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Abstract

In this work, we discuss the oscillatory behaviour of all vector solutions of 2-dimensional
nonlinear neutral delay difference systems of the form:

∆

[
r(k) + q(k)r(k − l)
s(k) + q(k)s(k − l)

]
=

[
a11(k) a12(k)
a21(k) a22(k)

] [
ν1(r(k − α1))
ν2(s(k − α2))

]
, k ≥ ρ,

where ρ = max{l, α1, α2}, l > 0, α1 ≥ 0, α2 ≥ 0 are integers, a11(k), a12(k), a21(k), a22(k),
q(k) are real sequences and ν1, ν2 ∈ C(R,R) are non-decreasing functions with uν1(u) >
0, u ̸= 0, vν2(v) > 0, v ̸= 0. Owing to our discussion, the citing results are verified by
the illustrative examples.
Keywords: Oscillation, nonoscillation, nonlinear, system of neutral equations, un-
bounded solutions.
Mathematics Subject classification (2020): 34K11, 34C10, 39A13.

1 Introduction

Neutral differential/difference equation(NDE) is a tool for mathematical model arising in the
lossless transmission lines model in high speed computers (see for e.g. [14]). Also, we find
some special cases of NDE comprising of linear and nonlinear type in [14]. It is interesting
to see that NDE is a medium to describe the model [6] of an insect population with long
larval and short adult phases such as the periodical cicada. Seldom, we can extend the
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model [6] into two insect populations when they are interdependent with their life span in
the mathematical form of system of NDEs. We refer to the reader the work [6] in which the
authors Bocharov and Hadeler have discussed two age-structured population model using
system of NDEs. Keeping in view of the dynamic behaviour of such systems, we consider
the 2-dimensional first order nonlinear neutral delay difference systems of the form:

(FDS1) ∆

[
r(k) + q(k)r(k − l)
s(k) + q(k)s(k − l)

]
=

[
a11(k) a12(k)
a21(k) a22(k)

] [
ν1(r(k − α1))
ν2(s(k − α2))

]
, k ≥ ρ,

where ρ = max{l, α1, α2}, l > 0, α1 ≥ 0, α2 ≥ 0 are integers, a11(k), a12(k), a21(k), a22(k),
q(k) are real sequences and ν1, ν2 ∈ C(R,R) are non-decreasing functions with uν1(u) > 0 for
u ̸= 0, vν2(v) > 0 for v ̸= 0. The objective of our work is to discuss the oscillatory behaviour
of all vector solutions R(k) = [r(k), s(k)]T of (FDS1). The motivation of the present work
has come from the work [24] in which the author Tripathy has presented the oscillation
criteria for 2-dim linear neutral delay difference systems of the form:

(FDS2) ∆

[
r(k)− q(k)r(k − l)
s(k)− q(k)s(k − l)

]
=

[
a11(k) a12(k)
a21(k) a22(k)

] [
r(k − α1)
s(k − α2)

]
, k ≥ ρ.

The system (FDS2) ensures the necessary and sufficient conditions under which all bounded
vector solutions of (FDS2) either oscillates or converges to zero as k → ∞. In the literature,
we find some works [7], [13], [15], [16], [17], [20] on non-neutral systems, but not like the
works [18], [22], [23] which are in closed forms and some neutral systems [4], [5], [7], [8], [9],
[10], [11], [21] but not like the works [24], [25], [26] which are in closed forms.

In [25], Tripathy and Das have studied (FDS1) which doesn’t meet the requirement for
an all solution oscillatory problem. Subject to the constant coefficient method may be an
alternative, the authors have undertaken the problem with the autonomous delay system

∆

[
r(k)− qr(k − l)
s(k)− qs(k − l)

]
=

[
a11 a12
a21 a22

] [
r(k − α1)
s(k − α2)

]
, k ≥ ρ,

where a11, a12, a21, a22, q ∈ R, l > 1 and α1, α2 ∈ N. After all, they have gone through an
application of the constant coefficient results to the non-linear neutral difference systems

∆

[
r(k)− q(k)h1(r(k − l))
s(k)− q(k)h2(s(k − l))

]
+

[
a11(k) a12(k)
a21(k) a22(k)

] [
ν1(r(k − α1))
ν2(s(k − α2))

]
= 0, k ≥ ρ

by means of linearized oscillation technique for their problem, where

lim
|s|→∞

h1(s)

s
= 1, lim

|s|→∞

h2(s)

s
= 1.

However, the work is restricted to the range 1 < q(k) < ∞ only. Therefore, summarising the
above fact, we emphasize on the problem for the system (FDS1). Introduction to difference
equations and system of difference equations, we refer to the monographs by Agarwal et al.
[1, 2, 3] and by Elyadi [12].
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Definition 1.1. By a solution of (FDS1) we mean a vector R(k) = [r(k), s(k)]T which
satisfies (FDS1) for k ∈ N(−ρ) = {−ρ,−ρ + 1, ...0, 1, 2, ...}. We say that the solution
R(k) oscillates componentwise or simply oscillates or strongly oscillates, if each component
oscillates. Otherwise, the solution R(k) is called non-oscillatory. Therefore, a solution of
(FDS1) is non-oscillatory, if it has a component which is eventually positive or eventually
negative and strongly non-oscillatory if both components of R(k) are non-oscillatory. A
vector solution R(k) of (FDS1) has the property oscillates, if each component of R(k) is
having the property.

2 Unbounded Oscillation Criteria

In this section, the sufficient conditions for oscillation of all unbounded vector solutions
R(k) = [r(k), s(k)]T of the system (FDS1) are established.

Theorem 2.1. Suppose that q(k) ≥ 0, a11(k) < 0, a12(k) > 0, a21(k) > 0 and a22(k) < 0
for large k. Let ν1, ν2 ∈ BC(R,R) be such that
(C1) uν1(u) > 0 and uν2(u) > 0 for u ̸= 0.
If
(C2)

∑∞
k=0 a12(k) < ∞,

∑∞
k=0 a21(k) < ∞,

then every unbounded vector solution of (FDS1) strongly oscillates.

Proof. If possible, let R(k) = [r(k), s(k)]T be a strongly nonoscillatory unbounded vector
solution of (FDS1) for any large k ≥ k0 > 0. Without any loss of generality, we consider
the following four cases:
Case− 1 : r(k) > 0, r(k− l) > 0, r(k− α1) > 0 and s(k) > 0, s(k− l) > 0, s(k− α2) > 0 for
k ≥ k1.
Case− 2 : r(k) < 0, r(k− l) < 0, r(k− α1) < 0 and s(k) < 0, s(k− l) < 0, s(k− α2) < 0 for
k ≥ k1.
Case− 3 : r(k) > 0, r(k− l) > 0, r(k− α1) > 0 and s(k) < 0, s(k− l) < 0, s(k− α2) < 0 for
k ≥ k1.
Case− 4 : r(k) < 0, r(k− l) < 0, r(k− α1) < 0 and s(k) > 0, s(k− l) > 0, s(k− α2) > 0 for
k ≥ k1.
For the system (FDS1), we define

β1(k) =
∞∑
j=k

a12(j)ν2(s(j − α2)), β2(k) =
∞∑
j=k

a21(j)ν1(r(j − α1));

h1(k) = r(k) + q(k)r(k − l), h2(k) = s(k) + q(k)s(k − l).

Therefore, it follows that

∆[h1(k) + β1(k)] = a11(k)ν1(r(k − α1)) ≤ 0, (2.1)

∆[h2(k) + β2(k)] = a22(k)ν2(r(k − α2)) ≤ 0 (2.2)
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for k ≥ k1 > k0 due to Case− 1. So, we can find k2 > k1 such that [h1(k) + β1(k)] and
[h2(k) + β2(k)] are monotonic for k ≥ k2. Indeed, h1(k) > 0, h2(k) > 0 and lim

k→∞
β1(k) <

∞, lim
k→∞

β2(k) < ∞ due to (C1) and (C2) implies that lim
k→∞

h1(k) and lim
k→∞

h2(k) are exist, that

is, h1(k) and h2(k) are bounded. This leads a contradiction to the fact that h1(k) ≥ r(k)
and h2(k) ≥ s(k). The argument for Case− 2 is similar to that of Case− 1.

In Case− 3, (2.1) and (2.2) can be viewed as

∆[h1(k) + β1(k)] = a11(k)ν1(r(k − α1)) ≤ 0, (2.3)

∆[h2(k) + β2(k)] = a22(k)ν2(s(k − α2)) ≥ 0 (2.4)

for which [h1(k) + β1(k)] and [h2(k) + β2(k)] are monotonic. If [h1(k) + β1(k)] > 0, then
lim
k→∞

[h1(k) + β1(k)] exist and it is all about the Case− 1. If [h1(k) + β1(k)] < 0, then β1(k)

is bounded and hence h1(k) is bounded, a contradiction. If we put −s(k) = t(k) in (2.4), we
find

∆[t(k) + q(k)t(k − l)−
∞∑
j=k

a21(j)ν1(r(j − α1))] = a22(k)ν2(t(k − α2))

which is similar to (2.3) and hence the argument follows. Case− 4 is similar to Case− 3.
This complete the proof of the theorem.

Theorem 2.2. Let −1 < q(k) ≤ 0 for large k. If all conditions of Theorem 2.1 hold, then
the conclusion of the theorem remains intact.

Proof. On the contrary, we proceed as in Theorem 2.1 comprising of four cases. ForCase− 1,
we can find k2 > k1+ρ such that [h1(k)+β1(k)] and [h2(k)+β2(k)] are monotonic for k ≥ k2.
If [h1(k) + β1(k)] > 0, then lim

k→∞
[h1(k) + β1(k)] exists and hence lim

k→∞
h1(k) exists. Upon the

choice of the sign of h1(k), we need h1(k) > −β1(k) for k ≥ k2 in which h1(k) > 0 for k ≥ k2
leads to the fact that r(k) ≥ r(k − l) and

h1(k) = r(k) + q(k)r(k − l) ≥ r(k − l) + q(k)r(k − l) = r(k − l)(1 + q(k))

tends to ∞ as k → ∞, a contradiction. Ultimately, r(k) ≤ r(k − l) for k ≥ k2. But, again
this is also not possible due to

r(k) ≤ −q(k)r(k − l) < r(k − l) < r(k − 2l) < r(k − 3l) < · · · < r(k2) < ∞,

that is, r(k) is bounded. The similar argument can be made for h2(k). If [h1(k)+ β1(k)] < 0
for k ≥ k2, then h1(k) < −β1(k) ≤ 0 implies that r(k) ≤ r(k2) < ∞ by the above argument,
a contradiction. Proof of the rest cases are analogous and hence the details are omitted.

Theorem 2.3. Let −∞ < q(k) < −1 for large k. Assume that ν1, ν2 ∈ BC(R,R) and
(C1), (C2) hold. If
(C3)

∑∞
k=0 a11(k) = −∞,

∑∞
k=0 a22(k) = −∞,

then every unbounded vector solution of (FDS1) strongly oscillates.
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Proof. We proceed as in Theorem 2.2 and if h1(k) > 0 for k > k2, then it follows that
r(k) > −q(k)r(k − l) ≥ r(k − 2l) ≥ r(k − 3l) ≥ · · · ≥ r(k2), that is, lim inf

k→∞
r(k) > 0. Hence,

we can find a k3 > k2 and τ > 0 such that r(k− α1) ≥ τ for k ≥ k3. Summing (2.3) from k3
to ∞, we obtain a contradiction to (C3) due to

∞∑
k=k3

a11(k)ν1(r(k − α1)) =
∞∑

k=k3

∆[h1(k) + β1(k)],

that is,

∞∑
k=k3

a11(k)ν1(τ) > −[h1(k3) + β1(k3)].

Similar observation can be made for (2.4). If h1(k) < 0, then owing to the existence of
lim
k→∞

h1(k), we meant a choice upon r(k) ≥ r(k − l) and r(k) ≤ r(k − l). As soon as

r(k) ≤ r(k − l) for k > k2, then r(k) is bounded for k > k2, which is absurd. When
r(k) ≥ r(k − l) for k ≥ k2, then we proceed as above to obtain a contradiction to (C3).
Analogous argument also holds for h2(k). The rest of the proof is similar and hence the
details are omitted.

3 Some Further Oscillatory Results

In this section, we discuss the oscillation criteria for any vector solution of the system
(FDS1).

Theorem 3.1. Let all conditions of Theorem 2.1 be hold. Assume that
(C4) there exist a subsequence {k∗

j} ⊂ {k} such that∑∞
j=1 a11(k

∗
j ) = −∞ =

∑∞
l=1 a22(k

∗
l ).

Then every vector solution of (FDS1) strongly oscillates.

Proof. Let R(k) = [r(k), s(k)]T be a strongly nonoscillatory vector solution of (FDS1) for
any large k ≥ k0 > 0. Setting (2.1) and (2.2) as in Theorem 2.1, we have so called four cases.

Case-1: Let k2 > k1+ρ. It follows that [h1(k)+β1(k)] and [h2(k)+β2(k)] are monotonic
for k ≥ k2. If [h1(k) + β1(k)] > 0, then lim

k→∞
[h1(k) + β1(k)] exists and therefore, lim

k→∞
h1(k)

exists. Denote β∗
1(k) = [h1(k) + β1(k)] and β∗

2(k) = [h2(k) + β2(k)]. Now, (2.1) becomes

∆β∗
1(k) = a11(k)ν1(r(k − α1)). (3.1)

Since h1(k) = r(k) + q(k)r(k − l) ≥ r(k), then we can find L > 0 and k3 > k2 such
that 0 ≤ r(k) ≤ L for k ≥ k3. Hence, there exist a subsequence {k∗

j} ⊂ {k} such that
lim inf
j→∞

r(k∗
j − α1) ≥ L1. Rewriting (3.1) for k∗

j , it follows that

∆β∗
1(k

∗
j ) ≤ a11(k

∗
j )ν1(L1), k∗

j ≥ k3.
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Consequently,

ν1(L1)
∞∑
j=1

a11(k
∗
j ) ≥

∞∑
j=1

∆β∗
1(k

∗
j ) > −∞

gives a contradiction to (C4). The above argument is ultimate for h2(k). The rest cases
follow from Theorem 2.1. This completes the proof of the theorem.

Theorem 3.2. Let −1 < q(k) ≤ 0 for any large k. Assume that all conditions of Theorem
3.1 hold. Then the conclusion of the theorem remains intact.

Proof. On the contrary, we proceed as in Theorem 3.1 to have four possible cases. For
Case-1, we can find k2 > k1 + ρ such that [h1(k)+ β1(k)] and [h2(k)+ β2(k)] are monotonic
for k ≥ k2. If [h1(k) + β1(k)] > 0, then lim

k→∞
[h1(k) + β1(k)] exist. If h1(k) > 0, then we claim

that r(k) is bounded. If not, then r(k) is unbounded. So, we can compare r(k) and r(k− l).
Upon the choice of r(k) and r(k − l) for k ≥ k2, we obtain the respective contradictions as
in Theorem 2.2. So, our claim holds and similar argument can be done, if h2(k) > 0. Next,
we come to the case while h1(k) < 0(h2(k) < 0), that is, r(k) < −q(k)r(k − l) < r(k − l) <
r(k− 2l) < · · · < r(k2) < ∞ and the fact is that r(k) is bounded. Proceeding as in Theorem
3.1, we get a contradiction to (C5). Returning to the case [h1(k) + β1(k)] < 0 for k ≥ k2,
we see that h1(k) < −β1(k) < 0 implies that r(k) < r(k2) < ∞, that is, r(k) is bounded.
So, we can apply the above argument to go against (C4). The proof for the rest cases are
analogous to Theorem 3.1 and hence the details are omitted.

Theorem 3.3. Let −∞ < b < q(k) ≤ −1 for large k. If all conditions of Theorem 3.2
hold, then the conclusion of the theorem remains intact.

Proof. On the contrary, the proof follows from the proof of Theorem 3.2. Only, we show
that r(k) is bounded in each case. When h1(k) > 0 for k ≥ k2, r(k) > −q(k)r(k − l) which
is equivalent to say that

r(k) > q(k)r(k − l) > r(k − 2l) > r(k − 3l) > · · · > r(k2).

Now, we claim that r(k) is bounded. If not, then there exists a subsequence {k∗
j} ⊂ {k}

such that r(k∗
j − α1) > M. Hence, (3.1) becomes

∆β∗
1(k

∗
j ) = a11(k

∗
j )ν1(r(k

∗
j − α1)).

Taking summation from j = 1 to ∞, we get

∞∑
j=1

a11(k
∗
j ) >

∑∞
j=1∆β∗

1(k
∗
j )

ν1(M)
> −∞,

a contradiction to (C4). Therefore, h1(k) < 0 for k ≥ k2. It follows that

h1(k) = r(k) + q(k)r(k − l) ≥ q(k)r(k − l) ≥ br(k − l)

implies that r(k) ≥ 1
b
h1(k+ l) and hence lim inf

k→∞
r(k) > 0. Proceeding as in Theorem 3.1, we

obtain a contradiction to (C4). This completes the proof of the theorem.
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4 Discussion and Examples

During our discussion, it is observed that unbounded vector solutions of system (FDS1)
are strongly oscillatory with the hypotheses (C2) and (C3). As soon as we switch on to
any vector solution(bounded/unbounded), then we consider (C4) instead of (C3). Since (C3)
doesn’t imply (C4) always, then the results of the Section 2 and Section 3 are entrusting the
study. Here, we have not seen the existence of nonoscillatory vector solution of (FDS1) .
However, we take into account the work [25] for the existence results. In the following we
state the results without proof:

Theorem 4.1. Suppose that q(k) ≥ 0, a11(k) < 0, a12(k) > 0, a21(k) > 0, and a22(k) < 0
for large k and let ν1, ν2 ∈ C(R,R). Assume that ν1 and ν2 are Lipschitzian in the intervals
of the form [δ1, δ2], −∞ < δ1 < δ2 < ∞. If (C1), (C2) and
(C5)

∑∞
k=0 a11(k) > −∞,

∑∞
k=0 a22(k) > −∞

hold, then (FDS1) admits a bounded strongly nonoscillatory vector solution.

Theorem 4.2. Let −1 < q(k) ≤ 0 for large k. If all conditions of Theorem 4.1 hold, then
(FDS1) admits a bounded strongly nonoscillatory vector solution.

Theorem 4.3. Let −∞ < q(k) < −1 for large k. If all conditions of Theorem 4.1 hold,
then (FDS1) admits a bounded strongly nonoscillatory vector solution.

Remark 4.4. In the light of the preceding work, it would be interesting to study the
following nonlinear nonautonomous neutral difference systems of the form:

∆

[
r(k) + q(k)r(k − l)
s(k) + q(k)s(k − l)

]
=

[
a11(k) a12(k)
a21(k) a22(k)

] [
ν1(r(k − α1))
ν2(s(k − α2))

]
+

[
f1(k)
f2(k)

]
, k ≥ ρ.

Remark 4.5. In our discussion, the prototype of ν1 and ν2 could be of the type[
ν1(u)
ν2(v)

]
=

[ u sgn u
σ2+u2

v sgn v
η2+v2

]
; σ, η ∈ R \ {0}.

We conclude this section with the following illustrative examples:

Example 4.6. Consider the system (FDS1) in which q(k) = e−k, l = 2, α1 = 2, α2 = 4,

a11(k) = −[1 +B(k)]

[
1

B(k)
+

e−(k+1)

B(k)
+ e−k

]
, a12(k) =

1

2
[1 + 4B(k)]e−(k+1),

a21(k) = 2[1 +B(k)]e−(k+1), a22(k) = −[1 + 4B(k)]

[
1

B(k)
+

e−(k+1)

B(k)
+ e−k

]
,[

ν1(r(k − α1))
ν2(s(k − α2))

]
=

[
r(k−2)

1+r2(k−2)
s(k−4)

1+s2(k−4)

]
,

where

B(k) =

{
0, if k is even,

1, if k is odd
for k ≥ 0.
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Indeed, we can put B(k) +B(k − 1) = 1 for k ≥ 1. Clearly,

∞∑
k=0

a12(k) =
1

2

∞∑
k=0

[1 + 4B(k)]e−(k+1) =
1

2

∞∑
k=0

e−(k+1) + 2
∞∑
k=0

B(k)e−(k+1)

<
1

2

∞∑
k=0

e−(k+1) + 2
∞∑
k=0

e−(k+1) =
5

2

∞∑
k=0

e−(k+1) < ∞

and

∞∑
k=0

a21(k) =
∞∑
k=0

2[1 +B(k)]e−(k+1) = 2
∞∑
k=0

e−(k+1) + 2
∞∑
k=0

B(k)e−(k+1)

< 2
∞∑
k=0

e−(k+1) + 2
∞∑
k=0

e−(k+1) = 4
∞∑
k=0

e−(k+1) < ∞.

If we choose the subsequences a11(2k + 1) and a22(2k + 1), then we find

∞∑
k=0

a11(2k + 1) = −
∞∑
k=0

[1 +B(2k + 1)]

[
1

B(2k + 1)
+

e−(2k+2)

B(2k + 1)
+ e−(2k+1)

]
= −2

∞∑
k=0

(1 + e−2k−2 + e−2k−1) = −∞,

∞∑
k=0

a22(2k + 1) = −
∞∑
k=0

[1 + 4B(2k + 1)]

[
1

B(2k + 1)
+

e−(k+1)

B(2k + 1)
+ e−k

]
= −5

∞∑
k=0

(1 + e−(2k+2) + e−(2k+1)) = −∞.

So, all conditions of Theorem 3.1 are satisfied and hence all vector solutions of (FDS1) are
oscillatory. In particular, [r(k), s(k)]T = [B(k)(−1)k, 2B(k)(−1)k]T is one of such solution
of the given system. We notice that

∆

[
r(k) + e−kr(k − 2)
s(k) + e−ks(k − 2)

]
=

[
−(1 + e−(k+1))(−1)k + (1

e
− 1)(−1)ke−kB(k)

−2(1 + e−(k+1))(−1)k + 2(1
e
− 1)(−1)ke−kB(k)

]
and −[1 +B(k)]

[
1

B(k)
+ e−(k+1)

B(k)
+ e−k

]
1
2
[1 + 4B(k)]e−(k+1)

2[1 +B(k)]e−(k+1) −[1 + 4B(k)]
[

1
B(k)

+ e−(k+1)

B(k)
+ e−k

] [
r2(k−2)

1+r2(k−2)
s2(k−4)

1+s2(k−4)

]

=

[
−(1 + e−(k+1))(−1)k + (1

e
− 1)(−1)ke−kB(k)

−2(1 + e−(k+1))(−1)k + 2(1
e
− 1)(−1)ke−kB(k)

]
.
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Example 4.7. Consider the system (FDS1) in which q(k) = e−k, l = 2, α1 = α2 = 2,

a11(k) = −1 + (k − 2)2B(k)

(k − 2)B(k)
{k + 1 + e−k−1(k − 1) + 2e−k(k − 2)B(k)

−B(k)− e−k−1(k − 1)B(k)},

a12(k) =
1

2

[
1 + 4(k − 2)2B(k)

]
e−k, a21(k) = 2

[
1 + (k − 2)2B(k)

]
e−k,

a22(k) = −1 + 4(k − 2)2B(k)

2(k − 2)B(k)
{2k + 2 + 2e−k−1(k − 1) + 4e−k(k − 2)B(k)

− 2B(k)− 2e−k−1(k − 1)B(k)},[
ν1(r(k − α1))
ν2(s(k − α2))

]
=

[
r(k−2)

1+r2(k−2)
s(k−4)

1+s2(k−4)

]
,

and B(k) is same as defined in Example 4.6. Indeed,

∞∑
k=2

a11(k) = −
∞∑
k=2

1 + (k − 2)2B(k)

(k − 2)B(k)
{k + 1 + e−k−1(k − 1) + 2e−k(k − 2)B(k)

−B(k)− e−k−1(k − 1)B(k)} = −∞

and

∞∑
k=2

a22(k) = −
∞∑
k=2

1 + 4(k − 2)2B(k)

2(k − 2)B(k)
{2k + 2 + 2e−k−1(k − 1) + 4e−k(k − 2)B(k)

− 2B(k)− 2e−k−1(k − 1)B(k)} = −∞.

To verify the condition (C2), we have

∞∑
k=2

a12(k) =
∞∑
k=2

1

2

[
1 + 4(k − 2)2B(k)

]
e−k

<
1

2

∞∑
k=0

[
1 + 4k2

]
e−k =

1

2

∞∑
k=0

e−k + 2
∞∑
k=0

k2e−k

=
e

2(e− 1)
+

2e

1− e

∞∑
k=0

k2∆(e−k).

Using summation by parts, we see that

e

1− e

∞∑
k=0

k2∆(e−k) =
1

e− 1

∞∑
k=0

(2k + 1)(e−k).
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Further application of summation by parts, we obtain

1

e− 1

∞∑
k=0

(2k + 1)(e−k) = − e

(e− 1)2

∞∑
k=0

(2k + 1)∆(e−k)

=
2

(e− 1)2

∞∑
k=0

e−k =
2e

(e− 1)3
.

Consequently,
∞∑
k=2

a12(k) <
e

2(e− 1)
+

2e

(e− 1)3
.

Similarly,
∞∑
k=0

a21(k) =
∞∑
k=0

2
[
1 + (k − 2)2B(k)

]
e−k < ∞.

Hence, all conditions of Theorem 2.1 are satisfied and hence all unbounded vector solutions
of (FDS1) are oscillatory. In particular, [r(k), s(k)]T = [kB(k)(−1)k, 2kB(k)(−1)k]T is one
of such unbounded vector solution of the given system.
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