic bundle (E, σ^E) on (X, σ_X) is called real (resp. quaternionic) polystable if there exists real (resp. quaternionic) stable parabolic bundles $\{(F_i, \sigma^{F_i})\}_{i=1,2,...,k}$ of equal parabolic slope such that $\sigma^E = \sigma^{F_1} \oplus \cdots \oplus \sigma^{F_k}$ and

$$E_{\bullet} \cong \bigoplus_{i=1}^{k} (F_i)_{\bullet} \, .$$

Theorem 3.7. Let **RPar**^{ss}_{τ_p}(X, σ_X) (resp. **QPar**^{ss}_{τ_p}(X, σ_X)) denote the category of real (resp. quaternionic) semistable parabolic bundles on (X, σ_X) having fixed parabolic type τ_p . Then, **RPar**^{ss}_{τ_p}(X, σ_X) (resp. **QPar**^{ss}_{τ_p}(X, σ_X)) is an abelian category. Moreover, the simple objects in **RPar**^{ss}_{τ_p}(X, σ_X) are precisely the real (resp. quaternionic) stable parabolic bundles having parabolic type τ_p .

³⁰ *Proof.* Let $\operatorname{Par}_{\tau_p}^{ss}(X)$ be the category of semistable holomorphic parabolic bundles on X having fixed ³¹ parabolic type τ_p . By Proposition 3.3, the category $\operatorname{RPar}_{\tau_p}^{ss}(X, \sigma_X)$ is a strict subcategory of $\operatorname{Par}_{\tau_p}^{ss}(X)$. ³² Since $\operatorname{Par}_{\tau_p}^{ss}(X)$ is an abelian category, we only need to check that if $\varphi: (E, \sigma^E) \longrightarrow (F, \sigma^F)$ is ³³ morphism in $\operatorname{RPar}_{\tau_p}^{ss}(X, \sigma_X)$, then $\operatorname{Ker}(\varphi)$ and $\operatorname{Im}(\varphi)$ are real vector bundles. Since φ is a morphism ³⁴ of real vector bundles, we have $\varphi \circ \sigma^E = \sigma^F \circ \varphi$. From this, it follows that $\operatorname{Ker}(\varphi)$ is σ^E -invariant and ³⁵ $\operatorname{Im}(\varphi)$ is σ^F -invariant.

Let (E, σ^E) be a real stable parabolic bundle having parabolic type τ_p . If (E, σ^E) admit a non-trivial subobject, say $(E', \sigma^{E'})$ in **RPar**^{ss}_{τ_p} (X, σ_X) , then it gives a contradiction to the fact that (E, σ^E) be a real stable parabolic bundle. Hence, (E, σ^E) does not admit a non-trivial subobject in **RPar**^{ss}_{τ_p} (X, σ_X) . This implies that (E, σ^E) is a simple object in **RPar**^{ss}_{τ_p} (X, σ_X) . Conversely, if (E, σ^E) is a simple object **RPar**^{ss}_{τ_p} (X, σ_X) , then for any non-trivial real subbundle *F* of *E*, we have $p\mu(F) < p\mu(E)$. This completes the proof. **Definition 3.8.** Let (E, σ^E) be a real semistable parabolic bundles on (X, σ_X) . By a *real (resp. quaternionic) parabolic Jordan-Hölder filtration* of (E, σ^E) , we mean a filtration

3

$$0 = E_0 \subset E_1 \subset \cdots \subset E_\ell = E$$

by σ^E -invariant subbundles of E such that for each $i = 1, 2, ..., \ell$, the quotient real (resp. quaternionic) parabolic bundle $(E_i/E_{i-1}, \tilde{\sigma}_i)$ is real (resp. quaternionic) stable with $p\mu(E_i/E_{i-1}) = p\mu(E)$.

Proposition 3.9. Every real (resp. quaternionic) semistable parabolic bundle (E, σ^E) admits a real *Jordan-Hölder filtration.*

⁹ *Proof.* Since the category **RPar**^{ss}_{τ_p}(*X*, σ_X) is an abelian, Noetherian, and Artinian, the Jordan-Hölder theorem holds in **RPar**^{ss}_{τ_p}(*X*, σ_X).

Corollary 3.10. The holomorphic S-equivalence class of a real (resp. quaternionic) semistable parabolic bundle (E, σ^E) contains a real (resp. quaternionic) polystable parabolic bundle. Any two such objects are isomorphic as real (resp. quaternionic) polystable parabolic bundles.

¹⁵ *Proof.* The first assertion follows from Propositions 3.9 and 3.4 (see Definition 3.6). For the second assertion, it is enough to show that two real (resp. quaternionic) stable parabolic bundles (E_1, σ^{E_1}) and (E_2, σ^{E_2}) such that $(E_1)_{\bullet} \cong (E_2)_{\bullet}$ as holomorphic parabolic bundles are, in fact, isomorphic as real (resp. quaternionic) parabolic bundles. By Proposition 3.4, we need to consider the following two cases to conclude the argument using induction.

Case-1: Suppose that $(E_1)_{\bullet}$ and $(E_2)_{\bullet}$ are stable holomorphic parabolic bundles.

²¹ Let $\varphi: (E_1)_{\bullet} \longrightarrow (E_2)_{\bullet}$ be an isomorphism of holomorphic parabolic bundle. By following the ²² similar arguments as in [21, Proposition 2.8], we can conclude that (E_1, σ^{E_1}) and (E_2, σ^{E_2}) are ²³ isomorphic as real (resp. quaternionic) parabolic bundles.

²⁴ Case-2: Suppose that $(E_1, \sigma^{E_1}) \cong (F_1)_{\bullet} \oplus (\sigma_X^* \overline{F_1})_{\bullet}$ and $(E_2, \sigma^{E_2}) \cong (F_2)_{\bullet} \oplus (\sigma_X^* \overline{F_2})_{\bullet}$, where $(F_i)_{\bullet}$ is stable holomorphic bundle, i = 1, 2.

Since $(E_1)_{\bullet}$ and $(E_2)_{\bullet}$ are isomorphic as holomorphic polystable parabolic bundles, it follows that either $(F_1)_{\bullet} \cong (F_2)_{\bullet}$ or $(F_1)_{\bullet} \cong (\sigma_X^* \overline{F_2})_{\bullet}$. From this, it follows that the isomorphism $\varphi : (E_1)_{\bullet} \longrightarrow (E_2)_{\bullet}$ of holomorphic parabolic bundles is an isomorphism of real (resp. quaternionic) parabolic bundles. \Box

30 31

42

4. Gauge theoretic approach to parabolic bundles over Klein surfaces

³² In this section, we study the induced real structure on the space of Sobolev connections and the gauge ³³ group, which respect the parabolic structure on the fixed smooth real (resp. quaternionic) parabolic ³⁴ bundle (E_{\bullet}, σ^E) .

4.1. *Real structure on the space of Sobolev connections.* Now let us fix a real (resp. quaternionic) smooth bundle (E, σ^E) on (X, σ_X) with a real parabolic structure over *S*, where *S* is a finite subset of *X* such that $\sigma_X(S) = S$. Let $\phi: \sigma_X^*\overline{E} \longrightarrow E$ be the isomorphism, determined by the real (resp. quaternionic) structure of *E*, such that $\sigma_X^*\overline{\phi} \circ \phi = \mathrm{Id}_E$ (resp. $-\mathrm{Id}_E$). Note that $A^s(E)$ and $A^{q,s}(E)$ have induced real structure from the real structure on *E*, which we shall denote by simply $\tilde{\sigma}$ and the induced isormorphism by $\tilde{\phi}$. For $\overline{\partial}_E \in \mathscr{C}$, we define $\alpha_{\sigma}(\overline{\partial}_E): A^0(E) \longrightarrow A^{0,1}(E)$ as follows: For any $s \in A^0(E)$

$$\alpha_{\sigma}(\partial_E)(s) = \phi(\partial_{\sigma_v^*\overline{E}}(\phi^{-1}s)).$$

It is clear that $\alpha_{\sigma}^2 = \mathrm{Id}_{\mathscr{C}}$. There is also an involution $\gamma_{\sigma} : \mathscr{G}_{\mathrm{par}} \longrightarrow \mathscr{G}_{\mathrm{par}}$ given by $g \mapsto \phi(\sigma_X^* \bar{g}) \phi^{-1}$. As usual, $\mathscr{G}_{\mathrm{par}}$ acts on \mathscr{C} as $g \cdot \bar{\partial}_E := g(\bar{\partial}_E g^{-1})$. **Lemma 4.1.** For $g \in \mathscr{G}_{\mathrm{par}}$ and $\bar{\partial}_E \in \mathscr{C}$, we have $\alpha_{\sigma}(g \cdot \bar{\partial}_E) = \gamma_{\sigma}(g) \cdot \alpha_{\sigma}(\bar{\partial}_E)$. **Formula 4.1.** For $g \in \mathscr{G}_{\mathrm{par}}$ and $\bar{\partial}_E \in \mathscr{C}$. Then, $\frac{6}{7}$ $\alpha_{\sigma}(g.\bar{\partial}_E) = \tilde{\phi} \circ \sigma_X^* \bar{g}(\bar{\partial}_{\sigma_X^* E} \sigma_X^* \bar{g}^{-1}) \circ \phi^{-1}$ $= (\tilde{\phi} \circ \sigma_X^* \bar{g} \circ \tilde{\phi}^{-1}) \circ \tilde{\phi} \circ (\bar{\partial}_{\sigma_X^* E} (\phi^{-1}(\phi \circ \sigma_X^* \bar{g}^{-1} \circ \phi^{-1}))))$ $= \gamma_{\sigma}(g)(\alpha_{\sigma}(\bar{\partial}_E)\gamma_{\sigma}(g)^{-1})$ $= \gamma_{\sigma}(g).\alpha_{\sigma}(\bar{\partial}_E)$ Let $\mathscr{C}^{\alpha_{\sigma}} = \{\bar{\partial}_E \in \mathscr{C} \mid \alpha_{\sigma}(\bar{\partial}_E) = \bar{\partial}_E\}$ and $\mathscr{G}_{\mathrm{par}}^{\gamma_{\sigma}} = \{g \in \mathscr{G}_{\mathrm{par}} \mid \gamma_{\sigma}(g) = g\}$. Then, the subgroup $\mathscr{G}_{\mathrm{par}}^{\gamma_{\sigma}}$ acts on the space $\mathscr{C}^{\alpha_{\sigma}}$. The orbit space $\mathscr{C}^{\alpha_{\sigma}}/\mathscr{G}_{\mathrm{par}}^{\gamma_{\sigma}}$ is in bijection with the set of isomorphism classes of freal (resp. quaternionic) parabolic bundles whose underlying smooth real (resp. quaternionic) parabolic

¹⁷ bundles are smoothly isomorphic to
$$(E_{\bullet}, \sigma^E)$$
.
¹⁸ Let us fix an adapted Hermitian metric *h* on

20

28 29 30 Let us fix an adapted Hermitian metric h on (E_{\bullet}, σ^E) . For $D \in \mathscr{A}^p$, we define $\alpha_{\sigma}(D)$ as follows:

$$d_{\alpha_{\sigma}(D)} := \tilde{\phi} \circ d_{\sigma_{x}^{*}\overline{D}} \circ \phi^{-1} ,$$

where $\sigma_X^*\overline{D}$ is the induced connection on $\sigma_X^*\overline{E}$ and $\tilde{\phi}: L_1^p(A^1(\sigma_X^*\overline{E})) \longrightarrow L_1^p(A^1(E))$ is isomorphism induced by the real structure on $T^*X \otimes E$.

²³Also, the space \mathscr{A}^p is an affine space with the group of translations $L_1^p(A^1(\mathfrak{u}(E)))$. Since $\mathfrak{u}(E)$ ²⁴is compact Lie algebra, it admits and Ad-invariant non-degenerate symmetric bilinear form \langle , \rangle : ²⁵ $\mathfrak{u}(E) \times \mathfrak{u}(E) \to \mathbb{R}$ and the wedge product $\wedge : A^1 \times A^1 \to A^2$ is skew-symmetric. By composing the two ²⁶maps, we have a skew-symmetric bilinear form ω given by

$$L_1^p(A^1(\mathfrak{u}(E))) \times L_1^p(A^1(\mathfrak{u}(E))) \to L_1^p(A^2(\mathfrak{u}(E) \otimes \mathfrak{u}(E))) \to \mathbb{R}$$
$$(a,b) \mapsto a \wedge b \mapsto \int_X \langle a \wedge b \rangle$$

³¹ which is non-degenerate. This skew-symmetric, non-degenerate, bilinear form ω is called Atiyah-Bott ³² symplectic form.

Proposition 4.2. Let $p \in (1,2)$ be such that the condition (2.4) holds. For $D \in \mathscr{A}^p$, we have $\alpha_{\sigma}(D) \in \mathscr{A}^p$. The map $\alpha_{\sigma} : \mathscr{A}^p \to \mathscr{A}^p$ given by, $A \mapsto \alpha_{\sigma}(D) = \tilde{\phi} \sigma_X^* \overline{A} \phi^{-1}$ is an anti-symplectic isometric isometric involution.

³⁷ *Proof.* Let $(e_i)_{i=1}^r$ and $(f_i)_{i=1}^r$ be local frames which respect flag structure of E and $\sigma_X^*\overline{E}$ at $x \in S$. ³⁸ Let $(\phi)_j^i$ be the matrix of ϕ (with respect to frames (e_i) and (f_i)) which respects flag structure, i. e., ³⁹ $(\phi)_j^i = 0$ if $\alpha_i < \alpha_j$. The matrix of ϕ with respect to adapted frames $(\frac{e_i}{|z|^{\alpha_i}})$ and $(\frac{f_i}{|z|^{\alpha_j}})$ is $|z|^{\alpha_i - \alpha_j}(\phi)_j^i$, ⁴¹ which is in D_2^p (End E), since p satisfies the condition (2.4). Note that $\{d\overline{z_i \circ \sigma_X} \otimes f_j\}_{j=1}^r$ is a local frame ⁴² for $T^*X \otimes \sigma_X^*\overline{E}$ around x, and the matrix of $\tilde{\phi}$ also respects flag structure and lies in $D_2^p(A^1(\text{End}(E)))$.

If $(e_i)_{i=1}^r$ is a local frame for *E* on chart (U, z) around *x*, then $(\phi^{-1}(e_i))_{i=1}^r$ will be a local frame for $\sigma_X^*\overline{E}$ on chart (U, z), and also a local frame for *E* on chart $(\sigma_X(U), \overline{z \circ \sigma_X})$. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Any connection $D \in \mathscr{A}^p$ can be expressed (locally on chart (U, z)) as

$$d_D = d + \frac{\alpha}{2} \left(\frac{dz}{z} - \frac{d\overline{z}}{\overline{z}} \right) + dz \otimes a^{(1,0)} + d\overline{z} \otimes a^{(0,1)} ,$$

where $a^{(1,0)}, a^{(0,1)} \in D_1^P(\text{End E})$. Similarly, a connection D can be expressed locally on chart $(\sigma_X(U), \overline{z \circ \sigma_X})$ as

$$d_D = d + \frac{\alpha}{2} \left(\frac{d(\overline{z \circ \sigma_X})}{(\overline{z \circ \sigma_X})} - \frac{d(z \circ \sigma_X)}{(z \circ \sigma_X)} \right) + d(\overline{z \circ \sigma_X}) \otimes b^{(1,0)} + d(z \circ \sigma_X) \otimes b^{(0,1)} ,$$

where $b^{(1,0)}, b^{(0,1)} \in D_1^P(\text{End E})(\sigma_X(U)).$

Hence, the induced connection $\sigma_x^* \overline{D}$ can be expressed locally on chart (U, z) as

$$d_{\sigma_X^*\overline{D}} = d + \frac{\alpha}{2} \left(\frac{d(\overline{z \circ \sigma_X})}{(\overline{z \circ \sigma_X})} - \frac{d(z \circ \sigma_X)}{(z \circ \sigma_X)} \right) + d(\overline{z \circ \sigma_X}) \otimes b^{(1,0)} + d(z \circ \sigma_X) \otimes b^{(0,1)}$$

16 17 and on chart $(\sigma_X(U), \overline{z \circ \sigma_X})$ as

$$d_{\sigma_X^*\overline{D}} = d + \frac{\alpha}{2} \left(\frac{dz}{z} - \frac{d\overline{z}}{\overline{z}} \right) + dz \otimes a^{(1,0)} + d\overline{z} \otimes a^{(0,1)}$$

In the chart (U, z), we have

$$\begin{aligned} d_{\alpha_{\sigma}(D)}(e_{i}) &= \tilde{\phi} \circ d_{\sigma_{X}^{*}\overline{D}} \circ (\phi^{-1}(e_{i})) \\ &= d + \tilde{\phi} \circ \left[\frac{\alpha_{ii}}{2} \left(\frac{d(\overline{z} \circ \overline{\sigma_{X}})}{(\overline{z} \circ \overline{\sigma_{X}})} - \frac{d(z \circ \overline{\sigma_{X}})}{(\overline{z} \circ \overline{\sigma_{X}})} \right) \phi^{-1}(e_{i}) + d(\overline{z} \circ \overline{\sigma_{X}}) \otimes \sum_{j} [b^{(1,0)}]_{i}^{j} \phi^{-1}(e_{j}) \\ &+ d(z \circ \overline{\sigma_{X}}) \otimes \sum_{j} [b^{(0,1)}]_{i}^{j} \phi^{-1}(e_{j}) \right] \\ &= d + \frac{\alpha_{ii}}{2} \left(\frac{dz}{z} - \frac{d\overline{z}}{\overline{z}} \right) e_{i} + dz \otimes \sum_{j} [\overline{b^{(1,0)} \circ \overline{\sigma_{X}}}]_{i}^{j} e_{j} + d\overline{z} \otimes \sum_{j} [\overline{b^{(0,1)} \circ \overline{\sigma_{X}}}]_{i}^{j} e_{j} \end{aligned}$$

31 32 Hence,

18 19

20 21

28 29 30

33 34

40

$$d_{\alpha_{\sigma}(D)} \equiv d + \frac{\alpha}{2} \left(\frac{dz}{z} - \frac{d\overline{z}}{\overline{z}} \right) + dz \otimes \overline{b^{(1,0)} \circ \sigma_X} + d\overline{z} \otimes \overline{b^{(0,1)} \circ \sigma_X}$$

35 This shows that $\alpha_{\sigma}(D) \in \mathscr{A}^p$. Now, in the chart $(\sigma_X(U), \overline{z \circ \sigma_X})$, we have

$$d_{\alpha_{\sigma}(D)} \equiv d + \frac{\alpha}{2} \left(\frac{d(\overline{z \circ \sigma_X})}{(\overline{z \circ \sigma_X})} - \frac{d(z \circ \sigma_X)}{(z \circ \sigma_X)} \right) + d(\overline{z \circ \sigma_X}) \otimes \overline{a^{(1,0)} \circ \sigma_X} + d(z \circ \sigma_X) \otimes \overline{a^{(0,1)} \circ \sigma_X}.$$

The induced connection $\sigma_X^*\overline{\alpha_\sigma(A)}$ can be expressed locally on chart (U,z) as

$$d_{\sigma_X^* \alpha_\sigma(D)} \equiv d + \frac{\alpha}{2} \left(\frac{d(\overline{z \circ \sigma_X})}{(\overline{z \circ \sigma_X})} - \frac{d(z \circ \sigma_X)}{(z \circ \sigma_X)} \right) + d(\overline{z \circ \sigma_X}) \otimes \overline{a^{(1,0)} \circ \sigma_X} + d(z \circ \sigma_X) \otimes \overline{a^{(0,1)} \circ \sigma_X}.$$

10 May 2023 05:32:56 PDT 230510-Amrutiya Version 1 - Submitted to Rocky Mountain J. Math.

A GAUGE THEORETIC ASPECT OF PARABOLIC BUNDLES OVER REAL CURVES

¹ Hence, in chart (U, z), we have

 $\begin{array}{c}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14
\end{array}$

15

21 22

25

41 42

$$\begin{split} d_{\alpha\sigma(\alpha\sigma(D))}(e_i) &= \tilde{\phi} \circ d_{\sigma_X^*(\overline{\alpha\sigma(A)})} \circ (\phi^{-1}(e_i)) \\ &= d + \tilde{\phi} \circ \left[\frac{\alpha_{ii}}{2} \left(\frac{d(\overline{z} \circ \overline{\sigma_X}}{\overline{z} \circ \overline{\sigma_X}} - \frac{d(z \circ \overline{\sigma_X})}{z \circ \overline{\sigma_X}} \right) \phi^{-1}(e_i) \right. \\ &+ d(\overline{z} \circ \overline{\sigma_X}) \otimes \sum_j [\overline{a^{(1,0)} \circ \overline{\sigma_X}}]_i^j \phi^{-1}(e_j) \\ &+ d(z \circ \overline{\sigma_X}) \otimes \sum_j [\overline{a^{(0,1)} \circ \overline{\sigma_X}}]_i^j \phi^{-1}(e_j) \right] \\ &= d + \frac{\alpha_{ii}}{2} \left(\frac{dz}{z} - \frac{d\overline{z}}{\overline{z}} \right) e_i + d(z) \otimes \sum_j [a^{(1,0)}]_i^j e_j \\ &+ d(\overline{z}) \otimes \sum_j [a^{(0,1)}]_i^j e_j \\ &= d_D(e_i) \end{split}$$

¹⁶— From this, it follows that the map $\alpha_{\sigma} \colon \mathscr{A}^p \longrightarrow \mathscr{A}^p$ is an involution.

The map $L_1^p(A^1(X, \mathfrak{u}(E))) \longrightarrow L_1^p(A^1(X, \mathfrak{u}(E)))$ given by $a \mapsto \alpha_{\sigma}(a) := \phi \sigma^* \overline{a} \phi^{-1}$ is anti-linear. Since \langle , \rangle is real valued on anti-Hermitian matrices and σ is an orientation reversing isometry of X, we have $\mathfrak{D}(\alpha_{\sigma}(a), \alpha_{\sigma}(b)) = -\mathfrak{D}(a, b)$

$$\omega(\alpha_{\sigma}(a), \alpha_{\sigma}(b)) = -\omega(a, b)$$
.

We say that $D \in \mathscr{A}^p$ is real (resp. quaternionic) if $\alpha_{\sigma}(D) = D$. Let γ_{σ} denote the induced involution on \mathscr{G}^p . We denote by β_{σ} the involution on $L^p(A^2(\mathfrak{u}(E)))$ given by

 $\beta_{\sigma}(\omega) := \tilde{\phi} \circ \sigma_X^* \overline{\omega} \circ \phi^{-1}$,

where $\tilde{\phi}$ is the isomorphism induced by the real structure on the bundle $\Lambda^2 T^* X \otimes \mathfrak{u}(E)$ (see (2.3)). The following result is analogous to that of [21, Proposition 3.5].

²⁹ **Proposition 4.3.** With the above notations:

<u>33</u> *Proof.* For $g \in \mathscr{G}^p$ and $D \in \mathscr{A}^p$ we have,

$$\begin{aligned} \alpha_{\sigma}(g \cdot D) &= \tilde{\phi} \circ \sigma_X^*(g \cdot D) \circ \phi^{-1} \\ &= \tilde{\phi} \circ (\sigma_X^* D + (d_{\sigma_X^* D} \sigma_X^* g)(\sigma_X^* g^{-1})) \circ \phi^{-1} \\ &= \alpha_{\sigma}(D) + ((\tilde{\phi} \circ d_{\sigma_X^* D} \circ \phi^{-1})(\phi \circ \sigma_X^* g \circ \phi^{-1}))((\phi \circ \sigma_X^* g^{-1} \circ \phi^{-1})) \\ &= \alpha_{\sigma}(D) + (d_{\alpha_{\sigma}(D)} \gamma_{\sigma}(g)) \gamma_{\sigma}(g^{-1}) \\ &= \gamma_{\sigma}(g) \cdot \alpha_{\sigma}(D) \,. \end{aligned}$$

 $\frac{39}{40}$ For a section $s \in A^0(E)$, we have

$$d_{\alpha_{\sigma}(D)}(s) = \tilde{\phi} \circ d_{\sigma^* \overline{D}} \circ \phi^{-1}(s) = \tilde{\phi} \circ \overline{d_D}(\phi^{-1} \circ s \circ \sigma_X) \circ \sigma_X$$

1 Hence,

31 32

36 37

$$\begin{aligned} d_{\alpha_{\sigma}(D)} \circ d_{\alpha_{\sigma}(D)}(s) &= \tilde{\phi} \circ (\overline{d_D} \circ d_D(\overline{\phi^{-1}} \circ s \circ \sigma_X) \circ \sigma_X \\ &= \tilde{\phi} \circ \sigma_X^*(d_D \circ d_D) \circ \phi^{-1}(s) \\ &= \tilde{\phi} \circ F_{\sigma_Y^* \overline{D}} \phi^{-1}(s) \end{aligned}$$

 $\begin{array}{c} 2\\ \hline 2\\ \hline 3\\ \hline 3\\ \hline 4\\ \hline 5\\ \hline 6\end{array} From this, we can conclude that <math>F_{\alpha_{\sigma}(D)} \equiv \beta_{\sigma}(F_D). \end{array}$

 $\frac{7}{8} \quad \text{Let } \mathscr{A}_{ss}^{p} := (\star F)^{-1} (2\pi \sqrt{-1} \text{par-} \mu(E)). \text{ From the above Proposition 4.3, it follows that the involution$ $<math display="block">\frac{8}{9} \alpha_{\sigma} \text{ induces an involution on } \mathscr{A}_{ss}^{p}. \text{ Moreover, the group } \mathscr{G}^{p,\sigma} \text{ acts on the fixed point set } \mathscr{A}_{ss}^{p,\alpha_{\sigma}}, \text{ of the } \frac{9}{10} \text{ involtion } \alpha_{\sigma}. \text{ For a real connection } D \in \mathscr{A}^{p}, \text{ we denote by } O_{\mathscr{G}^{p}}(D) \text{ the orbit of } D \text{ with respect to the } \frac{10}{11} \text{ action of } \mathscr{G}^{p} \text{ in } \mathscr{A}^{p}, \text{ and by } O_{\mathscr{G}^{p,\sigma}}(D) \text{ the orbit of } D \text{ with respect to the action of } \mathscr{G}^{p,\sigma} \text{ in } \mathscr{A}^{p,\alpha_{\sigma}}.$

Proposition 4.4. [21, Proposition 3.6] If *D* is a real connection in \mathscr{A}^p , which defines a poly-stable real (resp. quaternionic) structure, then $O_{\mathscr{G}^p}(D) \cap \mathscr{A}^{p,\alpha_{\sigma}} = O_{\mathscr{G}^{p,\sigma}}(D)$.

Proof. The proof follows in the same line of arguments as in [21, Proposition 3.6] using Proposition 3.4 and Biquard's Theorem 2.3.

Theorem 4.5. Let (E_{\bullet}, σ^E) be a real (resp. quaternionic) smooth parabolic bundle over (X, σ) having parabolic type τ_p . Let h be an adapted Hermitian metric h on E_{\bullet} . Let $\mathcal{N}_{\sigma}^{\tau_p}$ denote the Lagrangian quotient $\mathcal{A}_{ss}^{p,\alpha_{\sigma}}/\mathcal{G}^{p,\sigma}$. Then, the points of the space $\mathcal{N}_{\sigma}^{\tau_p}$ are in bijection with the real (resp. quaternionic) S-equivalence classes of real (resp. quaternionic) semistable parabolic vector bundles that are smoothly isomorphic to (E_{\bullet}, σ^E) .

Proof. The proof follows in the same line of arguments as in the proof of [21, Theorem 3.7] with the aid of the Theorem 2.3, Proposition 4.3, Proposition 4.4.

Remark 4.6. From the above Theorem 4.5, it follows that a real (resp. quaternionic) parabolic bundle (E_{\bullet}, σ^E) is polystable if and only if it admits a real (resp. quaternionic) adapted Hermitian-Yang-Mills connection (see [6, Theorem 3.6]).

For a connection $D \in \mathscr{A}$, let us consider the connection $B = \frac{1}{2}(D + \alpha_{\sigma}(D))$. Then, we have

$$F_B = \frac{1}{2} (F_D + F_{\alpha_\sigma(D)}) \,.$$

To see this, let $\{e_i\}_{i=1}^r$ be local frame of E over (U,z) then $\{\phi^{-1}(e_i)\}_{i=1}^r$ will be local frame of E over $a_{1,0}$ over $(\sigma_X(U), \overline{z \circ \sigma_X})$. Let $\omega_D = a^{(1,0)}dz + a^{(0,1)}d\overline{z}$, where

$$D(e_j) = \sum_i \left\{ [a^{(1,0)}]_j^i dz + [a^{(0,1)}]_j^i d\overline{z} \right\} e_i$$

and $\omega_{\alpha^{\sigma}(D)} = \overline{b^{(1,0)} \circ \sigma_X} dz + \overline{b^{(0,1)} \circ \sigma_X} d\overline{z}$, where

$$D(\phi^{-1}(e_j)) = \sum \left\{ [b^{(1,0)}]_j^i d(\overline{z_i \circ \sigma_X}) + [b^{(0,1)}]_j^i d(z_i \circ \sigma_X) \right\}$$

42 i.e., $\omega_{\alpha^{\sigma}(D)} = b'^{(1,0)}dz + b'^{(0,1)}d\overline{z}$

A GAUGE THEORETIC ASPECT OF PARABOLIC BUNDLES OVER REAL CURVES

Note that $\omega_B = \left[\frac{\omega_D + \omega_{\alpha\sigma(D)}}{2}\right]$ $= \left[\frac{a^{(1,0)} + b^{\prime(1,0)}}{2}\right] dz + \left[\frac{a^{(0,1)} + b^{\prime(0,1)}}{2}\right] d\overline{z}$ $= \frac{ab^{\prime(1,0)}}{2}dz + \frac{ab^{\prime(0,1)}}{2}d\overline{z},$ where $ab'^{(1,0)} = a^{(1,0)} + b'^{(1,0)}, ab'^{(0,1)} = a^{(0,1)} + b'^{(0,1)} \in A^0(\text{End E})$ Now, $\Omega_D = d(\omega_D) + \omega_D \wedge \omega_D$ $= [\tfrac{\partial a^{(1,0)}}{\partial^{\overline{z}}} d\overline{z} \wedge dz + \tfrac{\partial a^{(0,1)}}{\partial^{\overline{z}}} dz \wedge d\overline{z}] + [a^{(1,0)}]^2 dz \wedge dz$ $+a^{(1,0)} \cdot a^{(0,1)} \{ dz \wedge d\overline{z} + d\overline{z} + dz \} + [a^{(0,1)}]^2 d\overline{z} \wedge d\overline{z}]$ Hence, we have $\Omega_D = [rac{\partial a^{(0,1)}}{\partial z} - rac{\partial a^{(1,0)}}{\partial ar z}]dz \wedge dar z$ $\Omega_{\alpha^{\sigma}(D)} = [\frac{\partial b'^{(1,0)}}{\partial z} - \frac{\partial b'^{(0,1)}}{\partial \overline{z}}]dz \wedge d\overline{z}$ and hence, $\Omega_B = [\frac{\partial ab'^{(0,1)}}{\partial z} - \frac{\partial ab'^{(1,0)}}{\partial \overline{z}}] \frac{dz \wedge d\overline{z}}{2}$ $= \left[\left\{ \frac{\partial a^{(0,1)}}{\partial z} - \frac{\partial a^{(1,0)}}{\partial \overline{z}} \right\} + \left\{ \frac{\partial b^{\prime(1,0)}}{\partial z} - \frac{\partial b^{\prime(0,1)}}{\partial \overline{z}} \right\} \right] \frac{dz \wedge d\overline{z}}{d\overline{z}}$ 26 $=\frac{1}{2}[\Omega_D + \Omega_{\alpha_{\sigma}(D)}]$ 27 Let $D \in \mathscr{A}$ be such that $\star F_D = -2\pi\sqrt{-1} \operatorname{par} \mu(E)$. Consider the connection $B = \frac{1}{2}(D + \alpha_{\sigma}(D))$. Then, 28 clearly $\alpha_{\sigma}(B) = B$. From the above computation, it follows that $\star F_B = -2\pi\sqrt{-1} \operatorname{par}\mu(E)$. This 29 discussion shows that if there is a holomorphic structure on E such that the resulting holomorphic 30 parabolic bundle E_{\bullet} is semistable, then on can get a holomorphic structure on E which is compatible 31 with the real (resp. quaternionic) structure such that (E_{\bullet}, d_B) is semistable. 32 33 *Equivariant point of view.* Here, we will briefly outline an equivariant approach to address the 34 question of constructing suitable moduli space of real (resp. quaternionic) parabolic bundles (discussed 35 above) using the equivariant description of real (resp. quaternionic) parabolic bundles without specific 36 routine details.

Suppose that the weights $0 \le \alpha_1^x < \cdots < \alpha_{k_x}^x$ are rational numbers. Let *N* be a positive integer such that all the weights are integral multiple of 1/N. Let $p: (Y, \sigma_Y) \longrightarrow (X, \sigma_X)$ be an *N*-fold cyclic ramified covering which is ramified over each point of *S* [2]. Let Γ be a Galois group of the covering p. There is an equivalence between the category of real (resp. quaternionic) Γ -equivariant vector bundles over (Y, σ_Y) and the category of real (resp. quaternionic) parabolic bundles over $(X, \sigma_X; S)$ whose weights are integral multiple of 1/N. Let $\mathfrak{B}(\tau)$ be the set of real *S*-equivalence classes of real ¹ Γ-equivariant semistable bundles over (Y, σ_Y) having local type τ (cf. [17] for local type). Let $\mathfrak{B}(\tau_p)$

² be the set of real (resp. quaternionic) *S*-equivalence classes of real parabolic bundles over $(X, \sigma_X; S)$

³ having parabolic type τ_p , where the parabolic type τ_p is uniquely determine by the local type τ . Using

[2, Proposition 5.4], it is straightforward to check that, under the equivalence Ψ of [2, Theorem 5.3], there is a bijection between $\mathfrak{B}(\tau)$ and $\mathfrak{B}(\tau_p)$.

Fix a real (resp. quaternionic) smooth Γ-equivariant bundle (W, σ^W) on (Y, σ_Y) having local type 7 τ. Let \mathscr{C} denote the space of holomorphic structure on W, and let \mathscr{G} be the gauge group of W. A 8 holomorphic structure $\overline{\partial}_W$ in W is called compatible with Γ-equivariant structure on W if the map 9 $\overline{\partial}_W: A^0(W) \longrightarrow A^{0,1}(W)$ is Γ-equivariant. Let \mathscr{C}_{Γ} be the set of all holomorphic structures compatible 10 with the Γ-equivariant structure on W. Let \mathscr{G}_{Γ} be the subgroup of \mathscr{G} consisting of Γ-equivariant 11 automorphisms of W. There is induced involution on \mathscr{D} , which we denote by $\tilde{\alpha}_{\sigma}$. Similarly, we have 12 the induced involution $\tilde{\gamma}_{\sigma}$ on \mathscr{H} .

13 Let $\mathscr{D}_{\Gamma}^{\tilde{\alpha}_{\sigma}} := \{\overline{\partial}_{W} \in \mathscr{D}_{\Gamma} \mid \tilde{\alpha}_{\sigma}(\overline{\partial}_{W}) = \overline{\partial}_{W}\}$ and $\mathscr{G}_{\Gamma}^{\tilde{\gamma}_{\sigma}} := \{g \in \mathscr{G}_{\Gamma} \mid \tilde{\gamma}_{\sigma}(g) = g\}$. It can be easily checked 14 that the orbit space $\mathscr{D}_{\Gamma}^{\tilde{\alpha}_{\sigma}}/\mathscr{G}_{\Gamma}^{\tilde{\gamma}_{\sigma}}$ is in bijection with the set of isomorphism classes of real (resp. quater-15 nionic) Γ -equivariant holomorphic bundles whose underlying smooth real (resp. quaternionic) bundles 16 are smoothly isomorphic to (W, σ^W) as Γ -equivariant bundles.

¹⁷ Fix a Γ -invariant Hermitian metric h_W on W. Let \mathscr{A} be the set of all h_W -unitary connections on ¹⁸ W, and the set \mathscr{A}_{Γ} of all h_W -unitary Γ -equivariant connections on W. Let \mathscr{U}_{Γ} denote the subgroup of ¹⁹ unitary automorphisms of (W, h_W) consisting of unitary Γ -automorphism of (W, h_W) .

Let $\mathscr{A}_{\Gamma,ss} := (\star F)^{-1} (2\pi \sqrt{-1}\mu(W)/N)$. Then, one can check that

$$\mathscr{N}^{ au}_{ ilde{\sigma}} := \mathscr{A}^{ ilde{lpha}_{\sigma}}_{\Gamma,\mathrm{ss}} / \mathscr{U}^{ ilde{\gamma}_{\sigma}}_{\Gamma} \simeq \mathfrak{B}(au) \simeq \mathfrak{B}(au_p)$$

24

30

34

22 23

The bijection $\mathcal{N}_{\bar{\sigma}}^{\tau} \xrightarrow{\simeq} \mathfrak{B}(\tau)$ can be proved by establishing the results of [21] in the equivariant set-up. The second bijection $\mathfrak{B}(\tau) \xrightarrow{\simeq} \mathfrak{B}(\tau_p)$ is a consequence of the preservation of stability under the equivalence Ψ of [2, Theorem 5.3] as mentioned above. In this approach, one can avoid the use of the use of the theory of weighted Sobolev spaces; while working with the rational weights.

4.2. *Real points of the moduli scheme.* Let $M_X^{ss}(\tau_p)$ be the moduli scheme of stable holomorphic parabolic bundles of parabolic type τ_p . Then, we get a map $\sigma_M \colon M_X^{ss}(\tau_p) \longrightarrow M_X^{ss}(\tau_p)$ given by \mathbb{F}_{33} $[E_{\bullet}] \mapsto [\sigma_X^* \overline{E}_{\bullet}]$ on the closed points.

Proposition 4.7. The map $\sigma_M : M_X^{ss}(\tau_p) \longrightarrow M_X^{ss}(\tau_p)$ is a semi-linear involution of \mathbb{C} -schemes.

37 *Proof.* Let *T* be a \mathbb{C} -scheme and E_{\bullet} be a flat family of semistable parabolic bundles of type τ_p 38 parametrized by *T*. Consider the morphism $\sigma_T := \sigma_X \times \operatorname{Id}_T : X \times_{\mathbb{C}} T \longrightarrow X \times_{\mathbb{C}} T$. Then, $\sigma_T^* \overline{E}_{\bullet}$ is flat 39 over *T* and for any $t \in T$, we have $\sigma_T^* \overline{E}_{t_{\bullet}} \cong \sigma_X^* \overline{E}_{t_{\bullet}}$ as parabolic bundles over (X, S). Therefore, $\sigma_T^* \overline{E}_{\bullet}$ 40 is a flat family of semistable parabolic bundles of type τ_p . By universal property of moduli scheme 41 $M_X^{ss}(\tau_p)$, the map $T \longrightarrow M_X^{ss}(\tau_p)$ given by $t \mapsto [\sigma_T^* \overline{E}_{t_{\bullet}}]$ is a morphism. Since *T* and E_{\bullet} are arbitrary, 42 and σ_T being semi-linear involution, it follows that the map $\sigma_M : M_X^{ss}(\tau_p) \longrightarrow M_X^{ss}(\tau_p)$ is a morphism 1 of schemes such that the following diagram

$M_X^{ m ss}(au_p)$	$\xrightarrow{\sigma_M} M_X^{\rm ss}(\tau_p)$
$\operatorname{Spec}^{\downarrow}(\mathbb{C})$	$\xrightarrow{\sigma_{\mathbb{C}}} \operatorname{Spec}^{\downarrow}(\mathbb{C})$

 $\begin{array}{c}
2\\
3\\
4\\
5\\
6\\
7\\
8\\
\end{array} commutes.
\end{array}$

23

27

28 29

The elements of fixed point set $M_X^{ss}(\tau_p)(\mathbb{R})$ of the involution σ_M on $M_X^{ss}(\tau_p)(\mathbb{C})$ may have both (real and quaternionic) structures or may be of neither type (see [21, §2.5] for the discussion in the usual $\frac{11}{12}$ case). The situation is better in the case of a (geometrically) stable locus.

Lemma 4.8. Let E_{\bullet} be a stable holomorphic parabolic bundle on X with $\sigma_X^* \overline{E}_{\bullet} \cong E_{\bullet}$. Then, E_{\bullet} is *it either real or quaternionic, and it can not be both.*

¹⁵ *Proof.* Note that the isomorphism $\varphi: E_{\bullet} \longrightarrow \sigma_X^* \overline{E}_{\bullet}$ is the same as the anti-holomorphic map $\tilde{\sigma}: E \longrightarrow E$ which respects the parabolic structure over *S*. Hence, the composition $\tilde{\sigma}^2$ is a parabolic automorphism of E_{\bullet} . Since E_{\bullet} is stable, we have $\tilde{\sigma}^2 = c \operatorname{Id}_E$. The remaining proof follows in the same line as in [7, 21].

²⁰ Lemma 4.9. Let E_{\bullet} be a stable holomorphic parabolic bundle on X. If $\tilde{\sigma}$ and $\tilde{\sigma}'$ are two real (resp. ²¹ quaternionic) structure on E such that $(E_{\bullet}, \tilde{\sigma})$ and $(E_{\bullet}, \tilde{\sigma}')$ are real (resp. quaternionic) parabolic ²² bundles, then $(E_{\bullet}, \tilde{\sigma}) \cong (E_{\bullet}, \tilde{\sigma}')$.

Proof. Note that $\tilde{\sigma} \circ \tilde{\sigma}'$ is a parabolic automorphism of E_{\bullet} . Since E_{\bullet} is stable, we have $\tilde{\sigma} \circ \tilde{\sigma}' = \lambda \in \mathbb{C}^*$. As in the proof of [21, Proposition 2.8], we get $\tilde{\sigma} = e^{i\frac{\theta}{2}}\tilde{\sigma}'e^{-i\frac{\theta}{2}}$, where $\lambda = e^{i\theta}$ for some $\theta \in \mathbb{R}$. This proves that $(E_{\bullet}, \tilde{\sigma}) \cong (E_{\bullet}, \tilde{\sigma}')$.

By Proposition 4.4, we can see that the map

 $\mathscr{N}^{\tau_p}_{\tilde{\sigma}} \longrightarrow M^{\mathrm{ss}}_X(\tau_p)(\mathbb{C}) ; \quad O_{\mathscr{G}^p,\sigma}(D) \mapsto O_{\mathscr{G}^p}(D)$

³⁰ ³¹ is injective. For $D \in \mathscr{A}^{p,\alpha_{\sigma}}$, we have $\sigma_{M}(O_{\mathscr{G}^{p}}(D)) = O_{\mathscr{G}^{p}}(D)$. Hence, it follows that the quotient ³² space $\mathscr{N}_{\tilde{\sigma}}^{\tau_{p}}$ embeds into the space $M_{X}^{ss}(\tau_{p})(\mathbb{R})$ of real points of the moduli scheme $M_{X}^{ss}(\tau_{p})$. Let ³³ $\mathscr{N}_{\tilde{\sigma},s}^{\tau_{p}} = \mathscr{N}_{\tilde{\sigma}}^{\tau_{p}} \cap M_{X}^{s}(\tau_{p})(\mathbb{R})$

For a smooth parabolic bundle E_{\bullet} with parabolic type τ_p , let \Im denote the parabolic gauge conjugacy classes of real or quaternionic structures on E.

³⁶ ³⁷ ³⁸
Proposition 4.10. $M_X^{s}(\tau_p)(\mathbb{R}) = \bigsqcup_{[\tilde{\sigma}] \in \mathfrak{I}} \mathscr{N}_{\tilde{\sigma},s}^{\tau_p}$

³⁹ *Proof.* By Theorem 4.5 and Lemma 4.8, we can conclude that $M_X^s(\tau_p)(\mathbb{R}) = \bigcup_{[\tilde{\sigma}]\in\mathfrak{I}} \mathscr{N}_{\tilde{\sigma},s}^{\tau_p}$. If $[E_\bullet] \in \mathcal{I}$

⁴⁰ ⁴¹ $\mathcal{N}_{\tilde{\sigma},s}^{\tau_p} \cap \mathcal{N}_{\tilde{\sigma}',s}^{\tau_p}$, then by Lemma 4.9, we have $(E_{\bullet}, \tilde{\sigma}) \cong (E_{\bullet}, \tilde{\sigma}')$. Hence, a parabolic gauge transformation ⁴² conjugates the real structures $\tilde{\sigma}$ and $\tilde{\sigma}'$.

10 11

18 19

22

34

35 36

37

38

39

40

Remark 4.11. There is an isomorphism of schemes $\psi \colon M_Y^{ss}(\tau) \longrightarrow M_X^{ss}(\tau_p)$ given by $[W] \mapsto [(p_*W^{\Gamma})_{\bullet}]$ such that the following diagram 2 3 4 5 6 7 8

$\mathbf{M}_{Y}^{\mathrm{ss}}(\tau) \xrightarrow{\psi} M_X^{\mathrm{ss}}$	(au_p)
ρ_M	σ_M
$M_Y^{ss}(\tau) \xrightarrow{\psi} M_X^{ss}$	(au_p)

commutes, where $M_Y^{ss}(\tau)$ is the moduli space of Γ -equivariant semistable vector bundles on Y having local type τ , and ρ_M the induced semi-linear involution on $M_V^{ss}(\tau)$. Moreover, we have

$$M^{\mathrm{s}}_X(au)(\mathbb{R}) = \bigsqcup_{[ilde{\sigma}]\in\mathfrak{J}} \mathscr{N}^{ au}_{ ilde{\sigma},s}$$

12 where \mathfrak{J} denote the gauge conjugacy classes of real or quaternionic structures on W, which are 13 compatible with the Γ -equivariant structure on W. 14

15 **4.3.** Quillen line bundle. Recall that there is a determinant line bundle \mathcal{L} on \mathcal{C} (cf. [16]) such that the action of \mathbb{C}^* on \mathscr{L} is given by $\lambda \cdot s \mapsto \lambda^{-\chi(E)}s$, where $\lambda \in \mathbb{C}^*$ and $\chi(E) = d + r(1-g)$ (see, [5, p. 16 17 49]). Fix a point $x \in X \setminus S$. Consider the line bundle

$$\tilde{\mathscr{L}} := \mathscr{L}^r \otimes (\det(\mathscr{C} \times E_x))^{\chi(E)}$$

Then, the action of \mathbb{C}^* on $\tilde{\mathscr{L}}$ is trivial. Note that the quotient map $\varphi \colon \mathscr{C}_s \longrightarrow M^s_X(\tau_p)$ is a \mathscr{P}_{par} -20 principal bundle, where $\mathscr{PG}_{par} = \mathscr{G}_{par}/\mathbb{C}^*$ and 21

 $\mathscr{C}_{s} := \{ \overline{\partial}_{E} \in \mathscr{C} \mid (E_{\bullet}, \overline{\partial}_{E}) \text{ is stable parabolic bundle} \}.$

Hence, the restriction of $\tilde{\mathscr{L}}$ on \mathscr{C}_s descends to a line bundle L_{par} on $M^s_X(\tau_p)$. Recall that the Lagrangian quotient $\psi \colon \mathscr{C}_{s}^{\alpha_{\sigma}} \longrightarrow \mathscr{N}_{\tilde{\sigma}}^{\tau_{p}}$ is a $\mathscr{P}\mathscr{G}_{par}^{\gamma_{\sigma}}$ -principal bundle. Then, the restriction of the line bundle $\tilde{\mathscr{L}}$ to $\mathscr{C}_{s}^{\alpha_{\sigma}}$ descends to a line bundle $L_{\tilde{\sigma}}^{\tau_{p}}$ on $\mathcal{N}_{\tilde{\sigma}}^{\tau_{p}}$. Consider the following

27	$\omega^{\alpha_{\sigma}}$ 1	, C
28		$\rightarrow b_{s}$
29	$ \psi $	φ
30	\downarrow	
31	$\mathcal{N}_{\tilde{\sigma}}^{r}$ j	$\rightarrow \mathbf{M}_X^{\mathfrak{s}}(\tau_p)$
32		

commutative diagram of principal bundles. Then, we have $j^*(L_{par}) \cong L^{\tau_p}_{\tilde{\sigma}}$. 33

References

- [1] M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308, 1982, p. 523-615.
- [2] S. Amrutiya, Connections on real parabolic bundles over a real curve, Bull. Korean Math. Soc., 51 (2014) 1101-1113.
 - [3] S. Amrutiya, Real parabolic vector bundles over a real curve, Proc. Indian Acad. Sci. Math. Sci., 124 (2014), 17-30.
- 41 [4] O. Biquard, Fibrès parabolique stables et connexions singuliéres plates, Bull. Soc. Math. France, 119 (1991), 42 231-257.

- [5] I. Biswas, N. Raghavendra, *Determinants of parabolic bundles on Riemann surfaces*, Proc. Indian Acad. Sci. Math. Sci. 103 (1) (1993) 41-71.
- [6] I. Biswas, F. Schaffhauser, Parabolic vector bundles on Klein surfaces, Illinois J. Math. 64 (2020), no. 1, 105-118.
- [7] I. Biswas, J. Huisman, and J. Hurtubise, *The moduli space of stable vector bundles over a real algebraic curve*, Math. Ann., **347** (2010), 201-233.
- [8] G. D. Daskalopoulos, R. A. Wentworth, *Geometric quantization for the moduli space of vector bundles with parabolic structure*, Geometry, topology and physics (Campinas, 1996), 119155, de Gruyter, Berlin, 1997
- [9] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom., **18** (1983), 269-277.
- [10] H. Konno, Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface, J. Math. Soc. Japan, 45(2) (1993) 253-276.
- [11] R. B. Lockart, R. C. McOwen, *Elliptic differential operators on noncompact manifolds*, Ann. Scuola. Norm. Sup. Pisa Cl. Sci.(4), **12**, 1985, p. 409-447.
- [12] V. B. Mehta, C. S. Seshadri, *Moduli of vector bundles on curves with parabolic structure*, Math. Ann. **248** (1980), 205-239.
- [13] M. S. Narasimhan, C. S. Seshadri, *Stable and unitary vector bundles on a compact Riemann surface*, Ann. of Math. (2) **82** (1965), 540-567.
- [14] E. B. Nasatyr, B. Steer, *The NarasimhanSeshadri theorem for parabolic bundles: An orbifold approach*, Philos. Trans. Roy. Soc. A 353 (1995), no. 1702, 137-171.
- [15] J. A. Poritz, Parabolic vector bundles and HermitianYangMills connections over a Riemann surface, Internat. J. Math. 4 (1993), no. 3, 467501.
- [16] D. Quillen, *Determinants of CauchyRiemann operators over a Riemann surface*, Funct. Anal. Appl. **19** (1985) 31-34.
- [17] C. S. Seshadri, Moduli of π–vector bundles over an algebraic curve, 1970 Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) pp. 139-260 Edizioni Cremonese, Rome
- [18] C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math. Soc. 83 (1977), 124–126
- [19] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96, Soc. Math. France, Paris, 1982
- [20] F. Schaffhauser, Moduli spaces of vector bundles over a Klein surface, Geom. Dedicata 151 (2011) 187-206.
 - [21] F. Schaffhauser, *Real points of coarse moduli schemes of vector bundles on a real algebraic curve*, J. Symplectic Geom. **10** (2012), 503-534.
 - [22] F. Schaffhauser, On the NarasimhanSeshadri correspondence for real and quaternionic vector bundles, J. Differential Geom. 105 (2017), no. 1, 119-162.
 - [23] SIMPSON (C.T.). Harmonic bundles on noncompact curves, J. Amer. Math. Soc., 3, 1990, p. 713-770.
 - [24] K. K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys., 83, 1982, p. 31-42.
 - [25] K. K. Uhlenbeck, S. T. Yau, On the existence of Hermitian Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math., 39-S, 1986, p. 257-293.

DEPARTMENT OF MATHEMATICS, IIT GANDHINAGAR, NEAR VILLAGE PALAJ, GANDHINAGAR - 382355, INDIA *E-mail address*: samrutiya@iitgn.ac.in

DEPARTMENT OF MATHEMATICS, IIT GANDHINAGAR, NEAR VILLAGE PALAJ, GANDHINAGAR - 382355, INDIA *E-mail address*: ayush.jaiswal@iitgn.ac.in

1

13