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Abstract

In this paper, we consider (k,ψ)-Hilfer fractional differential equations involving instantaneous and non-instantaneous

impulses, supplemented with Dirichlet boundary conditions. By establishing the variational structure of the stated

problem and combining with the Ekeland’s variational principle, the existence result is obtained. Finally, an example is

given to illustrate the application of our main result.
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1. Introduction

In the past few decades, the subject of fractional calculus has received great interest. As an important branch of

mathematical analysis, fractional calculus effectively describe inherited properties of physical phenomena and systems

occurring in physical sciences and engineering problems [1, 2]. With the development of fractional calculus theory, there

are more than ten definitions of fractional calculus, and these definitions are closely related. However, due to the different

application scope and initial value conditions involved in the definition, there are some uncertainties in the application.

Therefore, the classification and unification of the definition of fractional calculus is a very meaningful work. Addressing

it, some scholars had tried to explore possible solutions and proposed some definitions of generalized fractional derivatives.

For example, Oliveira and Capelas de Oliveira [3] proposed a new fractional derivative, the Hilfer-Katugampola fractional

derivative. Almeida [4] using the idea of the fractional derivative in the Caputo sense, proposed a new fractional derivative

called ψ-Caputo derivative. Sousa and Capelas de Oliveira [5] applying the idea of the fractional derivative in the Hilfer

sense, introduced a new fractional derivative with respect to another function the so-called ψ-Hilfer fractional derivative.

Kucche and Mali [6] utilizing the definition of k-gamma function, presented the most generalized variant of the Hilfer

derivative so-called (k,ψ)-Hilfer fractional derivative.

On the other hand, in 2011, Jiao and Zhou [7] proved the fractional derivative space Eα,p0 and established the

variational structure of the fractional differential equations with Dirichlet boundary conditions. In 2017, Tian and Nieto

[8] proved the fractional derivative space Eα,p and established the variational structure of the fractional differential

equations with Sturm-Liouville boundary conditions. These two pioneering works make critical point theory an effective

tool for studying fractional boundary value problems involving Riemann-Liouville and Caputo fractional derivatives.

For theoretical applications of fractional differential equations, for instance, see [9-12]. More recently, some scholars

have innovatively applied the critical point theory to study the fractional boundary value problems involving generalized

fractional derivative by proving the new fractional derivative spaces, and obtained some interesting results, see [13-22].

For example, Sousa et al. [13] proved a fractional derivative space Hα,β;ψp ([0, T ],R) and used the mountain pass theorem

∗Corresponding author
E-mail addresses: zhangwei azyw@163.com (W. Zhang), nijinbo2005@126.com (J. Ni)

Preprint submitted to July 26, 202326 Jul 2023 04:20:59 PDT
230314-Zhang Version 2 - Submitted to Rocky Mountain J. Math.



for the study of a ψ-Hilfer fractional differential equations with fractional integral boundary conditions. They also studied

existence results for ψ-Hilfer fractional boundary value problem with p-Laplacian operator via variational methods [14-18].

Ezati and Nyamoradi [19] investigated the existence and multiplicity results for Kirchhoff ψ-Hilfer fractional p-Laplacian

equations with fractional integral boundary conditions by using the genus theory. Li et al. [20] considered multiplicity

results for a class of instantaneous and non-instantaneous impulsive fractional Dirichlet problem involving ψ-Caputo

fractional derivative with the help of critical point theorem. Recently, Ledesma and Nyamoradi [21] introduced a new

fractional derivative space kEα,v,ψ0 [a, b], and established the variational structure for the following fractional Dirichlet

problem involving (k,ψ)-Hilfer fractional derivative under this functional space
k,HDα,v;ψ

b− (k,HDα,v;ψa+ u(t)) = f(t, u(t)), t ∈ (a, b),

u(a) = u(b) = 0,
(1.1)

where k,HDα,v;ψ
b− is the right-sided (k,ψ)-Hilfer fractional derivative, k,HDα,v;ψa+ is the left-sided (k,ψ)-Hilfer-Caputo frac-

tional derivative, α ∈ (k/2, 1), k ∈ [1, 2), v ∈ [0, 1), f ∈ C([a, b] × R,R). By using the variational methods and critical

point theory, they prove the existence of weak solutions for problem (1.1).

Very recently, in [22], Torres Ledesma and Nyamoradi also discussed the following (k,ψ)-Hilfer fractional Dirichlet

problem with impulses
k,HDα,v;ψ

T− (k,HDα,v;ψ0+ u(t)) + a(t)u(t) = f(t, u(t)), t 6= tj , a.e. t ∈ [0, T ],

∆kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(tj))

kI
v(k−α);ψ
0+ u(tj) = Ij(u(tj)), j = 1, 2, · · · , n,

u(0) = u(T ) = 0,

(1.2)

where k,HDα,v;ψ
T− is the right-sided (k,ψ)-Hilfer fractional derivative, k,HDα,v;ψ0+ is the left-sided (k,ψ)-Hilfer-Caputo frac-

tional derivative, kI
(·);ψ
0+ , kI

(·);ψ
T− are the left-sided and right-sided (k,ψ)-Riemann-Liouville fractional integral, respectively,

α ∈ (k/2, 1), k ∈ [1, 2), v ∈ [0, 1), f ∈ C([a, b] × R,R), Ij ∈ C(R,R), 1, 2, · · · , n. They obtain the existence of solutions

for problem (1.2) by using variational methods and critical point theory.

The study of fractional differential equations (FDEs) with impulsive effects has received great attention because

of impulsive FDEs become increasingly essential in physical engineering, economics, population dynamics, and social

sciences [23]. In [24], Hernandez and O’Regan introduced the concept of non-instantaneous impulse. Thereafter, two

main approaches of impulsive effects to FDEs are proposed such as instantaneous and non-instantaneous impulses.

Instantaneous impulses: the duration of these changes is relatively short compared to the overall duration of the whole

process. Non-instantaneous impulses: an impulsive action, which starts at an arbitrary fixed point and remains active on

a finite time interval [25]. In resent years, a vast number of study has been made for FDEs with impulses, for instance,

see [26, 27]. Interestingly, some scholars have considered the fractional boundary value problems with both instantaneous

and non-instantaneous impulsive effects by using the critical point theory, see [20, 28-32].

Looking in the above-mentioned contributions, a natural question is asked: Can we investigate the existence of

solutions for (k,ψ)-Hilfer fractional Dirichlet problem generated by instantaneous and non-instantaneous impulsive effects

by using the critical point theory? In the present paper, we give an positive answer for this question. More precisely, we

considering the existence of solutions for the following FDEs with instantaneous and non-instantaneous impulses:

k,HDα,v;ψ
T− (k,HDα,v;ψ0+ u(t)) = fj(t, u(t)), t ∈ (sj , tj+1], j = 0, 1, 2, · · · , n,

∆kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(tj)) = Ij(

kI
v(k−α);ψ
0+ u(tj)), j = 0, 1, 2, · · · , n,

kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t)) = kI

(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t+j )), t ∈ (tj , sj ], j = 1, 2, · · · , n,

kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(s−j )) = kI

(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(s+j )), j = 1, 2, · · · , n,

u(0) = u(T ) = 0,

(1.3)
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where k,HDα,v;ψ
T− is the right-sided (k,ψ)-Hilfer fractional derivative, k,HDα,v;ψ0+ is the left-sided (k,ψ)-Hilfer-Caputo frac-

tional derivative, kI
(·);ψ
0+ , kI

(·);ψ
T− are the left-sided and right-sided (k,ψ)-Riemann-Liouville fractional integral, respectively,

α ∈ (k/2, 1), k ∈ [1, 2), v ∈ [0, 1), fj ∈ C((sj , tj+1]× R,R), Ij ∈ C(R,R), 0 = s0 < t1 < s1 < t2 < · · · < sn < tn+1 = T,

∆kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(tj)) = kI

(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t+j ))− kI

(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t−j )),

kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t±j )) = lim

t→t±j

kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t)),

kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(s±j )) = lim

t→t±j

kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(t)).

In this problem, the instantaneous impulses start abruptly at point tj and the non-instantaneous impulses continue

during the intervals (tj , sj ]. In order to state our main result, we shall present the following assumptions:

(A1) There exist aj , bj>0, (j=0, 1, 2, . . . , n) and σ∈[0, 1) such that |fj(t, u)|≤aj + bj |u|σ,∀(t, u)∈[0, T ]×R.

(A2) There exist cj , dj > 0, δi ∈ [0, 1), (j=1, 2, . . . , n) such that |Ij(u)| ≤ cj + dj |u|δj , ∀u ∈ R.

In this study, we focus on establishing the existence of solutions for problem (1.3) by using the Ekeland’s variational

principle. Compared with the existing literature, the main innovative contributions can be summarized as follows:

First, this type of differential model with impulsive effects is more general than the normal case (k = 1, tj = sj),

so our result becomes more extensive. Second, we present a new velocity pulse term ∆kI
(1−v)(k−α);ψ
T− (k,HDα,v;ψ0+ u(tj)) =

Ij(
kI
v(k−α);ψ
0+ u(tj)), which is more reasonable than that given in problem (1.2). Third, we provide a new energy functional

under the influence of impulsive effects, so the critical point theory can be used to deal with this type of problem.

The rest of this article is arranged as follows: In Sect. 2, we introduce notations, definitions, and some preliminary

notions about (k,ψ)-Hilfer fractional calculus and fractional derivative space. Also we give the Ekeland’s variational

principle. In Sect. 3, we study the existence of weak solutions for problem (1.3). An illustrative example is presented in

the last section.

2. Preliminaries

In this section, we recall some definitions and propositions for the (k,ψ)-Hilfer fractional calculus, fractional derivative

space kEα,v;ψ0 [0, T ] and the Ekeland’s variational principle.

Definition 2.1. ([21, 22]) Let p ∈ [1,∞). The space of p-integrable functions with respect to a function ψ is defined as:

Lpψ(a, b) =

{
u : (a, b)→ R :

∫ b

a

|u(t)|pψ′(t)dt <∞

}
.

This space endowed with the norm

||u||Lpψ(a,b) =

(∫ b

a

|u(t)|pψ′(t)dt

)1/p

,

is a Banach space.

Definition 2.2. ([21, 22]) Let ψ : [a, b] → R be an increasing continuous function and continuous derivative with

ψ′(t) 6= 0 for all t ∈ [a, b]. For u ∈ L1[a, b] and k ∈ R+, the left and right (k, ψ)-Riemann-Liouville fractional integrals of

order α > 0 of the function u is given by

kIα;ψa+ u(t) =
1

kΓk(α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))
α
k−1u(s)ds,

and

kIα;ψb− u(t) =
1

kΓk(α)

∫ b

t

ψ′(s)(ψ(s)− ψ(t))
α
k−1u(s)ds,
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where Γk(α) is the k-gamma function is defined as

Γk(α) =

∫ ∞
0

sα−1e−
sk

k ds.

Definition 2.3. ([21, 22]) Let α ∈ (0, 1), k ∈ (0,∞), v ∈ [0, 1], m =
⌈
α
k

⌉
, ψ ∈ Cm[a, b] be an increasing function with

ψ′(t) 6= 0, t ∈ [a, b] and u ∈ Cm[a, b]. Then, the left and right (k, ψ)-Hilfer fractional derivative of a function u of order

α and type v is defined by

k,HDα,v;ψ
a+ u(t) = kI

v(mk−α);ψ
a+

( k

ψ′(t)

d

dt

)m
kI

(1−v)(mk−α);ψ
a+ u(t),

and

k,HDα,v;ψ
b− u(t) = kI

v(mk−α);ψ
b−

(
− k

ψ′(t)

d

dt

)m
kI

(1−v)(mk−α);ψ
b− u(t).

Definition 2.4. ([21, 22]) The fractional derivative space kEα,v;ψ0 [0, T ] defined as

kEα,v;ψ0 [0, T ] = C∞0 ([0, T ],R)
||·||α,v

,

where

||u||α,v =

(∫ T

0

|u(t)|2ψ′(t)dt+

∫ T

0

|k,HDα,v;ψ0+ u(t)|2ψ′(t)dt

)1/2

.

Remark 2.1. Let α ∈ (k/2, 1), k ≥ 1 and v ∈ [0, 1). The fractional derivative space kEα,v;ψ0 [0, T ] defined as

kEα,v;ψ0 [0, T ] = {u ∈ L2
ψ[0, T ] : k,HDα,v;ψ0+ u ∈ L2

ψ[0, T ] and u(0) = u(T ) = 0}.

Proposition 2.1. ([21, 22]) The fractional derivative space kEα,v;ψ0 [0, T ] is a reflexive and separable Hilbert space.

Proposition 2.2. ([21, 22]) Let u ∈ kEα,v;ψ0 [0, T ], then

kIα;ψ0+
k,HDα,v;ψ0+ u(t) = u(t), a.e. in [0, T ],

and

||u||L2
ψ[0,T ] ≤

(ψ(T )− ψ(0))
α/k

Γk(α+ k)
||k,HDα,v;ψ0+ u||L2

ψ [0,T ].

Remark 2.2. As a consequence of Proposition 2.2, the space kEα,v;ψ0 [0, T ] can endowed with the equivalent norm

||u|| =
(∫ T

0

|k,HDα,v;ψ0+ u(t)|2ψ′(t)dt
)1/2

.

Proposition 2.3. ([21, 22]) If α ∈ (k/2, 1), k ≥ 1 and v ∈ [0, 1), then the embedding kEα,v;ψ0 [0, T ]↪→C[0, T ] is continuous.

Moreover

||u||∞ ≤
(ψ(T )− ψ(0))

α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

||u||.

Proposition 2.4. ([21, 22]) Let u,w ∈ L2
ψ(a, b). Then∫ b

a

kIα;ψa+ u(t)w(t)ψ′(t)dt =

∫ b

a

u(t)kIα;ψb− w(t)ψ′(t)dt.

Proposition 2.5. ([21, 22]) Let α ∈ (0, 1) and k ∈ R+. If u ∈ C[0, T ], then

lim
t→0+

kIα;ψ0+ u(t) = 0 and lim
t→T−

kIα;ψT− u(t) = 0.

Proposition 2.6. ([21, 22]) Let α ∈ (0, 1), k ∈ (0,+∞). If u ∈ C[a, b], then kIα;ψa+ u, kIα;ψb− u ∈ C[a, b]. Moreover,

||kIα;ψa+ u||∞ ≤
(ψ(b)− ψ(a))

α
k

αΓk(α)
||u||∞ and ||kIα;ψb− u||∞ ≤

(ψ(b)− ψ(a))
α
k

αΓk(α)
||u||∞.
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Proposition 2.7. ([21, 22]) Let p > 1, k ∈ [1, p), 0 < k
p < α < 1. Then, for any u ∈ Lpψ[a, b] we have kIα;ψa+ u,kIα;ψb− u ∈

C[a, b]. Moreover

lim
t→a+

kIα;ψa+ u(t) = 0 and lim
t→b−

kIα;ψb− u(t) = 0.

Proposition 2.8. ([21, 22]) Let α ∈ (k2 , 1), k ≥ 1 and v ∈ [0, 1). Suppose that (un)n∈N be a sequence that converges

weakly to u in kEα,v;ψ0 [0, T ]. Then, up to a subsequence it holds that

lim
n→+∞

||u− un||∞ = 0.

Theorem 2.1. ([33]) Let M be a complete metric space and let let Φ : M → (−∞,+∞] be a lower semi-continuous

function, bounded from below and not identically equal to +∞. Let ε > 0 be given and u ∈ M be such that Φ(u) ≤

infMΦ+ε. Then there exists w ∈M such that Φ(w) ≤ Φ(u), d(u,w) ≤ 1, and for each z 6= w inM , Φ(z) > Φ(w)−εd(w, z),

where d(·, ·) denotes the distance between two elements in M .

3. Main result

In this section we construct the energy functional to problem (1.3) and establish the existence theorem of classical

solutions. Through this section we assume that k ∈ [1, 2), α ∈ (k2 , 1) and v ∈ [0, 1).

Lemma 3.1. A function u ∈ kEα,v;ψ0 [0, T ] is a solution of problem (1.3), then the following identity:∫ T

0

k,HDα,v;ψ0+ u(t)k,HDα,v;ψ0+ w(t)ψ′(t)dt

= −k
n∑
j=1

Ij(
kI
v(k−α);ψ
0+ u(tj))

kI
v(k−α);ψ
0+ w(tj) +

n∑
j=0

∫ tj+1

sj

fj(t, u(t))w(t)ψ′(t)dt,

(3.1)

holds for any w ∈ kEα,v;ψ0 [0, T ].

Proof. For w ∈ kEα,v;ψ0 [0, T ], one has w(0) = w(T ) = 0. By Proposition 2.4, we have∫ T

0

k,HDα,v;ψ0+ u(t)k,HDα,v;ψ0+ w(t)ψ′(t)dt

=

∫ T

0

k,HDα,v;ψ0+ u(t)kI
(1−v)(k−α);ψ
0+

(
k

ψ′(t)

d

dt

)
kI
v(k−α);ψ
0+ w(t)ψ′(t)dt

= k

∫ T

0

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)
d

dt
kI
v(k−α);ψ
0+ w(t)dt (3.2)

= k
[ n∑
j=0

∫ tj+1

sj

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)
d

dt
kI
v(k−α);ψ
0+ w(t)dt

+

n∑
j=1

∫ sj

tj

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)
d

dt
kI
v(k−α);ψ
0+ w(t)dt

]
.

On the one hand,

k

n∑
j=0

∫ tj+1

sj

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)
d

dt
kI
v(k−α);ψ
0+ w(t)dt

= k

n∑
j=0

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)|t

−
j+1

s+j

+

n∑
j=0

∫ tj+1

sj

(
−k
ψ′(t)

d

dt

)
kI

(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)ψ′(t)dt

= k

n∑
j=0

[
lim

t→t−j+1

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)− lim

t→s+j

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)

]

+

n∑
j=0

∫ tj+1

sj

kI
v(k−α);ψ
T−

(
−k
ψ′(t)

d

dt

)
kI

(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)w(t)ψ′(t)dt
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= k

n∑
j=0

[
lim

t→t−j+1

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)− lim

t→s+j

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)

]

+

n∑
j=0

∫ tj+1

sj

k,HDα,v;ψ
T−

k,HDα,v;ψ0+ u(t)w(t)ψ′(t)dt. (3.3)

On the other hand,

k

n∑
j=1

∫ sj

tj

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)
d

dt
kI
v(k−α);ψ
0+ w(t)dt

= k

n∑
j=1

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)|s

−
j

t+j

− k
n∑
j=1

∫ sj

tj

d

dt
kI

(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)dt (3.4)

= k

n∑
j=1

[
lim
t→s−j

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)− lim

t→t+j

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)

]
.

Combining with (3.2), (3.3) and (3.4), we have∫ T

0

k,HDα,v;ψ0+ u(t)k,HDα,v;ψ0+ w(t)ψ′(t)dt

= k

n∑
j=1

[
lim
t→s−j

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)− lim

t→s+j

kI
(1−v)(k−α);ψ
T−

k,H
Dα,v;ψ0+ u(t)

k
I
v(k−α);ψ
0+ w(t)

+ lim
t→t−j

kI
(1−v)(k−α);ψ
T−

k,H
Dα,v;ψ0+ u(t)kI

v(k−α);ψ
0+ w(t)− lim

t→t+j

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)

]
+ lim
t→T−

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)− lim

t→0+

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t)

+

n∑
j=0

∫ tj+1

sj

fj(t, u(t))w(t)ψ′(t)dt. (3.5)

Note that w ∈ C∞0 (0, T ), Proposition 2.5 gives that

lim
t→0+

kI
v(k−α);ψ
0+ w(t) = 0. (3.6)

In view of u ∈ kEα,v;ψ0 [0, T ], which combined with Proposition 2.7, we obtain

lim
t→T−

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t) = 0. (3.7)

From (3.6) and (3.7), it follows that

lim
t→T−

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t) = 0, (3.8)

lim
t→0+

kI
(1−v)(k−α);ψ
T−

k,HDα,v;ψ0+ u(t)kI
v(k−α);ψ
0+ w(t) = 0. (3.9)

Substituting (3.8) and (3.9) into (3.5), we obtain the desired result (3.1). The proof is completed.

Definition 3.1. A function u ∈ kEα,v;ψ0 [0, T ] is called a weak solution of problem (1.3), if (3.1) holds for any w ∈
kEα,v;ψ0 [0, T ].

Define the functional Φ : kEα,v;ψ0 [0, T ]→ R by

Φ(u) =
1

2

∫ T

0

|k,HDα,v;ψ0+ u(t)|2ψ′(t)dt−
n∑
j=0

∫ tj+1

sj

Fj(t, u(t))ψ′(t)dt+ k

n∑
j=1

∫ kI
v(k−α);ψ
0+ u(tj)

0

Ij(s)ds, (3.10)

where Fj(t, u) =
∫ u
0
fj(t, s)ds. As in [22], under our assumption, we can obtain Φ ∈ C1(kEα,v;ψ0 [0, T ],R) with

〈Φ′(u), w〉 =

∫ T

0

k,HDα,v;ψ0+ u(t)k,HDα,v;ψ0+ w(t)ψ′(t)dt−
n∑
j=0

∫ tj+1

sj

fj(t, u(t))w(t)ψ′(t)dt

+ k

n∑
j=1

Ij(
kI
v(k−α);ψ
0+ u(tj))

kI
v(k−α);ψ
0+ w(tj).

(3.11)
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Thus, the weak solutions of problem (1.3) are the critical points of Φ.

Lemma 3.2. Suppose (A1) and (A2) are satisfied. Then there exists r > 0 such that Φ(u) > 0 for u ∈ kEα,v;ψ0 [0, T ] with

||u|| = r.

Proof. From (A1), we obtain

Fj(t, u) ≤ aj |u|+
bj

σ + 1
|u|σ+1, σ ∈ [0, 1),

and then, by Proposition 2.3, we derive

n∑
j=0

∫ tj+1

sj

Fj(t, u(t))ψ′(t)dt

≤ (ψ(T )− ψ(0))

n∑
j=0

(
aj ||u||∞ +

bj
σ + 1

||u||σ+1
∞

)

≤ (ψ(T )− ψ(0))

n∑
j=0

aj (ψ(T )− ψ(0))
α
k−

1
2 ||u||

kΓk(α)
(
α+k
2k

) 1
2

+ bj
||u||σ+1

σ + 1

 (ψ(T )− ψ(0))
α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

σ+1
.

(3.12)

On the other hand, by (A2) and Proposition 2.3, we have∣∣∣∣∣
∫ kI

v(k−α);ψ
0+ u(tj)

0

Ij(s)ds

∣∣∣∣∣
≤ cj

∣∣∣kIv(k−α);ψ0+ u(tj)
∣∣∣+

dj
1 + δj

∣∣∣kIv(k−α);ψ0+ u(tj)
∣∣∣1+δj

≤ cj(ψ(T )− ψ(0))
v(k−α)

k

v(k − α)Γk(v(k − α))
||u||∞ +

dj
1 + δj

 (ψ(T )− ψ(0))
v(k−α)

k

v(k − α)Γk(v(k − α))

1+δj

||u||1+δj∞

≤ cj(ψ(T )− ψ(0))
v(k−α)

k

v(k − α)Γk(v(k − α))

(ψ(T )− ψ(0))
α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

||u||

+
dj

1 + δj

 (ψ(T )− ψ(0))
v(k−α)

k

v(k − α)Γk(v(k − α))

1+δj (ψ(T )− ψ(0))
α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

1+δj

||u||1+δj .

(3.13)

It follows from (3.12) and (3.13) that

Φ(u) =
1

2

∫ T

0

|k,HDα,v;ψ0+ u(t)|2ψ′(t)dt−
n∑
j=0

∫ tj+1

sj

Fj(t, u(t))ψ′(t)dt+ k

n∑
j=1

∫ kI
v(k−α);ψ
0+ u(tj)

0

Ij(s)ds

≥ 1

2
||u||2 − (ψ(T )− ψ(0))

n∑
j=0

aj (ψ(T )− ψ(0))
α
k−

1
2 ||u||

kΓk(α)
(
α+k
2k

) 1
2

+ bj
||u||σ+1

σ + 1

 (ψ(T )− ψ(0))
α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

σ+1


−
n∑
j=1

kcj(ψ(T )− ψ(0))
v(k−α)

k

v(k − α)Γk(v(k − α))

(ψ(T )− ψ(0))
α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

||u||

−
n∑
j=1

kdj
1 + δj

 (ψ(T )− ψ(0))
v(k−α)

k

v(k − α)Γk(v(k − α))

1+δj (ψ(T )− ψ(0))
α
k−

1
2

kΓk(α)
(
α+k
2k

) 1
2

1+δj

||u||1+δj .

(3.14)

Hence, there exists r > 0 such that Φ(u) > 0 for u ∈ kEα,v;ψ0 [0, T ] with ||u|| = r.

Theorem 3.1. Suppose that (A1) and (A2) hold. Then problem (1.3) has at least one weak solution.

Proof. We shall apply Theorem 2.1 to prove the theorem. Let r be defined in Lemma 3.2, M = Br(0) ⊂ kEα,v;ψ0 [0, T ].

Since, Φ is continuous, thus Φ is lower semi-continuous. In view of (3.14), we can show that Φ is bounded from below.
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Next, we divide our proof in four steps.

(i). We claim that there exists w ∈M such that

c− ε < Φ(w) ≤ c+ ε, c = inf
u∈M

Φ(u). (3.15)

By Lemma 3.2, we have infu∈∂Br(0)Φ(u) > 0. Recalling the definition (3.10) of Φ, a direct computation shows that

Φ(0) = 0. Hence, infu∈Br(0)Φ(u) ≤ 0 and infu∈Br(0)Φ(u) = infu∈MΦ(u). Let 0 < ε < infu∈∂Br(0)Φ(u) − c, it is easy to

see that there exists z ∈M such that Φ(z) ≤ ε+ infu∈MΦ(u). By Theorem 2.1, there exists w ∈M such that

inf
u∈M

Φ(u)− ε < Φ(w) ≤ Φ(z) ≤ ε+ inf
u∈M

Φ(u),

then (3.15) is proved. One the other hand, by Theorem 2.1, for any u 6= w in M , we have

Φ(w) < Φ(u) + ε||u− w||. (3.16)

(ii). We prove that

||Φ′(w)||(kEα,v;ψ0 )∗ ≤ ε. (3.17)

To see this, we define functional

J(u) = Φ(u) + ε||u− w||. (3.18)

From (3.17) and (3.18), it follows

J(w) = Φ(w) < Φ(u) + ε||u− w|| = J(u), for all u 6= w.

Hence, w is the minimum point of (3.18). Therefore,

J(w + tu)− J(w) ≥ 0, for all u ∈ Br(0).

By using the function limit property, we have

0 ≤ lim
t→0+

J(w + tu)− J(w)

t
= lim
t→0+

Φ(w + tu) + ε||w + tu− w|| − Φ(w)

t

= < Φ′(w), u > +ε||u||,

and

0 ≥ lim
t→0−

J(w + tu)− J(w)

t
= lim
t→0−

Φ(w + tu) + ε||w + tu− w|| − Φ(w)

t

= < Φ′(w), u > −ε||u||.

Thus, (3.17) holds.

(iii). We have to show the existence of weak solution u0 of problem (1.3). In fact, by (3.15) and (3.17), there exists

sequence {un} ⊂ Br(0) such that

Φ(un)→ c, Φ′(un)→ 0.

Since (3.14) yields {un} is bounded. In view of the reflexivity of kEα,v;ψ0 [0, T ], the sequence {un} weakly converges to u0

in kEα,v;ψ0 [0, T ]. It follows from Proposition 2.8 that the sequence {un} converges uniformly to u0 in C[0, T ]. We now

prove that {un} is strongly converges to u0 in kEα,v;ψ0 [0, T ]. In fact,

〈Φ′(un)− Φ′(u0), un − u0〉 → 0,

n∑
j=0

∫ tj+1

sj

(fj(t, un(t))− fj(t, u0(t)))(un(t)− u0(t))ψ′(t)dt→ 0,

n∑
j=1

(Ij(
kI
v(k−α);ψ
0+ un(tj))− Ij(kIv(k−α);ψ0+ u0(tj)))(

kI
v(k−α);ψ
0+ un(tj)− kI

v(k−α);ψ
0+ u0(tj))→ 0,
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as n→ +∞. Recalling the Eq. (3.11), a direct computation shows that

〈Φ′(un)− Φ′(u0), un − u0〉

= ||un − u0||2 −
n∑
j=0

∫ tj+1

sj

(fj(t, un(t))− fj(t, u0(t)))(un(t)− u0(t))ψ′(t)dt

+ k

n∑
j=1

(Ij(
kI
v(k−α);ψ
0+ un(tj))− Ij(kIv(k−α);ψ0+ u0(tj)))(

kI
v(k−α);ψ
0+ un(tj)− kI

v(k−α);ψ
0+ u0(tj)).

So, ||un − u|| → 0 as n→ +∞. That is, {un} converges strongly to u0 in kEα,v;ψ0 [0, T ]. Consequently,

Φ(u0) = c, Φ′(u0) = 0.

Therefore, u0 is a weak solution of problem (1.3).

Example 3.1. Let α = 4
5 , v = 1

2 , k = 3
2 , T > 0, aj , bj , cj , dj > 0, j = 0, 1, 2, · · · , n. Consider the following problem

3
2 ,HD

4
5 ,

1
2 ;ψ

T− (
3
2 ,HD

4
5 ,

1
2 ;ψ

0+ u(t)) = fj(t, u(t)), t ∈ (sj , tj+1], j = 0, 1, 2, · · · , n,

∆
3
2 I

7
20 ;ψ

T−
3
2 ,HD

4
5 ,

1
2 ;ψ

0+ u(tj) = Ij(
3
2 I

7
20 ;ψ

0+ u(tj)), j = 0, 1, 2, · · · , n,
3
2 I

7
20 ;ψ

T−
3
2 ,HD

4
5 ,

1
2 ;ψ

0+ u(t) =
3
2 I

7
20 ;ψ

T−
3
2 ,HD

4
5 ,

1
2 ;ψ

0+ u(t+j ), t ∈ (tj , sj ], j = 1, 2, · · · , n,
3
2 I

7
20 ;ψ

T−
3
2 ,HD

4
5 ,

1
2 ;ψ

0+ u(s−j ) =
3
2 I

7
20 ;ψ

T−
3
2 ,HD

4
5 ,

1
2 ;ψ

0+ u(s+j ), j = 1, 2, · · · , n,

u(0) = u(T ) = 0,

(3.19)

where ψ : [0, T ] → R is an increasing function, ψ′(x) 6= 0 for all t ∈ [0, T ], fj(t, u(t)) = aj sin |u(t)| + bj(u(t))
3
5 cosu(t),

Ij(u) = cj + dju
2
3 . Easily, we can check that (A1) and (A2) hold. Consequently, by Theorem 3.1, problem (3.19) has a

weak solution.
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