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ABSTRACT. We obtain results, involving easily observ-
able properties of bonding mappings, that ensure indecom-
posability of inverse limits on graphs. An allowable collec-
tion of n arcs in a graph is defined, and two related prop-
erties of collections of arcs in a graph are introduced. In an
inverse sequence on graphs, if compositions of the bonding
mappings are n-pass maps on certain allowable collections of
n arcs, then the inverse limit space will be indecomposable.
We provide examples that illustrate the use of our results.

1. Introduction. A compactum is a compact metric space. A
continuum is a nonempty connected compactum. A continuum X is
decomposable if there exist two non-empty proper subcontinua A and
B of X such that A ∪ B = X. A continuum X is indecomposable if
it is not decomposable. A continuous function will be referred to as a
map or mapping. A bijective mapping f : X → Y is a homeomorphism
if f−1 : Y → X is also a mapping. A continuum X is an arc continuum
if each proper nondegenerate subcontinuum of X is an arc.

We define three properties of collections of arcs in a graph that can
produce indecomposable inverse limits on graphs if compositions of the
bonding mappings throw each of the arcs onto previous factor spaces.
The first property, which we call an allowable collection of arcs in a
graph, is generally easy to determine, and in many cases, it is sufficient
for the collection of arcs to have the other two properties as well. As we
will see, the properties are fundamentally related to results for inverse
limits of D.P. Kuykendall [27], A. van Heemert [14], J. Segal [39], and
W.T. Ingram [19]. We clarify the relationships as the paper proceeds.
We extend Ingram’s notion of a two-pass map to that of an n-pass map
for n ≥ 2.
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2 M. M. MARSH

The importance of indecomposable continua cannot be overstated.
The first indecomposable continuum was constructed by L.E.J. Brouwer
[8] in 1910 to disprove a conjecture of A. Schoenflies. A diagram of
Brouwer’s construction adorned the cover of the June/July, 2014 issue
of the Notices of the American Mathematical Society. A brief discussion
of the history related to Brouwer’s example is given therein on page 610.
K. Kuratowski also discusses the history related to Brouwer’s example,
and to indecomposable examples of Z. Janiszewski and of B. Knaster in
[26, pages 71–73]. In [20], Ingram provides a description of Brouwer’s
example as an inverse limit on a circle with a single bonding mapping.
Other descriptions of early examples of indecomposable continua can
be found in [21] and [23]. In the 112 years after Brouwer’s example,
there has been an explosion of interest in indecomposable continua.

Topological groups can be indecomposable continua. In 1930, D.
van Dantzig [11, 12] defined the n-adic solenoids, which are indecom-
posable continua. These continua can be realized as inverse limits on
the unit circle with bonding mappings that are covering maps. The
inverse limit structure, together with complex multiplication on the
unit circle, induces a group structure on the inverse limit space. The
n-adic solenoids are also homogeneous continua, a property they share
with closed, connected manifolds, although the local structures of the
continua in these two classes are very different. Specifically, the local
structure of solenoids is topologically the product of a Cantor set and an
open interval, while the local structure of the closed, connected mani-
folds is Euclidean. A topological space X is homogeneous if for each two
points x and y in X, there exists a homeomorphism f : X → X where
f(x) = y. The study of homogeneous spaces is also well-represented in
the literature.

Regarding homogeneous continua, rather remarkably, the pseudo-
arc P [28, 29] is both homogeneous and hereditarily indecomposable,
meaning that each subcontinuum of P is indecomposable. Furthermore,
P can be realized as an inverse limit on [0, 1]; P is homeomorphic to
each of its subcontinua; and P is a non-separating planar continuum.
The earliest hereditarily indecomposable continua were constructed by
Knaster, E.E. Moise, and Bing. W. Lewis gives an interesting account
of this history in [28, (1.1), page 26].

In 1938, O.H. Hamilton [13, Theorems II, III, and IV] established
a connection between indecomposable continua and fixed point free
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INDECOMPOSABLE INVERSE LIMITS 3

homeomorphisms on tree-like continua and on non-separating planar
continua. Specifically, for a non-separating continuum X in the Eu-
clidean plane, he showed that if f : X → X is a fixed point free home-
omorphism, then X contains an indecomposable subcontinuum in its
boundary. H. Bell [4, Theorem 1] and K. Sieklucki [41, Theorem
1.1] generalized Hamilton’s result to fixed point free mappings on non-
separating planar continua. The classical planar fixed point problem,
“Does every mapping on a non-separating planar continuum have a
fixed point?” remains unanswered. R.H. Bing [7] states that this ques-
tion has been called the most interesting outstanding problem in planar
topology. From Bell’s and Sieklucki’s results, we see that if one wishes
to construct an example in the plane that provides a negative answer
to this early 20th century problem, the example must contain an in-
decomposable continuum. Further discussion related to this classical
problem can be found in [9, Section 1] and [24, Section 12, pages
66–70]. The first example of a tree-like continuum admitting a fixed
point free mapping was not discovered until 1979. Not surprisingly,
this example of D. Bellamy’s [5], is indecomposable. Bellamy modifies
the 6-adic solenoid Σ by replacing an arc in Σ with the suspension of
a totally disconnected set. He then uses the group operations on Σ to
complete a clever, insightful construction of the example. A number of
other noteworthy examples of tree-like continua admitting fixed point
free mappings followed. See the references in [15] for a list of some of
them. Also provided in [15] is the simplest inverse limit description of
such a tree-like continuum.

Indecomposable continua often appear as attractors or invariant sets
of diffeomorphisms on the plane and on manifolds. For example, the
global attractor of the S. Smale [42, 43] horseshoe map on a planar disk
is indecomposable. In [1], M. Barge establishes connections between
attracting sets of horseshoe maps and inverse limits on [0, 1] that are
indecomposable Knaster continua. Knaster continua are inverse limits
on [0, 1] with piecewise linear, open bonding mappings. Barge’s results
were generalized by S.E. Holte in [16]. R. F. Williams [44] showed that
all hyperbolic one-dimensional attractors are inverse limits of maps on
branched one-manifolds (graphs). Discussion of these results and an
extensive list of references related to indecomposable continua can be
found in [23]. For a detailed and thorough discussion of the history
of indecomposable continua and their importance in continuum theory
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4 M. M. MARSH

and in dynamical systems, we refer the reader to the two excellent
articles by J. Kennedy [22, 23].

There are many characterizations and sufficient sets of conditions in
the literature for indecomposability of continua. An early, and well-
known characterization by S. Mazurkiewicz [32] says that a continuum
X is indecomposable if and only if there exist three points in X for
which X is irreducible between each pair of them. This characteri-
zation of indecomposability involves the structure of the continuum.
Some other conditions that are sufficient for indecomposability, and
that involve the structure of the continuum can be found in [25], [30,
Theorem 34], [31], [33], [34], and [35]. The first reference is concerned
with planar continua. The second reference is concerned with chain-
able continua, and the other four references are related to graph-like
continua. Many important examples of indecomposable continua are
arc continua. Showing that each proper subcontinuum of a continuum
X is an arc, and observing that X is neither an arc nor a simple closed
curve establishes that X is indecomposable. This method of proof has
been used frequently, even though it is often non-trivial.

For inverse limits X on arcs, trees, and graphs with a single bonding
mapping, there are a number of results where dynamical properties
of the bonding mappings ensure that X contains an indecomposable
subcontinuum, see for example, [2], [3], [17, Section 7], and [46,
Prop. 1]. The results in the first two references are about positive
entropy of the bonding mapping. The third reference mostly discusses
inverse limits on arcs, and the results are related to the existence
of certain periodic points of the bonding mapping. In Proposition
1 of the fourth reference, it is shown that a bonding mapping that
is mixing produces an indecomposable inverse limit. Also, in the
fourth reference, Ye establishes an equivalence for the existence of an
indecomposable subcontinuum of an inverse limit on a finite set of
graphs if the composition bonding mappings in some subsequence on a
single graph have horseshoes. A mapping f : G→ G has a horseshoe if
there exist two non-overlapping arcs J1 and J2, lying in an edge of G,
such that J1 ∪ J2 ⊂ f(J1) ∩ f(J2).

Our results are related to conditions on the bonding mappings in an
inverse sequence on graphs. The conditions are generally easy to check,
they apply to inverse sequences where the factor spaces and bonding
mappings may be different, and they determine indecomposability of
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INDECOMPOSABLE INVERSE LIMITS 5

the inverse limit space itself, as opposed to only guaranteeing the ex-
istence of an indecomposable subcontinuum. Since each subcontinuum
of an inverse limit space is, itself, the inverse limit on its projections to
the factor spaces with the bonding mappings restricted to these projec-
tions, the techniques can also be applied to subcontinua of an inverse
limit on graphs.

Although our results involve inverse sequences and their limits, a
reader unfamiliar with these notions may simply think of an inverse
sequence as a method of describing or constructing a complicated, per-
haps pathological, continuum by a limiting or approximating process.
In our case, all inverse limits are approximated by inverse sequences of
topological graphs, where the bonding mappings in the inverse sequence
fold the graphs, one onto the other, in a manner where compositions of
the bonding mappings indicate the approximations. If a reader wishes
to have an introduction to inverse limits, see [17] or [18]. Ingram also
discusses indecomposable inverse limits in both references. The more
technical, or complicated proofs in the paper, Theorems 8 and 9 for
example, are results about collections of arcs in a graph. Drawing pic-
tures of graphs with appropriate properties should help to follow the
various cases in the proofs.

2. Definitions and preliminaries. An arc is a homeomorphic
image of the interval [0, 1]. If L is an arc contained in a compactum X,
and h : [0, 1]→ L is a homeomorphism, we refer to h(0) and h(1) as the
endpoints of L, and to h([0, 1])\{h(0), h(1)} as the set of interior points
of L, which we denote by L◦. A simple closed curve is a homeomorphic
image of the unit circle S1 in R2. A topological graph G, or simply
a graph G, is a continuum that is a union of finitely many arcs, each
two of which are either disjoint or meet only at one or both of their
endpoints. A tree is a graph containing no simple closed curves.

Let G be a graph. If arcs A and B in G meet only at a common
endpoint p, we say that A and B are abutting arcs (at p). For
x ∈ G, the order of x in G, denoted o(x), is the largest number of
arcs in G each two of which are abutting at x. The set of endpoints
of G, and the set of branchpoints of G are, respectivley, defined as
E(G) = {x ∈ G | o(x) = 1} and B(G) = {x ∈ G | o(x) ≥ 3}. For a
tree T , we let V (T ) = E(T )∪B(T ) be the the set of vertices of T . For
a graph G, a set of vertices for G is any finite subset V (G) of G such
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6 M. M. MARSH

that E(T )∪B(T ) ⊂ V (G), and each simple closed curve in G contains
at least two points of V (G).

An edge of G is an arc L in G such that L ∩ V (G) is the set of
endpoints of L. A cycle in G is a simple closed curve in G. Note
that each cycle in G contains at least two edges of G. An arc A with
endpoints p and q in a graph G is a unique arc in G if whenever L is
an arc in G with endpoints p and q, then L = A. A cycle S in a graph
G is a unique cycle in G provided that if S′ is a cycle in G and S and
S′ share an edge of G, then S′ = S.

In our setting of connected graphs, the cyclomatic number of a graph
G is e−v+ 1, where e is the number of edges of G and v is the number
of vertices of G. By choosing an orientation for each cycle in G, it
is possible to associate each cycle with a vector in some Euclidean
space Rm, and by doing so, one can define a set of cycles in G to
be independent if the associated vectors in Rm are independent. If n
is the cyclomatic number of G, then G has n, and not more than n
independent cycles. The number of independent cycles in G may be
less than the total number of distinct cycles in G. As an example, the
theta-curve defined immediately before Corollary 4 has three distinct
cycles, but only two independent cycles (cyclomatic number is 2). The
cyclomatic number of a graph G is zero if and only if G is a tree, and the
cyclomatic number of a graph G is one if and only if G has (exactly) one
cycle. For n ≥ 2, we say that G has n independent cycles if and only if
the cyclomatic number of G is n. For our purposes, it is not necessary
to have the precise definition of sets of indenpendent cycles, but it may
be helpful to think of the cyclomatic number as the minimum number
of edges of G that must be removed to obtain a graph with no cycles.
Discussion and precise definitions of these terms can be found in [6,
Chapter 2].

If L is an arc with endpoints u and v in a graph G, we sometimes
denote L by [u, v], even though there may be other arcs in G with
endpoints u and v. If a, b ∈ [u, v] with a 6= b, we write [a, b]
for the subarc of L with endpoints a and b. If each of H and K
is a subcontinuum of a graph G, and L is an arc in G such that
L ∩ (H ∪ K) = {u, v}, where u ∈ H, v ∈ K, and u and v are the
endpoints of L, we call L an arc from H to K or an arc joining H to
K. If the intersection of two subsets A and B of a graph G contains
an arc, we say that A and B overlap. Otherwise, A and B are non-

17 Apr 2023 08:23:22 PDT
221025-Marsh Version 2 - Submitted to Rocky Mountain J. Math.



INDECOMPOSABLE INVERSE LIMITS 7

overlapping.

As previously mentioned, the focus of the paper is to determine
properties of collections of arcs in graphs, where compositions of the
bonding mappings in an inverse sequence on graphs throw the arcs onto
previous factor spaces, thereby ensuring an indecomposable inverse
limit space. The properties are listed below. The first property is,
in general, the easiest to check for a given collection of arcs in a graph.

Let J = {J1, . . . , Jn} be a finite collection of arcs in a graph G.

(1) J is an allowable collection of arcs in G if for each 1 ≤ i < k ≤
n, Ji and Jk have disjoint interiors, and no arc in G joining Ji
to Jk meets each of Ji and Jk at an interior point.

(2) J has the 3-endpoint property in G if there exist three points,
each of which is an endpoint of some member of J , and so that
if a and b are any two of the three points, then each arc in G
with endpoints a and b contains some member of J . We note
that if a subcollection of J has the 3-endpoint property in G,
then J also has the 3-endpoint property in G.

(3) J is decomposition saturated in G provided that whenever G is
the union of two subcontinua A and B, there exists 1 ≤ i ≤ n
such that either Ji ⊂ A or Ji ⊂ B.

A collection of two unique arcs in a graph G is allowable if and
only if it has the 3-endpoint property if and only if it is decomposition
saturated, as we see in Theorem 5. Hence, the three properties above
are equivalent for each collection of two arcs in a tree. A collection of
three arcs contained in a unique cycle in a graph G is allowable if and
only if it has the 3-endpoint property if and only if it is decomposition
saturated, see Theorem 6. Based on these two cases, one might
conjecture that the three properties are equivalent for collections of n+2
arcs, each contained in one of n unique cycles in a graph. Unfortunately,
this is not the case in general, see Example 1 at the end of Section 3.
Our focus is not to determine when we have equivalence of the three
properties, but to find conditions on allowable collections of arcs that
imply either the 3-endpoint property or decomposition saturated. We
establish a number of simple conditions on allowable collections of arcs
in graphs which allow for easy determination of indecomposable inverse
limits on graphs. We also pose several questions that should provide
further avenues of investigation.
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8 M. M. MARSH

Also of importance to us are the notions of a wrapping defined by
Segal [39], and a two-pass map defined by Ingram [19]. Let X and Y
be continua, and let G be a graph. A mapping f : X → Y is a wrapping
if for any subcontinua A and B of X such that X = A ∪ B, we have
either f(A) = X or f(B) = X. A mapping f : G → G is a two-pass
map if there exists two non-overlapping subgraphs G1 and G2 of G such
that f(Gi) = G for each i = 1, 2.

We define a related property for mappings between graphs H and
G. If f : H → G is a mapping, and there exist a collection of arcs
J = {J1, . . . , Jn} in H such that f(Ji) = G for each 1 ≤ i ≤ n, then
we say that f is an n-pass map for the collection J .

We state theorems of van Heemert [14] and Kuykendall [27] that
are central to our techniques. Van Heemert’s result can also be found
in [39, Remark, page 602] and [36, Theorem 2.7]. Kuykendall’s result
can also be found in [19, Theorem 2.1]. For an inverse sequence
{Xi, g

i+1
i }, and each pair of integers n and m with 1 ≤ n < m− 1, we

let gmn : Xm → Xn denote the composition mapping gn+1
n ◦ . . . ◦ gmm−1.

Theorem 1. (van Heemert) Let X = lim
←−
{Xi, g

i+1
i }, where, for each

i ≥ 1, Xi is a nondegenerate continuum. If, for each i ≥ 1,
gi+1
i : Xi+1 → Xi is a wrapping, then X is indecomposable.

Theorem 2. (Kuykendall) Let X = lim
←−
{Xi, g

i+1
i }, where, for each

i ≥ 1, Xi is a nondegenerate continuum, and gi+1
i is a surjective

mapping. Then the following statements are equivalent.

(1) X is indecomposable.
(2) For ε > 0 and n ∈ N, there exists a positive integer m > n and

three points of Xm such that if K is a subcontinuum of Xm

containing two of them, then the distance of x to gmn (K) is less
than ε for each point x ∈ Xn.

For inverse sequences, we call statement (2) in Kuykendall’s theorem
the 3-point criterion, or the Kuykendall criterion for indecomposability
of the inverse limit. Theorems 3 and 4 below demonstrate a connection
between collections of n arcs with the properties defined in (2) and (3),
compositions of bonding mappings that are n-pass maps, and Theorems
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INDECOMPOSABLE INVERSE LIMITS 9

1 and 2. We show in Observation 1 that the property defined in (2)
is sufficient for the property in (3). That the property in (1) is often
sufficient for the property in (2) is established throughout the paper.

Theorem 3. Let X = lim
←−
{Gi, gi+1

i }, where for each i ≥ 1, Gi is a

graph. Suppose for each n ≥ 1, there exists m > n and a decomposition
saturated collection of arcs Jm = {J1, . . . , Jkm} in Gm such that
gmn : Gm → Gn is a km-pass map for Jm. Then X is indecomposable.

Proof. We wish to apply Theorem 1. By hypothesis, we can choose
an inverse sequence {Gui

, g
ui+1
ui }, where for each i ≥ 1, g

ui+1
ui : Gui+1

→
Gui is a kui+1-pass map for some decomposition saturated collection of
arcs Jui+1 in Gui+1 . It is well-known that the limit of such an inverse

sequence is homeomorphic to X. To see that each g
ui+1
ui is a wrapping,

let Aui+1
and Bui+1

be a decomposition of Gui+1
. By hypothesis, there

exists a member J of Jui+1
such that either J ⊂ Aui+1

or J ⊂ Bui+1
.

We assume, without loss of generality, that J ⊂ Aui+1
. Since g

ui+1
ui is a

kui+1-pass map for Jui+1 , we have Gui = g
ui+1
ui (J) ⊂ gui+1

ui (Aui+1
). So,

g
ui+1
ui is a wrapping, and by Theorem 1, X is indecomposable. �

Theorem 4. Let X = lim
←−
{Gi, gi+1

i }, where for each i ≥ 1, Gi is a

graph. Suppose for each n ≥ 1, there exists m > n and a collection
of arcs Jm = {J1, . . . , Jkm} in Gm that has the 3-endpoint property,
and for which gmn : Gm → Gn is a km-pass map for Jm. Then X is
indecomposable.

Proof. We show that {Gi, gi+1
i } satisfies the Kuykendall criterion.

Let ε > 0 and n ∈ N. Pick m > n, and a collection of arcs
Jm = {J1, . . . , Jkm} in Gm that has the 3-endpoint property, and where
gmn is a km-pass map for Jm. Let p, v, and q be the three points among
the endpoints of the arcs J1, . . . , Jkm that have the 3-endpoint property.
Suppose K is a subcontinuum of Gm containing two of the points p,
v, and q; say p, q ∈ K. Since K is arcwise connected, there exists an
arc L in K with endpoints p and q. By the 3-endpoint property, for
some 1 ≤ i ≤ km, we have that Ji ⊂ L. Since gmn is a km-pass map for
Jm, we have Gn = gmn (Ji) ⊂ gmn (L) ⊂ gmn (K). Clearly, for x ∈ Gn, the
distance from x to gmn (K) = Gn is zero, which is less than ε. So, by
Theorem 2, X is indecomposable. �
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10 M. M. MARSH

3. Cases for which the three properties are equivalent. Ob-
servation 1 and Lemma 1 will be useful tools throughout.

Observation 1. If J is a collection of arcs in a graph G that has the
3-endpoint property, then J is decomposition saturated.

Proof. Let G = A ∪ B, where A and B are subcontinua of G. Let
a, b, and c be endpoints of arcs in J that are guaranteed by the 3-
endpoint property. Assume, without loss of generality, that a, c ∈ A.
Since A is arcwise connected, there exists an arc L ⊂ A with endpoints
a and c. By the 3-endpoint property, some J ∈ J is a subset of L. So,
J ⊂ L ⊂ A. We have that J is decomposition saturated. �

A point v of a graph G is a separating point of G if G \ {v} is
disconnected. The point v separates the points p and q in G if p and q
are in different components of G \ {v}.

Lemma 1. Let J = [a, b] be an arc in G with endpoints a and b.

(a) These statements are equivalent.
(i) J is a unique arc in G.

(ii) Each interior point of J separates a from b in G.
(iii) J overlaps no cycle in G.

(b) If J is a unique arc in G, then each subarc of J is a unique arc
in G.

(c) If u, v ∈ J with a < u ≤ v < b in the order on J from a to
b, and the subarcs J1 = [a, u] and J2 = [v, b] of J are unique
arcs in G, then J1 and J2 are subarcs of each arc in G with
endpoints a and b. Additionally, if u = v, then J is a unique
arc in G.

(d) If v is in J \{a}, and the subarc [a, v] of J is a unique arc in G,
then [a, v] is a subarc of each arc in G with endpoints a and b.

Proof. (a) (i)⇒(ii): This implication is clear.

(ii)⇒(iii): We prove the contrapositive statement. Suppose J
overlaps a cycle S in G. Let A be an arc in J ∩ S, and let p be
an interior point of A that is not a branchpoint of G. Now p does not
separate S, and since p is not a branchpoint of G, it follows that p does
not separate G.
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INDECOMPOSABLE INVERSE LIMITS 11

(iii)⇒(i): We prove the contrapositive. Suppose J is not a unique
arc in G. Let L be an arc, distinct from J , with endpoints a and b.
So, J 6⊂ L. Let J ′ be the closure of a component of J \ L. Then J ′ is
an arc whose endpoints u and v are in L. Let L′ denote the subarc of
L with endpoints u and v. We have that J ′ ∪ L′ is a cycle in G. By
definition, J overlaps J ′ ∪ L′.

(b) Let [u, v] be a subarc of J . Suppose that [u, v] is not a unique
arc in G. Let L be an arc in G, distinct from [u, v], with endpoints u
and v. Clearly, [u, v] 6⊂ L, so let p be a point of [u, v] \ L. Clearly, p is
an interior point of [u, v]. It follows that (J \ [u, v])∪L is a continuum
in G \ {p} containing the points a and b, contradicting (a).

(c) By way of contradiction, suppose L is an arc in G with endpoints
a and b, and J1 6⊂ L. As in the proof of (b), picking a point p in J1 \L,
we have that (J \J1)∪L is a continuum in G \ {p} containing a and u,
which is a contradiction of (a) for the unique arc J1. That J is unique
if u = v follows immediately.

(d) The proof is similar to the proof of (c). �

Theorem 5 and Corollary 1 generalize the results in Section 4 of
[30]. A simple triod is a tree T where B(T ) = {v}, and o(v) = 3. So,
a simple triod is homeomorphic to the symbol ⊥.

Theorem 5. Let J1 and J2 be two unique arcs in a graph G. The
following statements are equivalent.

(i) {J1, J2} is an allowable collection of arcs in G.
(ii) J1 and J2 are non-overlapping, and J1 ∪ J2 is contained in

either an arc or a simple triod in G.
(iii) {J1, J2} has the 3-endpoint property in G.
(iv) {J1, J2} is decomposition saturated in G.

Proof. (i) ⇒ (ii): Since J1 and J2 have disjoint interiors, they are
non-overlapping. We note that if J1 ∩ J2 6= ∅, then J1 ∩ J2 must be a
continuum since J1 and J2 are unique arcs. So, J1∩J2 is a singleton, say
J1 ∩ J2 = {p}. Furthermore, since {J1, J2} is an allowable collection of
arcs, p must be an endpoint of one of J1 or J2. Assume p is an endpoint
of J1. If p is also an endpoint of J2, then J1 ∪ J2 is an arc. If p is an
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12 M. M. MARSH

interior point of J2, then J1 ∪ J2 is a simple triod. In either case, the
proof is complete. So, we assume that J1 ∩ J2 = ∅.

Let [u, v] denote an arc in G joining J1 to J2. Let C = J1∪[u, v]∪J2.
Either u is not an interior point of J1, or v is not an interior point of
J2. So, assume u is an endpoint of J1. Analogously as in the previous
paragraph, C is either an arc or a simple triod containing J1 ∪ J2.

(ii)⇒ (iii): Suppose J1 and J2 are non-overlapping, and J1 ∪ J2 is
contained in an arc A. Let [u, v] denote the minimal subarc of A, with
respect to inclusion, that contains J1 ∪ J2. We may assume, without
loss of generality, that u is an endpoint of J1 and v is an endpoint of
J2. Let a be the endpoint of J1 that is neither u nor v. The points
a, u, and v are the desired three endpoints. We consider each two of
them. By uniqueness of J1, J1 is the only arc in G with endpoints a
and u. For u and v, by Lemma 1(c), if L is an arc in G with endpoints
u and v, then L contains each of J1 and J2. For a and v, by Lemma
1(d), if L is an arc in G with endpoints a and v, then L contains J2.

Suppose J1 ∪ J2 is not contained in an arc in G, but is contained in
a simple triod K ′ with branchpoint v. Then one of J1 or J2 contains
v in its interior, say v is in the interior of J2. Let K be the minimal
triod in K ′, with respect to inclusion, that contains J1 ∪ J2. Then
the endpoints b and c of the two edges of K that contain J2 are also
endpoints of J2. Since J1 and J2 are non-overlapping, J1 is contained
in the remaining edge of K, whose endpoint a is also an endpoint of
J1. The points a, b, and c are the desired three endpoints. Let [a, v],
[b, v], and [c, v] denote the three subarcs of K whose union is K. We
note that, by Lemma 1(b), the subarcs [b, v] and [c, v] of J2 are unique
arcs in G. We consider each two of the three points. For b and c, J2
is the unique arc in G with endpoints b and c. For a and b, the arc
[b, v]∪ [v, a] is an arc with two unique arcs containing its endpoints, so,
by Lemma 1(c), each arc in G with endpoints a and b contains J1. For
a and c, the situation is analogous to that of a and b.

(iii)⇒ (iv): This implication follows from Observation 1.

(iv)⇒ (i): We prove the contrapositive statement. Suppose {J1, J2}
is not an allowable collection of arcs. Then either the interiors of J1
and J2 are not disjoint, or there exists an arc in G joining J1 to J2
whose endpoints are interior points of J1 and J2. Let a and b be the
endpoints of J1, and let c and d be the endpoints of J2.
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INDECOMPOSABLE INVERSE LIMITS 13

Suppose the interiors of J1 and J2 are not disjoint. Suppose J1 and
J2 overlap. Then J1 ∩ J2 is an arc. Pick a point p in the interior of
J1∩J2 that is not a branchpoint of G. Since o(p) = 2, by Lemma 1(a),
G \ {p} has two components, each one containing exactly one endpoint
from each of J1 and J2. Let A and B be the closures of these two
components. Clearly, G = A ∪B, and for i = 1, 2, Ji 6⊂ A and Ji 6⊂ B,
contradicting that {J1, J2} is decomposition saturated. So, we have
that J1 ∩ J2 = {v}, where v is an interior point of each of J1 and J2.
So, v ∈ B(G) and o(v) ≥ 4. Combining several parts of Lemma 1, we
see that v separates each pair of points in {a, b, c, d}. For r ∈ {a, b, c, d},
let Gr be the closure of the component of G \ {v} that contains r. Let
F be the union of the closures of the remaining components of G \ {v}.
Let A = Ga ∪Gc, B = Gb ∪Gd ∪F . Clearly, A∪B is a decomposition
of G where neither J1 nor J2 is contained in either A or B. So, {J1, J2}
is not decomposition saturated.

Suppose the interiors of J1 and J2 are disjoint, and L is an arc in
G joining J1 to J2. Assume u and v are the endpoints of L lying,
respectively, in the interiors of J1 and J2. If J1 and J2 are not disjoint,
there is an arc J ′ in J1 ∪ J2 with endpoints u and v. By Lemma 1,
J ′ is a unique arc in G, which is a contradiction since L 6= J ′. So, we
assume that J1 and J2 are disjoint. By uniqueness of J1 and J2, each
arc in G joining J1 to J2 has endpoints u and v. Let H be the union of
all arcs in G joining J1 to J2. For r ∈ {a, b, c, d}, let Gr be the closure
of the component of G \H that contains r. Let F be the union of the
closures of the remaining components of G \H. Let A = Ga ∪H ∪Gc,
and B = Gb ∪H ∪ Gd ∪ F . As in the previous paragraph, A ∪ B is a
decomposition of G where neither J1 nor J2 is contained in either A or
B, giving us that {J1, J2} is not decomposition saturated. �

Corollary 1. Let X = lim
←−
{Gi, gi+1

i }, where for each i ≥ 1, Gi is a

graph, and gi+1
i is a surjective mapping. Suppose for n ≥ 1, there exist

m > n and an allowable collection of unique arcs {J1, J2} in Gm where
gmn is a 2-pass map for {J1, J2}. Then X is indecomposable.

Proof. Since, by Theorem 5, each allowable pair of unique arcs in a
graph has the 3-endpoint property, it follows from Theorem 4 that X
is indecomposable. �
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Corollary 2. Let G be a graph, g : G → G be a surjective mapping,
and X = lim

←−
{Gi, gi+1

i } where for each i ≥ 1, Gi = G and gi+1
i = g.

Suppose there exist an allowable pair of unique arcs {J1, J2} in G, and
k ≥ 1 such that gk(J1) = G = gk(J2). Then X is indecomposable.

Proof. For n ≥ 1, let m = n + k. We have that, for i = 1, 2,
gmn (Ji) = gn+kn (Ji) = gk(Ji) = G = Gn. Hence, gk is a 2-pass map for
{J1, J2}, and by Corollary 1, X is indecomposable. �

Remark 1. In Theorem 5, and in Corollaries 1 and 2, if the graphs
are trees, the results hold for any allowable collection of two arcs, since
all arcs in a tree are unique arcs.

Remark 2. As in Theorem 5, there will be theorems throughout that
show certain allowable collections of arcs in graphs have the 3-endpoint
property, and hence, there will be corollaries analogous to Corollaries 1
and 2 that establish indecomposability of inverse limits on graphs. We
will not continue to display them, as they are obvious from Theorem
4.

Corollary 2 generalizes Ingram’s Theorems 3.3 and 3.4 in [19]. To see
this, we verify Observation 2 below, and note that Ingram’s Theorem
3.4 follows directly from his Theorem 3.3. We provide a statement of
Ingram’s Theorem 3.3 for convenience to the reader.

Ingram’s Theorem. Suppose T is a tree and f : T → T is a mapping.
Suppose H and I are non-overlapping subtrees of T , and I is an arc
such that if p is a branchpoint of T that belongs to I, then p is an
endpoint of I. If f(H) = f(I) = T , then lim

←−
{T, f} is indecomposable.

Observation 2. Suppose we have the hypothesis of Ingram’s Theorem.
Then there exists an arc J ⊂ H such that f2(J) = T . Hence,
f2(J) = T = f2(I), and Corollary 2 applies.

Proof. By Ingram’s Lemma 3.2 in [19] (or see Theorem 6 in [37]
for a more general result in graphs), there exists a subcontinuum K
of H such that f(K) = I. Let a, b ∈ K where f(a) and f(b) are the
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INDECOMPOSABLE INVERSE LIMITS 15

endpoints of I. Let J be the arc in K with endpoints a and b. Then
f(J) = I. By hypothesis, f2(J) = f(I) = T .

Since H ∩ I = ∅, we have that J ∩ I = ∅. Also, since I is contained
in an edge of T , the arc in T from J to I must meet I at one of its
endpoints. Hence, {I, J} is an allowable collection of arcs in T , and
Corollary 2 is satisfied for {I, J} with k = 2. �

Remark 3. It is possible to have a decomposable inverse limit on a
single tree T with a single bonding mapping f , where f is a 2-pass map
on two non-overlapping arcs in T . Ingram provides such an example in
[19, Example 5.1]. In Ingram’s example, the tree T is a simple 4-od,
and the two arcs α and β meet only at the branchpoint of T , which
is an interior point of each of α and β. So, {α, β} is not an allowable
collection of arcs in T .

We need a few definitions and lemmas before our next equivalence
theorem. Given a simple closed curve S, we endow S with a counter-
clockwise orientation via some homeomorphism of S1 onto S. For n ≥ 3
and any collection α1, . . . , αn of non-overlapping subcontinua of S, we
write α1 < α2 < . . . < αn to indicate their orientation relative to
movement in a counter-clockwise direction. If, for some 1 ≤ i < n, αi
and αi+1 are points that may, or may not, be equal, we write αi ≤ αi+1.
If a and b are the endpoints of an arc J in S, t ∈ J◦, and a < t < b, we
say that a is the least point of J and b is the largest point of J .

Lemma 2 is straightforward to verify. We provide a proof for Lemma
3.

Lemma 2. Let S be a unique cycle in a graph G.

(a) If p 6∈ S, then there exists a vertex vp in S such that if L is
an arc in G joining p to S, then vp is the endpoint of L in
S. Furthermore, if L is an arc in G joining p to a point q of
S \ {vp}, then L is the union of an arc from p to vp and one of
the two arcs in S from vp to q.

(b) If p and q are two points in S, then if L is an arc in G with
endpoints p and q, then L ⊂ S. So, there are exactly two arcs
in G with endpoints p and q, and their union is S.
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16 M. M. MARSH

(c) If L is an arc in G, then L ∩ S is either empty, a point, or an
arc.

Lemma 3. Suppose J1 and J2 are arcs in G, and S is a unique cycle in
G, where J2 overlaps S and J1 is disjoint from S. Suppose [u, v] is an
arc in G joining J1 to S where u is an interior point of J1. If {J1, J2}
is an allowable collection of arcs in G, then either J2 has an endpoint
in [u, v] or J2 ⊂ S \ {v}.

Proof. Suppose J2 has no endpoint in [u, v]. If J2 ∩ [u, v] 6= ∅, we
consider the natural order on the arc [u, v] from u to v, and we let u′

be the least point of the closed set J2 ∩ [u, v]. Since, by assumption, u′

is not an endpoint of J2, u 6= u′, for otherwise, the interiors of J1 and
J2 meet. So, the subarc of [u, v] from u′ to u joins the interiors of J1
and J2, contradicting that {J1, J2} is an allowable collection. Hence,
if J2 has no endpoint in [u, v], then J2 ∩ [u, v] must be empty. Also, in
this case, J2 does not meet J1, for otherwise, we violate Lemma 2(a).

If J2 6⊂ S, then by Lemma 2(b), not both endpoints of J2 lie in S.
Suppose b is an endpoint of J2 that is not in S. Let [b, w] denote the
subarc of J2 that joins b to S. So, w is an interior point of J2 since
J2 overlaps S. One of the two arcs in S with endpoints w and v only
meets J2 at the point w. Let K denote this arc. Then K ∪ [u, v] joins
the interiors of J1 and J2, a contradiction. So, J2 ⊂ S \ {v}. �

Theorem 6. Let {J1, J2, J3} be a collection of three arcs contained in a
unique cycle S in a graph G. Then {J1, J2, J3} is allowable if and only
if {J1, J2, J3} has the 3-endpoint property if and only if {J1, J2, J3} is
decomposition saturated.

Proof. Suppose J = {J1, J2, J3} is an allowable collection of arcs in
G. According to our orientation convention, assume J1 < J2 < J3. Let
ai be the least point of Ji for i = 1, 2, 3. These are the desired three
points. Consider two of them, say a1 and a3. By Lemma 2(b), there
are two arcs in G with endpoints a1 and a3. One contains both J1 and
J2, and the other contains J3. Analogously, arcs in G with endpoints
among other pairs of a1, a2, and a3 contain members of J .

The second implication follows from Observation 1.
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INDECOMPOSABLE INVERSE LIMITS 17

We show, by way of contradiction, that if J is decomposition
saturated, then it is an allowable collection in G. Assume J is
decomposition saturated, but is not an allowable collection. Then we
may suppose, without loss of generality, that the interior of J1 meets
the interior of J2. So, J1 and J2 overlap. Pick a point p in the interior
of J1 ∩ J2, and a point q 6= p in the interior of J3. Let α and β be
the closures of the two components of S \ {p, q}. Let A be the union
of α and each component of G \ S whose closure meets α. Let B be
the union of β and each component of G \ S whose closure meets β.
Clearly, A∪B = G, and no one of J1, J2, and J3 is contained in either
A or B, a contradiction. �

Remark 4. We note that if a collection of arcs J in a graph G has the
3-endpoint property, the three points exhibiting the property need not
be unique. For example, in the first paragraph of the proof of Theorem
6, a1 and a2 could be chosen to be the endpoints of J1, and a3 chosen
to be the greatest point of J2.

Example 1 shows that, in general, the three properties are not
equivalent for collections of n + 2 arcs in a graph with n independent
cycles, even when all arcs are contained in unique cycles.

Example 1. The graph G shown in Figure 1 is a graph with two
unique cycles and one branchpoint. Let J = {J1, J2, J3, J4} be the
collection of four arcs shown in the figure. It is easy to check that J
is decomposition satuared, but is not an allowable collection, and does
not have the 3-endpoint property.

Removing J1 from the collection, we note that {J2, J3, J4} is allow-
able, and decomposition saturated, but does not have the 3-endpoint
property.
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J3

J4

J1

J2

Figure 1. Non-equivalence of the three properties

4. Cases for which allowable collections of arcs are sufficient
for the 3-endpoint property. In this section, we establish many
special-case results that have practical use, which we demonstrate in
the examples in Section 5. All results, except for Theorems 7 and 10,
involve only a small number of arcs in the allowable collections.

We begin the section with two questions.

Question 1. Let n ≥ 2, let G be a graph having n independent cycles,
and let J be an allowable collection of arcs in G with n+ 2 members.

(a) Does J have the 3-endpoint property?
(b) Is J decomposition saturated?

Question 2. Do parts (a) and (b) of Question 1 have affirmative
answers if we assume that each cycle in G is unique?

By Observation 1, an affirmative answer to Question 1(a) provides
an affirmative answer to Question 1(b). For graphs with no cycles,
Theorem 5 gives us that an allowable collection of two arcs has the
3-endpoint property. For graphs with one cycle, Corollary 3 in this
section gives us that an allowable collection of three arcs has the 3-
endpoint property. Question 1(a) is natural based on these two cases.

We are unable to answer either Question 1(a) or 1(b), but we
establish a number of useful partial results showing that if the arcs
in an allowable collection J are arranged in a nice way in a graph,
then J will have the 3-endpoint property. In practice, these results
can be more useful than general results that require locating a large
allowable collection of arcs. By Theorems 3 and 4, all results that
establish either the 3-endpoint property or decomposably saturated
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INDECOMPOSABLE INVERSE LIMITS 19

for an allowable collection of arcs will give indecomposability results
for inverse limits on graphs where the bonding mappings are n-pass
maps for appropriate allowable collections of arcs in a subsequence of
factor spaces. Particularly, for a given inverse sequence on a single
graph G and a single bonding mapping g, it is easy to spot if, for some
k ≥ 1, gk is an n-pass map on an allowable collection of n arcs. We
simply find arcs in G that iterate under g to all of G, and check if a
sufficient number of them, according to our theorems, have pairwise
disjoint interiors, and pairwise have no arc connecting their interiors.
This process is illustrated in the examples in Section 5. Furthermore,
how to easily construct examples of indecomposable inverse limits on
trees and graphs is made clear, respectively, from Corollaries 1 and 2
and from results in this section. The author suspects that using the
multicoherence of a graph may lead to a positive answer to Question
2(b), although such an investigation was not pursued. See Section 12
of Chapter IV in [44] for a definition of multicoherence.

Theorem 7 gives a partial answer to Question 1(a).

Theorem 7. Let G be a graph with cyclomatic number n ≥ 0, and
let J = {J1, . . . , Jn+2} be an allowable collection of arcs such that, for
1 ≤ i ≤ n + 2, either Ji is a unique arc in G or Ji is contained in an
edge of G. Then J has the 3-endpoint property.

Proof. We use induction on n. If G has cyclomatic number zero,
then G has no cycles and the result follows from Theorem 5. Let G
and J satisfy the hypothesis for some n ≥ 1, and assume the result
holds for graphs with cyclomatic number less than n.

If two members of J are unique arcs, then, by Theorem 5, the result
follows. So, some member of J lies in an edge of a cycle S in G.
Assume, without loss of generality, that J1 is contained in an edge of
S. Let G′ = G \ J◦1 . Now, G′ is a connected graph that has one less
edge than G, and has the same number of vertices as G. Hence, the
cyclomatic number of G′ is n − 1. Since J ′ = {J2, . . . , Jn+2} is an
allowable collection of arcs in G′, where each member of J ′ is either
a unique arc or is contained in an edge of G′, we have by inductive
assumption, that J ′ has the 3-endpoint property for G′. Let a, b, and
c be the endpoints satisfying the 3-endpoint property for J ′ in G′. We
show that a, b, and c also satisfy the 3-endpoint property for J in G.
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Let L be an arc in G with endpoints in {a, b, c}. Assume, without loss
of generality, that a and b are the endpoints of L. If L ⊂ G′, then
L contains Ji for some 2 ≤ i ≤ n + 2. Otherwise, since J1 lies in an
edge of S, no vertex of G is an interior point of J1, and it follows that
J1 ⊂ L. We have that J has the 3-endpooint property for G. �

The proofs of Lemmas 4 and 5 are straightforward by simply picking
the three appropriate endpoints.

Lemma 4. Let G be a graph, and let J = {J1, J2, J3} be an allowable
collection of arcs in G. If there exists an edge of G that contains all
three members of J , then J has the 3-endpoint property in G.

Lemma 5. Let G be a graph, and let J = {J1, J2, J3, J4} be an
allowable collection of arcs in G. If there exist two edges E1 and E2 of
G where J1 ∪ J2 ⊂ E1 and J3 ∪ J4 ⊂ E2 , then J has the 3-endpoint
property in G.

Theorem 8. Let S be a unique cycle in a graph G. Suppose J =
{J1, J2, J3} is an allowable collection of three arcs in G, where for
i ∈ {1, 2, 3}, if K is a subarc of Ji that does not overlap S, then K
is a unique arc in G. Then J has the 3-endpoint property in G.

Proof. Suppose, for some i ∈ {1, 2, 3}, Ji ⊂ S, and if p is a
branchpoint of G in the interior of Ji and C is the closure of a
component of G\S that meets S at p, then for k ∈ {1, 2, 3} with k 6= i,
we have that Jk 6⊂ C. We begin by showing that if this supposition is
satisfied, then J has the 3-endpoint property in G. The proof of this
implication is similar to the proof of the inductive step in Theorem 7.

To see this, we assume, without loss of generality, that J1 has the
property in the previous paragraph. Let u and w be the endpoints of J1.
By Lemma 2(b), there are exactly two arcs in G with endpoints u and
w; one is J1, and the other is the closure of the complement of J1 in S,
which we denote by J ′1. Let G′ be the component of G\J◦1 that contains
J ′1. We note that the closure of G \ G′ is connected, contains J1, and
meets G′ at the two point set {u,w}. By our supposition concerning J1,
it follows that J2 ∪ J3 ⊂ G′. Furthermore, we note that J ′1 is a unique
arc in G′. So, by hypothesis and Lemma 1(c), it follows that J2 and
J3 are unique arcs in G′. Hence, G′ and the collection {J2, J3} satisfy
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the conditions of Theorem 5. So, choose points a, b, and c among the
endpoints of J2 and J3 that satisfy the 3-endpoint property in G′. We
claim that a, b, and c also satisfy the 3-endpoint property in G. Let
L be an arc in G with endpoints in {a, b, c}. Assume, without loss of
generality, that L has endpoints a and b. If L ⊂ G′, then L contains
one of J2 or J3. Otherwise, J1 ⊂ L. So, J has the 3-endpoint property
in G.

Hence, we will assume hereafter that the statement (∗) below holds.

(∗) If, for some i ∈ {1, 2, 3}, Ji ⊂ S, then there exist k ∈ {1, 2, 3} with
k 6= i and an interior point p of Ji such that either p is an endpoint of
Jk or each arc in G joining Jk to S meets S at p. We will say that Jk
is linked to S through p ∈ J◦i .

If Ji doesn’t overlap S for some i ∈ {1, 2, 3}, then, by hypothesis,
Ji is a unique arc in G. So, either Ji ∩ S = ∅, or Ji ∩ S is degenerate
since S is a unique cycle. If two members of J , say Ji and Jk, don’t
overlap S, then, by Theorem 5, {Ji, Jk} has the 3-endpoint property.
So, J has the 3-endpoint property. Hence, we assume throughout that
two members of J , say J2 and J3, overlap S. By Lemma 2(c), J2 ∩ S
and J3 ∩ S are arcs.

We consider two cases with various subcases.

Case 1. Suppose J1 doesn’t overlap S. So, J1 is a unique arc in G.
We will assume that J1 is disjoint from S throughout this case, and let
[u, v] be an arc in G joining J1 to S. If J1 meets S at a point, the proof
of this case is similar, but easier.

(a) Suppose u is an interior point of J1. By Lemma 3, for i ∈ {2, 3},
either Ji has an endpoint in [u, v] or Ji ⊂ S \ {v}. Furthermore, if Ji
has an endpoint in [u, v], then Ji∩[u, v] is either {v} or a subarc of [u, v]
containing {v}. This follows from Lemma 2, and from the assumption
about subarcs of members of J in the hypothesis.

(i) Suppose both J2 and J3 have an endpoint in [u, v]. Since J2 and
J3 do not overlap, v must be an endpoint of one of J2 or J3. We assume,
without loss of generality, that v is an endpoint of J3, and that v is the
largest point of the arc J3 ∩S in the orientation on S. It follows that v
must be the least point of the arc J2 ∩ S. It also follows that either J2
is a subset of S ∪ [u, v] or J3 is a subset of S, for otherwise either the
interiors of J2 and J3 meet or an arc in S joins the interiors of J2 and
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J3. If J3 ⊂ S, by (∗), one of J1 or J2 is linked to J3 at an interior point
of J3, which is a contradiction. So, we have that J2 ⊂ S ∪ [u, v], and
J3 6⊂ S. Let u′ be the endpoint of J2 in [u, v]. We assume that u′ 6= v,
for otherwise, J2 ⊂ S, and again we violate (∗). The subarc [u′, v] of
J2 is unique, and J2 ∩ [u, v] = [u′, v].

Let c be the endpoint of J3 that is not in S, and let a and b be
the endpoints of J1. We show that a, b, and c satisfy the 3-endpoint
property for J . Since J1 is a unique arc, the only arc in G with
endpoints a and b is J1. Suppose L is an arc in G with endpoints
a and c. Let [c, w] be the subarc of J3 joining c to S. By hypothesis,
[c, w] is a unique arc. Suppose L ∩ S is empty. Let [c, c′] be a subarc
of L joining c to [a, u] ∪ [u, v]. Then [c, c′] ∪ [c′, v] is an arc, distinct
from [c, w] joining c to the unique cycle S at the point v 6= w. This
contradicts Lemma 2(a). So, L must meet S. Let L1 be the subarc of
L joining c to S. By Lemma 2(a), L1 meets S at w. Since [c, w] is a
unique arc, L1 = [c, w]. Let L2 be the subarc of L joining a to S. Now,
[a, u] ∪ [u, v] is an arc joining a to S that contains the unique subarcs
[a, u] and [u′, v]. By Lemma 1(b), [a, u]∪ [u′, v] ⊂ L2. By Lemma 2(b),
there are two arcs in G with endpoints v and w. So, L contains one
of them. That is, L contains either J2 ∩ S or J3 ∩ S. Hence, either
J3 = [c, w] ∪ (J3 ∩ S) ⊂ L or J2 = [u′, v] ∪ (J2 ∩ S) ⊂ L. An analogous
argument shows that each arc in G from c to b contains one of J2 or
J3.

(ii) Suppose one of J2 or J3 does not have an endpoint in [u, v]. We
assume, without loss of generality, that J3 does not have an endpoint in
[u, v]. By Lemma 3, J3 ⊂ S \ {v}, and by (∗), either J1 or J2 is linked
to S through some interior point of J3. However, we show that this
is not the case. We see that J1 is not linked to S through an interior
point of J3 since J1 is disjoint from S, and the arc [u, v] from J1 to S
meets S only at v, which is not an interior point of J3. To see that
J2 is not linked to S through an interior point of J3, we recall that J2
overlaps S and S is a unique cycle. Hence, neither endpoint of J2 is
in the interior of J3. Similarly, there is no arc joining J2 to S. So, we
have that neither J1 nor J2 is linked to S through an interior point of
J3, a contradiction.

(b) Suppose u is an endpoint of J1. Let a be the other endpoint of J1.
Let p1 and p2, and q1 and q2 be, respectively, the least and largest points
of the arcs J2 ∩ S and J3 ∩ S. We assume that p1 < p2 ≤ q1 < q2 ≤ p1
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in the orientation on S.

(i) Suppose one of J2 or J3 is a subset of S, say J2 ⊂ S. Then,
v must be an interior point of J2, for otherwise, by (∗), one of J1 or
J3 is linked to J2 through an interior point of J2 other than v, which
is a contradiction. Similarly, if J3 ⊂ S, v must be an interior point
of J3, which would be a contradiction. So, we have that J3 is not a
subset of S. So, one of q1 or q2 is an interior point of J3. If both q1
and q2 are interior points of J3, let b and c be the endpoints of J3.
We choose the points a, b, and c for the 3-endpoint property. If L is
an arc in G with endpoints a and b, then since J1 is unique in G and
lies in the arc J1 ∪ [u, v], by Lemma 1(c), J1 is a subset of L. The
situation is analogous for an arc in G with endpoints a and c. Assume
b < q1 < q2 < c in the order on J3 from b to c. The arcs [b, q1] ⊂ J3
and [q2, c] ⊂ J3 are unique arcs in G by hypothesis. Since S is a unique
cycle, by Lemma 2(b), there are two arcs in G with endpoints q1 and
q2 and their union is S. It follows that there are exactly two arcs in
G with endpoints b and c. One is J3, and the other contains J2. So,
the proof is complete when both q1 and q2 are interior points of J3.
We suppose, without loss of generality, that q1 is an interior point of
J3 and q2 is an endpoint. Let d be the other endpoint of J3 that is
not in S. We pick the points a, q2, and d. An analysis similar to the
one in the previous paragraph gives that these three points satisfy the
3-endpoint property.

(ii) Suppose neither J2 nor J3 is a subset of S. So, one of p1 or p2
is an interior point of J2. We assume, without loss of generality, that
p1 is an interior point of J2. It follows that q2 must be an endpoint
of J3, for otherwise, either J2 and J3 have an interior point, namely
p1 = q2, in common, or an arc in S joining J2 to J3 meets each arc in
its interior, a contradiction. Hence, q1 must be an interior point of J3,
and p2 must be an endpoint of J2. Let b and c be, respectively, the
endpoints of J2 and J3 that are not in S. The points a, b, and c are the
desired endpoints for the 3-endpoint property. Checking arcs between
each pair is similar to previous cases.

Case 2. Suppose J1 also overlaps S. By Lemma 2(c), for each
i = 1, 2, 3, Ji ∩ S is an arc. We let J1 ∩ S = [p1, p2], J2 ∩ S = [q1, q2],
and J3 ∩ S = [t1, t2]. We also assume, without loss of generality, that
p1 < p2 ≤ q1 < q2 ≤ t1 < t2 ≤ p1 in the orientation on S. By (∗), no
Ji is a subset of S. Assume, without loss of generality, that p2 is an
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interior point of J1. As we saw in the previous case, it follows that q1
is an endpoint of J2, making q2 an interior point of J2, t1 an endpoint
of J3, t2 an interior point of J3, and p1 an endpoint of J1. Let a, b, and
c be, respectively, the endpoints of J1, J2, and J3 that are in G \ S.
The points a, b, and c are the desired endpoints, and checking arcs in
G with endpoints in {a, b, c} is similar to previous cases. �

Corollary 3. Suppose G is a graph with one cycle, and J =
{J1, J2, J3} is an allowable collection of three arcs in G. Then J has
the 3-endpoint property.

Proof. Since G has exactly one cycle S, by definition, S is a unique
cycle in G. So, the arcs Ji, for i = 1, 2, 3, satisfy the hypothesis of
Theorem 8. Hence, J has the 3-endpoint property. �

A graph homeomorphic to the figure ©© is commonly called a
figure-eight. A graph homeomorphic to the figure ∈3 is commonly called
a theta-curve. We call a graph homeomorphic to the figure ©−−© a
dumbbell.

Corollary 4. If G is either a figure-eight, a theta-curve, or a dumbbell,
and J = {J1, J2, J3, J4} is an allowable collection of arcs in G, then J
has the 3-endpoint property in G.

Proof. We prove the result for G a dumbbell. Proofs for a figure-
eight and a theta-curve are similar.

Let G = S1∪ [v1, v2]∪S2 be a dumbbell, where S1 and S2 are unique
cycles in G, and [v1, v2] is the unique arc in G joining S1 to S2. We
assume no two members of J are subsets of [v1, v2], for otherwise the
result follows from Theorem 5. For i ∈ {1, 2}, vi is an interior point
of at most one member of J . It follows that some member of J is a
subset of one of S1 or S2, and does not contain either v1 or v2 in its
interior. Assume, without loss of generality, that J1 ⊂ S1, and v1 6∈ J◦1 .
Removing the interior of J1 from G, we obtain a subgraph G′ of G for
which J ′ = {J2, J3, J4} and G′ satisfy the conditions of Corollary 3.
Hence, J ′ has the 3-endpoint property in G′. Analogously as in the
proof of Theorem 7, and as in the proof of (∗) in Theorem 8, the three
endpoints that satisfy the 3-endpoint property for J ′ in G′ also satisfy
the 3-endpoint property for J in G.
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�

Theorem 9. Let G be a graph containing unique cycles S1 and S2.
Suppose J = {J1, J2, J3, J4} is an allowable collection of four arcs in
G where J1 and J2 overlap S1, and J3 and J4 overlap S2. Suppose also
that, for i = 1, 2 (i = 3, 4), if K is a subarc of Ji that does not overlap
S1 (S2), then K is a unique arc in G. Then J has the 3-endpoint
property.

Proof. It is clear from the hypothesis that no Ji overlaps both S1

and S2. Either S1 ∩ S2 is degenerate, or S1 ∩ S2 is empty. We assume
the latter. The proof for the former case is similar.

By Lemma 2(a), there exist vertices v1 ∈ S1 and v2 ∈ S2 such that
each arc in G joining S1 and S2 has endpoints v1 and v2. Let [v1, v2]
denote an arc in G joining S1 to S2.

Suppose, for some 1 ≤ i ≤ 4, Ji is a subset of one of S1 or S2, and
neither v1 nor v2 is an interior point of Ji. We assume, without loss of
generality, that J1 ⊂ S1, and v1 is not an interior point of J1. Let u
and w be the endpoints of J1. Let C be the component of G \ {u,w}
that contains J◦1 , and note that, for i 6= 1, Ji ∩ C = ∅, for otherwise,
S1 is not a unique cycle. As in the proof of (∗) in Theorem 8, we have
that J ′ = {J2, J3, J4} is an allowable collection of arcs in the graph
G′ = G \ C, and the hypothesis of Theorem 8 is satisfied for J ′ in G′.
Hence, J ′ has the 3-endpoint property in G′. Analogously, as in the
proof of (∗) in Theorem 8, it follows that J has the 3-endpoint property
in G, and the proof is complete. So, hereafter, we assume that

(∗∗) if Ji is a subset of S1 or S2 for some 1 ≤ i ≤ 4, then Ji contains,
respectively, v1 or v2 in its interior.

Case 1. Suppose, for some 1 ≤ i ≤ 4, Ji is a subset of one of S1 or
S2. We assume that J1 ⊂ S1. It follows from (∗∗) that v1 ∈ J◦1 , and
that J2 6⊂ S1. By Lemma 3, J3 and J4 must have an endpoint in [v1, v2].
So, v2 must be an endpoint of one of J3 or J4. Assume v2 is an endpoint
of J3. By Lemma 2(c), we let J3 ∩ S2 = [v2, p], and J4 ∩ S2 = [v2, q].
We assume, without loss of generality, that v2 < p ≤ q < v2 in the
orientation of S2. By (∗∗), p must be an interior point of J3. Let c
be the endpoint of J3 that is not in S2. It follows that q must be an
endpoint of J4, for otherwise, either J3 and J4 have an interior point
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in common or an arc in S2 joins interior points of J3 and J4. By (∗∗),
v2 is an interior point of J4. Since J4 has an endpoint in [v1.v2], as we
saw in the first paragraph of Case 1(a) in Theorem 8, it follows that
J4 ⊂ [v1, v2] ∪ S2. Letting v be the endpoint of J4 in [v1.v2], we have
that J4 = [v, v2] ∪ [v2, q] with [v, v2] ⊂ [v1, v2]. Let b1 and b2 be the
endpoints of J2. Recalling that J2 6⊂ S1, at least one of b1 and b2 is not
in S1; possibly both endpoints are not in S1. In either case, the points
b1, b2, and c satisfy the 3-endpoint property for J in G. Verifying this
is similar to proofs given in previous results.

Case 2. Suppose no Ji is a subset of either S1 or S2. Let J1 ∩S1 =
[p1, p2], J2 ∩ S1 = [q1, q2], J3 ∩ S2 = [r1, r2], and J4 ∩ S2 = [t1, t2]. We
assume, without loss of generality, that p1 < p2 ≤ v1 ≤ q1 < q2 ≤ p1
in the orientation on S1, and that v2 ≤ r1 < r2 ≤ t1 < t2 ≤ v2 in the
orientation on S2. By supposition in this case, one of p1 and p2 is an
interior point of J1. Assume p2 is an interior point of J1. As we have
previously seen, it follows that q1 is an endpoint of J2, q2 is an interior
point of J2, and p1 is an endpoint of J1. Analogously, for the arcs J3
and J4 overlapping S2, we assume, without loss of generality, that r1
is an interior point of J3, r2 is an endpoint of J3, t1 is an interior point
of J4, and t2 is an endpoint of J4.

(a) Suppose one of p2 or q1 is not v1. We assume that q1 6= v1. Then
the union of [v1, v2] and one of the two arcs in S1 from v1 to q2 is an arc
joining S2 to an interior point of J2. Thus, by Lemma 3, both J3 and
J4 have an endpoint in [v1, v2]. We have that v2 = t2 is an endpoint of
J4, r1 = v2 is an interior point of J3, and J3 has an endpoint in [v1, v2].
This arrangement of J3 and J4 relative to S2 is analogous to that in
Case 1. Let a and b be, respectively, the endpoints of J1 and J2 that
are not in S1, and let c be the endpoint of J4 that is not in S2. We see
that a, b, and c satisfy the 3-endpoint property for J in G.

(b) Suppose p2 = v1 and q1 = v1. An analogous argument as in (a)
for one of r1 and t2 not being equal to v2 would complete the proof.
So, we also suppose r1 = v2 and t2 = v2. Recall that p2 = v1 and
r1 = v2 are, respectively, interior points of J1 and J3. Let b and d be,
respectively, the endpoints of J1 and J3 that are not in S1 and S2. By
hypothesis, the subarcs [v2, b] and [v2, d] of, respectively, J1 and J3 are
unique arcs in G. So, one must be a subset of [v1, v2], for otherwise,
either J1 and J3 have an interior point in common, or an arc in [v1, v2]
joins the interiors of J1 and J3. So, we assume [v2, d] ⊂ [v1, v2]. Again,
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the arrangement of J3 and J4 relative to S2 is analogous to that in
Case 1 and Case 2(a). Letting a be the endpoint of J2 not in S1, and
c be the endpoint of J4 not in S2, the points a, b, and c satisfy the
3-endpoint property for J in G. �

Theorem 10. Let G be a graph containing unique cycles S1, . . . , Sn.
Suppose J = {J1, . . . , Jn+2} is an allowable collection of arcs in G,
where for each 1 ≤ i ≤ n + 2, either Ji is a unique arc in G, or there
exist 1 ≤ ki ≤ n such that Ji overlaps Ski , and if K is a subarc of Ji
that does not overlap Ski , then K is a unique arc in G. Then J has
the 3-endpoint property.

Proof. It is clear from the hypothesis that no Ji overlaps two mem-
bers of S1, . . . , Sn. If two members of J are unique arcs, the result
follows from Theorem 5. We consider two cases.

Case 1. Suppose exactly one member of J , say J1, is a unique arc
in G. So, each member of J ′ = {J2, . . . , Jn+2} overlaps exactly one
of S1, . . . , Sn. Since J ′ has n + 1 members, it follows that there exist
two members of J ′ that overlap the same Si. We assume, without loss
of generality, that J2 and J3 overlap S1. It follows from Theorem 8
that {J1, J2, J3} has the 3-endpoint property in G. Hence, J has the
3-endpoint property in G.

Case 2. Suppose no member of J is a unique arc in G. If
three members of J overlap the same Si, then the result follows from
Theorem 8. So, assuming otherwise, it follows that there exist four
members of J , say J1, J2, J3, and J4, where J1 and J2 overlap Si for
some 1 ≤ i ≤ n, and J3 and J4 overlap Sk for some k 6= i. By Theorem
9, {J1, J2, J3, J4} has the 3-endpoint property in G. Hence, J has the
3-endpoint property in G. �

5. Examples. The examples in this section have previously ap-
peared in the literature. It may be helpful to the reader to have copies
of the references for these examples. Most of the examples have been
shown to be indecomposable by proving that they are arc continua that
are not tree-like and not a simple closed curve, or not circle-like and not
an arc, which gives additional useful information about the continua,
but can be nontrivial to prove. As mentioned in the introduction, an
arc continuum that is not an arc or a simple closed curve is indecompos-
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able. We take another look at these examples to illustrate how easily
indecomposability can be determined by looking at properties of the
bonding mappings.

Since a weaker version of Theorem 5, for inverse limits on trees,
appears in [30], examples of indecomposable tree-like continua that
illustrate the use of Theorem 5 can be found in [30], see Remark 28,
and Examples 40 and 41 in Section 6 of [30].

Example 2 (J.H. Case and R.E. Chamberlin [10]), (P.D. Roberson
[38]). The Case-Chamberlin example is quite well-known. It is an
inverse limit on the figure-eight graph with a single bonding mapping
f . A definition of the bonding mapping is given in [10, Section 5, page
78].

Roberson defines an uncountable collection of Case-Chamberlin type
continua with no model in [38]. Each of her examples is also an inverse
limit on the figure-eight graph X, where each bonding mapping either
is the Case-Chamberlin mapping f , or is a homeomorphism r : X → X
composed with f . Roberson labels the two cycles in X, which are unit
circles, by a and b, and provides a definition of f that nicely reveals
the action of f on the two cycles, see [38, page 171]. We refer to this
definition in the discussion that follows.

For t ∈ [0, 1], ta (tb) represents the point of cycle a (cycle b) that is
2πt along cycle a (cycle b) moving away from the branchpoint of the
figure-eight. So, we easily see from the first line of the definition of f
that the first quarter of cycle a is stretched by f onto cycle a, with the
branchpoint being fixed.

We let J1 = {ta | 0 ≤ t ≤ 1
2}, J2 = {ta | 1

2 ≤ t ≤ 1},
J3 = {tb | 3

8 ≤ t ≤ 5
8}, and J4 = {tb | 5

8 ≤ t ≤ 7
8}. Clearly,

J = {J1, J2, J3, J4} is an allowable collection of arcs in X. Lines 1, 2,
and 3 of the definition of f give that f(J1) = X, lines 4 and 5 give that
f(J2) = X, lines 10, 11, and 12 give that f(J3) = X, and lines 13 and
14 give that f(J4) = X. So, f is a four-pass map for the collection J .
It follows, from Corollary 4 and Theorem 4, that the inverse limit space
is indecomposable. Theorem 7 or Theorem 9 could also be applied in
lieu of Corollary 4.

For the other examples in the Roberson collection, the bonding
mappings are also four-pass maps on J since r is a homeomorphism on
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X. So, analogously, each example in the collection is indecomposable.

Example 3. (D. Sherling [40]) The example in [40] is an inverse limit
on a graph with four unique cycles, and a single bonding mapping.
The example X has the cone=hyperspace property, is not circle-like,
is not weakly chainable, and admits a natural mapping onto Ingram’s
simple triod-like arc continuum with positive span. The factor space
S is shown in Figure 2 with labeled edges and vertices. In Figure 2 on
page 1035 of [40], Sherling gives a schematic indication of the bonding
mapping g, which is sufficient for our purposes.

It is easy to check, using Figure 2 in [40], that a composition of g
with itself, four times or less, maps each edge Zi onto S. For example,
one can check that g2(Z1) = S = g2(Z2). Hence, g4 is a four-pass map
on the allowable collection of arcs J = {Z1, . . . , Z8}. Choosing any
subcollection of J with six arcs, and applying Theorems 7 and 4, gives
us that X is indecomposable.

In this example, however, the subcollection J ′ = {Z1, Z2, Z7, Z8}
of J will suffice for the 3-endpoint property. Either observe that J ′
satisfies Theorem 9, or observe directly that the vertices B, J , and C
satisfy the 3-endpoint property for J ′.

Z1 Z7

Z2 Z8

Z3

Z5

Z4

Z6

B
J

C

A

1
2
A

Figure 2. The graph S with four unique cycles and eight edges.

Example 4 (Ingram [19]). In Lemma 4.1 of [19], Ingram provides
four methods of constructing an inverse limit on a graph with a single
bonding mapping f , where f is a two-pass map on two non-overlapping
arcs, but the inverse limit space is not indecomposable. It should be
noted that, in each case where the factor space is a tree, the two arcs
do not form an allowable collection of arcs. In the cases that involve
a graph with a cycle, the two arcs may form an allowable collection of
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arcs, but there is no third arc to add to the collection on which f will
be a three-pass map.

We wish to slightly modify an example of the type in Lemma 4.1(2) of
[19] to get an indecomposable example that illustrates our results. Let
G be the graph shown in Figure 3, with vertices p, q, and u. We define
a new mapping g : G → G that only differs from Ingram’s mapping f
on the unique arc in G, which we label by γ. Ingram’s mapping f is
the identity mapping on γ. Subarcs α1, α2, β1, β2, and γ are labeled
in Figure 1(a), and Figures 1(a) and 1(b) give schematic indications of
how g maps the five subarcs into G. Our labeling is consistent with
that of Ingram. We note that the endpoints of the four subarcs of the
cycle in G are fixed by g. Let α = α1 ∪ α2, and β = β1 ∪ β2.

Ingram notes that lim
←−
{G, f} is decomposable, even though f is a

two-pass map on α and β. Since f is the identity mapping on γ there
is no third arc, not overlapping α or β, that is mapped onto G by a
power of f .

We note, however, that g is also a two-pass map on α and β since
g = f on these two arcs, and g2(γ) = G. Also, J = {α, β, γ} is an
allowable collection of three arcs in G. So, g2 is a three-pass map
on J . It follows from Corollary 3 and Theorem 4 that lim

←−
{G, g} is

indecomposable.

α1 β1

α2 β2

γ

(a)

g(α1)

g(α2)

p q u

(b)

g(β1)

g(β2)

g(γ)

Figure 3. (a) A schematic indication of g(α).
(b) A schematic indication of g(β) and g(γ).

The author acknowledges suggestions of the referee that improved
the clarity and presentation of definitions and results in the paper.
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