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i 1
9 ABSTRACT. In this paper, we study the more general Hessian inequality 6,* (A (D;(A (|Du|)Dju))) >
10 f(u) including the Laplacian, p-Laplacian, mean curvature, k-mean curvature and Hessian operators.
11 We give a nonexistence result and provide a sufficient and necessary condition on the global solvability,
10 which is a generalized Keller-Osserman condition. We also discuss the regularity of solutions.
13
s 1. Introduction and the statement of results
15
16 In this paper, we discuss the solvability of the generalized Hessian inequality
17 1
15 (1.1 o; (A (Di(A(|Dul) Dju))) = f(u) in R",
9 where
20

— or(A) = Y A A A=A A M) ER k=12, 0

ig s
2t |<ij<<iy<n ‘
22
55 I8 the k-th elementary symmetric function, A (D; (A (|Du|) Dju)) denotes the eigenvalues of the sym-
5, metric matrix of (D; (A (|[Du[) Dju)), and A, f are two given positive continuous functions in (0, +eo).
o5 The generalized Hessian operator oy (4 (D; (A (|Du|) Dju))), introduced by many authors [1, 6, 15,

oo 19], is an important class of fully nonlinear operator. It is a generalization of some typical operators we

- shall be interested in as follows: the m-k-Hessian operator for the case A(p) = p™~2, m > } is treated
s by Trudinger and Wang [21]; the k-mean curvature operator for the case A(p) = (1 + pz) 2 is treated
29 by Concus and Finn [5] and Peletier and Serrin [17]; the generalized k-mean curvature operator for
30 the case A(p) = (1 +p2)7a, o< % is treated by Kusano and Swanson [11]. See [14, 19] for more
31 operators.

32 Inparticular, (1.1) is the k-Hessian innequality for the case A(p) = 1. For k = 1, Wittich [23] (n = 2),
33 Haviland [8] (n = 3), Walter [22] (n > 2) proved the Laplacian equation

34 s TR

- Au= f(u) inR

36 has no solution if and only if

37 o [ s

38 / ( / f (t)dt)
39

%
ds < oo,
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1 Here and after, we omit the lower limit to admit an arbitrary positive constant. Keller [10] and
> Osserman [16] showed that the Laplacian inequality

Au > f(u) in R"

has a positive solution u € C? (R") if and only if f satisfies the Keller-Osserman condition

(1.2) /m (/Sf(t)dt) %ds .

"5 The condition (1.2) is often used to study the boundary blow-up (explosive, large) solutions (see
10 [12,13,18]). Ji and Bao [9] extended the above results from k = 1 to 1 < k < n, which can be regardes
11 as the generalized Keller-Osserman condition. Naito and Usami [14] extended the above results from
1> A(p) =1 to the generalized Hessian inequality (1.1) for k = 1 and got similar results.

13 In this paper, we shall extend this result from k =1 to 1 < k < n for the generaralized Hessian
14 1nequality (1.1) and develop existence and nonexistence conditions of entire solutions for (1.1). To
;5 state our results, we define a generalized k-convex entire solution of (1.1) to be a function u € ®* (R")
16 Which satisfies (1.1) at each x € R", where

o|~]o|o|s]e

17 O (R") = {u € C' (R") : A(|Du|) Du € C' (R"), A (D; (A(|Du|)Dju)) € Ty in R"},
% and

0 Iv:={AeR":0;(A)>0,1=1,2,--- k}.

21 In (1.1), we assume that the positive function A € C!(0,) satisfies

2 (1.3) PA(p) € C|0,) is strictly monotone increasing in (0, ),

2 and the positive function f € C(0, o) satisfies

QE (1.4) f is monotone non-decreasing in (0, o).

26

— First, we discuss the situation

28 (1.5) lim pA(p) < oo.
29 p=e

30 A nonexistence theorem for the global solvability of the inequality (1.1) is as follows.

¥ Theorem 1.1. Assume that A satisfies (1.3), (1.5) and f satisfies (1.4), then the inequality (1.1) has no
%2 positive solution u € C* (R"\{0}) N & (R™).

33

> 1

3¢ Remark 1.2. The k-mean curvature inequality (1.1) for the case A(p) = (1 + pz) 2 satisfies the
35 Theorem 1.1, and the corresponding results were obtained by Cheng and Yau [3] and Tkachev [20].

36
57 Next, we discuss the situation

38 (1.6) lim pA(p) = oo.

39 p=ree

‘E Now we define a continuous function ¥ : [0,00) — [0, o) that satisfies

41 ‘ P i

2 (D) ¥(p)i=p(pA(p)) = [ (AW at, p2o0.
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1 It follows from the condition (1.3) that the inverse function of ¥ exists in [0, o), denoted by ¥, For
> example, if A(p) = p™ 2, m > 1, then

\P(p) = mp(ml)kJrl and lel(p) _ (Wp) (m=Dk+1 .

A sufficient and necessary condition for the global solvability of the inequality (1.1) is as follows.

o|o|s|w

" Theorem 1.3. Assume that A satisfies (1.3), (1.6) and f satisfies (1.4), then the inequality (1.1) has a
2 positive solution u € C* (R"\{0}) N®* (R") if and only if
9

1?(1.8) /m <‘P1 </sfk(t)dt>>lds:oo.

<= Fork=1,A(p) =1, (1.8) is exactly the Keller-Osserman condition (1.2). Thus we can regard (1.8)

13
— as a generalized Keller-Osserman condition.

" Ifwe strengthen the case (1.6) to

15
= A A
16 (1.9) 0 < liminf n(f’)z < limsu (pl

17 p—ee P poeo P

E As a consequence of Theorems 1.3, we obtain the following corollary.

— Corollary 1.4. Assume that A satisfies (1.3), (1.9) and f satisfies (1.4), then the inequality (1.1) has a
— posmve solution u € C* (R™\{0}) N ®* (R") if and only if

z% (1.10) /m </ka(t)dt> O s = oo

24
s Remark 1.5. Corollary 1.4 holds for the cases A(p) =1, m =2 which was obtained by Ji and

o

26 Bao [91; A(p) = p" =%, m > 1 which was obtamed by Feng and Bao [2]. As for A(p) = (1 +p2)7 ,

27 m=2-2a>1,A(p) = p>n—? (1 —|—p2’") 2, m > 1 and more cases in [14, 19] are first obtained by
28 authors of this paper.

-, Remark 1.6. Under the assumption of Corollary 1.4, if f(u) = u?, y > 0, then the inequality (1.1) has

a1 aposmve solution u € C* (R™\{0}) N®* (R") if and only if y < m — 1.

82 If we strengthen the condition of f from (1.4) to the positive function f € C(R) satisfying
" (1.11) f is monotone non-decreasing in R,

g then we have the similar corollary which does not require the solution of (1.1) to be positive.

Z% Corollary 1.7. Assume that A satisfies (1.3) and f satisfies (1.11). If (1.5) holds, then the inequality
. (1.1) has no solution u € C> (R™\{0}) N®* (R"); if (1.6) holds, then the inequality (1.1) has a solution
o UE C? (RM\{0}) N®* (R") if and only if (1.8) holds, in particular, if (1.9) holds, then the inequality
o (1.1) has a solution u € C? (R™\ {0}) N ®* (R") if and only if (1.10) holds.

‘E Remark 1.8. Under the assumption of Corollary 1.7, if f(u) = €", then the inequality (1.1) has no
42 solution u € C* (R"\{0}) N®* (R").
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In particular, we will get a better regularity of solutions u € C? (R™\{0}) N®* (R"). If A € C'[0, ),
A(0) # 0, then u € C* (R") N @k (R™). If A does not satisfy the above conditions, we only consider the
condition

A(p)

=2

A
< limsupﬁ < oo for some [ > 2,

p—0 D -2

(1.12) 0 < liminf
p—0 p

then u € Wli’fq (R"), 1 < g < 1=, by embedding theorem, we have u € C1:% (R") N ®* (R") for some
o € (0,1). See Remarks 2.2 and 2.4 for details.

‘9 The rest of our paper is organized as follows. In Section 2, we give some properties of radial

10 solutions and the local existence of the Cauchy problem associated to (1.1) as preliminaries. In Section

11 3, we give the comparison principle and prove Theorems 1.1, 1.3 and Corollaries 1.4, 1.7.

12

13 2. Preliminary results of radial solutions

14
— To prove Theorems 1.1 and 1.3, we need to get some properties of radial solutions in Bg :=

5
;{xER”:|x|<R},R>O.

17 Lemma 2.1. For any constant a > 0, assume that ¢(r) € C[0,R) NC'(0,R) is the positive solution of

18 the Cauchy problem to the implicit equation
19

@|~[ofo]s]e]n]~

1
k

e A(l9'(r)]) ¢'(r) = (”’ék_ /Ors”lfk((p(s))ds> — F(r,p), r>0,
22 0(0) =a.

24 Then ¢'(0) =0, ¢'(r) > 0in (0,R), and it satisfies (r) € C'[0,R)NC*(0,R) with A (¢’ (r)) ¢’ (r) €
25 C'0,R), and the ordinary differential equation

2 / / k—1 ’ ’ k
2 et (o) gy (ALY g (Aol
2 (2.2) o

29 = Lﬂ —k / / Kk

3 =S (A ) 9 0)) = o).

31 Proof. We define

W)= [ A (16)) (),

3 then it satisfies 4(0) = 0 and

35

#0) =100 00 = ("5 [ olsas) >0.0<r <k
22 It is easy to see that i(r) € C2(0,R). By (1.3) and (2.1), we know ¢’(r) > 0 in (0, R).

40 |

4 _h(r)—h(0) ., . g }

o iy L = ) = (éck s lf"(fp(s))ds> =0,
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where & = £(r) € (0,r). Therefore '(0) = 0 and A(r) € C'[0,R), which implies that ¢’(0) = 0 and
¢(r) € C'[0,R). One can see that

1
2

a / / r n—1 d % k %

4 (2.3) limh(r)_hm):lim nfos SH(@(s))ds _ fH(a)

5 r—=0 r—>0 r—0 Cﬁr" Ck

% Consequently, we get h(r) € C%[0,R), which implies that A (¢’ (r)) ¢’ (r) € C'[0,R).

s By using (2.1) to calculate directly, we can derive

9 W(r n(k —n)rk—n=1 pr e nrk—1

5 () = P (M [ s+ o))
v > L (PON™ ) > 0

— —Ck r oL ’

13

14 then //(r) € C'[0,R) is a strictly monotone increasing function of r, and by (1.3), g (¢') :=A(¢’) ¢’ €
15 C1(0,¢' (R)) is a strictly monotone increasing function of ¢’, then there exists inverse function
16 ¢'(r) =g ' (W (r)) € C'(0,R), which implies ¢ (r) € C>(0,R).

7 By (2.4) and (2.1), we have

18

. _k=nk(r)  n (KN

19 " k

. h

2 itis easy to verify that ¢(r) satisfies the ODE equation (2.2). O

22
23 Remark 2.2. In particular; if A € C'[0,R), A(0) # 0, consider the function H(r,@') := ' (r) — g(¢') =
24 0, then Hy(0,0) = A(0) # 0, hence we know from the implicit function theorem that there exists
25 @' (r) € C'[0,R), then we can strengthen the regularity to ¢ (r) € C*[0,R).

26 If A does not satisfy the above conditions, we only consider the condition (1.12) and then by (2.3),

27 we have

28

— k / / -1 "

“ @9 <f (k)> i ) gy OO 970
Cx =0 r r—0 r r=0 .~ =1

for 1 < g < =5, we can strengthen the regularity to ¢ (r) € C*(0,R) "\W>4(0,R).

** Lemma 2.3. For any constant a > 0, assume that @(r) € C[0,R)NC'(0,R) is the positive solution of
Si the Cauchy problem (2.1). Then u(x) = ¢(|x|) € C* (Bg\{0}) N®* (Bg), |x| = r < R satisfies

73 A (D (A(|Duf) Dyu))

7 (26) (@) oy AR ARD) o
iz and it is the positive solution of

41 k1 —n /

2 Q) 01 (A (Dy (A (D)) D)) = - (774 (4 (9/(1) /(1)) = FA(w)
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i Proof. By Lemma 2.1, we have ¢(r) € C'[0,R) N C?(0,R) with A(¢'(r)) ¢’ (r) € C'[0,R), and it
o satisfies ¢’(0) =0, ¢'(r) > 0in (0,R). For u(x) = ¢(r),0<r<R,i,j=1,---,n, we have

3 1o \Xi

. 29 wlx) = ')

s

6 17X /

°e9) IDul = |¢'(r)| = ¢/ (r),

L r

8

— ¢"(r) ¢'(r) ¢'(r)

% u,-j(x) = 2 XiXj— 3 XiXxj+ 7]’ 6ij-

= D; (A (|Du]) Dju) = D; (A (¢'(r)) (p/(r))%)

14 1 XiXj , / 6,']'1”—)6]-&

5 (2.10) = (A(¢'(N) 9'(n) —5" +A(9'(n) ¢/ () =—5—+

h _ ((A((,,/(,,)) o) A<<p’<r3><p’<r>> w5 AP0,

18
E By (2.8) and ¢'(0) = 0, we have

20 . . / Xi . ’

= 0<1 ; =1 —| <1 =0
o < lim Ju;(x)| = lim [ (r)[|-7] < lim ¢'(r) =0,

22 which means

; )161_1;1(1) u;(x) =0.

25 Similarly, by (2.10), we have

tim D; (A (|Dul) D )

iy (10610 gy - ALV 5y A0
= (4(9/(0)) 9'(0)) 3.

2 Here, we define

o (0) =0, Dy (A (1Dul) Dyu) (0) = (4 (¢(0)) ¢'(0))' 1.

35 then u(x) € C' (Bg) NC? (Bg\{0}), with A (|Du|) Du € C' (Bg).
3E It is easy to see that for r € [0, R), the matrix
37

. D; (A(|Du))Dju) = ax" x+bl,

39 where
40

; a.— { (A((p/(r))(P/(r)) _A((P/(rl)(p/(r)’ r€ (O;R), b = { M) re (O7R)7

42
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By the calculation of linear algebra, we know that the eigenvalues of the symmetric matrix D; (A (|Du|) D ju)
is (ar*+b,b,--- ,b). Therefore we have

(1) ¢'(r)), A0
sy = (AEEDE0 A 2
(A (@/0)9'0)) . (4 (9/0) 9(0))) .r =0

Since

lg%A((P/(rr)_)(p/(r) _ (A ((p/(o)) (pI(O))I,

1o Wecan always think that (2.6) holds, and the equation (2.7) can be obtained easily by the definition of

N Ok

o Since f and ¢ are both monotone non-decreasing, we have

13 f(o(r)) = f(0(0)) = f(a) >0, r € [0,R).

14 /r /}’
15 Then we get w

16 o (A (D; (A(|Dul) Dju)))

17

A
o / / k—1 . "(r "(r
18 :C,If} Ao (r))(p(r)) ((A((p/(r)) (P/(I’))/-l-nkkA((p(z)(p( ))

ofe|~[ofo]afo]n]-

> (0 and

19 r

20 = f*(o(r)) >0,

% which leads to
5 (A (¢ 1) (1) +
24 And for 1 <[ <k, we have

— 01 (A (D; (A(|Dul) Dju)))

p— / / -1 . "y "y

3 i} (AEODEO) (s g1 gy + LA D)

2? / / -1 - "(r "(r

i Zcfl:ll <A((P (”3)@(’”)) ((A(go’(r))qo’(r))’+nkkA((P(r))(P( ))

s 0

33 Therefore A (D; (A (|Du|) Dju)) € I'; holds in Bg. O

55 Obviously for u(x) = ¢(r), we can see that u(x) € C? (Bg\{0}) N C" (Bg), with A (|Du|)Du
55 C'(Bg) is a solution of (2.7) if and only if ¢(r) € C'[0,R) NC*(0,R) with A (¢’ (r)) ¢’ (r) € C'[0,R)
—is a solution of (2.2).

37
38 Remark 2.4. In particular, if A € C'[0,0), A(0) # 0, by Remark 2.2, we have ¢ (r) € C*[0,R), and
39 , ,

o SN s " _q)(r) XiXj ¢'(r) N\ »

) tia ) = tim (970 = 1) 2501 (210) 5,) o' 01

41
42 We define u;j(0) = ¢"(0)8;;, then it is straightforward to show that u(x) € C? (Rg).
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If A does not satisfy the above conditions, we only consider the condition (1.12), then by (2.5) and

1
2 |Hi| <1, we have

3

4 ney _ 9) Y xix) @'(r)

- gl (o= (),
5 limsup —— - = limsup )

6 r—=0 pT I r—0 r -1

7 " 9'(r) @'(r)

T e+ |2+ |2

8 < lim T

? r—0 y =1

—_
o

—_
—_

(%)

13 For q < 1, we have D*u(x) € L" (BR). Then it is straightforward to see u(x) € W>" (Bg).

-
S|

hl Next, we will use the Euler’s break line and dicuss the local existence of the Cauchy problem (2.1)

15
— near r = 0. The method is similar to proving the existence theorem of ordinary differential equations
b (See [4]).

E Lemma 2.5. For any constant a > 0, there exists a constant R > 0, such that the Cauchy problem (2.1)
19 has a positive solution in [0, R).

20

o1 Proof. By Lemma 2.1, we know that ¢'(r) = g~ (F(r,9)) € C[0,R) NC'(0,R) is a strictly monotone

-, increasing function of r. For R > 0 sufficiently small, We define a functional G(-,-) in

23 % :=[0,R]x {9 €C[0O,R]:a < ¢ <2a},
24

o5 which satisfies
26 G(r,p):=g ' (F(r,9)).

27
e Therefore (2.1) can be rewritten as

29 ¢'(r) =G(r,p) >0, r>0.

Z% Foranym € Nand 0 =rp < r; < --- < r, = R, We construct a Euler’s break line y in [0,R] as
5> follows,

S y(r)=a,0<r<ry,

34 { v(r)=vy(ri)+G(rio, W) (r—ri1), i1 <r<r, i=23,---.m

35

3 Step 1. We will show that (r, y) € %, which means a < y(r) < 2a for any r € [0, R]. Notice that

1
k—n  rr %
38 -1 nr n—1 7.k
= G <o | (M [ asrt i)
7(2.11)

i <g ((é)%(w@))) < oo,
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then for the break line (r, ), we have

a<y() <atg! ((;) in(t//(R))> r<atg ((Clk) }ch(w(R))> R

Therefore we choose R > 0 sufficiently small, such that y(r) < 2a.
Step 2. We will prove that the Euler’s break line y is an g-appromation solution of (2.1), which
“, means for any € > 0 sufficiently small, we need to choose some appropriate points {Vi}i:1,~~~ > such
o that the break line y satisfies

0 (2.12) W (r)—G(ry)| <&, reo,R],
11
12 where y(r) is continuously differentiable a.e. in [0, R].

13 By (2.11), we find that

14 limG(r,y) =
5 r—0

15 holds uniformly for any (r, ) € Z. Therefore for any € > 0, there exists 7 € (0,R), such that

7 Grny)<e, 0<r<r.
18
E We now assume that r; = 7, then for 0 < r < 7, we have

20
o1 WV (r)=G(ry)|=G(ry)| <&,

22 which satisfies (2.12).

23 And then for 7 < r < R, by the proof of Lemma 2.1, we know that g~! € C[0, F (R, w)]NC' (0, F (R, y)],

24 then g~ ! is Liptchitz continuous in [F (7, w), F (R, w)]. Let r;_1 < r < r;, we have
25

o V() ~ Glry)| < CIF (1. )~ Flry)]

2Z n % r ri—1 %

3 SC(qg) (/“1 [t wtonas =g [ vt as)

<c( ) ((r=rn) [[omtonas ey [ ot ptsnas)
32 1 1

- <C <C1k> (=AY R i) + 7 (7 = ) £ (2a) )

% Since *~" and " are both Liptchitz continuous functions in [F, R], for the above &, there exists & (&) >0
% satisfying
7

o Joax. lrici —ri| <6 (¢g),

39
40
a W' (r) ¥)| <Clrici —r| < Clrii —ri] <,

g which also satisfies (2.12). Therefore the Euler’s break line y is an €-appromation solution of (2.1).

°? and then we have
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Step 3. We will construct a solution of (2.1) in [0, R]. By Step 2, for any positive constant sequence
{8 J-};;l with €; — 0 as j — oo, we have the Euler break line {%}7:1 as a sequence of €;-appromation
solutions in [0,R]. And by Step 1, for (', y;), (", y;) € Z, we find that

w5 () = w3 ()] = Gl )l ") < M| — )
which means {l//j};;l is equicontinuous and uniformaly bounded (r” = 0). Therefore by the Ascoli-
Arzela Theorem, there exists a uniformly convergent subsequence, still denoted as {Wf'}jzl
that

, such

jele|~]ofa]s]efm]-

lim y; = ¢.
J—ree

—_
o

11 Since y; € C[0,R] and y;(0) = a, obviously we have ¢ € C[0,R] and ¢(0) = a. Next, by using the
12 method similar to [9], we can get the solution of (2.1)

13 r
223 o(r) = a+ /O G(s, 9)ds.

> By (2.13) and ¢ € C[0,R], we find ¢ € C'(0,R]. Then we can differentiate (2.13) easily and get
% ¢'(r)=G(r, @) in (0,R] and ¢(0) = a. Obviously (2.1) holds for r € [0, R]. We complete the proof. [J
17

1s Itis easy to find that the Cauchy problem (2.1) always has a solution in [0, R] for any constant a. In
19 particular, when the initial value a > 0, the monotonicity of ¢(r) guarantees the solution of (2.1) is
o0 always positive.

21

2 3. Proof of main results

2 We will prove the main results by the comparison principle as follows.

24
25 Lemma 3.1. Assume that ¢(r) € C'[0,R) NC?(0,R) with A(¢' (r)) ¢’ (r) € C'[0,R) satisfying (2.2),
26 with @'(0) =0 and @(r) — o as r — R. If u(x) € C?(R"\{0}) N ®* (R") is a positive solution of the
27 inequality (1.1), then we have u(x) < @(|x|) in Bg.

*®_ Proof By Lemma 2.3, we know that v(x) = ¢(|x|) € C?(Bg\{0})NC' (Bg) is a solution of (2.7).
?° We want to prove u(x) < v(x) for any x € Bg. Suppose to the contrary that u(x) > v(x) somewhere,
%% then there exist a > 0 and xo € B, such that u(x) —a < v(x) in Bg and u(xo) —a = v(xp). Notice
°! that v(x) = @(]x|) — o0 as x — dBg and u is bounded in Bg, then there exists Ry € (0,R), such that
2 Xo € Bg,. Now we can assume that SUPy, (u—a—v)<0.

3
o For x € Bg,, we define an operator

- 1
z% Liw] := o (A (Di(A(|Dw|) Djw))) = f(w).
5, Itis obvious that L[v] = 0. And by (1.4), we have

2 Liu—a) = o} (A (Dy(A (D (u—a) ) D, (u—a)))) ~ f(u~a)

“ - (c,} (. (Ds (A (IDul) Dju))) —f(u)> () — flu—a))
42 > 0.
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1 Since u — a and v are the subsolution and supersolution of the operator L respectively, by the maximum
2 principle, we have
0=sup(u—a—v)=sup(u—a—v) <0,
BRO aBRO

we obtain a contradiction. O]

By the comparison principle 3.1, we can get the relationship between the solvability of the inequality
(1.1) and the solvability of the Cauchy problem (2.1).

|| ~lofo]s]e

‘9 Lemma 3.2. The inequality (1.1) has a positive solution u € C* (R"\{0}) N®* (R") if and only if the
10 Cauchy problem (2.1) has a positive solution ¢(r) € C*(0,0)NC'[0,00) with A (¢’ (r)) @' (r) € C'[0,0)
11 for some constant a > 0.

? Proof. First, we will prove the sufficient condition. If the Cauchy problem (2.1) has a positive entire
., solution @(r) for R = 4o, we consider u(x) = ¢(|x|). By Lemma 2.3 and Lemma 2.1, we know
.5 that u(x) satisfies (2.7) and A (D; (A (|Du|) Dju)) € I'y for x € R". Then u(x) € C? (R {0}) Nk (R™)
5 satisfies the inequality (1.1).

—  Next, we will prove the necessary condition. Suppose to the contrary that there is no entire solution
. ¢(r) of the Cauchy problem (2.1). Then by Lemma 2.5, we know that the Cauchy problem (2.1) has
5 @ positive local solution @(r), but no positive entire solution for any constant a > 0. Here, we can
— assume that [0, R) is the maximal existence interval of the local solution. Since ¢’(r) > 0 for r > 0,

20

5, wehave @(r) — o as r — R. By Lemma 2.1, we know ¢(x|) satisfies (2.2). Then by the comparison

5, principle 3.1, any positive solution u(x) € C? (R™\{0}) N®* (R") of (1.1) satisfies u(x) < ¢(|x|) for

o3 X € Bg. Therefore we have u(0) < ¢(0) = a. Notice that a is arbitrary, we can take a = @ and then

o, geta contradiction. O

25 Proof of Theorem 1.1. On the contrary, suppose that (1.1) has a positive solution u € C2 (R"\{0})N
26 @k (R"). Then, by Lemma 3.2, the Cauchy problem (2.1) has a positive solution ¢(r) € C?(0,e0) N
27 C10,00) with A (@' (r)) @' (r) € C'[0,00) for some constant a > 0. Since f and ¢ are both monotone

28 non-decreasing, by (2.1), we find
29

ven o) rs"—lfk«p(s))ds)i < (Clk)’l‘rf«p(r)), >0

Ch X
%2 Substituting (3.1) in (2.2), we get
33
34 _ A@ NI\ k
" at o) o) (M) o), r
3E which comes to
i / 1ok < Kok
s (3:2) (A (@09 (1)") = S o), r>0.
39 "
2o Integrating (3.2) from O to r, we get
a1 ko [r o, 1
2 (A (@' (") @'(r) > o /0 S (@ (s)ds > @rkfk (a), >0,
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which leads to

33 @00 = () @, o

By (1.3), we can see that
1

(1) k rf(a) <A(¢'(r) @'(r) < lim pA(p) <o, r>0.

k (o]
Cx p—

Let r — o0 and we get a contradiction. 0

-
[Bfefe]~]ofo]s]w]n]-

To prove Theorem 1.3, we consider some properties of the function (1.7). By (1.3), we know

—_

é ¥ (p) Ip((pA(p))k), >0, p>0,

'3 then W is strictly monotone increasing in (0,e0) and ¥(0) = 0. By
14

5 W)+ [ @) dr=p(pap)~ [ a0 > (pa ) p> 1,

E we have lim,,_,.. ¥(p) = . Thus the inverse function of ¥ exists in [0,) , denoted by ¥~!. It is
18 obvious that P~ s also a strictly monotone increasing function and satisfies lim, e ¥ 1(p) = oo
19 Now we will prove the nonexistence lemma, which is also the necessary condition of Theorem 1.3.

;i Lemma 3.3. Assume that A satisfies (1.3), (1.6) and f satisfies (1.4). If
—1

- . ;
“ 64 [ (e ([ roa)) as<e
% then the inequality (1.1) has no positive solution u € C> (R"™\{0}) N ®* (R") .

26 Proof. On the contrary, suppose that (1.1) has a solution u € C> (R"\{0}) N®* (R"). Then, by Lemma
27 3.2, the Cauchy problem (2.1) has a positive solution @(r) € C?(0,00) NC'[0,0) with A (¢’ (r)) ¢’ (r) €
28 C! [0,00) for some constant a > 0. Notice that (3.2) and (3.3) still hold. Let r — o in (3.3) and by (1.3),
29 we have lim, ., ¢’ (r) = co. Then lim, . @(r) = co. Multiplying (3.2) by ¢’ > 0, we have

30

" ¥ (¢'(1) = ') (A (0'0) 9'(1)") = S (@) 9 (r), r> 1,

32
. and then integrating the above from 1 to r, we have

34 , k /(p(r) "

— v r)) > — s)ds, r>1.
- @ zg [ 6

%6 Hence we get

57 koo -

38 ¥ —k/ 1 (s)ds o'(r)>1,r>1.
:g Cn o(1)

o Integrating the above from 1 to r again, we have

a o(r) ko [s -1

3.5 / (‘Pl <k/ fk(t)dt>> ds>r—1,r>1.
2 o(1) CaJo(n)
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Let r — o0 in (3.5), we get
°° (k[ -
/ (‘P‘ </ f (t)dt)) ds = oo,
o(1) Ch Jo(1)
which contradicts (3.4). [l

Next, we will prove the following lemma, which is the sufficient condition of Theorem 1.3.

[ [~ ]ofofa]e]n]~

Lemma 3.4. Assume that A satisfies (1.3), (1.6) and f satisfies (1.4). If (1.8) holds, then the inequality
‘9 (1.1) has a positive solution u € C* (R"\{0}) NP (R").

— Proof. By Lemma 3.2, we only need to prove that the Cauchy problem (2.1) has a positive solution
L e(r) € C%(0,00) NC'[0,0) with A (¢’ (r)) ¢’ (r) € C'[0,0) for some constant a > 0. Suppose to the
;5 contrary that no such solution of (2.1) exists. As in the proof of Lemma 3.2, the Cauchy problem (2.1)
., has a positive local solution ¢(r) in the maximal existence interval [0,R). And by Lemma 2.1, we
-5 know that @(r) satisfies (2.2).

o Next, we will show that

- @(R) =lim @(r) =, r € [0,R).

r—R

'8 Suppose to the contrary that ¢(R) < . Then by (2.1), ¢'(R) < o exists. By the continuation theorem
9 of the Cauchy problem (2.1), ¢(r) as a solution of (2.1) can be extended to the right beyond R, which

—_ | =
- | o

20 contradicts the definition that [0, R) is the maximum existence interval. Therefore we have @(R) = oo

21 Since ¢'(r) > 0 for 0 < r <R, then by (2.2) and (1.3), we have

22

23 _ A(Q'(N) @' (!

= a0y (M) < o 0<r<r

% which comes to

26 K _n g

. (A (0'0) 9 )') < G0 (), 0<r <R

5 Multiplying the above by ¢’ > 0, we have

29

— k / an—l

= ¥ (9'(r) = /() ((A(0'() 9'(r)") <5 F (9 9'(r), 0<r <R,
n

82 and then integrating from O to r, we get
33

34 nR=1 ro(r)

ol ¥ (o) < g / F(s)ds, 0< r <R,

% 5 Ja

36 which means

87 _ nR=1 o) —1

38 <‘P 1< o /a fk(S)dS>> o'(r)<1,0<r<R.
o n

%9 Integrating from O to r again, we have

40

ol o) [y (nREL o) -1

42 /a (‘P ( Ck /a f(S)dS>> ds<r,0<r<R.
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Let r — R and we get

/:< <Rkl/f" df)) ds<R<w

which contradicts (1.8). 0

Combining Lemma 3.3 and Lemma 3.4, we complete the proof of Theorem 1.3 immediately.
If we strengthen the condition of the operator A from (1.6) to (1.9), we need some properties of the
function (1.7) to prove Corollary 1.4.

[efe|~]ofo]s]e]n]-

10
E Lemma 3.5. Assume that A satisfies (1.9), then we have
12

_ \Pfl \ijl

s 0 < timinf—— ) < limeup -+ P) o,
14 P km—1)+1 P pkm=TH1

o Proof. To prove the result, we only need to prove

17 7 w

o 0 < timinf— ) < limsup . v __.,

18 p—soo pk(m—l)—H pseo P (m—1)+1

19
20 By (1.7) and (1.9), it is easy to see that

21

22 hmsup% < limsup% < oo,
23 p—oo D ( ) p—oo P (m—1)+

24 Next, we will prove

25

— p

26 liminf A >0,

- p—roo pk(m71)+1

2E which implies that there exist positive constants P and C, such that

29
50 (3.6) ¥(p) > Ccptm=U+ p>p

31 . ..
- By (1.9), we know that there exist positive constants P;, C| and C;, such that

2 (3.7) Cipm T < p(pA (p)) < Cop! I p> By
34

g By (3.7), we can choose 0 > 0 sufficiently small, such that

% k(m—1)

37 G20 1

38 G 2’

39 then we have
40

1 (3.8)
42

6p(6pA(6p)) _ Ca(0p)'™ ! _ 0K D!
p(pA(p) — Ciphtn it G
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1 where P = %. We get
2 p k 6p X p x
3 / (tA(1)) di = / (tA()di+ | (tA(r)) dr
T 0 0 6p
5 (3.9) < 6p(6pA(6p))* +(p—6p) (pA(p))*
6 k
> Op(OpA(Op
. =p(pA(p)) [ 1-0+ (6pd k)) P =
o p(PA(p))
‘9 Therefore by (3.9), (3.8) and (3.7), we have
10 k k
— 1L (tA(2))" dt Op(BpA(6p
" ¥(p)=p(pA(p) [ 1-"—2— | > p(pA(p) [0 - (BpA( k))
2 p(PA(p)) p(PA(p))
13 1 k
il —0p(pA
" > 56p(PA(P))
5 > 0C,pH 1, p>
16 2
17_which gives (3.6). We complete the proof. O
% By Theorem 1.3 and Lemma 3.5, we can get Corollary 1.4 immediately.

23 Proof of Corollary 1.77. We can prove the Corollary 1.7 in a similar way to above. Here, most of the
21 properties we need are almost identical to those we have proved. By conditions (1.4) and (1.11), we

22 know f is now a function defined on R instead of (0,00). We do not need to consider the constant
23 g > 0in Lemma 2.1, Lemma 2.5 and Lemma 3.2. The solution of (1.1) is not also required to be
24 positive. O
25
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