INDECOMPOSABLE INVERSE LIMITS ON GRAPHS

M. M. MARSH

Abstract

We obtain results, involving easily observable properties of bonding mappings, that ensure indecomposability of inverse limits on graphs. An allowable collection of n arcs in a graph is defined, and two related properties of collections of arcs in a graph are introduced. In an inverse sequence on graphs, if compositions of the bonding mappings are n-pass maps on certain allowable collections of n arcs, then the inverse limit space will be indecomposable. We provide examples that illustrate the use of our results.

1. Introduction. A compactum is a compact metric space. A continuum is a nonempty connected compactum. A continuum X is decomposable if there exist two non-empty proper subcontinua A and B of X such that $A \cup B=X$. A continuum X is indecomposable if it is not decomposable. A continuous function will be referred to as a map or mapping. A bijective mapping $f: X \rightarrow Y$ is a homeomorphism if $f^{-1}: Y \rightarrow X$ is also a mapping. A continuum X is an arc continuum if each proper nondegenerate subcontinuum of X is an arc.

We define three properties of collections of arcs in a graph that can produce indecomposable inverse limits on graphs if compositions of the bonding mappings throw each of the arcs onto previous factor spaces. The first property, which we call an allowable collection of arcs in a graph, is generally easy to determine, and in many cases, it is sufficient for the collection of arcs to have the other two properties as well. As we will see, the properties are fundamentally related to results for inverse limits of D.P. Kuykendall [27], A. van Heemert [14], J. Segal [39], and W.T. Ingram [19]. We clarify the relationships as the paper proceeds. We extend Ingram's notion of a two-pass map to that of an n-pass map for $n \geq 2$.

[^0]The importance of indecomposable continua cannot be overstated. The first indecomposable continuum was constructed by L.E.J. Brouwer [8] in 1910 to disprove a conjecture of A. Schoenflies. A diagram of Brouwer's construction adorned the cover of the June/July, 2014 issue of the Notices of the American Mathematical Society. A brief discussion of the history related to Brouwer's example is given therein on page 610. K. Kuratowski also discusses the history related to Brouwer's example, and to indecomposable examples of Z. Janiszewski and of B. Knaster in [26, pages 71-73]. In [20], Ingram provides a description of Brouwer's example as an inverse limit on a circle with a single bonding mapping. Other descriptions of early examples of indecomposable continua can be found in [21] and [23]. In the 112 years after Brouwer's example, there has been an explosion of interest in indecomposable continua.

Topological groups can be indecomposable continua. In 1930, D. van Dantzig $[\mathbf{1 1}, \mathbf{1 2}]$ defined the n-adic solenoids, which are indecomposable continua. These continua can be realized as inverse limits on the unit circle with bonding mappings that are covering maps. The inverse limit structure, together with complex multiplication on the unit circle, induces a group structure on the inverse limit space. The n-adic solenoids are also homogeneous continua, a property they share with closed, connected manifolds, although the local structures of the continua in these two classes are very different. Specifically, the local structure of solenoids is topologically the product of a Cantor set and an open interval, while the local structure of the closed, connected manifolds is Euclidean. A topological space X is homogeneous if for each two points x and y in X, there exists a homeomorphism $f: X \rightarrow X$ where $f(x)=y$. The study of homogeneous spaces is also well-represented in the literature.

Regarding homogeneous continua, rather remarkably, the pseudo$\operatorname{arc} P[\mathbf{2 8}, \mathbf{2 9}]$ is both homogeneous and hereditarily indecomposable, meaning that each subcontinuum of P is indecomposable. Furthermore, P can be realized as an inverse limit on $[0,1] ; P$ is homeomorphic to each of its subcontinua; and P is a non-separating planar continuum. The earliest hereditarily indecomposable continua were constructed by Knaster, E.E. Moise, and Bing. W. Lewis gives an interesting account of this history in $[\mathbf{2 8},(1.1)$, page 26].

In 1938, O.H. Hamilton [13, Theorems II, III, and IV] established a connection between indecomposable continua and fixed point free
homeomorphisms on tree-like continua and on non-separating planar continua. Specifically, for a non-separating continuum X in the Euclidean plane, he showed that if $f: X \rightarrow X$ is a fixed point free homeomorphism, then X contains an indecomposable subcontinuum in its boundary. H. Bell [4, Theorem 1] and K. Sieklucki [41, Theorem 1.1] generalized Hamilton's result to fixed point free mappings on nonseparating planar continua. The classical planar fixed point problem, "Does every mapping on a non-separating planar continuum have a fixed point?" remains unanswered. R.H. Bing [7] states that this question has been called the most interesting outstanding problem in planar topology. From Bell's and Sieklucki's results, we see that if one wishes to construct an example in the plane that provides a negative answer to this early 20th century problem, the example must contain an indecomposable continuum. Further discussion related to this classical problem can be found in [9, Section 1] and [24, Section 12, pages 66-70]. The first example of a tree-like continuum admitting a fixed point free mapping was not discovered until 1979. Not surprisingly, this example of D. Bellamy's [5], is indecomposable. Bellamy modifies the 6 -adic solenoid Σ by replacing an arc in Σ with the suspension of a totally disconnected set. He then uses the group operations on Σ to complete a clever, insightful construction of the example. A number of other noteworthy examples of tree-like continua admitting fixed point free mappings followed. See the references in [15] for a list of some of them. Also provided in [15] is the simplest inverse limit description of such a tree-like continuum.

Indecomposable continua often appear as attractors or invariant sets of diffeomorphisms on the plane and on manifolds. For example, the global attractor of the S. Smale $[42,43]$ horseshoe map on a planar disk is indecomposable. In [1], M. Barge establishes connections between attracting sets of horseshoe maps and inverse limits on $[0,1]$ that are indecomposable Knaster continua. Knaster continua are inverse limits on $[0,1]$ with piecewise linear, open bonding mappings. Barge's results were generalized by S.E. Holte in [16]. R. F. Williams [44] showed that all hyperbolic one-dimensional attractors are inverse limits of maps on branched one-manifolds (graphs). Discussion of these results and an extensive list of references related to indecomposable continua can be found in [23]. For a detailed and thorough discussion of the history of indecomposable continua and their importance in continuum theory
and in dynamical systems, we refer the reader to the two excellent articles by J. Kennedy [22, 23].

There are many characterizations and sufficient sets of conditions in the literature for indecomposability of continua. An early, and wellknown characterization by S. Mazurkiewicz [32] says that a continuum X is indecomposable if and only if there exist three points in X for which X is irreducible between each pair of them. This characterization of indecomposability involves the structure of the continuum. Some other conditions that are sufficient for indecomposability, and that involve the structure of the continuum can be found in [25], [30, Theorem 34], [31], [33], [34], and [35]. The first reference is concerned with planar continua. The second reference is concerned with chainable continua, and the other four references are related to graph-like continua. Many important examples of indecomposable continua are arc continua. Showing that each proper subcontinuum of a continuum X is an arc, and observing that X is neither an arc nor a simple closed curve establishes that X is indecomposable. This method of proof has been used frequently, even though it is often non-trivial.

For inverse limits X on arcs, trees, and graphs with a single bonding mapping, there are a number of results where dynamical properties of the bonding mappings ensure that X contains an indecomposable subcontinuum, see for example, [2], [3], [17, Section 7], and [46, Prop. 1]. The results in the first two references are about positive entropy of the bonding mapping. The third reference mostly discusses inverse limits on arcs, and the results are related to the existence of certain periodic points of the bonding mapping. In Proposition 1 of the fourth reference, it is shown that a bonding mapping that is mixing produces an indecomposable inverse limit. Also, in the fourth reference, Ye establishes an equivalence for the existence of an indecomposable subcontinuum of an inverse limit on a finite set of graphs if the composition bonding mappings in some subsequence on a single graph have horseshoes. A mapping $f: G \rightarrow G$ has a horseshoe if there exist two non-overlapping arcs J_{1} and J_{2}, lying in an edge of G, such that $J_{1} \cup J_{2} \subset f\left(J_{1}\right) \cap f\left(J_{2}\right)$.

Our results are related to conditions on the bonding mappings in an inverse sequence on graphs. The conditions are generally easy to check, they apply to inverse sequences where the factor spaces and bonding mappings may be different, and they determine indecomposability of
the inverse limit space itself, as opposed to only guaranteeing the existence of an indecomposable subcontinuum. Since each subcontinuum of an inverse limit space is, itself, the inverse limit on its projections to the factor spaces with the bonding mappings restricted to these projections, the techniques can also be applied to subcontinua of an inverse limit on graphs.

Although our results involve inverse sequences and their limits, a reader unfamiliar with these notions may simply think of an inverse sequence as a method of describing or constructing a complicated, perhaps pathological, continuum by a limiting or approximating process. In our case, all inverse limits are approximated by inverse sequences of topological graphs, where the bonding mappings in the inverse sequence fold the graphs, one onto the other, in a manner where compositions of the bonding mappings indicate the approximations. If a reader wishes to have an introduction to inverse limits, see [17] or [18]. Ingram also discusses indecomposable inverse limits in both references. The more technical, or complicated proofs in the paper, Theorems 8 and 9 for example, are results about collections of arcs in a graph. Drawing pictures of graphs with appropriate properties should help to follow the various cases in the proofs.
2. Definitions and preliminaries. An arc is a homeomorphic image of the interval $[0,1]$. If L is an arc contained in a compactum X, and $h:[0,1] \rightarrow L$ is a homeomorphism, we refer to $h(0)$ and $h(1)$ as the endpoints of L, and to $h([0,1]) \backslash\{h(0), h(1)\}$ as the set of interior points of L, which we denote by L°. A simple closed curve is a homeomorphic image of the unit circle S^{1} in \mathbb{R}^{2}. A topological graph G, or simply a graph G, is a continuum that is a union of finitely many arcs, each two of which are either disjoint or meet only at one or both of their endpoints. A tree is a graph containing no simple closed curves.

Let G be a graph. If $\operatorname{arcs} A$ and B in G meet only at a common endpoint p, we say that A and B are abutting arcs (at p). For $x \in G$, the order of x in G, denoted $o(x)$, is the largest number of arcs in G each two of which are abutting at x. The set of endpoints of G, and the set of branchpoints of G are, respectivley, defined as $E(G)=\{x \in G \mid o(x)=1\}$ and $B(G)=\{x \in G \mid o(x) \geq 3\}$. For a tree T, we let $V(T)=E(T) \cup B(T)$ be the the set of vertices of T. For a graph G, a set of vertices for G is any finite subset $V(G)$ of G such
that $E(T) \cup B(T) \subset V(G)$, and each simple closed curve in G contains at least two points of $V(G)$.

An edge of G is an arc L in G such that $L \cap V(G)$ is the set of endpoints of L. A cycle in G is a simple closed curve in G. Note that each cycle in G contains at least two edges of G. An arc A with endpoints p and q in a graph G is a unique arc in G if whenever L is an arc in G with endpoints p and q, then $L=A$. A cycle S in a graph G is a unique cycle in G provided that if S^{\prime} is a cycle in G and S and S^{\prime} share an edge of G, then $S^{\prime}=S$.

In our setting of connected graphs, the cyclomatic number of a graph G is $e-v+1$, where e is the number of edges of G and v is the number of vertices of G. By choosing an orientation for each cycle in G, it is possible to associate each cycle with a vector in some Euclidean space \mathbb{R}^{m}, and by doing so, one can define a set of cycles in G to be independent if the associated vectors in \mathbb{R}^{m} are independent. If n is the cyclomatic number of G, then G has n, and not more than n independent cycles. The number of independent cycles in G may be less than the total number of distinct cycles in G. As an example, the theta-curve defined immediately before Corollary 4 has three distinct cycles, but only two independent cycles (cyclomatic number is 2). The cyclomatic number of a graph G is zero if and only if G is a tree, and the cyclomatic number of a graph G is one if and only if G has (exactly) one cycle. For $n \geq 2$, we say that G has n independent cycles if and only if the cyclomatic number of G is n. For our purposes, it is not necessary to have the precise definition of sets of indenpendent cycles, but it may be helpful to think of the cyclomatic number as the minimum number of edges of G that must be removed to obtain a graph with no cycles. Discussion and precise definitions of these terms can be found in $[\mathbf{6}$, Chapter 2].

If L is an arc with endpoints u and v in a graph G, we sometimes denote L by $[u, v$], even though there may be other arcs in G with endpoints u and v. If $a, b \in[u, v]$ with $a \neq b$, we write $[a, b]$ for the subarc of L with endpoints a and b. If each of H and K is a subcontinuum of a graph G, and L is an arc in G such that $L \cap(H \cup K)=\{u, v\}$, where $u \in H, v \in K$, and u and v are the endpoints of L, we call L an arc from H to K or an arc joining H to K. If the intersection of two subsets A and B of a graph G contains an arc, we say that A and B overlap. Otherwise, A and B are non-
overlapping.
As previously mentioned, the focus of the paper is to determine properties of collections of arcs in graphs, where compositions of the bonding mappings in an inverse sequence on graphs throw the arcs onto previous factor spaces, thereby ensuring an indecomposable inverse limit space. The properties are listed below. The first property is, in general, the easiest to check for a given collection of arcs in a graph.

Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$ be a finite collection of arcs in a graph G.
(1) \mathcal{J} is an allowable collection of arcs in G if for each $1 \leq i<k \leq$ n, J_{i} and J_{k} have disjoint interiors, and no arc in G joining \bar{J}_{i} to J_{k} meets each of J_{i} and J_{k} at an interior point.
(2) \mathcal{J} has the 3 -endpoint property in G if there exist three points, each of which is an endpoint of some member of \mathcal{J}, and so that if a and b are any two of the three points, then each arc in G with endpoints a and b contains some member of \mathcal{J}. We note that if a subcollection of \mathcal{J} has the 3 -endpoint property in G, then \mathcal{J} also has the 3-endpoint property in G.
(3) \mathcal{J} is decomposition saturated in G provided that whenever G is the union of two subcontinua A and B, there exists $1 \leq i \leq n$ such that either $J_{i} \subset A$ or $J_{i} \subset B$.

A collection of two unique arcs in a graph G is allowable if and only if it has the 3 -endpoint property if and only if it is decomposition saturated, as we see in Theorem 5. Hence, the three properties above are equivalent for each collection of two arcs in a tree. A collection of three arcs contained in a unique cycle in a graph G is allowable if and only if it has the 3 -endpoint property if and only if it is decomposition saturated, see Theorem 6. Based on these two cases, one might conjecture that the three properties are equivalent for collections of $n+2$ arcs, each contained in one of n unique cycles in a graph. Unfortunately, this is not the case in general, see Example 1 at the end of Section 3. Our focus is not to determine when we have equivalence of the three properties, but to find conditions on allowable collections of arcs that imply either the 3 -endpoint property or decomposition saturated. We establish a number of simple conditions on allowable collections of arcs in graphs which allow for easy determination of indecomposable inverse limits on graphs. We also pose several questions that should provide further avenues of investigation.

Also of importance to us are the notions of a wrapping defined by Segal [39], and a two-pass map defined by Ingram [19]. Let X and Y be continua, and let G be a graph. A mapping $f: X \rightarrow Y$ is a wrapping if for any subcontinua A and B of X such that $X=A \cup B$, we have either $f(A)=X$ or $f(B)=X$. A mapping $f: G \rightarrow G$ is a two-pass map if there exists two non-overlapping subgraphs G_{1} and G_{2} of G such that $f\left(G_{i}\right)=G$ for each $i=1,2$.

We define a related property for mappings between graphs H and G. If $f: H \rightarrow G$ is a mapping, and there exist a collection of arcs $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$ in H such that $f\left(J_{i}\right)=G$ for each $1 \leq i \leq n$, then we say that f is an n-pass map for the collection \mathcal{J}.

We state theorems of van Heemert [14] and Kuykendall [27] that are central to our techniques. Van Heemert's result can also be found in [39, Remark, page 602] and [36, Theorem 2.7]. Kuykendall's result can also be found in [19, Theorem 2.1]. For an inverse sequence $\left\{X_{i}, g_{i}^{i+1}\right\}$, and each pair of integers n and m with $1 \leq n<m-1$, we let $g_{n}^{m}: X_{m} \rightarrow X_{n}$ denote the composition mapping $g_{n}^{n+1} \circ \ldots \circ g_{m-1}^{m}$.

Theorem 1. (van Heemert) Let $X=\underset{\leftarrow}{\lim }\left\{X_{i}, g_{i}^{i+1}\right\}$, where, for each $i \geq 1, X_{i}$ is a nondegenerate continuum. If, for each $i \geq 1$, $g_{i}^{i+1}: X_{i+1} \rightarrow X_{i}$ is a wrapping, then X is indecomposable.

Theorem 2. (Kuykendall) Let $X=\underset{\leftarrow}{\lim }\left\{X_{i}, g_{i}^{i+1}\right\}$, where, for each $i \geq 1, X_{i}$ is a nondegenerate continuum, and g_{i}^{i+1} is a surjective mapping. Then the following statements are equivalent.
(1) X is indecomposable.
(2) For $\epsilon>0$ and $n \in \mathbb{N}$, there exists a positive integer $m>n$ and three points of X_{m} such that if K is a subcontinuum of X_{m} containing two of them, then the distance of x to $g_{n}^{m}(K)$ is less than ϵ for each point $x \in X_{n}$.

For inverse sequences, we call statement (2) in Kuykendall's theorem the 3-point criterion, or the Kuykendall criterion for indecomposability of the inverse limit. Theorems 3 and 4 below demonstrate a connection between collections of n arcs with the properties defined in (2) and (3), compositions of bonding mappings that are n-pass maps, and Theorems

1 and 2. We show in Observation 1 that the property defined in (2) is sufficient for the property in (3). That the property in (1) is often sufficient for the property in (2) is established throughout the paper.

Theorem 3. Let $X=\underset{\leftarrow}{\lim }\left\{G_{i}, g_{i}^{i+1}\right\}$, where for each $i \geq 1, G_{i}$ is a graph. Suppose for each $n \geq 1$, there exists $m>n$ and a decomposition saturated collection of arcs $\mathcal{J}_{m}=\left\{J_{1}, \ldots, J_{k_{m}}\right\}$ in G_{m} such that $g_{n}^{m}: G_{m} \rightarrow G_{n}$ is a k_{m}-pass map for \mathcal{J}_{m}. Then X is indecomposable.

Proof. We wish to apply Theorem 1. By hypothesis, we can choose an inverse sequence $\left\{G_{u_{i}}, g_{u_{i}}^{u_{i+1}}\right\}$, where for each $i \geq 1, g_{u_{i}}^{u_{i+1}}: G_{u_{i+1}} \rightarrow$ $G_{u_{i}}$ is a $k_{u_{i+1}}$-pass map for some decomposition saturated collection of arcs $\mathcal{J}_{u_{i+1}}$ in $G_{u_{i+1}}$. It is well-known that the limit of such an inverse sequence is homeomorphic to X. To see that each $g_{u_{i}}^{u_{i+1}}$ is a wrapping, let $A_{u_{i+1}}$ and $B_{u_{i+1}}$ be a decomposition of $G_{u_{i+1}}$. By hypothesis, there exists a member J of $\mathcal{J}_{u_{i+1}}$ such that either $J \subset A_{u_{i+1}}$ or $J \subset B_{u_{i+1}}$. We assume, without loss of generality, that $J \subset A_{u_{i+1}}$. Since $g_{u_{i}}^{u_{i+1}}$ is a $k_{u_{i+1}}$-pass map for $\mathcal{J}_{u_{i+1}}$, we have $G_{u_{i}}=g_{u_{i}}^{u_{i+1}}(J) \subset g_{u_{i}}^{u_{i+1}}\left(A_{u_{i+1}}\right)$. So, $g_{u_{i}}^{u_{i+1}}$ is a wrapping, and by Theorem 1, X is indecomposable.

Theorem 4. Let $X=\underset{\leftarrow}{\lim }\left\{G_{i}, g_{i}^{i+1}\right\}$, where for each $i \geq 1, G_{i}$ is a graph. Suppose for each $n \geq 1$, there exists $m>n$ and a collection of arcs $\mathcal{J}_{m}=\left\{J_{1}, \ldots, J_{k_{m}}\right\}$ in G_{m} that has the 3-endpoint property, and for which $g_{n}^{m}: G_{m} \rightarrow G_{n}$ is a k_{m}-pass map for \mathcal{J}_{m}. Then X is indecomposable.

Proof. We show that $\left\{G_{i}, g_{i}^{i+1}\right\}$ satisfies the Kuykendall criterion. Let $\epsilon>0$ and $n \in \mathbb{N}$. Pick $m>n$, and a collection of arcs $\mathcal{J}_{m}=\left\{J_{1}, \ldots, J_{k_{m}}\right\}$ in G_{m} that has the 3-endpoint property, and where g_{n}^{m} is a k_{m}-pass map for \mathcal{J}_{m}. Let p, v, and q be the three points among the endpoints of the arcs $J_{1}, \ldots, J_{k_{m}}$ that have the 3-endpoint property. Suppose K is a subcontinuum of G_{m} containing two of the points p, v, and q; say $p, q \in K$. Since K is arcwise connected, there exists an $\operatorname{arc} L$ in K with endpoints p and q. By the 3 -endpoint property, for some $1 \leq i \leq k_{m}$, we have that $J_{i} \subset L$. Since g_{n}^{m} is a k_{m}-pass map for \mathcal{J}_{m}, we have $G_{n}=g_{n}^{m}\left(J_{i}\right) \subset g_{n}^{m}(L) \subset g_{n}^{m}(K)$. Clearly, for $x \in G_{n}$, the distance from x to $g_{n}^{m}(K)=G_{n}$ is zero, which is less than ϵ. So, by Theorem 2, X is indecomposable.
3. Cases for which the three properties are equivalent. Observation 1 and Lemma 1 will be useful tools throughout.

Observation 1. If \mathcal{J} is a collection of arcs in a graph G that has the 3 -endpoint property, then \mathcal{J} is decomposition saturated.

Proof. Let $G=A \cup B$, where A and B are subcontinua of G. Let a, b, and c be endpoints of arcs in \mathcal{J} that are guaranteed by the 3endpoint property. Assume, without loss of generality, that $a, c \in A$. Since A is arcwise connected, there exists an $\operatorname{arc} L \subset A$ with endpoints a and c. By the 3 -endpoint property, some $J \in \mathcal{J}$ is a subset of L. So, $J \subset L \subset A$. We have that \mathcal{J} is decomposition saturated.

A point v of a graph G is a separating point of G if $G \backslash\{v\}$ is disconnected. The point v separates the points p and q in G if p and q are in different components of $G \backslash\{v\}$.

Lemma 1. Let $J=[a, b]$ be an arc in G with endpoints a and b.
(a) These statements are equivalent.
(i) J is a unique arc in G.
(ii) Each interior point of J separates a from b in G.
(iii) J overlaps no cycle in G.
(b) If J is a unique arc in G, then each subarc of J is a unique arc in G.
(c) If $u, v \in J$ with $a<u \leq v<b$ in the order on J from a to b, and the subarcs $J_{1}=[a, u]$ and $J_{2}=[v, b]$ of J are unique arcs in G, then J_{1} and J_{2} are subarcs of each arc in G with endpoints a and b. Additionally, if $u=v$, then J is a unique arc in G.
(d) If v is in $J \backslash\{a\}$, and the subarc $[a, v]$ of J is a unique arc in G, then $[a, v]$ is a subarc of each arc in G with endpoints a and b.

Proof. (a) (i) \Rightarrow (ii): This implication is clear.
$($ ii $) \Rightarrow($ iii): We prove the contrapositive statement. Suppose J overlaps a cycle S in G. Let A be an arc in $J \cap S$, and let p be an interior point of A that is not a branchpoint of G. Now p does not separate S, and since p is not a branchpoint of G, it follows that p does not separate G.
(iii) \Rightarrow (i): We prove the contrapositive. Suppose J is not a unique arc in G. Let L be an arc, distinct from J, with endpoints a and b. So, $J \not \subset L$. Let J^{\prime} be the closure of a component of $J \backslash L$. Then J^{\prime} is an arc whose endpoints u and v are in L. Let L^{\prime} denote the subarc of L with endpoints u and v. We have that $J^{\prime} \cup L^{\prime}$ is a cycle in G. By definition, J overlaps $J^{\prime} \cup L^{\prime}$.
(b) Let $[u, v]$ be a subarc of J. Suppose that $[u, v]$ is not a unique arc in G. Let L be an arc in G, distinct from $[u, v]$, with endpoints u and v. Clearly, $[u, v] \not \subset L$, so let p be a point of $[u, v] \backslash L$. Clearly, p is an interior point of $[u, v]$. It follows that $(J \backslash[u, v]) \cup L$ is a continuum in $G \backslash\{p\}$ containing the points a and b, contradicting (a).
(c) By way of contradiction, suppose L is an arc in G with endpoints a and b, and $J_{1} \not \subset L$. As in the proof of (b), picking a point p in $J_{1} \backslash L$, we have that $\left(J \backslash J_{1}\right) \cup L$ is a continuum in $G \backslash\{p\}$ containing a and u, which is a contradiction of (a) for the unique arc J_{1}. That J is unique if $u=v$ follows immediately.
(d) The proof is similar to the proof of (c).

Theorem 5 and Corollary 1 generalize the results in Section 4 of [30]. A simple triod is a tree T where $B(T)=\{v\}$, and $o(v)=3$. So, a simple triod is homeomorphic to the symbol \perp.

Theorem 5. Let J_{1} and J_{2} be two unique arcs in a graph G. The following statements are equivalent.
(i) $\left\{J_{1}, J_{2}\right\}$ is an allowable collection of arcs in G.
(ii) J_{1} and J_{2} are non-overlapping, and $J_{1} \cup J_{2}$ is contained in either an arc or a simple triod in G.
(iii) $\left\{J_{1}, J_{2}\right\}$ has the 3 -endpoint property in G.
(iv) $\left\{J_{1}, J_{2}\right\}$ is decomposition saturated in G.

Proof. $(i) \Rightarrow(i i)$: Since J_{1} and J_{2} have disjoint interiors, they are non-overlapping. We note that if $J_{1} \cap J_{2} \neq \emptyset$, then $J_{1} \cap J_{2}$ must be a continuum since J_{1} and J_{2} are unique arcs. So, $J_{1} \cap J_{2}$ is a singleton, say $J_{1} \cap J_{2}=\{p\}$. Furthermore, since $\left\{J_{1}, J_{2}\right\}$ is an allowable collection of arcs, p must be an endpoint of one of J_{1} or J_{2}. Assume p is an endpoint of J_{1}. If p is also an endpoint of J_{2}, then $J_{1} \cup J_{2}$ is an arc. If p is an
interior point of J_{2}, then $J_{1} \cup J_{2}$ is a simple triod. In either case, the proof is complete. So, we assume that $J_{1} \cap J_{2}=\emptyset$.

Let $[u, v]$ denote an arc in G joining J_{1} to J_{2}. Let $C=J_{1} \cup[u, v] \cup J_{2}$. Either u is not an interior point of J_{1}, or v is not an interior point of J_{2}. So, assume u is an endpoint of J_{1}. Analogously as in the previous paragraph, C is either an arc or a simple triod containing $J_{1} \cup J_{2}$.
$(i i) \Rightarrow(i i i):$ Suppose J_{1} and J_{2} are non-overlapping, and $J_{1} \cup J_{2}$ is contained in an $\operatorname{arc} A$. Let $[u, v]$ denote the minimal subarc of A, with respect to inclusion, that contains $J_{1} \cup J_{2}$. We may assume, without loss of generality, that u is an endpoint of J_{1} and v is an endpoint of J_{2}. Let a be the endpoint of J_{1} that is neither u nor v. The points a, u, and v are the desired three endpoints. We consider each two of them. By uniqueness of J_{1}, J_{1} is the only arc in G with endpoints a and u. For u and v, by Lemma 1 (c), if L is an arc in G with endpoints u and v, then L contains each of J_{1} and J_{2}. For a and v, by Lemma $1(\mathrm{~d})$, if L is an arc in G with endpoints a and v, then L contains J_{2}.

Suppose $J_{1} \cup J_{2}$ is not contained in an arc in G, but is contained in a simple triod K^{\prime} with branchpoint v. Then one of J_{1} or J_{2} contains v in its interior, say v is in the interior of J_{2}. Let K be the minimal triod in K^{\prime}, with respect to inclusion, that contains $J_{1} \cup J_{2}$. Then the endpoints b and c of the two edges of K that contain J_{2} are also endpoints of J_{2}. Since J_{1} and J_{2} are non-overlapping, J_{1} is contained in the remaining edge of K, whose endpoint a is also an endpoint of J_{1}. The points a, b, and c are the desired three endpoints. Let $[a, v]$, $[b, v]$, and $[c, v]$ denote the three subarcs of K whose union is K. We note that, by Lemma $1(\mathrm{~b})$, the subarcs $[b, v]$ and $[c, v]$ of J_{2} are unique arcs in G. We consider each two of the three points. For b and c, J_{2} is the unique arc in G with endpoints b and c. For a and b, the arc $[b, v] \cup[v, a]$ is an arc with two unique arcs containing its endpoints, so, by Lemma 1(c), each arc in G with endpoints a and b contains J_{1}. For a and c, the situation is analogous to that of a and b.
$(i i i) \Rightarrow(i v)$: This implication follows from Observation 1.
$(i v) \Rightarrow(i)$: We prove the contrapositive statement. Suppose $\left\{J_{1}, J_{2}\right\}$ is not an allowable collection of arcs. Then either the interiors of J_{1} and J_{2} are not disjoint, or there exists an arc in G joining J_{1} to J_{2} whose endpoints are interior points of J_{1} and J_{2}. Let a and b be the endpoints of J_{1}, and let c and d be the endpoints of J_{2}.

Suppose the interiors of J_{1} and J_{2} are not disjoint. Suppose J_{1} and J_{2} overlap. Then $J_{1} \cap J_{2}$ is an arc. Pick a point p in the interior of $J_{1} \cap J_{2}$ that is not a branchpoint of G. Since $o(p)=2$, by Lemma 1(a), $G \backslash\{p\}$ has two components, each one containing exactly one endpoint from each of J_{1} and J_{2}. Let A and B be the closures of these two components. Clearly, $G=A \cup B$, and for $i=1,2, J_{i} \not \subset A$ and $J_{i} \not \subset B$, contradicting that $\left\{J_{1}, J_{2}\right\}$ is decomposition saturated. So, we have that $J_{1} \cap J_{2}=\{v\}$, where v is an interior point of each of J_{1} and J_{2}. So, $v \in B(G)$ and $o(v) \geq 4$. Combining several parts of Lemma 1, we see that v separates each pair of points in $\{a, b, c, d\}$. For $r \in\{a, b, c, d\}$, let G_{r} be the closure of the component of $G \backslash\{v\}$ that contains r. Let F be the union of the closures of the remaining components of $G \backslash\{v\}$. Let $A=G_{a} \cup G_{c}, B=G_{b} \cup G_{d} \cup F$. Clearly, $A \cup B$ is a decomposition of G where neither J_{1} nor J_{2} is contained in either A or B. So, $\left\{J_{1}, J_{2}\right\}$ is not decomposition saturated.

Suppose the interiors of J_{1} and J_{2} are disjoint, and L is an arc in G joining J_{1} to J_{2}. Assume u and v are the endpoints of L lying, respectively, in the interiors of J_{1} and J_{2}. If J_{1} and J_{2} are not disjoint, there is an arc J^{\prime} in $J_{1} \cup J_{2}$ with endpoints u and v. By Lemma 1, J^{\prime} is a unique arc in G, which is a contradiction since $L \neq J^{\prime}$. So, we assume that J_{1} and J_{2} are disjoint. By uniqueness of J_{1} and J_{2}, each arc in G joining J_{1} to J_{2} has endpoints u and v. Let H be the union of all arcs in G joining J_{1} to J_{2}. For $r \in\{a, b, c, d\}$, let G_{r} be the closure of the component of $G \backslash H$ that contains r. Let F be the union of the closures of the remaining components of $G \backslash H$. Let $A=G_{a} \cup H \cup G_{c}$, and $B=G_{b} \cup H \cup G_{d} \cup F$. As in the previous paragraph, $A \cup B$ is a decomposition of G where neither J_{1} nor J_{2} is contained in either A or B, giving us that $\left\{J_{1}, J_{2}\right\}$ is not decomposition saturated.

Corollary 1. Let $X=\underset{\leftarrow}{\lim }\left\{G_{i}, g_{i}^{i+1}\right\}$, where for each $i \geq 1, G_{i}$ is a graph, and g_{i}^{i+1} is a surjective mapping. Suppose for $n \geq 1$, there exist $m>n$ and an allowable collection of unique $\operatorname{arcs}\left\{J_{1}, J_{2}\right\}$ in G_{m} where g_{n}^{m} is a 2-pass map for $\left\{J_{1}, J_{2}\right\}$. Then X is indecomposable.

Proof. Since, by Theorem 5, each allowable pair of unique arcs in a graph has the 3 -endpoint property, it follows from Theorem 4 that X is indecomposable.

Corollary 2. Let G be a graph, $g: G \rightarrow G$ be a surjective mapping, and $X=\underset{\longleftarrow}{\lim }\left\{G_{i}, g_{i}^{i+1}\right\}$ where for each $i \geq 1, G_{i}=G$ and $g_{i}^{i+1}=g$. Suppose there exist an allowable pair of unique $\operatorname{arcs}\left\{J_{1}, J_{2}\right\}$ in G, and $k \geq 1$ such that $g^{k}\left(J_{1}\right)=G=g^{k}\left(J_{2}\right)$. Then X is indecomposable.

Proof. For $n \geq 1$, let $m=n+k$. We have that, for $i=1,2$, $g_{n}^{m}\left(J_{i}\right)=g_{n}^{n+k}\left(J_{i}\right)=g^{k}\left(J_{i}\right)=G=G_{n}$. Hence, g^{k} is a 2-pass map for $\left\{J_{1}, J_{2}\right\}$, and by Corollary $1, X$ is indecomposable.

Remark 1. In Theorem 5, and in Corollaries 1 and 2, if the graphs are trees, the results hold for any allowable collection of two arcs, since all arcs in a tree are unique arcs.

Remark 2. As in Theorem 5, there will be theorems throughout that show certain allowable collections of arcs in graphs have the 3 -endpoint property, and hence, there will be corollaries analogous to Corollaries 1 and 2 that establish indecomposability of inverse limits on graphs. We will not continue to display them, as they are obvious from Theorem 4.

Corollary 2 generalizes Ingram's Theorems 3.3 and 3.4 in [19]. To see this, we verify Observation 2 below, and note that Ingram's Theorem 3.4 follows directly from his Theorem 3.3. We provide a statement of Ingram's Theorem 3.3 for convenience to the reader.

Ingram's Theorem. Suppose T is a tree and $f: T \rightarrow T$ is a mapping. Suppose H and I are non-overlapping subtrees of T, and I is an arc such that if p is a branchpoint of T that belongs to I, then p is an endpoint of I. If $f(H)=f(I)=T$, then $\lim \{T, f\}$ is indecomposable.

Observation 2. Suppose we have the hypothesis of Ingram's Theorem. Then there exists an arc $J \subset H$ such that $f^{2}(J)=T$. Hence, $f^{2}(J)=T=f^{2}(I)$, and Corollary 2 applies.

Proof. By Ingram's Lemma 3.2 in [19] (or see Theorem 6 in [37] for a more general result in graphs), there exists a subcontinuum K of H such that $f(K)=I$. Let $a, b \in K$ where $f(a)$ and $f(b)$ are the
endpoints of I. Let J be the arc in K with endpoints a and b. Then $f(J)=I$. By hypothesis, $f^{2}(J)=f(I)=T$.

Since $H \cap I=\emptyset$, we have that $J \cap I=\emptyset$. Also, since I is contained in an edge of T, the arc in T from J to I must meet I at one of its endpoints. Hence, $\{I, J\}$ is an allowable collection of arcs in T, and Corollary 2 is satisfied for $\{I, J\}$ with $k=2$.

Remark 3. It is possible to have a decomposable inverse limit on a single tree T with a single bonding mapping f, where f is a 2-pass map on two non-overlapping arcs in T. Ingram provides such an example in [19, Example 5.1]. In Ingram's example, the tree T is a simple 4-od, and the two $\operatorname{arcs} \alpha$ and β meet only at the branchpoint of T, which is an interior point of each of α and β. So, $\{\alpha, \beta\}$ is not an allowable collection of arcs in T.

We need a few definitions and lemmas before our next equivalence theorem. Given a simple closed curve S, we endow S with a counterclockwise orientation via some homeomorphism of S^{1} onto S. For $n \geq 3$ and any collection $\alpha_{1}, \ldots, \alpha_{n}$ of non-overlapping subcontinua of S, we write $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n}$ to indicate their orientation relative to movement in a counter-clockwise direction. If, for some $1 \leq i<n, \alpha_{i}$ and α_{i+1} are points that may, or may not, be equal, we write $\alpha_{i} \leq \alpha_{i+1}$. If a and b are the endpoints of an $\operatorname{arc} J$ in $S, t \in J^{\circ}$, and $a<t<b$, we say that a is the least point of J and b is the largest point of J.

Lemma 2 is straightforward to verify. We provide a proof for Lemma 3.

Lemma 2. Let S be a unique cycle in a graph G.
(a) If $p \notin S$, then there exists a vertex v_{p} in S such that if L is an arc in G joining p to S, then v_{p} is the endpoint of L in S. Furthermore, if L is an arc in G joining p to a point q of $S \backslash\left\{v_{p}\right\}$, then L is the union of an arc from p to v_{p} and one of the two arcs in S from v_{p} to q.
(b) If p and q are two points in S, then if L is an arc in G with endpoints p and q, then $L \subset S$. So, there are exactly two arcs in G with endpoints p and q, and their union is S.
(c) If L is an arc in G, then $L \cap S$ is either empty, a point, or an arc.

Lemma 3. Suppose J_{1} and J_{2} are arcs in G, and S is a unique cycle in G, where J_{2} overlaps S and J_{1} is disjoint from S. Suppose $[u, v$] is an arc in G joining J_{1} to S where u is an interior point of J_{1}. If $\left\{J_{1}, J_{2}\right\}$ is an allowable collection of arcs in G, then either J_{2} has an endpoint in $[u, v]$ or $J_{2} \subset S \backslash\{v\}$.

Proof. Suppose J_{2} has no endpoint in $[u, v]$. If $J_{2} \cap[u, v] \neq \emptyset$, we consider the natural order on the arc $[u, v]$ from u to v, and we let u^{\prime} be the least point of the closed set $J_{2} \cap[u, v]$. Since, by assumption, u^{\prime} is not an endpoint of $J_{2}, u \neq u^{\prime}$, for otherwise, the interiors of J_{1} and J_{2} meet. So, the subarc of $[u, v]$ from u^{\prime} to u joins the interiors of J_{1} and J_{2}, contradicting that $\left\{J_{1}, J_{2}\right\}$ is an allowable collection. Hence, if J_{2} has no endpoint in $[u, v]$, then $J_{2} \cap[u, v]$ must be empty. Also, in this case, J_{2} does not meet J_{1}, for otherwise, we violate Lemma 2(a).

If $J_{2} \not \subset S$, then by Lemma 2(b), not both endpoints of J_{2} lie in S. Suppose b is an endpoint of J_{2} that is not in S. Let $[b, w]$ denote the subarc of J_{2} that joins b to S. So, w is an interior point of J_{2} since J_{2} overlaps S. One of the two arcs in S with endpoints w and v only meets J_{2} at the point w. Let K denote this arc. Then $K \cup[u, v]$ joins the interiors of J_{1} and J_{2}, a contradiction. So, $J_{2} \subset S \backslash\{v\}$.

Theorem 6. Let $\left\{J_{1}, J_{2}, J_{3}\right\}$ be a collection of three arcs contained in a unique cycle S in a graph G. Then $\left\{J_{1}, J_{2}, J_{3}\right\}$ is allowable if and only if $\left\{J_{1}, J_{2}, J_{3}\right\}$ has the 3-endpoint property if and only if $\left\{J_{1}, J_{2}, J_{3}\right\}$ is decomposition saturated.

Proof. Suppose $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}\right\}$ is an allowable collection of arcs in G. According to our orientation convention, assume $J_{1}<J_{2}<J_{3}$. Let a_{i} be the least point of J_{i} for $i=1,2,3$. These are the desired three points. Consider two of them, say a_{1} and a_{3}. By Lemma 2(b), there are two arcs in G with endpoints a_{1} and a_{3}. One contains both J_{1} and J_{2}, and the other contains J_{3}. Analogously, arcs in G with endpoints among other pairs of a_{1}, a_{2}, and a_{3} contain members of \mathcal{J}.

The second implication follows from Observation 1.

We show, by way of contradiction, that if \mathcal{J} is decomposition saturated, then it is an allowable collection in G. Assume \mathcal{J} is decomposition saturated, but is not an allowable collection. Then we may suppose, without loss of generality, that the interior of J_{1} meets the interior of J_{2}. So, J_{1} and J_{2} overlap. Pick a point p in the interior of $J_{1} \cap J_{2}$, and a point $q \neq p$ in the interior of J_{3}. Let α and β be the closures of the two components of $S \backslash\{p, q\}$. Let A be the union of α and each component of $G \backslash S$ whose closure meets α. Let B be the union of β and each component of $G \backslash S$ whose closure meets β. Clearly, $A \cup B=G$, and no one of J_{1}, J_{2}, and J_{3} is contained in either A or B, a contradiction.

Remark 4. We note that if a collection of $\operatorname{arcs} \mathcal{J}$ in a graph G has the 3 -endpoint property, the three points exhibiting the property need not be unique. For example, in the first paragraph of the proof of Theorem $6, a_{1}$ and a_{2} could be chosen to be the endpoints of J_{1}, and a_{3} chosen to be the greatest point of J_{2}.

Example 1 shows that, in general, the three properties are not equivalent for collections of $n+2$ arcs in a graph with n independent cycles, even when all arcs are contained in unique cycles.

Example 1. The graph G shown in Figure 1 is a graph with two unique cycles and one branchpoint. Let $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ be the collection of four arcs shown in the figure. It is easy to check that \mathcal{J} is decomposition satuared, but is not an allowable collection, and does not have the 3 -endpoint property.

Removing J_{1} from the collection, we note that $\left\{J_{2}, J_{3}, J_{4}\right\}$ is allowable, and decomposition saturated, but does not have the 3 -endpoint property.

Figure 1. Non-equivalence of the three properties
4. Cases for which allowable collections of arcs are sufficient for the 3 -endpoint property. In this section, we establish many special-case results that have practical use, which we demonstrate in the examples in Section 5. All results, except for Theorems 7 and 10, involve only a small number of arcs in the allowable collections.

We begin the section with two questions.

Question 1. Let $n \geq 2$, let G be a graph having n independent cycles, and let \mathcal{J} be an allowable collection of arcs in G with $n+2$ members.
(a) Does \mathcal{J} have the 3 -endpoint property?
(b) Is \mathcal{J} decomposition saturated?

Question 2. Do parts (a) and (b) of Question 1 have affirmative answers if we assume that each cycle in G is unique?

By Observation 1, an affirmative answer to Question 1(a) provides an affirmative answer to Question 1(b). For graphs with no cycles, Theorem 5 gives us that an allowable collection of two arcs has the 3 -endpoint property. For graphs with one cycle, Corollary 3 in this section gives us that an allowable collection of three arcs has the 3endpoint property. Question 1(a) is natural based on these two cases.

We are unable to answer either Question 1(a) or 1(b), but we establish a number of useful partial results showing that if the arcs in an allowable collection \mathcal{J} are arranged in a nice way in a graph, then \mathcal{J} will have the 3 -endpoint property. In practice, these results can be more useful than general results that require locating a large allowable collection of arcs. By Theorems 3 and 4, all results that establish either the 3 -endpoint property or decomposably saturated
for an allowable collection of arcs will give indecomposability results for inverse limits on graphs where the bonding mappings are n-pass maps for appropriate allowable collections of arcs in a subsequence of factor spaces. Particularly, for a given inverse sequence on a single graph G and a single bonding mapping g, it is easy to spot if, for some $k \geq 1, g^{k}$ is an n-pass map on an allowable collection of n arcs. We simply find arcs in G that iterate under g to all of G, and check if a sufficient number of them, according to our theorems, have pairwise disjoint interiors, and pairwise have no arc connecting their interiors. This process is illustrated in the examples in Section 5. Furthermore, how to easily construct examples of indecomposable inverse limits on trees and graphs is made clear, respectively, from Corollaries 1 and 2 and from results in this section. The author suspects that using the multicoherence of a graph may lead to a positive answer to Question 2(b), although such an investigation was not pursued. See Section 12 of Chapter IV in [44] for a definition of multicoherence.

Theorem 7 gives a partial answer to Question 1(a).

Theorem 7. Let G be a graph with cyclomatic number $n \geq 0$, and let $\mathcal{J}=\left\{J_{1}, \ldots, J_{n+2}\right\}$ be an allowable collection of arcs such that, for $1 \leq i \leq n+2$, either J_{i} is a unique arc in G or J_{i} is contained in an edge of G. Then \mathcal{J} has the 3 -endpoint property.

Proof. We use induction on n. If G has cyclomatic number zero, then G has no cycles and the result follows from Theorem 5. Let G and \mathcal{J} satisfy the hypothesis for some $n \geq 1$, and assume the result holds for graphs with cyclomatic number less than n.

If two members of \mathcal{J} are unique arcs, then, by Theorem 5 , the result follows. So, some member of \mathcal{J} lies in an edge of a cycle S in G. Assume, without loss of generality, that J_{1} is contained in an edge of S. Let $G^{\prime}=G \backslash J_{1}^{\circ}$. Now, G^{\prime} is a connected graph that has one less edge than G, and has the same number of vertices as G. Hence, the cyclomatic number of G^{\prime} is $n-1$. Since $\mathcal{J}^{\prime}=\left\{J_{2}, \ldots, J_{n+2}\right\}$ is an allowable collection of arcs in G^{\prime}, where each member of \mathcal{J}^{\prime} is either a unique arc or is contained in an edge of G^{\prime}, we have by inductive assumption, that \mathcal{J}^{\prime} has the 3 -endpoint property for G^{\prime}. Let a, b, and c be the endpoints satisfying the 3 -endpoint property for \mathcal{J}^{\prime} in G^{\prime}. We show that a, b, and c also satisfy the 3 -endpoint property for \mathcal{J} in G.

Let L be an arc in G with endpoints in $\{a, b, c\}$. Assume, without loss of generality, that a and b are the endpoints of L. If $L \subset G^{\prime}$, then L contains J_{i} for some $2 \leq i \leq n+2$. Otherwise, since J_{1} lies in an edge of S, no vertex of G is an interior point of J_{1}, and it follows that $J_{1} \subset L$. We have that \mathcal{J} has the 3 -endpooint property for G.

The proofs of Lemmas 4 and 5 are straightforward by simply picking the three appropriate endpoints.

Lemma 4. Let G be a graph, and let $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}\right\}$ be an allowable collection of arcs in G. If there exists an edge of G that contains all three members of \mathcal{J}, then \mathcal{J} has the 3 -endpoint property in G.

Lemma 5. Let G be a graph, and let $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ be an allowable collection of arcs in G. If there exist two edges E_{1} and E_{2} of G where $J_{1} \cup J_{2} \subset E_{1}$ and $J_{3} \cup J_{4} \subset E_{2}$, then \mathcal{J} has the 3-endpoint property in G.

Theorem 8. Let S be a unique cycle in a graph G. Suppose $\mathcal{J}=$ $\left\{J_{1}, J_{2}, J_{3}\right\}$ is an allowable collection of three arcs in G, where for $i \in\{1,2,3\}$, if K is a subarc of J_{i} that does not overlap S, then K is a unique arc in G. Then \mathcal{J} has the 3-endpoint property in G.

Proof. Suppose, for some $i \in\{1,2,3\}, J_{i} \subset S$, and if p is a branchpoint of G in the interior of J_{i} and C is the closure of a component of $G \backslash S$ that meets S at p, then for $k \in\{1,2,3\}$ with $k \neq i$, we have that $J_{k} \not \subset C$. We begin by showing that if this supposition is satisfied, then \mathcal{J} has the 3 -endpoint property in G. The proof of this implication is similar to the proof of the inductive step in Theorem 7.

To see this, we assume, without loss of generality, that J_{1} has the property in the previous paragraph. Let u and w be the endpoints of J_{1}. By Lemma 2(b), there are exactly two arcs in G with endpoints u and w; one is J_{1}, and the other is the closure of the complement of J_{1} in S, which we denote by J_{1}^{\prime}. Let G^{\prime} be the component of $G \backslash J_{1}^{\circ}$ that contains J_{1}^{\prime}. We note that the closure of $G \backslash G^{\prime}$ is connected, contains J_{1}, and meets G^{\prime} at the two point set $\{u, w\}$. By our supposition concerning J_{1}, it follows that $J_{2} \cup J_{3} \subset G^{\prime}$. Furthermore, we note that J_{1}^{\prime} is a unique arc in G^{\prime}. So, by hypothesis and Lemma 1(c), it follows that J_{2} and J_{3} are unique arcs in G^{\prime}. Hence, G^{\prime} and the collection $\left\{J_{2}, J_{3}\right\}$ satisfy
the conditions of Theorem 5 . So, choose points a, b, and c among the endpoints of J_{2} and J_{3} that satisfy the 3-endpoint property in G^{\prime}. We claim that a, b, and c also satisfy the 3 -endpoint property in G. Let L be an arc in G with endpoints in $\{a, b, c\}$. Assume, without loss of generality, that L has endpoints a and b. If $L \subset G^{\prime}$, then L contains one of J_{2} or J_{3}. Otherwise, $J_{1} \subset L$. So, \mathcal{J} has the 3 -endpoint property in G.

Hence, we will assume hereafter that the statement (*) below holds.
$(*)$ If, for some $i \in\{1,2,3\}, J_{i} \subset S$, then there exist $k \in\{1,2,3\}$ with $k \neq i$ and an interior point p of J_{i} such that either p is an endpoint of J_{k} or each arc in G joining J_{k} to S meets S at p. We will say that J_{k} is linked to S through $p \in J_{i}^{\circ}$.

If J_{i} doesn't overlap S for some $i \in\{1,2,3\}$, then, by hypothesis, J_{i} is a unique arc in G. So, either $J_{i} \cap S=\emptyset$, or $J_{i} \cap S$ is degenerate since S is a unique cycle. If two members of \mathcal{J}, say J_{i} and J_{k}, don't overlap S, then, by Theorem $5,\left\{J_{i}, J_{k}\right\}$ has the 3 -endpoint property. So, \mathcal{J} has the 3 -endpoint property. Hence, we assume throughout that two members of \mathcal{J}, say J_{2} and J_{3}, overlap S. By Lemma 2 (c), $J_{2} \cap S$ and $J_{3} \cap S$ are arcs.

We consider two cases with various subcases.
Case 1. Suppose J_{1} doesn't overlap S. So, J_{1} is a unique arc in G. We will assume that J_{1} is disjoint from S throughout this case, and let [u, v] be an arc in G joining J_{1} to S. If J_{1} meets S at a point, the proof of this case is similar, but easier.
(a) Suppose u is an interior point of J_{1}. By Lemma 3, for $i \in\{2,3\}$, either J_{i} has an endpoint in $[u, v]$ or $J_{i} \subset S \backslash\{v\}$. Furthermore, if J_{i} has an endpoint in $[u, v]$, then $J_{i} \cap[u, v]$ is either $\{v\}$ or a subarc of $[u, v]$ containing $\{v\}$. This follows from Lemma 2, and from the assumption about subarcs of members of \mathcal{J} in the hypothesis.
(i) Suppose both J_{2} and J_{3} have an endpoint in $[u, v]$. Since J_{2} and J_{3} do not overlap, v must be an endpoint of one of J_{2} or J_{3}. We assume, without loss of generality, that v is an endpoint of J_{3}, and that v is the largest point of the arc $J_{3} \cap S$ in the orientation on S. It follows that v must be the least point of the $\operatorname{arc} J_{2} \cap S$. It also follows that either J_{2} is a subset of $S \cup[u, v]$ or J_{3} is a subset of S, for otherwise either the interiors of J_{2} and J_{3} meet or an arc in S joins the interiors of J_{2} and
J_{3}. If $J_{3} \subset S$, by $(*)$, one of J_{1} or J_{2} is linked to J_{3} at an interior point of J_{3}, which is a contradiction. So, we have that $J_{2} \subset S \cup[u, v]$, and $J_{3} \not \subset S$. Let u^{\prime} be the endpoint of J_{2} in $[u, v]$. We assume that $u^{\prime} \neq v$, for otherwise, $J_{2} \subset S$, and again we violate $(*)$. The subarc $\left[u^{\prime}, v\right]$ of J_{2} is unique, and $J_{2} \cap[u, v]=\left[u^{\prime}, v\right]$.

Let c be the endpoint of J_{3} that is not in S, and let a and b be the endpoints of J_{1}. We show that a, b, and c satisfy the 3 -endpoint property for \mathcal{J}. Since J_{1} is a unique arc, the only arc in G with endpoints a and b is J_{1}. Suppose L is an arc in G with endpoints a and c. Let $[c, w]$ be the subarc of J_{3} joining c to S. By hypothesis, $[c, w]$ is a unique arc. Suppose $L \cap S$ is empty. Let $\left[c, c^{\prime}\right]$ be a subarc of L joining c to $[a, u] \cup[u, v]$. Then $\left[c, c^{\prime}\right] \cup\left[c^{\prime}, v\right]$ is an arc, distinct from $[c, w]$ joining c to the unique cycle S at the point $v \neq w$. This contradicts Lemma 2(a). So, L must meet S. Let L_{1} be the subarc of L joining c to S. By Lemma 2(a), L_{1} meets S at w. Since $[c, w]$ is a unique arc, $L_{1}=[c, w]$. Let L_{2} be the subarc of L joining a to S. Now, $[a, u] \cup[u, v]$ is an arc joining a to S that contains the unique subarcs $[a, u]$ and $\left[u^{\prime}, v\right]$. By Lemma 1(b), $[a, u] \cup\left[u^{\prime}, v\right] \subset L_{2}$. By Lemma 2(b), there are two arcs in G with endpoints v and w. So, L contains one of them. That is, L contains either $J_{2} \cap S$ or $J_{3} \cap S$. Hence, either $J_{3}=[c, w] \cup\left(J_{3} \cap S\right) \subset L$ or $J_{2}=\left[u^{\prime}, v\right] \cup\left(J_{2} \cap S\right) \subset L$. An analogous argument shows that each arc in G from c to b contains one of J_{2} or J_{3}.
(ii) Suppose one of J_{2} or J_{3} does not have an endpoint in $[u, v]$. We assume, without loss of generality, that J_{3} does not have an endpoint in $[u, v]$. By Lemma $3, J_{3} \subset S \backslash\{v\}$, and by $(*)$, either J_{1} or J_{2} is linked to S through some interior point of J_{3}. However, we show that this is not the case. We see that J_{1} is not linked to S through an interior point of J_{3} since J_{1} is disjoint from S, and the arc $[u, v]$ from J_{1} to S meets S only at v, which is not an interior point of J_{3}. To see that J_{2} is not linked to S through an interior point of J_{3}, we recall that J_{2} overlaps S and S is a unique cycle. Hence, neither endpoint of J_{2} is in the interior of J_{3}. Similarly, there is no arc joining J_{2} to S. So, we have that neither J_{1} nor J_{2} is linked to S through an interior point of J_{3}, a contradiction.
(b) Suppose u is an endpoint of J_{1}. Let a be the other endpoint of J_{1}. Let p_{1} and p_{2}, and q_{1} and q_{2} be, respectively, the least and largest points of the arcs $J_{2} \cap S$ and $J_{3} \cap S$. We assume that $p_{1}<p_{2} \leq q_{1}<q_{2} \leq p_{1}$
in the orientation on S.
(i) Suppose one of J_{2} or J_{3} is a subset of S, say $J_{2} \subset S$. Then, v must be an interior point of J_{2}, for otherwise, by $(*)$, one of J_{1} or J_{3} is linked to J_{2} through an interior point of J_{2} other than v, which is a contradiction. Similarly, if $J_{3} \subset S, v$ must be an interior point of J_{3}, which would be a contradiction. So, we have that J_{3} is not a subset of S. So, one of q_{1} or q_{2} is an interior point of J_{3}. If both q_{1} and q_{2} are interior points of J_{3}, let b and c be the endpoints of J_{3}. We choose the points a, b, and c for the 3 -endpoint property. If L is an arc in G with endpoints a and b, then since J_{1} is unique in G and lies in the arc $J_{1} \cup[u, v]$, by Lemma $1(\mathrm{c}), J_{1}$ is a subset of L. The situation is analogous for an arc in G with endpoints a and c. Assume $b<q_{1}<q_{2}<c$ in the order on J_{3} from b to c. The $\operatorname{arcs}\left[b, q_{1}\right] \subset J_{3}$ and $\left[q_{2}, c\right] \subset J_{3}$ are unique arcs in G by hypothesis. Since S is a unique cycle, by Lemma 2(b), there are two arcs in G with endpoints q_{1} and q_{2} and their union is S. It follows that there are exactly two arcs in G with endpoints b and c. One is J_{3}, and the other contains J_{2}. So, the proof is complete when both q_{1} and q_{2} are interior points of J_{3}. We suppose, without loss of generality, that q_{1} is an interior point of J_{3} and q_{2} is an endpoint. Let d be the other endpoint of J_{3} that is not in S. We pick the points a, q_{2}, and d. An analysis similar to the one in the previous paragraph gives that these three points satisfy the 3 -endpoint property.
(ii) Suppose neither J_{2} nor J_{3} is a subset of S. So, one of p_{1} or p_{2} is an interior point of J_{2}. We assume, without loss of generality, that p_{1} is an interior point of J_{2}. It follows that q_{2} must be an endpoint of J_{3}, for otherwise, either J_{2} and J_{3} have an interior point, namely $p_{1}=q_{2}$, in common, or an arc in S joining J_{2} to J_{3} meets each arc in its interior, a contradiction. Hence, q_{1} must be an interior point of J_{3}, and p_{2} must be an endpoint of J_{2}. Let b and c be, respectively, the endpoints of J_{2} and J_{3} that are not in S. The points a, b, and c are the desired endpoints for the 3 -endpoint property. Checking arcs between each pair is similar to previous cases.

Case 2. Suppose J_{1} also overlaps S. By Lemma 2(c), for each $i=1,2,3, J_{i} \cap S$ is an arc. We let $J_{1} \cap S=\left[p_{1}, p_{2}\right], J_{2} \cap S=\left[q_{1}, q_{2}\right]$, and $J_{3} \cap S=\left[t_{1}, t_{2}\right]$. We also assume, without loss of generality, that $p_{1}<p_{2} \leq q_{1}<q_{2} \leq t_{1}<t_{2} \leq p_{1}$ in the orientation on S. By ($*$), no J_{i} is a subset of S. Assume, without loss of generality, that p_{2} is an
interior point of J_{1}. As we saw in the previous case, it follows that q_{1} is an endpoint of J_{2}, making q_{2} an interior point of J_{2}, t_{1} an endpoint of J_{3}, t_{2} an interior point of J_{3}, and p_{1} an endpoint of J_{1}. Let a, b, and c be, respectively, the endpoints of J_{1}, J_{2}, and J_{3} that are in $G \backslash S$. The points a, b, and c are the desired endpoints, and checking arcs in G with endpoints in $\{a, b, c\}$ is similar to previous cases.

Corollary 3. Suppose G is a graph with one cycle, and $\mathcal{J}=$ $\left\{J_{1}, J_{2}, J_{3}\right\}$ is an allowable collection of three arcs in G. Then \mathcal{J} has the 3 -endpoint property.

Proof. Since G has exactly one cycle S, by definition, S is a unique cycle in G. So, the arcs J_{i}, for $i=1,2,3$, satisfy the hypothesis of Theorem 8. Hence, \mathcal{J} has the 3 -endpoint property.

A graph homeomorphic to the figure $\bigcirc \bigcirc$ is commonly called a figure-eight. A graph homeomorphic to the figure \ominus is commonly called a theta-curve. We call a graph homeomorphic to the figure $\bigcirc-\bigcirc$ a dumbbell.

Corollary 4. If G is either a figure-eight, a theta-curve, or a dumbbell, and $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ is an allowable collection of arcs in G, then \mathcal{J} has the 3 -endpoint property in G.

Proof. We prove the result for G a dumbbell. Proofs for a figureeight and a theta-curve are similar.

Let $G=S_{1} \cup\left[v_{1}, v_{2}\right] \cup S_{2}$ be a dumbbell, where S_{1} and S_{2} are unique cycles in G, and $\left[v_{1}, v_{2}\right]$ is the unique arc in G joining S_{1} to S_{2}. We assume no two members of \mathcal{J} are subsets of $\left[v_{1}, v_{2}\right]$, for otherwise the result follows from Theorem 5. For $i \in\{1,2\}, v_{i}$ is an interior point of at most one member of \mathcal{J}. It follows that some member of \mathcal{J} is a subset of one of S_{1} or S_{2}, and does not contain either v_{1} or v_{2} in its interior. Assume, without loss of generality, that $J_{1} \subset S_{1}$, and $v_{1} \notin J_{1}^{\circ}$. Removing the interior of J_{1} from G, we obtain a subgraph G^{\prime} of G for which $\mathcal{J}^{\prime}=\left\{J_{2}, J_{3}, J_{4}\right\}$ and G^{\prime} satisfy the conditions of Corollary 3. Hence, \mathcal{J}^{\prime} has the 3 -endpoint property in G^{\prime}. Analogously as in the proof of Theorem 7, and as in the proof of $(*)$ in Theorem 8 , the three endpoints that satisfy the 3 -endpoint property for \mathcal{J}^{\prime} in G^{\prime} also satisfy the 3 -endpoint property for \mathcal{J} in G.

Theorem 9. Let G be a graph containing unique cycles S_{1} and S_{2}. Suppose $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ is an allowable collection of four arcs in G where J_{1} and J_{2} overlap S_{1}, and J_{3} and J_{4} overlap S_{2}. Suppose also that, for $i=1,2(i=3,4)$, if K is a subarc of J_{i} that does not overlap $S_{1}\left(S_{2}\right)$, then K is a unique arc in G. Then \mathcal{J} has the 3-endpoint property.

Proof. It is clear from the hypothesis that no J_{i} overlaps both S_{1} and S_{2}. Either $S_{1} \cap S_{2}$ is degenerate, or $S_{1} \cap S_{2}$ is empty. We assume the latter. The proof for the former case is similar.

By Lemma 2(a), there exist vertices $v_{1} \in S_{1}$ and $v_{2} \in S_{2}$ such that each arc in G joining S_{1} and S_{2} has endpoints v_{1} and v_{2}. Let $\left[v_{1}, v_{2}\right]$ denote an arc in G joining S_{1} to S_{2}.

Suppose, for some $1 \leq i \leq 4, J_{i}$ is a subset of one of S_{1} or S_{2}, and neither v_{1} nor v_{2} is an interior point of J_{i}. We assume, without loss of generality, that $J_{1} \subset S_{1}$, and v_{1} is not an interior point of J_{1}. Let u and w be the endpoints of J_{1}. Let C be the component of $G \backslash\{u, w\}$ that contains J_{1}°, and note that, for $i \neq 1, J_{i} \cap C=\emptyset$, for otherwise, S_{1} is not a unique cycle. As in the proof of $(*)$ in Theorem 8 , we have that $\mathcal{J}^{\prime}=\left\{J_{2}, J_{3}, J_{4}\right\}$ is an allowable collection of arcs in the graph $G^{\prime}=G \backslash C$, and the hypothesis of Theorem 8 is satisfied for \mathcal{J}^{\prime} in G^{\prime}. Hence, \mathcal{J}^{\prime} has the 3 -endpoint property in G^{\prime}. Analogously, as in the proof of $(*)$ in Theorem 8 , it follows that \mathcal{J} has the 3 -endpoint property in G, and the proof is complete. So, hereafter, we assume that
$(* *)$ if J_{i} is a subset of S_{1} or S_{2} for some $1 \leq i \leq 4$, then J_{i} contains, respectively, v_{1} or v_{2} in its interior.

Case 1. Suppose, for some $1 \leq i \leq 4, J_{i}$ is a subset of one of S_{1} or S_{2}. We assume that $J_{1} \subset S_{1}$. It follows from $(* *)$ that $v_{1} \in J_{1}^{\circ}$, and that $J_{2} \not \subset S_{1}$. By Lemma $3, J_{3}$ and J_{4} must have an endpoint in $\left[v_{1}, v_{2}\right.$]. So, v_{2} must be an endpoint of one of J_{3} or J_{4}. Assume v_{2} is an endpoint of J_{3}. By Lemma 2(c), we let $J_{3} \cap S_{2}=\left[v_{2}, p\right]$, and $J_{4} \cap S_{2}=\left[v_{2}, q\right]$. We assume, without loss of generality, that $v_{2}<p \leq q<v_{2}$ in the orientation of S_{2}. By $(* *), p$ must be an interior point of J_{3}. Let c be the endpoint of J_{3} that is not in S_{2}. It follows that q must be an endpoint of J_{4}, for otherwise, either J_{3} and J_{4} have an interior point
in common or an arc in S_{2} joins interior points of J_{3} and J_{4}. By $(* *)$, v_{2} is an interior point of J_{4}. Since J_{4} has an endpoint in $\left[v_{1} . v_{2}\right]$, as we saw in the first paragraph of Case 1(a) in Theorem 8, it follows that $J_{4} \subset\left[v_{1}, v_{2}\right] \cup S_{2}$. Letting v be the endpoint of J_{4} in $\left[v_{1} . v_{2}\right]$, we have that $J_{4}=\left[v, v_{2}\right] \cup\left[v_{2}, q\right]$ with $\left[v, v_{2}\right] \subset\left[v_{1}, v_{2}\right]$. Let b_{1} and b_{2} be the endpoints of J_{2}. Recalling that $J_{2} \not \subset S_{1}$, at least one of b_{1} and b_{2} is not in S_{1}; possibly both endpoints are not in S_{1}. In either case, the points b_{1}, b_{2}, and c satisfy the 3 -endpoint property for \mathcal{J} in G. Verifying this is similar to proofs given in previous results.

Case 2. Suppose no J_{i} is a subset of either S_{1} or S_{2}. Let $J_{1} \cap S_{1}=$ $\left[p_{1}, p_{2}\right], J_{2} \cap S_{1}=\left[q_{1}, q_{2}\right], J_{3} \cap S_{2}=\left[r_{1}, r_{2}\right]$, and $J_{4} \cap S_{2}=\left[t_{1}, t_{2}\right]$. We assume, without loss of generality, that $p_{1}<p_{2} \leq v_{1} \leq q_{1}<q_{2} \leq p_{1}$ in the orientation on S_{1}, and that $v_{2} \leq r_{1}<r_{2} \leq t_{1}<t_{2} \leq v_{2}$ in the orientation on S_{2}. By supposition in this case, one of p_{1} and p_{2} is an interior point of J_{1}. Assume p_{2} is an interior point of J_{1}. As we have previously seen, it follows that q_{1} is an endpoint of J_{2}, q_{2} is an interior point of J_{2}, and p_{1} is an endpoint of J_{1}. Analogously, for the arcs J_{3} and J_{4} overlapping S_{2}, we assume, without loss of generality, that r_{1} is an interior point of J_{3}, r_{2} is an endpoint of J_{3}, t_{1} is an interior point of J_{4}, and t_{2} is an endpoint of J_{4}.
(a) Suppose one of p_{2} or q_{1} is not v_{1}. We assume that $q_{1} \neq v_{1}$. Then the union of $\left[v_{1}, v_{2}\right]$ and one of the two arcs in S_{1} from v_{1} to q_{2} is an arc joining S_{2} to an interior point of J_{2}. Thus, by Lemma 3, both J_{3} and J_{4} have an endpoint in $\left[v_{1}, v_{2}\right]$. We have that $v_{2}=t_{2}$ is an endpoint of $J_{4}, r_{1}=v_{2}$ is an interior point of J_{3}, and J_{3} has an endpoint in $\left[v_{1}, v_{2}\right]$. This arrangement of J_{3} and J_{4} relative to S_{2} is analogous to that in Case 1. Let a and b be, respectively, the endpoints of J_{1} and J_{2} that are not in S_{1}, and let c be the endpoint of J_{4} that is not in S_{2}. We see that a, b, and c satisfy the 3 -endpoint property for \mathcal{J} in G.
(b) Suppose $p_{2}=v_{1}$ and $q_{1}=v_{1}$. An analogous argument as in (a) for one of r_{1} and t_{2} not being equal to v_{2} would complete the proof. So, we also suppose $r_{1}=v_{2}$ and $t_{2}=v_{2}$. Recall that $p_{2}=v_{1}$ and $r_{1}=v_{2}$ are, respectively, interior points of J_{1} and J_{3}. Let b and d be, respectively, the endpoints of J_{1} and J_{3} that are not in S_{1} and S_{2}. By hypothesis, the subarcs $\left[v_{2}, b\right]$ and $\left[v_{2}, d\right]$ of, respectively, J_{1} and J_{3} are unique arcs in G. So, one must be a subset of $\left[v_{1}, v_{2}\right]$, for otherwise, either J_{1} and J_{3} have an interior point in common, or an arc in $\left[v_{1}, v_{2}\right]$ joins the interiors of J_{1} and J_{3}. So, we assume $\left[v_{2}, d\right] \subset\left[v_{1}, v_{2}\right]$. Again,
the arrangement of J_{3} and J_{4} relative to S_{2} is analogous to that in Case 1 and Case 2(a). Letting a be the endpoint of J_{2} not in S_{1}, and c be the endpoint of J_{4} not in S_{2}, the points a, b, and c satisfy the 3-endpoint property for \mathcal{J} in G.

Theorem 10. Let G be a graph containing unique cycles S_{1}, \ldots, S_{n}. Suppose $\mathcal{J}=\left\{J_{1}, \ldots, J_{n+2}\right\}$ is an allowable collection of arcs in G, where for each $1 \leq i \leq n+2$, either J_{i} is a unique arc in G, or there exist $1 \leq k_{i} \leq n$ such that J_{i} overlaps $S_{k_{i}}$, and if K is a subarc of J_{i} that does not overlap $S_{k_{i}}$, then K is a unique arc in G. Then \mathcal{J} has the 3-endpoint property.

Proof. It is clear from the hypothesis that no J_{i} overlaps two members of S_{1}, \ldots, S_{n}. If two members of \mathcal{J} are unique arcs, the result follows from Theorem 5 . We consider two cases.

Case 1. Suppose exactly one member of \mathcal{J}, say J_{1}, is a unique arc in G. So, each member of $\mathcal{J}^{\prime}=\left\{J_{2}, \ldots, J_{n+2}\right\}$ overlaps exactly one of S_{1}, \ldots, S_{n}. Since \mathcal{J}^{\prime} has $n+1$ members, it follows that there exist two members of \mathcal{J}^{\prime} that overlap the same S_{i}. We assume, without loss of generality, that J_{2} and J_{3} overlap S_{1}. It follows from Theorem 8 that $\left\{J_{1}, J_{2}, J_{3}\right\}$ has the 3 -endpoint property in G. Hence, \mathcal{J} has the 3 -endpoint property in G.

Case 2. Suppose no member of \mathcal{J} is a unique arc in G. If three members of \mathcal{J} overlap the same S_{i}, then the result follows from Theorem 8. So, assuming otherwise, it follows that there exist four members of \mathcal{J}, say J_{1}, J_{2}, J_{3}, and J_{4}, where J_{1} and J_{2} overlap S_{i} for some $1 \leq i \leq n$, and J_{3} and J_{4} overlap S_{k} for some $k \neq i$. By Theorem $9,\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ has the 3-endpoint property in G. Hence, \mathcal{J} has the 3 -endpoint property in G.
5. Examples. The examples in this section have previously appeared in the literature. It may be helpful to the reader to have copies of the references for these examples. Most of the examples have been shown to be indecomposable by proving that they are arc continua that are not tree-like and not a simple closed curve, or not circle-like and not an arc, which gives additional useful information about the continua, but can be nontrivial to prove. As mentioned in the introduction, an arc continuum that is not an arc or a simple closed curve is indecompos-
able. We take another look at these examples to illustrate how easily indecomposability can be determined by looking at properties of the bonding mappings.

Since a weaker version of Theorem 5, for inverse limits on trees, appears in [30], examples of indecomposable tree-like continua that illustrate the use of Theorem 5 can be found in [30], see Remark 28, and Examples 40 and 41 in Section 6 of [30].

Example 2 (J.H. Case and R.E. Chamberlin [10]), (P.D. Roberson [38]). The Case-Chamberlin example is quite well-known. It is an inverse limit on the figure-eight graph with a single bonding mapping f. A definition of the bonding mapping is given in [10, Section 5, page 78].

Roberson defines an uncountable collection of Case-Chamberlin type continua with no model in [38]. Each of her examples is also an inverse limit on the figure-eight graph X, where each bonding mapping either is the Case-Chamberlin mapping f, or is a homeomorphism $r: X \rightarrow X$ composed with f. Roberson labels the two cycles in X, which are unit circles, by a and b, and provides a definition of f that nicely reveals the action of f on the two cycles, see [38, page 171]. We refer to this definition in the discussion that follows.

For $t \in[0,1], t a(t b)$ represents the point of cycle a (cycle b) that is $2 \pi t$ along cycle a (cycle b) moving away from the branchpoint of the figure-eight. So, we easily see from the first line of the definition of f that the first quarter of cycle a is stretched by f onto cycle a, with the branchpoint being fixed.

We let $J_{1}=\left\{t a \left\lvert\, 0 \leq t \leq \frac{1}{2}\right.\right\}, J_{2}=\left\{t a \left\lvert\, \frac{1}{2} \leq t \leq 1\right.\right\}$, $J_{3}=\left\{t b \left\lvert\, \frac{3}{8} \leq t \leq \frac{5}{8}\right.\right\}$, and $J_{4}=\left\{t b \left\lvert\, \frac{5}{8} \leq t \leq \frac{7}{8}\right.\right\}$. Clearly, $\mathcal{J}=\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ is an allowable collection of arcs in X. Lines 1, 2, and 3 of the definition of f give that $f\left(J_{1}\right)=X$, lines 4 and 5 give that $f\left(J_{2}\right)=X$, lines 10,11 , and 12 give that $f\left(J_{3}\right)=X$, and lines 13 and 14 give that $f\left(J_{4}\right)=X$. So, f is a four-pass map for the collection \mathcal{J}. It follows, from Corollary 4 and Theorem 4, that the inverse limit space is indecomposable. Theorem 7 or Theorem 9 could also be applied in lieu of Corollary 4.

For the other examples in the Roberson collection, the bonding mappings are also four-pass maps on \mathcal{J} since r is a homeomorphism on
X. So, analogously, each example in the collection is indecomposable.
Example 3. (D. Sherling [40]) The example in [40] is an inverse limit on a graph with four unique cycles, and a single bonding mapping. The example X has the cone=hyperspace property, is not circle-like, is not weakly chainable, and admits a natural mapping onto Ingram's simple triod-like arc continuum with positive span. The factor space S is shown in Figure 2 with labeled edges and vertices. In Figure 2 on page 1035 of [40], Sherling gives a schematic indication of the bonding mapping g, which is sufficient for our purposes.

It is easy to check, using Figure 2 in [40], that a composition of g with itself, four times or less, maps each edge Z_{i} onto S. For example, one can check that $g^{2}\left(Z_{1}\right)=S=g^{2}\left(Z_{2}\right)$. Hence, g^{4} is a four-pass map on the allowable collection of $\operatorname{arcs} \mathcal{J}=\left\{Z_{1}, \ldots, Z_{8}\right\}$. Choosing any subcollection of \mathcal{J} with six arcs, and applying Theorems 7 and 4, gives us that X is indecomposable.

In this example, however, the subcollection $\mathcal{J}^{\prime}=\left\{Z_{1}, Z_{2}, Z_{7}, Z_{8}\right\}$ of \mathcal{J} will suffice for the 3 -endpoint property. Either observe that \mathcal{J}^{\prime} satisfies Theorem 9 , or observe directly that the vertices B, J, and C satisfy the 3 -endpoint property for \mathcal{J}^{\prime}.

Figure 2. The graph S with four unique cycles and eight edges.
Example 4 (Ingram [19]). In Lemma 4.1 of [19], Ingram provides four methods of constructing an inverse limit on a graph with a single bonding mapping f, where f is a two-pass map on two non-overlapping arcs, but the inverse limit space is not indecomposable. It should be noted that, in each case where the factor space is a tree, the two arcs do not form an allowable collection of arcs. In the cases that involve a graph with a cycle, the two arcs may form an allowable collection of
arcs, but there is no third arc to add to the collection on which f will be a three-pass map.

We wish to slightly modify an example of the type in Lemma 4.1(2) of [19] to get an indecomposable example that illustrates our results. Let G be the graph shown in Figure 3, with vertices p, q, and u. We define a new mapping $g: G \rightarrow G$ that only differs from Ingram's mapping f on the unique arc in G, which we label by γ. Ingram's mapping f is the identity mapping on γ. Subarcs $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$, and γ are labeled in Figure 1(a), and Figures 1(a) and 1(b) give schematic indications of how g maps the five subarcs into G. Our labeling is consistent with that of Ingram. We note that the endpoints of the four subarcs of the cycle in G are fixed by g. Let $\alpha=\alpha_{1} \cup \alpha_{2}$, and $\beta=\beta_{1} \cup \beta_{2}$.

Ingram notes that $\lim _{\longleftarrow}\{G, f\}$ is decomposable, even though f is a two-pass map on α and β. Since f is the identity mapping on γ there is no third arc, not overlapping α or β, that is mapped onto G by a power of f.

We note, however, that g is also a two-pass map on α and β since $g=f$ on these two arcs, and $g^{2}(\gamma)=G$. Also, $\mathcal{J}=\{\alpha, \beta, \gamma\}$ is an allowable collection of three arcs in G. So, g^{2} is a three-pass map on \mathcal{J}. It follows from Corollary 3 and Theorem 4 that $\underset{\longleftarrow}{\lim }\{G, g\}$ is indecomposable.

Figure 3. (a) A schematic indication of $g(\alpha)$. (b) A schematic indication of $g(\beta)$ and $g(\gamma)$.

The author acknowledges suggestions of the referee that improved the clarity and presentation of definitions and results in the paper.

REFERENCES

1. M. Barge, Horseshoe maps and inverse limits, Pacific J. Math. 121(1986), \#1, 29-39.
2. M. Barge and J. Martin, Chaos, periodicity, and snake-like continua, Proceedings Amer. Math. Soc. 289(1985), 355-365.
3. M. Barge and B. Diamond, The dynamics of continuous maps on finite graphs through inverse limits, Transactions Amer. Math. Soc. 344(1994), 773-790.
4. H. Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 539-548.
5. D. Bellamy, A tree-like continuum without the fixed point property, Houston J. Math. 6 (1979), 1-14.
6. C. Berge, Graphs, North-Holland, Amersterdam, London, New York, Tokyo, 1991.
7. R.H. Bing, The elusive fixed point property, Amer. Math. Monthly 76(1969), 119-132.
8. L.E.J. Brouwer, Zur analysis situs, Math. Ann. 68(1910), 422-434.
9. R. F. Brown, On some old problems of fixed point theory, Rocky Mountain J. Math. 4(1974), 3-14.
10. J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10(1960), \#1, 73-84.
11. D. van Dantzig, Ueber topologisch homogene Kontinua, Fund. Math. 15(1930), 102-125.
12. D. van Dantzig, Studien over topologische algebra, PhD Thesis (1931), University of Groningen, Netherlands.
13. O.H. Hamilton, Fixed points under transformations of continua which are not connected im Kleinen, Trans. Amer. Math. Soc. 44(1938), \#1, 18-24.
14. A. van Heemert, De R_{n}-adische Voortbrenging van Algemeen-Topologische Ruimten met Toepassingen op de Constructie van Niet Splitsbare Continua, PhD Thesis (1943), University of Groningen, Netherlands.
15. R. Hernández-Gutiérrez and L.C. Hoehn, A fixed-point-free map of a treelike continuum induced by valence maps on trees, Colloq. Math. 151(2018), \#2, 305-316.
16. S. E. Holte, Generalized horseshoe maps and inverse limits, Pacific J. Math. 156(1992), \#2, 297-305.
17. W.T. Ingram, Inverse Limits, Aportaciones Matemáticas 15(2000), Sociedad Matemática Mexicana.
18. W.T. Ingram, Interesting dynamics and inverse limits in a family of onedimensional maps, Amer. Math. Monthly 111(2004), \#3, 198-215.
19. W.T. Ingram, Two-pass maps and indecomposability of inverse limits of graphs, Topology Proc. 29(2005), \#1, 175-183.
20. W.T. Ingram, A brief historical view of continuum theory, Topology Appl. 153(2006), 1530-1539.
21. F.L. Jones, A history and development of indecomposable continua, Dissertation (1971), Michigan State University, East Lansing, Michigan.
22. J. Kennedy, How indecomposable continua arise in dynamical systems, Papers on General Topology and Applications, 7 th Summer Conference at the University of Wisconsin, Annals of the New York Academy of Sciences 704(1993), 180-201.
23. J. Kennedy, A brief history of indecomposable continua, Continua with the Houston Problem Book, Lecture Notes in Pure and Applied Math 170, Marcel Dekker 1995, New York, 103-126.
24. V. Klee and S. Wagon, Old and new unsolved problems in plane geometry and number theory, Dolciani Math. Expositions 11(1991), Mathematical Association of America.
25. J. Krazinkiewicz and P. Minc, Approximations of continua from within, Bull. Acad. Polon. Sér. Sci. Math. Astronom. Phys. 25(1977), \#3, 283-289.
26. K. Kuratowski, A half century of Polish mathematics, Remembrances and Reflections, International Series in Pure and Applied Mathematics 108(1980), Polish Scientific Publishers, Warszawa, Poland.
27. D.P. Kuykendall, Irreducibility and indecomposability in inverse limits, Fund. Math. 40(1973), \#3, 265-270.
28. W. Lewis, The pseudo-arc, Bol. Soc. Mat. Méxicana (3)5 (1999), \#1, 25-77.
29. W. Lewis, Characterizations of the pseudo-arc, Topology Proc. 48(2016), 4963.
30. M. M. Marsh, Compacta admitting retractions close to the identity map, Rocky Mountain J. Math. 51(2021), \#4, 1349-1368.
31. V. Martínez-de-la-Vega, J. M.Martínez-Montejano, and C. Mouron, Mixing homeomorphisms and indecomposibility, Topology Appl. 254(2019), 50-58.
32. S. Mazurkiewicz, Un théoreme sur les continus indécomposables, Fund. Math. 1(1920), 35-39.
33. C. Mouron, Expansive homeomorphisms and indecomposable subcontinua, Topology Appl. 126(2002), \#1-2, 13-28.
34. C. Mouron, Positive entropy homeomorphisms of chainable continua and indecomposable subcontinua, Proceedings Amer. Math. Soc. 139(2011), \#8, 27832791.
35. C. Mouron, The topology of continua that are approximated by disjoint subcontinua, Topology Appl. 156(2009), 558-576.
36. S. B. Nadler, Jr., Continuum Theory, Pure and Applied Math, Marcel Dekker, New York, 1992.
37. P. D. Roberson, Weak confluence and mappings to one-dimensional polyhe$d r a$, Topology Proc. 8(1983), 195-212.
38. P. D. Roberson, An uncountable collection of Case-Chamberlin type continua with no model, Glas. Mat. Ser. 23(1988), \#1, 169-192.
39. J. Segal, Mapping norms and indecomposablity, J. London Math. Soc. $39(1964), 598-602$.
40. D. D. Sherling, Concerning the cone=hyperspace property, Canadian J. Math. XXXV(1983), \#6, 1030-1048.
41. K. Sieklucki, On a class of acyclic continua with the fixed point property, Fund. Math. 63(1968), 257-278.
42. S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topoloy-A Symposium in Honor of Marsden Morse, ed. S. Cairns, Princeton Univ. Press, Princeton (1965), 63-80.
43. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73(1967), 747-817.
44. G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., Vol. 28, Providence, R. I., 1963.
45. R.F. Williams, One-dimensional nonwandering sets, Topology 6(1967), 473487.
46. X. Ye, Generalized horseshoes and indecomposability for one-dimensional continua, Ukranian Math. J. 50(1998), \#8, 1192-1200.

Department of Mathematics \& Statistics, California State University, Sacramento, Sacramento, CA 95819-6051
Email address: mmarsh@csus.edu

[^0]: 1991 AMS Mathematics subject classification. 54F15, 54A20, 54G15, 54F50.
 Keywords and phrases. inverse limits on graphs, indecomposable, allowable collections of arcs.

 Received by the editors $10,25,2022$.

