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ENTIRE SOLUTIONS OF THE GENERALIZED HESSIAN INEQUALITY

XIANG LI, JING HAO, AND JIGUANG BAO

ABSTRACT. In this paper, we study the more general Hessian inequality σ
1
k

k (λ (Di(A (|Du|)D ju)))≥
f (u) including the Laplacian, p-Laplacian, mean curvature, k-mean curvature and Hessian operators.
We give a nonexistence result and provide a sufficient and necessary condition on the global solvability,
which is a generalized Keller-Osserman condition. We also discuss the regularity of solutions.

1. Introduction and the statement of results

In this paper, we discuss the solvability of the generalized Hessian inequality

(1.1) σ
1
k

k (λ (Di (A(|Du|)D ju)))≥ f (u) in Rn,

where
σk(λ ) = ∑

1≤i1<···<ik≤n
λi1 · · ·λik , λ = (λ1,λ2, · · · ,λn) ∈ Rn, k = 1,2, · · · ,n

is the k-th elementary symmetric function, λ (Di (A(|Du|)D ju)) denotes the eigenvalues of the sym-
metric matrix of (Di (A(|Du|)D ju)), and A, f are two given positive continuous functions in (0,+∞).

The generalized Hessian operator σk (λ (Di (A(|Du|)D ju))), introduced by many authors [1, 6, 15,
19], is an important class of fully nonlinear operator. It is a generalization of some typical operators we
shall be interested in as follows: the m-k-Hessian operator for the case A(p) = pm−2, m > 1 is treated

by Trudinger and Wang [21]; the k-mean curvature operator for the case A(p) =
(
1+ p2

)− 1
2 is treated

by Concus and Finn [5] and Peletier and Serrin [17]; the generalized k-mean curvature operator for
the case A(p) =

(
1+ p2

)−α , α < 1
2 is treated by Kusano and Swanson [11]. See [14, 19] for more

operators.
In particular, (1.1) is the k-Hessian innequality for the case A(p) = 1. For k = 1, Wittich [23] (n = 2),

Haviland [8] (n = 3), Walter [22] (n ≥ 2) proved the Laplacian equation

∆u = f (u) in Rn

has no solution if and only if ∫
∞
(∫ s

f (t)dt
)− 1

2
ds < ∞.
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Here and after, we omit the lower limit to admit an arbitrary positive constant. Keller [10] and
Osserman [16] showed that the Laplacian inequality

∆u ≥ f (u) in Rn

has a positive solution u ∈C2 (Rn) if and only if f satisfies the Keller-Osserman condition

(1.2)
∫

∞
(∫ s

f (t)dt
)− 1

2
ds = ∞.

The condition (1.2) is often used to study the boundary blow-up (explosive, large) solutions (see
[12, 13, 18]). Ji and Bao [9] extended the above results from k = 1 to 1 ≤ k ≤ n, which can be regardes
as the generalized Keller-Osserman condition. Naito and Usami [14] extended the above results from
A(p) = 1 to the generalized Hessian inequality (1.1) for k = 1 and got similar results.

In this paper, we shall extend this result from k = 1 to 1 ≤ k ≤ n for the generaralized Hessian
inequality (1.1) and develop existence and nonexistence conditions of entire solutions for (1.1). To
state our results, we define a generalized k-convex entire solution of (1.1) to be a function u ∈ Φk (Rn)
which satisfies (1.1) at each x ∈ Rn, where

Φ
k (Rn) =

{
u ∈C1 (Rn) : A(|Du|)Du ∈C1 (Rn) , λ (Di (A(|Du|)D ju)) ∈ Γk in Rn} ,

and
Γk := {λ ∈ Rn : σl(λ )> 0, l = 1,2, · · · ,k} .

In (1.1), we assume that the positive function A ∈C1(0,∞) satisfies

(1.3) pA(p) ∈C[0,∞) is strictly monotone increasing in (0,∞),

and the positive function f ∈C(0,∞) satisfies

(1.4) f is monotone non-decreasing in (0,∞).

First, we discuss the situation

(1.5) lim
p→∞

pA(p)< ∞.

A nonexistence theorem for the global solvability of the inequality (1.1) is as follows.

Theorem 1.1. Assume that A satisfies (1.3), (1.5) and f satisfies (1.4), then the inequality (1.1) has no
positive solution u ∈C2 (Rn\{0})∩Φk (Rn).

Remark 1.2. The k-mean curvature inequality (1.1) for the case A(p) =
(
1+ p2

)− 1
2 satisfies the

Theorem 1.1, and the corresponding results were obtained by Cheng and Yau [3] and Tkachev [20].

Next, we discuss the situation

(1.6) lim
p→∞

pA(p) = ∞.

Now we define a continuous function Ψ : [0,∞)→ [0,∞) that satisfies

(1.7) Ψ(p) := p(pA(p))k −
∫ p

0
(tA(t))k dt, p ≥ 0.
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It follows from the condition (1.3) that the inverse function of Ψ exists in [0,∞), denoted by Ψ−1. For
example, if A(p) = pm−2, m > 1, then

Ψ(p) =
(m−1)k

(m−1)k+1
p(m−1)k+1 and Ψ

−1(p) =
(
(m−1)k+1
(m−1)k

p
) 1

(m−1)k+1
.

A sufficient and necessary condition for the global solvability of the inequality (1.1) is as follows.

Theorem 1.3. Assume that A satisfies (1.3), (1.6) and f satisfies (1.4), then the inequality (1.1) has a
positive solution u ∈C2 (Rn\{0})∩Φk (Rn) if and only if

(1.8)
∫

∞
(

Ψ
−1
(∫ s

f k(t)dt
))−1

ds = ∞.

For k = 1, A(p) = 1, (1.8) is exactly the Keller-Osserman condition (1.2). Thus we can regard (1.8)
as a generalized Keller-Osserman condition.

If we strengthen the case (1.6) to

(1.9) 0 < liminf
p→∞

A(p)
pm−2 ≤ limsup

p→∞

A(p)
pm−2 < ∞ for some m > 1.

As a consequence of Theorems 1.3, we obtain the following corollary.

Corollary 1.4. Assume that A satisfies (1.3), (1.9) and f satisfies (1.4), then the inequality (1.1) has a
positive solution u ∈C2 (Rn\{0})∩Φk (Rn) if and only if

(1.10)
∫

∞
(∫ s

f k(t)dt
)− 1

k(m−1)+1
ds = ∞.

Remark 1.5. Corollary 1.4 holds for the cases A(p) = 1, m = 2 which was obtained by Ji and
Bao [9]; A(p) = pm−2, m > 1 which was obtained by Feng and Bao [2]. As for A(p) =

(
1+ p2

)−α ,

m = 2−2α > 1, A(p) = p2m−2
(
1+ p2m

)− 1
2 , m > 1 and more cases in [14, 19] are first obtained by

authors of this paper.

Remark 1.6. Under the assumption of Corollary 1.4, if f (u) = uγ , γ ≥ 0, then the inequality (1.1) has
a positive solution u ∈C2 (Rn\{0})∩Φk (Rn) if and only if γ ≤ m−1.

If we strengthen the condition of f from (1.4) to the positive function f ∈C(R) satisfying

(1.11) f is monotone non-decreasing in R,

then we have the similar corollary which does not require the solution of (1.1) to be positive.

Corollary 1.7. Assume that A satisfies (1.3) and f satisfies (1.11). If (1.5) holds, then the inequality
(1.1) has no solution u ∈C2 (Rn\{0})∩Φk (Rn); if (1.6) holds, then the inequality (1.1) has a solution
u ∈C2 (Rn\{0})∩Φk (Rn) if and only if (1.8) holds, in particular, if (1.9) holds, then the inequality
(1.1) has a solution u ∈C2 (Rn\{0})∩Φk (Rn) if and only if (1.10) holds.

Remark 1.8. Under the assumption of Corollary 1.7, if f (u) = eu, then the inequality (1.1) has no
solution u ∈C2 (Rn\{0})∩Φk (Rn).
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In particular, we will get a better regularity of solutions u ∈C2 (Rn\{0})∩Φk (Rn). If A ∈C1[0,∞),
A(0) ̸= 0, then u ∈C2 (Rn)∩Φk (Rn). If A does not satisfy the above conditions, we only consider the
condition

(1.12) 0 < liminf
p→0

A(p)
pl−2 ≤ limsup

p→0

A(p)
pl−2 < ∞ for some l > 2,

then u ∈W 2,nq
loc (Rn), 1 < q < l−1

l−2 , by embedding theorem, we have u ∈C1,α (Rn)∩Φk (Rn) for some
α ∈ (0,1). See Remarks 2.2 and 2.4 for details.

The rest of our paper is organized as follows. In Section 2, we give some properties of radial
solutions and the local existence of the Cauchy problem associated to (1.1) as preliminaries. In Section
3, we give the comparison principle and prove Theorems 1.1, 1.3 and Corollaries 1.4, 1.7.

2. Preliminary results of radial solutions

To prove Theorems 1.1 and 1.3, we need to get some properties of radial solutions in BR :=
{x ∈ Rn : |x|< R}, R > 0.

Lemma 2.1. For any constant a > 0, assume that ϕ(r) ∈C[0,R)∩C1(0,R) is the positive solution of
the Cauchy problem to the implicit equation

(2.1)

A
(
|ϕ ′(r)|

)
ϕ
′(r) =

(
nrk−n

Ck
n

∫ r

0
sn−1 f k(ϕ(s))ds

) 1
k

=: F(r,ϕ), r > 0,

ϕ(0) = a.

Then ϕ ′(0) = 0, ϕ ′(r)> 0 in (0,R), and it satisfies ϕ(r) ∈C1[0,R)∩C2(0,R) with A(ϕ ′ (r))ϕ ′ (r) ∈
C1[0,R), and the ordinary differential equation

(2.2)
Ck−1

n−1
(
A
(
ϕ
′(r)
)

ϕ
′(r)
)′(A(ϕ ′(r))ϕ ′(r)

r

)k−1

+Ck
n−1

(
A(ϕ ′(r))ϕ ′(r)

r

)k

=
Ck

nr1−n

n

(
rn−k (A(ϕ ′(r)

)
ϕ
′(r)
)k
)′

= f k (ϕ (r)) .

Proof. We define

h(r) :=
∫ r

0
A
(
|ϕ ′(s)|

)
ϕ
′(s)ds,

then it satisfies h(0) = 0 and

h′(r) = A
(
|ϕ ′(r)|

)
ϕ
′(r) =

(
nrk−n

Ck
n

∫ r

0
sn−1 f k(ϕ(s))ds

) 1
k

> 0, 0 < r < R.

It is easy to see that h(r) ∈C2(0,R). By (1.3) and (2.1), we know ϕ ′(r)> 0 in (0,R).

lim
r→0

h(r)−h(0)
r−0

= lim
r→0

h′(ξ ) = lim
ξ→0

(
nξ k−n

Ck
n

∫
ξ

0
sn−1 f k(ϕ(s))ds

) 1
k

= 0,
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where ξ = ξ (r) ∈ (0,r). Therefore h′(0) = 0 and h(r) ∈C1[0,R), which implies that ϕ ′(0) = 0 and
ϕ(r) ∈C1[0,R). One can see that

(2.3) lim
r→0

h′(r)−h′(0)
r−0

= lim
r→0

(
n
∫ r

0 sn−1 f k(ϕ(s))ds
Ck

nrn

) 1
k

=

(
f k(a)
Ck

n

) 1
k

.

Consequently, we get h(r) ∈C2[0,R), which implies that A(ϕ ′ (r))ϕ ′ (r) ∈C1[0,R).
By using (2.1) to calculate directly, we can derive

(2.4)
h′′(r) =

(h′(r))1−k

k

(
n(k−n)rk−n−1

Ck
n

∫ r

0
sn−1 f k(ϕ(s))ds+

nrk−1

Ck
n

f k(ϕ(r))
)

≥ 1
Ck

n

(
h′(r)

r

)1−k

f k(ϕ (r))> 0,

then h′(r) ∈C1[0,R) is a strictly monotone increasing function of r, and by (1.3), g(ϕ ′) := A(ϕ ′)ϕ ′ ∈
C1(0,ϕ ′ (R)) is a strictly monotone increasing function of ϕ ′, then there exists inverse function
ϕ ′ (r) = g−1 (h′ (r)) ∈C1(0,R), which implies ϕ (r) ∈C2(0,R).

By (2.4) and (2.1), we have

h′′(r) =
k−n

k
h′(r)

r
+

n
kCk

n

(
h′(r)

r

)1−k

f k(ϕ(r)),

it is easy to verify that ϕ(r) satisfies the ODE equation (2.2). □

Remark 2.2. In particular, if A ∈C1[0,R), A(0) ̸= 0, consider the function H(r,ϕ ′) := h′(r)−g(ϕ ′) =
0, then Hϕ ′(0,0) = A(0) ̸= 0, hence we know from the implicit function theorem that there exists
ϕ ′ (r) ∈C1[0,R), then we can strengthen the regularity to ϕ (r) ∈C2[0,R).

If A does not satisfy the above conditions, we only consider the condition (1.12) and then by (2.3),
we have

(2.5)
(

f k(a)
Ck

n

) 1
k

= lim
r→0

h′(r)
r

= lim
r→0

(ϕ ′ (r))l−1

r
= lim

r→0

ϕ ′′ (r)

r−
l−2
l−1

,

for 1 < q < l−1
l−2 , we can strengthen the regularity to ϕ (r) ∈C2(0,R)∩W 2,q (0,R).

Lemma 2.3. For any constant a > 0, assume that ϕ(r) ∈C[0,R)∩C1(0,R) is the positive solution of
the Cauchy problem (2.1). Then u(x) = ϕ(|x|) ∈C2 (BR\{0})∩Φk (BR), |x|= r < R satisfies

(2.6)
λ (Di (A(|Du|)D ju))

=

((
A
(
ϕ
′(r)
)

ϕ
′(r)
)′
,
A(ϕ ′(r))ϕ ′(r)

r
, · · · , A(ϕ ′(r))ϕ ′(r)

r

)
, r ∈ [0,R),

and it is the positive solution of

(2.7) σk (λ (Di (A(|Du|)D ju))) =
Ck

nr1−n

n

(
rn−k (A(ϕ ′(r)

)
ϕ
′(r)
)k
)′

= f k(u).
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Proof. By Lemma 2.1, we have ϕ(r) ∈ C1[0,R)∩C2(0,R) with A(ϕ ′ (r))ϕ ′ (r) ∈ C1[0,R), and it
satisfies ϕ ′(0) = 0, ϕ ′(r)> 0 in (0,R). For u(x) = ϕ(r), 0 < r < R, i, j = 1, · · · ,n, we have

(2.8) ui(x) = ϕ
′(r)

xi

r
,

(2.9) |Du|=
∣∣∣ϕ ′(r)

x
r

∣∣∣= ϕ
′(r),

ui j(x) =
ϕ ′′(r)

r2 xix j −
ϕ ′(r)

r3 xix j +
ϕ ′(r)

r
δi j.

Then by (2.8) and (2.9), we have

(2.10)

Di (A(|Du|)D ju) = Di

(
A
(
ϕ
′(r)
)

ϕ
′(r)

x j

r

)
=
(
A
(
ϕ
′(r)
)

ϕ
′(r)
)′ xix j

r2 +A
(
ϕ
′(r)
)

ϕ
′(r)

δi jr− x j
xi
r

r2

=

((
A
(
ϕ
′(r)
)

ϕ
′(r)
)′− A(ϕ ′(r))ϕ ′(r)

r

)
xix j

r2 +
A(ϕ ′(r))ϕ ′(r)

r
δi j.

By (2.8) and ϕ ′(0) = 0, we have

0 ≤ lim
x→0

|ui(x)|= lim
x→0

|ϕ ′(r)||xi

r
| ≤ lim

r→0
ϕ
′(r) = 0,

which means

lim
x→0

ui(x) = 0.

Similarly, by (2.10), we have

lim
x→0

Di (A(|Du|)D ju)

= lim
x→0

(((
A
(
ϕ
′(r)
)

ϕ
′(r)
)′− A(ϕ ′(r))ϕ ′(r)

r

)
xix j

r2 +
A(ϕ ′(r))ϕ ′(r)

r
δi j

)
=
(
A
(
ϕ
′(0)
)

ϕ
′(0)
)′

δi j.

Here, we define

ui(0) = 0, Di (A(|Du|)D ju)(0) =
(
A
(
ϕ
′(0)
)

ϕ
′(0)
)′

δi j.

then u(x) ∈C1 (BR)∩C2 (BR\{0}), with A(|Du|)Du ∈C1 (BR).
It is easy to see that for r ∈ [0,R), the matrix

Di (A(|Du|)D ju) = axT x+bI,

where

a :=

{
(A(ϕ ′(r))ϕ ′(r))

′

r2 − A(ϕ ′(r))ϕ ′(r)
r3 , r ∈ (0,R),

0, r = 0,
b :=

{
A(ϕ ′(r))ϕ ′(r)

r , r ∈ (0,R),
(A(ϕ ′(0))ϕ ′(0))′ , r = 0.
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By the calculation of linear algebra, we know that the eigenvalues of the symmetric matrix Di (A(|Du|)D ju)
is
(
ar2 +b,b, · · · ,b

)
. Therefore we have

λ (Di (A(|Du|)D ju)) =


(
(A(ϕ ′(r))ϕ ′(r))′ ,

A(ϕ ′(r))ϕ ′(r)
r , · · · , A(ϕ ′(r))ϕ ′(r)

r

)
,r ∈ (0,R),(

(A(ϕ ′(0))ϕ ′(0))′ , · · · ,(A(ϕ ′(0))ϕ ′(0))′
)
,r = 0.

Since

lim
r→0

A(ϕ ′(r))ϕ ′(r)
r

=
(
A
(
ϕ
′(0)
)

ϕ
′(0)
)′
,

we can always think that (2.6) holds, and the equation (2.7) can be obtained easily by the definition of
σk.

Since f and ϕ are both monotone non-decreasing, we have

f (ϕ(r))≥ f (ϕ(0)) = f (a)> 0, r ∈ [0,R).

Then we get
A(ϕ ′(r))ϕ ′(r)

r > 0 and

σk (λ (Di (A(|Du|)D ju)))

=Ck−1
n−1

(
A(ϕ ′(r))ϕ ′(r)

r

)k−1((
A
(
ϕ
′(r)
)

ϕ
′(r)
)′
+

n− k
k

A(ϕ ′(r))ϕ ′(r)
r

)
= f k(ϕ(r))> 0,

which leads to (
A
(
ϕ
′(r)
)

ϕ
′(r)
)′
+

n− k
k

A(ϕ ′(r))ϕ ′(r)
r

> 0.

And for 1 ≤ l ≤ k, we have

σl (λ (Di (A(|Du|)D ju)))

=Cl−1
n−1

(
A(ϕ ′(r))ϕ ′(r)

r

)l−1((
A
(
ϕ
′(r)
)

ϕ
′(r)
)′
+

n− l
l

A(ϕ ′(r))ϕ ′(r)
r

)
≥Cl−1

n−1

(
A(ϕ ′(r))ϕ ′(r)

r

)l−1((
A
(
ϕ
′(r)
)

ϕ
′(r)
)′
+

n− k
k

A(ϕ ′(r))ϕ ′(r)
r

)
> 0.

Therefore λ (Di (A(|Du|)D ju)) ∈ Γk holds in BR. □

Obviously for u(x) = ϕ(r), we can see that u(x) ∈ C2 (BR\{0})∩C1 (BR), with A(|Du|)Du ∈
C1 (BR) is a solution of (2.7) if and only if ϕ(r) ∈C1[0,R)∩C2(0,R) with A(ϕ ′ (r))ϕ ′ (r) ∈C1[0,R)
is a solution of (2.2).

Remark 2.4. In particular, if A ∈C1[0,∞), A(0) ̸= 0, by Remark 2.2, we have ϕ (r) ∈C2[0,R), and

lim
x→0

ui j(x) = lim
x→0

((
ϕ
′′(r)− ϕ ′(r)

r

)
xix j

r2 +

(
ϕ ′(r)

r

)
δi j

)
= ϕ

′′(0)δi j.

We define ui j(0) = ϕ ′′(0)δi j, then it is straightforward to show that u(x) ∈C2 (RR).

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Dec 2023 23:51:13 PST
231210-BaoJiguang Version 1 - Submitted to Rocky Mountain J. Math.



ENTIRE SOLUTIONS OF THE GENERALIZED HESSIAN INEQUALITY 8

If A does not satisfy the above conditions, we only consider the condition (1.12), then by (2.5) and∣∣∣ xix j
r2

∣∣∣≤ 1, we have

limsup
r→0

|ui j(x)|

r−
l−2
l−1

= limsup
r→0

∣∣∣(ϕ ′′(r)− ϕ ′(r)
r

)
xix j
r2 +

(
ϕ ′(r)

r

)
δi j

∣∣∣
r−

l−2
l−1

≤ lim
r→0

|ϕ ′′(r)|+
∣∣∣ϕ ′(r)

r

∣∣∣+ ∣∣∣ϕ ′(r)
r

∣∣∣
r−

l−2
l−1

= 3
(

f k(a)
Ck

n

) 1
k

.

For l−2
l−1q < 1, we have D2u(x) ∈ Lnq (BR). Then it is straightforward to see u(x) ∈W 2,nq (BR).

Next, we will use the Euler’s break line and dicuss the local existence of the Cauchy problem (2.1)
near r = 0. The method is similar to proving the existence theorem of ordinary differential equations
(see [4]).

Lemma 2.5. For any constant a > 0, there exists a constant R > 0, such that the Cauchy problem (2.1)
has a positive solution in [0,R].

Proof. By Lemma 2.1, we know that ϕ ′(r) = g−1 (F(r,ϕ)) ∈C[0,R)∩C1(0,R) is a strictly monotone
increasing function of r. For R > 0 sufficiently small, We define a functional G(·, ·) in

R := [0,R]×{ϕ ∈C[0,R] : a ≤ ϕ < 2a} ,

which satisfies

G(r,ϕ) := g−1 (F(r,ϕ)) .

Therefore (2.1) can be rewritten as

ϕ
′(r) = G(r,ϕ)> 0, r > 0.

For any m ∈ N and 0 = r0 < r1 < · · · < rm = R, We construct a Euler’s break line ψ in [0,R] as
follows, {

ψ(r) = a, 0 ≤ r ≤ r1,
ψ(r) = ψ (ri−1)+G(ri−1,ψ)(r− ri−1) , ri−1 < r ≤ ri, i = 2,3, · · · ,m.

Step 1. We will show that (r,ψ) ∈ R, which means a ≤ ψ(r)< 2a for any r ∈ [0,R]. Notice that

(2.11)

G(r,ψ)≤ g−1

(nrk−n

Ck
n

∫ r

0
sn−1ds f k(ψ(r))

) 1
k


≤ g−1

((
1

Ck
n

) 1
k

R f (ψ(R))

)
< ∞,
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ENTIRE SOLUTIONS OF THE GENERALIZED HESSIAN INEQUALITY 9

then for the break line (r,ψ), we have

a ≤ ψ(r)≤ a+g−1

((
1

Ck
n

) 1
k

R f (ψ(R))

)
r ≤ a+g−1

((
1

Ck
n

) 1
k

R f (ψ(R))

)
R.

Therefore we choose R > 0 sufficiently small, such that ψ(r)< 2a.
Step 2. We will prove that the Euler’s break line ψ is an ε-appromation solution of (2.1), which

means for any ε > 0 sufficiently small, we need to choose some appropriate points {ri}i=1,··· ,m, such
that the break line ψ satisfies

(2.12)
∣∣ψ ′(r)−G(r,ψ)

∣∣< ε, r ∈ [0,R],

where ψ(r) is continuously differentiable a.e. in [0,R].
By (2.11), we find that

lim
r→0

G(r,ψ) = 0

holds uniformly for any (r,ψ) ∈ R. Therefore for any ε > 0, there exists r̄ ∈ (0,R), such that

G(r,ψ)< ε, 0 ≤ r < r̄.

We now assume that r1 = r̄, then for 0 < r < r̄, we have∣∣ψ ′(r)−G(r,ψ)
∣∣= |G(r,ψ)|< ε,

which satisfies (2.12).
And then for r̄ ≤ r ≤R, by the proof of Lemma 2.1, we know that g−1 ∈C[0,F(R,ψ)]∩C1(0,F(R,ψ)],

then g−1 is Liptchitz continuous in [F(r̄,ψ),F(R,ψ)]. Let ri−1 < r ≤ ri, we have∣∣ψ ′(r)−G(r,ψ)
∣∣≤C |F(ri−1,ψ)−F(r,ψ)|

≤C
(

n
Ck

n

) 1
k
(

rk−n
∫ r

0
sn−1 f k(ψ(s))ds− rk−n

i−1

∫ ri−1

0
sn−1 f k(ψ(s))ds

) 1
k

≤C
(

n
Ck

n

) 1
k
((

rk−n
i−1 − rk−n

)∫ r

0
sn−1 f k(ψ(s))ds+ rk−n

i−1

∫ r

ri−1

sn−1 f k(ψ(s))ds
) 1

k

≤C
(

1
Ck

n

) 1
k ((

rk−n
i−1 − rk−n

)
Rn f k(2a)+ r̄k−n (rn − rn

i−1
)

f k(2a)
) 1

k
.

Since rk−n and rn are both Liptchitz continuous functions in [r̄,R], for the above ε , there exists δ (ε)> 0
satisfying

max
2≤i≤m

|ri−1 − ri|< δ (ε) ,

and then we have ∣∣ψ ′(r)−G(r,ψ)
∣∣≤ C̃|ri−1 − r| ≤ C̃|ri−1 − ri|< ε,

which also satisfies (2.12). Therefore the Euler’s break line ψ is an ε-appromation solution of (2.1).
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ENTIRE SOLUTIONS OF THE GENERALIZED HESSIAN INEQUALITY 10

Step 3. We will construct a solution of (2.1) in [0,R]. By Step 2, for any positive constant sequence{
ε j
}∞

j=1 with ε j → 0 as j → ∞, we have the Euler break line
{

ψ j
}∞

j=1 as a sequence of ε j-appromation
solutions in [0,R]. And by Step 1, for (r′,ψ j), (r′′,ψ j) ∈ R, we find that∣∣ψ j

(
r′
)
−ψ j

(
r′′
)∣∣= G(ri−1,ψ j)|r′− r′′| ≤ M

∣∣r′− r′′
∣∣ ,

which means
{

ψ j
}∞

j=1 is equicontinuous and uniformaly bounded (r′′ = 0). Therefore by the Ascoli-
Arzela Theorem, there exists a uniformly convergent subsequence, still denoted as

{
ψ j
}∞

j=1, such
that

lim
j→∞

ψ j = ϕ.

Since ψ j ∈C[0,R] and ψ j(0) = a, obviously we have ϕ ∈C[0,R] and ϕ(0) = a. Next, by using the
method similar to [9], we can get the solution of (2.1)

(2.13) ϕ(r) = a+
∫ r

0
G(s,ϕ)ds.

By (2.13) and ϕ ∈ C[0,R], we find ϕ ∈ C1(0,R]. Then we can differentiate (2.13) easily and get
ϕ ′(r) =G(r,ϕ) in (0,R] and ϕ(0) = a. Obviously (2.1) holds for r ∈ [0,R]. We complete the proof. □

It is easy to find that the Cauchy problem (2.1) always has a solution in [0,R] for any constant a. In
particular, when the initial value a > 0, the monotonicity of ϕ(r) guarantees the solution of (2.1) is
always positive.

3. Proof of main results

We will prove the main results by the comparison principle as follows.

Lemma 3.1. Assume that ϕ(r) ∈C1[0,R)∩C2(0,R) with A(ϕ ′ (r))ϕ ′ (r) ∈C1[0,R) satisfying (2.2),
with ϕ ′(0) = 0 and ϕ(r)→ ∞ as r → R. If u(x) ∈C2 (Rn\{0})∩Φk (Rn) is a positive solution of the
inequality (1.1), then we have u(x)≤ ϕ(|x|) in BR.

Proof. By Lemma 2.3, we know that v(x) = ϕ(|x|) ∈ C2 (BR\{0})∩C1 (BR) is a solution of (2.7).
We want to prove u(x) ≤ v(x) for any x ∈ BR. Suppose to the contrary that u(x) > v(x) somewhere,
then there exist a > 0 and x0 ∈ BR, such that u(x)− a ≤ v(x) in BR and u(x0)− a = v(x0). Notice
that v(x) = ϕ(|x|)→ ∞ as x → ∂BR and u is bounded in BR, then there exists R0 ∈ (0,R), such that
x0 ∈ BR0 . Now we can assume that sup∂BR0

(u−a− v)< 0.
For x ∈ BR0 , we define an operator

L[w] := σ
1
k

k (λ (Di (A(|Dw|)D jw)))− f (w).

It is obvious that L[v] = 0. And by (1.4), we have

L[u−a] = σ
1
k

k (λ (Di (A(|D(u−a) |)D j (u−a))))− f (u−a)

=

(
σ

1
k

k (λ (Di (A(|Du|)D ju)))− f (u)
)
+( f (u)− f (u−a))

≥ 0.
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ENTIRE SOLUTIONS OF THE GENERALIZED HESSIAN INEQUALITY 11

Since u−a and v are the subsolution and supersolution of the operator L respectively, by the maximum
principle, we have

0 = sup
BR0

(u−a− v) = sup
∂BR0

(u−a− v)< 0,

we obtain a contradiction. □

By the comparison principle 3.1, we can get the relationship between the solvability of the inequality
(1.1) and the solvability of the Cauchy problem (2.1).

Lemma 3.2. The inequality (1.1) has a positive solution u ∈C2 (Rn\{0})∩Φk (Rn) if and only if the
Cauchy problem (2.1) has a positive solution ϕ(r)∈C2(0,∞)∩C1[0,∞) with A(ϕ ′ (r))ϕ ′ (r)∈C1[0,∞)
for some constant a > 0.

Proof. First, we will prove the sufficient condition. If the Cauchy problem (2.1) has a positive entire
solution ϕ(r) for R = +∞, we consider u(x) = ϕ(|x|). By Lemma 2.3 and Lemma 2.1, we know
that u(x) satisfies (2.7) and λ (Di (A(|Du|)D ju)) ∈ Γk for x ∈Rn. Then u(x) ∈C2 (Rn\{0})∩Φk (Rn)
satisfies the inequality (1.1).

Next, we will prove the necessary condition. Suppose to the contrary that there is no entire solution
ϕ(r) of the Cauchy problem (2.1). Then by Lemma 2.5, we know that the Cauchy problem (2.1) has
a positive local solution ϕ(r), but no positive entire solution for any constant a > 0. Here, we can
assume that [0,R) is the maximal existence interval of the local solution. Since ϕ ′(r)> 0 for r > 0,
we have ϕ(r)→ ∞ as r → R. By Lemma 2.1, we know ϕ(|x|) satisfies (2.2). Then by the comparison
principle 3.1, any positive solution u(x) ∈C2 (Rn\{0})∩Φk (Rn) of (1.1) satisfies u(x)≤ ϕ(|x|) for
x ∈ BR. Therefore we have u(0)≤ ϕ(0) = a. Notice that a is arbitrary, we can take a = u(0)

2 and then
get a contradiction. □

Proof of Theorem 1.1. On the contrary, suppose that (1.1) has a positive solution u ∈C2 (Rn\{0})∩
Φk (Rn). Then, by Lemma 3.2, the Cauchy problem (2.1) has a positive solution ϕ(r) ∈C2(0,∞)∩
C1[0,∞) with A(ϕ ′ (r))ϕ ′ (r) ∈C1[0,∞) for some constant a > 0. Since f and ϕ are both monotone
non-decreasing, by (2.1), we find

(3.1) A
(
ϕ
′(r)
)

ϕ
′(r) =

(
nrk−n

Ck
n

∫ r

0
sn−1 f k(ϕ(s))ds

) 1
k

≤
(

1
Ck

n

) 1
k

r f (ϕ(r)) , r > 0.

Substituting (3.1) in (2.2), we get

Ck−1
n−1
(
A
(
ϕ
′(r)
)

ϕ
′(r)
)′(A(ϕ ′(r))ϕ ′(r)

r

)k−1

≥ k
n

f k (ϕ (r)) , r > 0,

which comes to

(3.2)
((

A
(
ϕ
′(r)
)

ϕ
′(r)
)k
)′

≥ k
Ck

n
rk−1 f k (ϕ (r)) , r > 0.

Integrating (3.2) from 0 to r, we get(
A
(
ϕ
′(r)
)

ϕ
′(r)
)k ≥ k

Ck
n

∫ r

0
sk−1 f k (ϕ (s))ds ≥ 1

Ck
n

rk f k (a) , r > 0,
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ENTIRE SOLUTIONS OF THE GENERALIZED HESSIAN INEQUALITY 12

which leads to

(3.3) A
(
ϕ
′(r)
)

ϕ
′(r)≥

(
1

Ck
n

) 1
k

r f (a) , r > 0.

By (1.3), we can see that(
1

Ck
n

) 1
k

r f (a)≤ A
(
ϕ
′(r)
)

ϕ
′(r)≤ lim

p→∞
pA(p)< ∞, r > 0.

Let r → ∞ and we get a contradiction. □

To prove Theorem 1.3, we consider some properties of the function (1.7). By (1.3), we know

Ψ
′(p) = p

(
(pA(p))k

)′
> 0, p > 0,

then Ψ is strictly monotone increasing in (0,∞) and Ψ(0) = 0. By

Ψ(p)+
∫ 1

0
(tA(t))k dt = p(pA(p))k −

∫ p

1
(tA(t))k dt > (pA(p))k , p > 1,

we have limp→∞ Ψ(p) = ∞. Thus the inverse function of Ψ exists in [0,∞) , denoted by Ψ−1. It is
obvious that Ψ−1 is also a strictly monotone increasing function and satisfies limp→∞ Ψ−1(p) = ∞.

Now we will prove the nonexistence lemma, which is also the necessary condition of Theorem 1.3.

Lemma 3.3. Assume that A satisfies (1.3), (1.6) and f satisfies (1.4). If

(3.4)
∫

∞
(

Ψ
−1
(∫ s

f k (t)dt
))−1

ds < ∞,

then the inequality (1.1) has no positive solution u ∈C2 (Rn\{0})∩Φk (Rn) .

Proof. On the contrary, suppose that (1.1) has a solution u ∈C2 (Rn\{0})∩Φk (Rn). Then, by Lemma
3.2, the Cauchy problem (2.1) has a positive solution ϕ(r)∈C2(0,∞)∩C1[0,∞) with A(ϕ ′ (r))ϕ ′ (r)∈
C1[0,∞) for some constant a > 0. Notice that (3.2) and (3.3) still hold. Let r → ∞ in (3.3) and by (1.3),
we have limr→∞ ϕ ′(r) = ∞. Then limr→∞ ϕ(r) = ∞. Multiplying (3.2) by ϕ ′ > 0 , we have

Ψ
′ (

ϕ
′(r)
)
= ϕ

′(r)
((

A
(
ϕ
′(r)
)

ϕ
′(r)
)k
)′

≥ k
Ck

n
f k (ϕ (r))ϕ

′(r), r > 1,

and then integrating the above from 1 to r, we have

Ψ
(
ϕ
′(r)
)
≥ k

Ck
n

∫
ϕ(r)

ϕ(1)
f k (s)ds, r > 1.

Hence we get (
Ψ

−1
(

k
Ck

n

∫
ϕ(r)

ϕ(1)
f k (s)ds

))−1

ϕ
′(r)≥ 1, r > 1.

Integrating the above from 1 to r again, we have

(3.5)
∫

ϕ(r)

ϕ(1)

(
Ψ

−1
(

k
Ck

n

∫ s

ϕ(1)
f k (t)dt

))−1

ds ≥ r−1, r > 1.
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Let r → ∞ in (3.5), we get ∫
∞

ϕ(1)

(
Ψ

−1
(

k
Ck

n

∫ s

ϕ(1)
f k (t)dt

))−1

ds = ∞,

which contradicts (3.4). □

Next, we will prove the following lemma, which is the sufficient condition of Theorem 1.3.

Lemma 3.4. Assume that A satisfies (1.3), (1.6) and f satisfies (1.4). If (1.8) holds, then the inequality
(1.1) has a positive solution u ∈C2 (Rn\{0})∩Φk (Rn).

Proof. By Lemma 3.2, we only need to prove that the Cauchy problem (2.1) has a positive solution
ϕ(r) ∈C2(0,∞)∩C1[0,∞) with A(ϕ ′ (r))ϕ ′ (r) ∈C1[0,∞) for some constant a > 0. Suppose to the
contrary that no such solution of (2.1) exists. As in the proof of Lemma 3.2, the Cauchy problem (2.1)
has a positive local solution ϕ(r) in the maximal existence interval [0,R). And by Lemma 2.1, we
know that ϕ(r) satisfies (2.2).

Next, we will show that
ϕ(R) = lim

r→R
ϕ(r) = ∞, r ∈ [0,R).

Suppose to the contrary that ϕ(R)< ∞. Then by (2.1), ϕ ′(R)< ∞ exists. By the continuation theorem
of the Cauchy problem (2.1), ϕ(r) as a solution of (2.1) can be extended to the right beyond R, which
contradicts the definition that [0,R) is the maximum existence interval. Therefore we have ϕ(R) = ∞.

Since ϕ ′(r)> 0 for 0 < r < R, then by (2.2) and (1.3), we have

Ck−1
n−1
(
A
(
ϕ
′(r)
)

ϕ
′(r)
)′(A(ϕ ′(r))ϕ ′(r)

r

)k−1

≤ f k (ϕ (r)) , 0 < r < R.

which comes to ((
A
(
ϕ
′(r)
)

ϕ
′(r)
)k
)′

≤ n
Ck

n
rk−1 f k (ϕ (r)) , 0 < r < R.

Multiplying the above by ϕ ′ > 0, we have

Ψ
′ (

ϕ
′(r)
)
= ϕ

′(r)
((

A
(
ϕ
′(r)
)

ϕ
′(r)
)k
)′

≤ nRk−1

Ck
n

f k (ϕ (r))ϕ
′(r), 0 < r < R,

and then integrating from 0 to r, we get

Ψ
(
ϕ
′(r)
)
≤ nRk−1

Ck
n

∫
ϕ(r)

a
f k (s)ds, 0 < r < R,

which means (
Ψ

−1
(

nRk−1

Ck
n

∫
ϕ(r)

a
f k (s)ds

))−1

ϕ
′(r)≤ 1, 0 < r < R.

Integrating from 0 to r again, we have∫
ϕ(r)

a

(
Ψ

−1
(

nRk−1

Ck
n

∫
ϕ(r)

a
f k (s)ds

))−1

ds ≤ r, 0 < r < R.
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Let r → R and we get

∫
∞

a

(
Ψ

−1
(

nRk−1

Ck
n

∫ s

a
f k (t)dt

))−1

ds ≤ R < ∞,

which contradicts (1.8). □

Combining Lemma 3.3 and Lemma 3.4, we complete the proof of Theorem 1.3 immediately.
If we strengthen the condition of the operator A from (1.6) to (1.9), we need some properties of the

function (1.7) to prove Corollary 1.4.

Lemma 3.5. Assume that A satisfies (1.9), then we have

0 < liminf
p→∞

Ψ−1(p)

p
1

k(m−1)+1
≤ limsup

p→∞

Ψ−1(p)

p
1

k(m−1)+1
< ∞.

Proof. To prove the result, we only need to prove

0 < liminf
p→∞

Ψ(p)
pk(m−1)+1 ≤ limsup

p→∞

Ψ(p)
pk(m−1)+1 < ∞.

By (1.7) and (1.9), it is easy to see that

limsup
p→∞

Ψ(p)
pk(m−1)+1 ≤ limsup

p→∞

p(pA(p))k

pk(m−1)+1 < ∞.

Next, we will prove

liminf
p→∞

Ψ(p)
pk(m−1)+1 > 0,

which implies that there exist positive constants P and C, such that

(3.6) Ψ(p)≥Cpk(m−1)+1, p ≥ P.

By (1.9), we know that there exist positive constants P1, C1 and C2, such that

(3.7) C1 pk(m−1)+1 ≤ p(pA(p))k ≤C2 pk(m−1)+1, p ≥ P1.

By (3.7), we can choose θ > 0 sufficiently small, such that

C2θ k(m−1)

C1
<

1
2
,

then we have

(3.8)
θ p(θ pA(θ p))k

p(pA(p))k ≤ C2 (θ p)k(m−1)+1

C1 pk(m−1)+1 =
C2θ k(m−1)+1

C1
<

θ

2
, p ≥ P,
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where P = P1
θ

. We get

(3.9)

∫ p

0
(tA(t))k dt =

∫
θ p

0
(tA(t))k dt +

∫ p

θ p
(tA(t))k dt

≤ θ p(θ pA(θ p))k +(p−θ p)(pA(p))k

= p(pA(p))k

(
1−θ +

θ p(θ pA(θ p))k

p(pA(p))k

)
, p ≥ P.

Therefore by (3.9), (3.8) and (3.7), we have

Ψ(p) = p(pA(p))k

(
1−

∫ p
0 (tA(t))k dt

p(pA(p))k

)
≥ p(pA(p))k

(
θ − θ p(θ pA(θ p))k

p(pA(p))k

)

>
1
2

θ p(pA(p))k

≥ 1
2

θC1 pk(m−1)+1, p ≥ P,

which gives (3.6). We complete the proof. □

By Theorem 1.3 and Lemma 3.5, we can get Corollary 1.4 immediately.

Proof of Corollary 1.7. We can prove the Corollary 1.7 in a similar way to above. Here, most of the
properties we need are almost identical to those we have proved. By conditions (1.4) and (1.11), we
know f is now a function defined on R instead of (0,∞). We do not need to consider the constant
a > 0 in Lemma 2.1, Lemma 2.5 and Lemma 3.2. The solution of (1.1) is not also required to be
positive. □
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