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INVERSE PROBLEM FOR ABSTRACT DIFFERENTIAL EQUATION WITH
NON-INSTANTANEOUS IMPULSES

SANTOSH RUHIL AND MUSLIM MALIK

ABSTRACT. In this manuscript, we consider an inverse problem for first order abstract non-instantaneous
impulsive differential equation in a Banach space and identifies the parameter using an overdetermined
condition on a mild solution. A direct approach using Volterra integral equations for sufficiently regular
data and an optimal control approach for less regular data are the main techniques to find the result.
Under certain hypotheses, the characterization of the limit of the sequence of approximate solutions
demonstrates that it is a solution to the original inverse problem. At last, an example is provided in the
support of our results.

1. Introduction

In a dynamical mathematical model describing a natural process, the problem of parameter identification
using the given set of observations is of particular interest in an extensive range of sciences, biology,
medicine, engineering, economy and environmental sciences. Its mathematical approach may be
challenging and the problem is not one of a particular estimation technique. Of course, the ideal
solution is to obtain an identification formula for the parameter, but generally, this can be done
under some strong hypotheses. These types of problems are called inverse problems. Because they
provide information about parameters that are difficult to study directly, inverse problems are among
the most important mathematical problems in science and mathematics. Communication theory,
system identification, acoustics, optics, astronomy, radar, medical imaging, remote sensing, computer
vision [1, 2], signal processing, oceanography, natural language processing, machine learning [3],
geophysics, nondestructive testing and many more fields all use them. See [4–7] for the core theory of
inverse problems.

Many evolutionary systems, such as shocks, harvesting, and natural disasters, are prone to rapid
changes in their dynamics. These phenomena are caused by short-term deviations from continuous and
smooth dynamics, insignificant to the evolution’s lifetime. Non-instantaneous impulses are defined
as abrupt time changes that remain over time intervals. The theory of non-instantaneous impulsive
differential equations was firstly introduced Hernadez & O’Regan [8]. The study of non-instantaneous
impulsive differential equations is crucial because it has many applications, including the theory of
stage-by-stage rocket combustion, preserving hemodynamical equilibrium, etc. The entry of insulin
into the bloodstream, an abrupt change and the subsequent absorption, which is a slow process since it
remains active for a certain period of time, is a well-known use of noninstantaneous impulses. The
theory of impulsive differential equations has found a wide range of practical applications in realistic
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mathematical modeling. Modeling of impulsive problems in population dynamics, physics, biological
systems, ecology, biotechnology, and other fields has benefited. For more detail, one can see [9–15].

An area of mathematics involved discovering control for a dynamical system over a period of time
to optimize an objective function [16]. The optimal control approach is essential in a wide range
of mathematical applications. In a time-optimal control problem, we investigate a control function
that steers or transfers the position from a primary state to a specific destination state in the shortest
time achievable. Optimal control is applied in various fields, including science, operations research,
and engineering. Electric bulk power systems, aeronautical engineering, chemical process control,
crystal growth, quantum systems theory, reactor control and vascular surgery are among the specialties
studied. [17–22] have more recent works on optimal control.

Abstract differential equations are an important branch of mathematics that deals with the study
of differential equations in the abstract space. These equations play a critical role in many areas of
science and engineering, including physics, economics, biology, and control theory, to name a few.
Abstract differential equations are an essential tool for modeling complex systems, unifying different
fields of study, developing control strategies, and developing numerical methods for solving differential
equations. For more detail, we refer [23, 24] and refrences therein.

A large class of identification problems for linear evolution equations of first-order in the hyperbolic
and parabolic cases and of second-order has been studied in papersby Angelo Favini and co-authors
[25, 26]. Recently, a particular attention has been given to impulsive differential equations because
differential equations with noninstantaneous impulsive moments are the most effective at describing
the evolutionary process of several mathematical models whose motions depend on rapid changes in
their states (noninstantaneous impulsive differential equations). Fadi Awawdeh has solved an abstract
second order inverse problem [27], in which he has used the Perturbation method to find out the
solution. Next, V. Barbu and G. Marinoschi [28] have discussed the possibility of solving the first-order
linear inverse problem in two situations, one is when data is regular, and the other is for irregular
data. S. Ruhil and M. Malik [30] have solved the inverse problem for the Atangana-Baleanu fractional
differential equation by two approaches based on the regularity and irregularity of data.

As far as we know, the inverse problem for abstract differential equations with impulsive conditions
has yet to be solved, and no solutions have been reported in the existing literature. This indicates
the need for further research and exploration of new methodologies to address this challenging
problem. Solving the inverse problem with non-instantaneous impulsive conditions is crucial for
enabling accurate modeling, prediction, control, and diagnosis of complex systems in a wide range of
applications. Therefore, motivated by the preceding information and to fill this gap, in this paper, we
shall discuss two approaches to solve the inverse problem for the first order abstract noninstantaneous
impulsive differential equation in a Banach space X . The First one is a direct approach in which we will
use the C0 semigroup theory and Volterra integral equations of the second kind. Another is an optimal
control approach in which the characterization of the limit of the sequence of approximate solutions
demonstrates that it is a solution to the original inverse problem under some specific hypotheses.

Let A : D(A) ⊂ X → X be a densely defined linear operator with a nonempty resolvent set ρ(A)
and generates a C0-semigroup on a Banach space X , u : [0,b]→ R be a function and ϕ be assigned as
piecewise continuous linear functional on X . Let 0 = ξ0 < θ1 ≤ ξ1 < θ2 ≤ ξ2 < · · · ≤ ξm−1 < θm ≤
ξm < θm+1 = b < ∞, and I0 = [0,θ1],Jk = (θk,ξk], Ik = (ξk,θk+1];k = 1,2, ...,m. We pose the inverse
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problem of finding a pair (u,ν), where u is control and ν is solution for following impulsive problem

(1.1)


ν ′(θ) = Aν(θ)+u(θ)ζ (θ); θ ∈ Ik, k = 0,1,2, ...,m,

ν(θ) = gk(θ ,ν(θ
−
k )); θ ∈ Jk, k = 1,2, ...,m,

ν(0) = ν0

with overdetermined condition

ϕ(ν(θ)) = C(θ) =

{
hk(θ); θ ∈ Ik, k = 0,1,2....m,

0; θ ∈ Jk, k = 1,2......m,
(1.2)

where ν(θ) ∈ X is the state variable, ζ ∈C(
⋃m

k=0 Ik;X), gk : Jk×X → X ; k = 1,2, ...m are given con-
tinuous functions and satisfy Lipschitz condition in second variable on Jk×X for k = 1,2, ...m and hk ∈
C (Ik;R) ;k = 0,1,2, .....m. The general assumptions, besides the fact that A is a generator of a C0-
semigroup on the Banach space X , are:

(i) ν0 ∈ X ,
(ii) ζ ∈ L2(0,b;X),

(iii) C ∈ L2(0,b;R).
This paper addresses the reconstruction of u and consequently of ν , as a solution to the inverse

problem (1.1)-(1.2), using the observation (1.2). Compared with the aforementioned work, the novelties
of this paper are listed as below:

• To the best of the author’s knowledge, this is the first attempt to deal with the inverse problem
for abstract differential equation with non-instantaneous impulsive conditions.
• Also, for the first time, an inverse problem for abstract differential equation with impulsive

conditions has been solved using the optimal control approach.
• We examine the unique solution of considered inverse problem by using the C0 semigroup

theory, optimal control theory and Volterra integral equation of second kind.

The rest of this paper is organized as follows. In Section 2, we give some important definitions and
lemma related to our manuscript. In Section 3, the first result is to solve this problem in an exact form
using Volterra integral equations of the second kind, under stronger conditions, is discussed. For more
relaxed hypotheses, including also ϕ(ζ (θ)) = 0 on an interval [0,b], we shall introduce an optimal
control approach providing an sequence of the approximating solutions to (1.1)-(1.2). The sequence of
these solutions will tend to the solution to (1.1)-(1.2) if this exists in this case. These will be detailed in
Section 4. Finally, in Section 5, we have given an example of applying the inverse problem for the
first order abstract noninstantaneous impulsive differential equation, to demonstrate the validity and
accuracy of our results.

2. Preliminaries

In this section, we briefly describe some notations, fundamental definitions and important lemma
which are useful to prove the main results. C([0,b];X) denote the set of all continuous X valued
functions on [0,b] and L ([0,b];X) denote the set of all Lebesgue X valued integrable functions on
[0,b]. Also PC ([0,b];X) is set of all piecewise continuous functions from [0,b] to X which is defined
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as PC ([0,b];X) = {ν : [0,b]→ X ;ν ∈C([0,θ1]∪ (θk,ξk]∪ (ξk,θk+1];X) ∃ ν(θ−k ),ν(θ+
k ) ν(ξ−k ) and

ν(ξ+
k ) with ν(θ−k ) = ν(θk) and ν(ξ−k ) = ν(ξk);k = 1,2, ...,m}. Here ν(θ+

k ),ν(ξ+
k ) denotes the right

hand limit of the function ν at θk, ξk, respectively, and ν(θ−k ), ν(ξ−k ) denotes the left hand limit
of the function ν at θk, ξk, respectively. The space PC ([0,b];X) forms a Banach space with the
standard sup norm. Also, PC 1([0,b];X) is the set of all piecewise continuously differentiable
functions [0,b] to X which is defined as PC 1([0,b];X) = {ν : [0,b]→ X ;ν ∈C1([0,θ1]∪ (θk,ξk]∪
(ξk,θk+1];X) ∃ ν(θ−k ),ν(θ+

k )ν(ξ−k ),ν(ξ+
k ),ν ′(ξ+

k ),ν ′(ξ−k ),ν ′(θ+
k )and ν ′(θ−k ) with ν(θ−k )= ν(θk),

ν ′(θ−k ) = ν ′(θk),ν(ξ
−
k ) = ν(ξk) andν ′(ξ−k ) = ν ′(ξk);k = 1,2, ...,m}.

Definition 2.1. [29] Let A is the infinitesimal generator of a C0−semigroup {eAθ}θ≥0, ν0 ∈ X , ζ ∈
C (
⋃m

k=0 Ik;X) , and gk ∈C(Jk×X ;X), k = 1,2, ...,m and gk satisfies Lipschitz condition in the second
variable on (Jk×X) for k = 1,2, · · ·m. Then, the piecewise continuous function ν ∈PC ([0,b];X)
given by

ν(θ) =


eAθ ν0 +

∫
θ

0 eA(θ−ξ )ζ (ξ )u(ξ )dξ ; θ ∈ I0,

gk(θ ,ν(θ
−
k )); θ ∈ Jk, k = 1,2, ...,m,

eA(θ−ξk)gk(ξk,ν(ξ
−
k ))+

∫
θ

ξk
eA(θ−ξ )ζ (ξ )u(ξ )dξ ; θ ∈ Ik, k = 1,2, ...,m

(2.1)

is called the mild solution of (1.1) on [0,b].

Definition 2.2. Let u ∈PC ([0,b];R), ζ ∈C1 (
⋃m

k=0 Ik;X) and gk ∈C1(Jk×X ;X). A strong solution
to (1.1) is a function ν ∈PC 1 ([0,b];X)∩PC ([0,b];D(A)) which satisfies (1.1) almost everywhere,
for all θ ∈ [0,b].

Let us define an admissible control set Ua ⊂ L2[0,b] which is nonempty, bounded, closed and
convex:

Ua =
{

u ∈ L2[0,b] : u(θ) ∈ [ck,dk]⊂ R, a.e. θ ∈ Ik; k = 0,1,2, · · ·m
}
.

3. Direct approach

In this part, we use the Volterra integral equations of the second kind to discover the unique strong
solution to the inverse problem (1.1)-(1.2).

Theorem 3.1. Let us assume that

ν0 ∈ D(A),ζ ∈C1(
m⋃

k=0

Ik;X), gk ∈C1(Jk×X ;X); k = 1,2, · · ·m,(3.1)

ϕ(ζ (θ)) 6= 0 for all θ ∈ [0,b],(3.2)

C(θ) ∈PC 1 ([0,b];R)and ϕ
(
gk(θ ,ν(θ

−
k ))
)
= 0.(3.3)

Then, the unique solution of problem (1.1)-(1.2) is given by

(u,ν) ∈PC ([0,b];R)×PC 1 ([0,b];X)∩PC ([0,b];D(A)) .
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Proof. Since A is a generator of a C0-semigroup on X , so by using corrollary 2.2 (on page no. 114) and
corrollary 2.5 (on page no. 115) of [29], the problem (1.1) has a unique mild solution ν ∈PC ([0,b];X)
given by

ν(θ) =


eAθ ν0 +

∫
θ

0 eA(θ−ξ )ζ (ξ )u(ξ )dξ ; θ ∈ I0,

gk(θ ,ν(θ
−
k )); θ ∈ Jk, k = 1,2, ...,m,

eA(θ−ξk)gk(ξk,ν(ξ
−
k ))+

∫
θ

ξk
eA(θ−ξ )ζ (ξ )u(ξ )dξ ; θ ∈ Ik, k = 1,2, ...,m.

By (3.1) (using corrollary 2.10 on page no. 117 of [29]) this turns out to be a strong solution. Now,
applying ϕ on both side we have

ϕ(ν(θ)) =



ϕ(eAθ ν0)+
∫

θ

0 ϕ

(
eA(θ−ξ )ζ (ξ )u(ξ )

)
dξ ; θ ∈ I0,

ϕ
(
gk(θ ,ν(θ

−
k ))
)

; θ ∈ Jk, k = 1,2, ...,m,

ϕ

(
eA(θ−ξk)gk(ξk,ν(ξ

−
k ))
)
+
∫

θ

ξk
ϕ

(
eA(θ−ξ )ζ (ξ )u(ξ )

)
dξ ; θ ∈ Ik, k = 1,2, ...,m.

Now, we know that ϕ
(
gk(θ ,ν(θ

−
k ))
)
= 0 for θ ∈ Jk;k = 1,2, ....m. Hence,

ϕ(ν(θ)) =



ϕ(eAθ ν0)+
∫

θ

0 ϕ

(
eA(θ−ξ )ζ (ξ )

)
u(ξ )dξ ; θ ∈ I0,

0; θ ∈ Jk, k = 1,2, ...,m;

ϕ

(
eA(θ−ξk)gk(ξk,ν(ξ

−
k ))
)
+
∫

θ

ξk
ϕ

(
eA(θ−ξ )ζ (ξ )

)
u(ξ )dξ ;

θ ∈ Ik, k = 1,2, ...,m.

(3.4)

Denoting
G(θ ,ξ ) = ϕ

(
eA(θ−ξ )

ζ (ξ )
)

0≤ ξ ≤ θ ≤ θk; k = 0,1,2, ...m

and

Γu(θ) =



∫
θ

0 G(θ ,ξ )u(ξ )dξ ; θ ∈ I0,

0; θ ∈ Jk,k = 1,2,3, ....m,∫
θ

ξk
G(θ ,ξ )u(ξ )dξ ; θ ∈ Ik, k = 1,2,3, .....m.

We note that (θ ,ξ )→ G(θ ,ξ ) is differentiable on (
⋃m

k=0 Ik)× (
⋃m

k=0 Ik) . Now, recalling (1.2), we can
write (3.4) as

Γu(θ) =


h0(θ)−ϕ

(
eAθ ν0

)
; θ ∈ I0,

0; θ ∈ Jk, k = 1,2,3, .....m,

hk(θ)−ϕ

(
eA(θ−ξk)gk

(
ξk,ν(ξ

−
k )
))

; θ ∈ Ik, k = 1,2,3.....m.

(3.5)
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We note that R.H.S. of (3.5) is differentiable on
⋃m

k=0 Ik. These are the integral equations of the first
kind which can be reduced to a linear Volterra equations of second kind by a standard way. Namely, by
differentiating (3.5) with respect to θ we obtain

G(θ ,θ)u(θ)+
∫

θ

0 Gθ (θ ,ξ )u(ξ )dξ +ϕ
(
eAθ Aν0

)
= h

′
0(θ); θ ∈ I0,

G(θ ,θ)u(θ)+
∫

θ

ξk
Gθ (θ ,ξ )u(ξ )dξ +ϕ

(
eA(θ−ξk)Agk(ξk,ν(ξ

−
k ))
)
= h

′
k(θ);

θ ∈ Ik, k = 1,2, ...m,

0 = 0; θ ∈ Jk, k = 1,2, .....m.

Next writing

f (θ) =



[
h
′
0(θ)−ϕ

(
eAθ Aν0

)]
(G(θ ,θ))−1 ; θ ∈ I0,[

h
′
k(θ)−ϕ

(
eA(θ−ξk)Agk(ξk,ν(ξk)

−)
)]

(G(θ ,θ))−1; θ ∈ Ik, k = 1,2, · · ·m,

0; θ ∈ Jk, k = 1,2,3.....m,

and observing that G(θ ,θ) = ϕ(ζ (θ)) 6= 0 for all θ ∈ [0,b], we get

u(θ) =



∫
θ

0 K(θ ,ξ )u(ξ )dξ + f (θ); θ ∈ I0,∫
θ

ξk
K(θ ,ξ )u(ξ )dξ + f (θ); θ ∈ Ik, k = 1,2, · · ·m,

0; θ ∈ Jk, k = 1,2, ....m,

(3.6)

where

K(θ ,ξ ) =
Gθ (θ ,ξ )

G(θ ,θ)
, Gθ (θ ,ξ ) = ϕ

(
eA(θ−ξ )Aζ (ξ )

)
, 0≤ ξ ≤ θ ≤ θk; k = 0,1,2, ....m.

For piecewise continuity of u, we should choose u(θ) = 0 for all θ = θk and θ = ξk;k = 1,2,3...m.
Indeed, by (3.6) we have u(0) = 0 = f (0)

u(ξk) = 0 = f (ξk); k = 1,2,3, ....m.

It implies that
u(0) =

[
h
′
0(0)−ϕ (Aν0)

]
(ϕ(ζ (0)))−1 ;

u(ξk) =
[
h
′
k(ξk)−ϕ (Agk(ξk,ν(ξk)

−))
]
(ϕ(ζ (ξk)))

−1; k = 1,2, ....m.
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Hence, we have h
′
0(0) = ϕ(Aν0)

h
′
k(ξk) = ϕ

(
Agk(ξk,ν(ξ

−
k ))
)

; k = 1,2, ....m.

Under our hypothesis f ∈PC ([0,b];R) and so the system of volterra integral equations of second
kind (3.6) has a unique solution u ∈PC ([0,b];R), given by

u(θ) =


f (θ)+

∫
θ

0 K (θ ,ξ )u(ξ )dξ ; θ ∈ I0,

0; θ ∈ Jk, k = 1,2,3, ....m,

f (θ)+
∫

θ

ξk
K (θ ,ξ )u(ξ )dξ ; θ ∈ Ik, k = 1,2,3....m

(3.7)

with resolvent kernel

K (θ ,ξ ) =
∞

∑
j=0

K j(θ ,ξ ) for all ξ ,θ ∈
m⋃

k=0

Ik,

where

Kn(θ ,ξ ) =
∫

θ

ξ

K(θ ,τ)Kn−1(τ,ξ )dτ, K0(θ ,ξ ) = K(θ ,ξ ).

As also known, u(θ) can be iteratively obtained as

un+1(θ) =



∫
θ

0 K(θ ,ξ )un(ξ )dξ ; θ ∈ I0,

0; Jk, k = 1,2,3, ......m,∫
θ

ξk
K(θ ,ξ )un(ξ )dξ ; θ ∈ Ik, k = 1,2,3....m

(3.8)

and

u0(θ) = u(0).

The sequence un(θ)n≥1 converges strongly to u(θ), the solution to (3.6), as n→ ∞. By (2.1) it follows
that corrsponding solution ν(θ) is unique strong solution (u,ν), as claimed. �

4. An Optimal Control Approach

An alternative for solving problem inverse problem is to use an optimal control approach by considering
a minimization problem. Let ν be a solution of the system (1.1) corresponding to the control u ∈ Ua.
We assume that Ua 6= 0. Now, let us consider the optimal control problem as follows:

Problem 4.1. Find a piecewise continuous function û ∈PC ([0,b];R) such that
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J(û) = min
u∈PC ([0,b];R)


J(u) =



1
2
∫ θ1

0 [ϕ(ν(θ))−h0(θ)]
2dθ ; θ ∈ I0,

1
2
∫ ξk

θk
[ϕ(ν(θ))]2dθ ; θ ∈ Jk, k = 1,2, ....m,

1
2
∫ θk+1

ξk
[ϕ(ν(θ))−hk(θ)]

2dθ ; θ ∈ Ik,

k = 1,2, ....m


(4.1)

for all (u,ν) satisfying system (1.1).

Definition 4.1. If û is the optimal control for the problem (4.1) then a pair (û, ν̂) is called optimal pair
for equation (4.1), where ν̂ is the mild solution of the system (1.1) corresponding to û.

It is obvious that if system (1.1) has a unique solution, this turns out to be the unique solution to the
problem (4.1), but the converse assertion is not generally true. It is unclear if the problem (4.1) may
have a solution, especially if we do not assume that ϕ(ζ (θ)) 6= 0 for all θ ∈ [0,b]. To find the optimal
pair for the problem (4.1), we use an approximating control problem which provides an approximating
solution (ûλ , ν̂λ ) and to check if this could tend to the solution to the problem (4.1) if the latter has
one. In this approximating problem we shall require less regularity for the data than in the first case of
section (3). The hypotheses used in this part are (i), (ii), (iii) and X is a reflexive Banach space. We
stress that we do not require that ϕ(ζ (θ)) is nonzero.
Next, our approximating minimization problem can be stated as follows

Problem 4.2. Let λ be any non negative real number then find ûλ ∈ Ua such that

J(ûλ ) = min
u∈Ua


Jλ (u) =



1
2
∫ θ1

0 [ϕ(ν(θ))−h0(θ)]
2dθ +

λ

2
‖u‖2

L2(I0)
; θ ∈ I0,

1
2
∫ ξk

θk
[ϕ(ν(θ))]2dθ +

λ

2
‖u‖2

L2(Jk)
; θ ∈ Jk, k = 1,2, ....m

1
2
∫ θk+1

ξk
[ϕ(ν(θ))−hk(θ)]

2dθ +
λ

2
‖u‖2

L2(Ik)
; θ ∈ Ik, k = 1,2, ....m


subject to system (1.1).

Proposition 4.2. If ûλ minimizes the functional Jλ (u) and ν̂λ solve the system (1.1), then problem
(4.2) has a solution.

Proof. We assume that inf{Jλ (u); uλ ∈Ua}<∞. Now, we can see from the the definition of Jλ (u) that
inf{Jλ (u); uλ ∈ Ua} ≥ 0. We know by definition of infimum that there exist a sequence {uλn} ⊂ Ua,
which will minimize our functional. Suppose νλn is the solution of corrsponding to uλn , such that

Jλ (uλn)→ inf{Jλ (u) : u ∈ Ua} , as n→ ∞.

As Ua is bounded it is clear that the sequence uλn is bounded in L2 ([0,b];R) . We know that L2 ([0,b];R)
is reflexive Banach space, then there exist a subsequence, relabeled as uλn , and ûλ ∈ L2 ([0,b];R) such
that uλn converges weakly to ûλ in L2 ([0,b];R) . Since Ua is closed and convex, ûλ ∈ Ua. By remark
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(2.6) of [7], we find that ν is uniformaly bounded. Next, recall the proof in Lemma (2.11) of [7], we
know that ν is piecewise equicontinuous.

Since ν is uniformaly bounded and piecewise equicontinuous, we have νλn → ν̂λ in PC ([0,b];X) .
Then we have νλn(ξ

−
k )→ ν̂λ (ξ

−
k ) and νλn(θ

−
k )→ ν̂λ (θ

−
k ). Next we check that ν̂λ is the solution of

corrsponding ûλ . Since eA(θ−ξ ) is bounded, we have∫
θ

ξk

eA(θ−ξ )
ζ (ξ )

(
uλn(ξ )− ûλ (ξ )

)
dξ → 0, in PC ([0,b];X)

as uλn converges weakly to ûλ . Note that

νλn(θ) =


eAθ ν0 +

∫
θ

0 eA(θ−ξ )ζ (ξ )uλn(ξ )dξ ; θ ∈ I0,

gk(θ ,νλn(θ
−
k )); θ ∈ Jk, k = 1,2, ...,m,

eA(θ−ξk)gk(ξk,νλn(ξ
−
k ))+

∫
θ

ξk
eA(θ−ξ )ζ (ξ )uλn(ξ )dξ ; θ ∈ Ik, k = 1,2, ...,m.

Thus we obtain

ν̂λ (θ) =


eAθ ν0 +

∫
θ

0 eA(θ−ξ )ζ (ξ )ûλ (ξ )dξ ; θ ∈ I0,

gk(θ , ν̂λ (θ
−
k )); θ ∈ Jk, k = 1,2, ...,m,

eA(θ−ξk)gk(ξk, ν̂λ (ξ
−
k ))+

∫
θ

ξk
eA(θ−ξ )ζ (ξ )ûλ (ξ )dξ ; θ ∈ Ik, k = 1,2, ...,m.

Thus, ν̂λ follows to be a solution of (1.1). Next, since ϕ be a piecewise continuous functional on X
and hk ∈C (

⋃m
k=0 Ik;R) . Hence, we have

ϕ(νλn(θ))→ ϕ(ν̂λ (θ)), for all θ ∈ [0,b].

Thus (ûλ , ν̂λ ) is solution to the problem (1.1)-(1.2). Hence,

Jλ (uλn)→ inf{Jλ (u) : u ∈ Ua} as n→ ∞.

So, probelm (4.2) has a solution. �

Let us denote by 〈., .〉 the pairing between the set of all piecewise continuous linear functionals
PC L (X ;R) and X . And P[c,d]( f ) the projection of f on [c,d].

Proposition 4.3. Let (ûλ , ν̂λ ) be the solution to problem (4.2) and for σ > 0, let us denote

uσ

λ
= ûλ +σw, with w = v− ûλ and v ∈ Ua.

Also, assume that limσ→0
1
σ

[
gk(θ ,ν

uσ

(θ−k ))−gk(θ ,ν
û(θ−k ))

]
= 0. Then the first order necessary

conditions of optimality are

ûλ (θ) =


P[c0,d0]

( 1
λ
〈pλ (θ),ζ (θ)〉

)
; a.e. θ ∈ I0,

0; a.e. θ ∈ Jk, k = 1,2....m,

P[ck,dk]

( 1
λ
〈pλ (θ),ζ (θ)〉

)
; a.e θ ∈ Ik, k = 1,2, .....m,
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where pλ is the solution to the problem

− dpλ

dθ
=


A∗pλ (θ)−

(
ϕ(ν∗

λ
(θ))−h0(θ)

)
ϕ; θ ∈ I0,

0; θ ∈ Jk, k = 1,2,3.....m,

A∗pλ (θ)−
(
ϕ(ν∗

λ
(θ))−hk(θ)

)
ϕ; θ ∈ Ik, k = 1,2, · · ·m

(4.2)

with

Pλ (θk+1) = 0; k = 0,1,2, · · ·m

and A∗ is the adjoint of A.

Proof. Let (ûλ , ν̂λ ) be the solution to problem (4.2) and for σ > 0. Let us denote

uσ

λ
= ûλ +σw, with w = v− ûλ and v ∈ Ua.

Now, we consider an equation in variable Θ as follows:
dΘ(θ)

dθ
= AΘ(θ)+w(θ)ζ (θ); θ ∈ Ik, k = 0,1,2.....m,

Θ(θ) = 0; θ ∈ Jk, k = 1,2, ......m,

Θ(0) = 0

(4.3)

which has a unique mild solution Θ ∈PC ([0,b];X) . It is easily seen by (1.1) that the function

Θ = lim
σ→0

νuσ −ν û

σ

is the unique mild solution to the problem, where νuσ

and ν û are the solution to (1.1) corrsponding to
uσ and û, respectively. To prove it we take

Θ =



limσ→0
1
σ

[∫
θ

0 eA(θ−ξ )ζ (ξ )(uσ (ξ )− û(ξ ))dξ

]
; θ ∈ I0,

limσ→0
1
σ

[
gk(θ ,ν

uσ

(θ−k ))−gk(θ ,ν
û(θ−k ))

]
; θ ∈ Jk, k = 1,2,3, ....m,

limσ→0
1
σ

[∫
θ

ξk
eA(θ−ξ )ζ (ξ )(uσ (ξ )− û(ξ ))dξ

]
; θ ∈ Ik, k = 1,2,3, .....m.

By using uσ

λ
= ûλ +σw, we get

Θ =



limσ→0
1
σ

[∫
θ

0 eA(θ−ξ )ζ (ξ )(σw(ξ ))dξ

]
; θ ∈ I0,

0; θ ∈ Jk, k = 1,2,3, ....m,

limσ→0
1
σ

[∫
θ

ξk
eA(θ−ξ )ζ (ξ )(σw(ξ ))dξ

]
; θ ∈ Ik, k = 1,2,3, .....m.
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It implies

Θ =


eAθ Θ(0)+

∫
θ

0 eA(θ−ξ )ζ (ξ )w(ξ )dξ ; θ ∈ I0,

0; θ ∈ Jk, k = 1,2,3, ....m,

eAθ Θ(0)+
∫

θ

ξk
eA(θ−ξ )ζ (ξ )w(ξ )dξ ; θ ∈ Ik, k = 1,2,3, .....m.

Hence, it has been proved that

Θ = lim
σ→0

νuσ −ν û

σ
strongly in PC ([0,b];X)

is mild solution of the system (4.3). Now, since (ûλ , ν̂λ ) is optimal in problem (4.2), it satisfies

Jλ (ûλ )≤ Jλ (u
σ

λ
),

when by performing a short calculation, dividing by λ and passing to the limit as λ → 0, we get the
optimality relation

∫ θ1
0 (ϕ(ν̂λ )−h0(θ))ϕ(Θ(θ))dθ +λ

∫ θ1
0 ûλ (θ)w(θ)dθ ≥ 0; θ ∈ I0,

λ
∫ ξk

θk
ûλ (θ)w(θ)≥ 0; θ ∈ Jk, k = 1,2, .....m,∫ θk+1

ξk
(ϕ(ν̂λ )−hk(θ))ϕ(Θ(θ))dθ +λ

∫ θk+1
ξk

ûλ (θ)w(θ)dθ ≥ 0;

θ ∈ Ik, k = 1,2,3.....m.

(4.4)

We recall that, since X∗ (dual space of X) is reflexive, A∗ is generating a C0 semigroup on X∗ (see [29],
Pg. 41). Then, since ϕ be linear piecewise continuous functional on X , equation (4.2) has a unique
mild solution pλ ∈PC ([0,b];PC L (X ;R)) defined as

pλ (θ) =



∫ θ1
θ

eA∗(ξ−θ) (ϕ(ν̂λ (ξ ))−h0(ξ ))ϕ dξ ; θ ∈ I0,

0; θ ∈ Jk, θ ∈ Jk, k = 1,2, .....m,∫ θk+1
θ

eA∗(ξ−θ) (ϕ(ν̂λ (ξ ))−hk(ξ ))ϕ dξ ; θ ∈ Ik, k = 1,2, · · ·m.

Now, if pλ and Θ would be strong solutions, we could multiply (4.3) by pλ and integrate it as

∫ θ1
0

〈
pλ (θ),

dΘ(θ)
dt

〉
dθ =

∫ θ1
0 〈pλ (θ),AΘ(θ)〉dθ +

∫ θ1
0 〈pλ (θ),w(θ)ζ (θ)〉dθ ; θ ∈ I0,∫ ξk

θk
〈pλ (θ),Θ(θ)〉dθ = 0; θ ∈ Jk, k = 1,2,3.....m,∫ θk+1

ξk

〈
pλ (θ),

dΘ(θ)
dt

〉
dθ =

∫ θk+1
ξk
〈pλ (θ),AΘ(θ)〉dθ +

∫ θk+1
ξk
〈pλ (θ),w(θ)ζ (θ)〉dθ ;

θ ∈ Ik, k = 1,2, · · ·m.
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Now, using integartion by parts formula we get

〈pλ (θ1),Θ(θ1)〉−〈pλ (0),Θ(0)〉−
∫ θ1

0 〈(pλ )θ (θ),Θ(θ)〉dθ

=
∫ θ1

0 〈pλ (θ),AΘ(θ)〉dθ +
∫ θ1

0 〈pλ (θ),w(θ)ζ (θ)〉dθ ; θ ∈ I0,

0 = 0; θ ∈ Jk, k = 1,2, · · ·m,

〈pλ (θk+1),Θ(θk+1)〉−〈pλ (ξk),Θ(ξk)〉−
∫ θk+1

ξk
〈(pλ )θ (θ),Θ(θ)〉dθ

=
∫ θk+1

ξk
〈pλ (θ),AΘ(θ)〉dθ +

∫ θk+1
ξk
〈pλ (θ),w(θ)ζ (θ)〉dθ ;

θ ∈ Ik, k = 1,2, · · ·m.

Hence, in our case the data is not regular, the same result of integration by parts can actually follow by
passing to the limit in regularizing problems for θ and pλ , corrsponding to regular data.

Next, by some calculations taking into account the initial and final conditions in (4.2) and (4.3) we
get

−
∫ θ1

0 〈(pλ )θ (θ),Θ(θ)〉dθ =
∫ θ1

0 〈pλ (θ),Θ(θ)〉dθ +
∫ θ1

0 〈pλ (θ),w(θ)ζ (θ)〉dθ ; θ ∈ I0,

0 = 0; θ ∈ Jk, k = 1,2, · · ·m,

−
∫ θk+1

ξk
〈(pλ )θ (θ),Θ(θ)〉dθ =

∫ θk+1
ξk
〈pλ (θ),AΘ(θ)〉dθ +

∫ θk+1
ξk
〈pλ (θ),w(θ)ζ (θ)〉dθ ;

θ ∈ Ik, k = 1,2, · · ·m.

It implies

∫ θ1
0 〈−(pλ )θ (θ)−A∗pλ (θ),Θ(θ)〉dθ =

∫ θ1
0 〈pλ (θ),ζ (θ)〉w(θ)dθ ; θ ∈ I0,

0 = 0; θ ∈ Jk, k = 1,2, · · ·m,∫ θk+1
ξk
〈−(pλ )θ (θ)−A∗pλ (θ),Θ(θ)〉dθ =

∫ θk+1
ξk
〈pλ (θ),ζ (θ)〉w(θ)dθ ; θ ∈ Ik, k = 1,2, · · ·m.

Using (4.2) we get


−
∫ θ1

0

(
ϕ(ν∗

λ
(θ))−h0(θ)

)
ϕ(Θ(θ))dθ =

∫ θ1
0 〈pλ (θ),ζ (θ)〉w(θ)dθ ; θ ∈ I0,

0 = 0; θ ∈ Jk, k = 1,2, · · ·m,

−
∫ θk+1

ξk

(
ϕ(ν∗

λ
(θ))−h0(θ)

)
ϕ(Θ(θ))dθ =

∫ θk+1
ξk
〈pλ (θ),ζ (θ)〉w(θ)dθ ; θ ∈ Ik, k = 1,2, · · ·m.
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By comparision with (4.4), we find

∫ θ1
0 (−〈pλ (θ),ζ (θ)〉+λ ûλ (θ))w(θ)dθ ≥ 0; θ ∈ I0,

0 = 0; θ ∈ Jk, k = 1,2, · · ·m,∫ θk+1
ξk

(−〈pλ (θ),ζ (θ)〉+λ ûλ (θ))w(θ)dθ ≥ 0; θ ∈ Ik, k = 1,2, · · ·m.

When taking into account that w = v− ûλ , we get

∫ θ1
0 (−〈pλ (θ),ζ (θ)〉+λ ûλ (θ))(ûλ (θ)− v(θ))dθ ≥ 0; θ ∈ I0,

0 = 0; θ ∈ Jk, k = 1,2, · · ·m,∫ θk+1
ξk

(−〈pλ (θ),ζ (θ)〉+λ ûλ (θ))(ûλ (θ)− v(θ))dθ ≥ 0; θ ∈ Ik, k = 1,2, · · ·m.

Thus we deduce that

(〈pλ (θ),ζ (θ)〉−λ ûλ (θ)) ∈ N[ck,dk](ûλ (θ)) = ∂S[ck,dk](ûλ (θ)), a.e. for θ ∈ Ik; k = 0,1,2, ....m,

where N[ck,dk](ûλ (θ)) are normal cones to [ck,dk] at ûλ (θ) (for k = 0,1,2, ....m) and ∂S[ck,dk] : R→
2R is the subdifferential of the indicator function of [ck,dk] for k = 0,1,2,3, ....m [31]. Then,

1
λ
〈(pλ )(θ),ζ (θ)〉 ∈ ûλ (θ)+

1
λ

∂S[ck,dk](ûλ (θ)) a.e. θ ∈ Ik; k = 0,1,2, · · ·m.

It implies that

ûλ (θ) =


P[c0,d0]

( 1
λ
〈pλ (θ),ζ (θ)〉

)
; a.e. θ ∈ I0,

0; a.e. θ ∈ Jk, k = 1,2....m,

P[ck,dk]

( 1
λ
〈pλ (θ),ζ (θ)〉

)
; a.e θ ∈ Ik, k = 1,2, .....m.

�

Let

Q =
{

u ∈ L2(0,b);u(θ) ∈ [ck,dk]⊂ Ik; k = 0,1,2 · · ·m, a.e., (u,ν) solves (1.1)- (1.2)
}
.

We can easily see that Q is a close and convex set. Let us denote PQ(0) by the projection of 0 on Q.

Theorem 4.4. Let us assume that (ûλ , ν̂λ ) be a solution to the problem (4.2) and ν̂λn converges to ν∗

at the end points ξk of the impulsive intervals Jk i.e. ν̂λn(ξ
−
k )→ ν∗(ξ−k ) as λn→ 0, where λn is the

decreasing sequence of positive real numbers. If Q is non-empty then for λ → 0, we have ûλ and
ν̂λ converges to u∗ and ν∗ strongly in L2(0,b) and PC ([0,b];X), respectively, where (u∗,ν∗) is a
solution to the inverse problem (1.1)- (1.2). Moreover, u∗ = PQ(0).

Proof. Let (ûλ , ν̂λ ) be a solution to problem (4.2). By the optimality condition we have

Jλ (ûλ )≤ Jλ (u).
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It implies 

1
2
∫ θ1

0 [ϕ(ν̂λ (θ))−h0(θ)]
2 +

λ

2
‖ûλ‖2

L2(I0)
dθ ; θ ∈ I0,

1
2
∫ ξk

θk
[ϕ(ν̂λ (θ))]

2 +
λ

2
‖ûλ‖2

L2(Jk)
dθ ; θ ∈ Jk, k = 1,2, ....m,

1
2
∫ θk+1

ξk
[ϕ(ν̂λ (θ))−hk(θ)]

2 +
λ

2
‖ûλ‖2

L2(Ik)
dθ ; θ ∈ Ik, k = 1,2, ....m,

≤



1
2
∫ θ1

0 [ϕ(ν(θ))−h0(θ)]
2 +

λ

2
‖u‖2

L2(I0)
dθ ; θ ∈ I0,

1
2
∫ ξk

θk
[ϕ(ν(θ))]2 +

λ

2
‖u‖2

L2(Jk)
dθ ; θ ∈ Jk, k = 1,2, ....m

1
2
∫ θk+1

ξk
[ϕ(ν(θ))−hk(θ)]

2 +
λ

2
‖u‖2

L2(Ik)
dθ ; θ ∈ Ik, k = 1,2, ....m

for all u ∈ Ua. In particular, let us u = û and ν = ν̂ , where (û, ν̂) is any solution to (1.1)-(1.2), if Q is
non-empty. Hence, ϕ(ν̂(θ)) = C(θ), a.e. θ ∈ (0,b) and we have

‖ûλn‖2
L2(Ik)

≤ ‖û‖2
L2(Ik)

; k = 0,1,2, ......m

‖ûλn‖2
L2(Jk)

≤ ‖û‖2
L2(Jk)

; k = 1,2, ......m.
(4.5)

Hence, on a subsequence λn→ 0, we getûλn → u∗ weakly in L2(Ik); k = 0,1,2, .......m

ûλn → u∗ weakly in L2(Jk); k = 1,2, .......m.
(4.6)

Now we know that (ûλn , ν̂λn) is the solution of (1.1)-(1.2) so,

ν̂λn(θ) =


eAθ ν0 +

∫
θ

0 eA(θ−ξ )ζ (ξ )ûλn(ξ )dξ ; θ ∈ I0,

gk(θ , ν̂λn(θ
−
k )); θ ∈ Jk, k = 1,2, ...,m,

eA(θ−ξk)gk(ξk, ν̂λn(ξ
−
k ))+

∫
θ

ξk
eA(θ−ξ )ζ (ξ )ûλn(ξ )dξ ; θ ∈ Ik, k = 1,2, ...,m.

Let us define

ν
∗(θ) =


eAθ ν0 +

∫
θ

0 eA(θ−ξ )ζ (ξ )u∗(ξ )dξ ; θ ∈ I0,

gk(θ ,ν
∗(θ−k )); θ ∈ Jk, k = 1,2, ...,m,

eA(θ−ξk)gk(ξk,ν
∗(ξ−k ))+

∫
θ

ξk
eA(θ−ξ )ζ (ξ )u∗(ξ )dξ ; θ ∈ Ik, k = 1,2, ...,m.

Now, we consider
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ν̂λn(θ)−ν
∗(θ) =



∫
θ

0 eA(θ−ξ )ζ (ξ )(ûλn(ξ )−u∗(ξ ))dξ ; θ ∈ I0,

gk(θ , ν̂λn(θ
−
k ))−gk(θ ,ν

∗(θ−k )); θ ∈ Jk, k = 1,2, ...,m

eA(θ−ξk)(gk(ξk, ν̂λn(ξ
−
k ))−gk(ξk,ν

∗(ξ−k )))+
∫

θ

ξk
eA(θ−ξ )ζ (ξ )(ûλn(ξ )−u∗(ξ ))dξ ;

θ ∈ Ik, k = 1,2, ...,m.

We know that (ûλn(ξ )− u∗(ξ )) and (ν̂λn(ξ
−
k )− ν∗(ξ−k )) converges weakly to 0. Hence, by using

these facts and using gk are continuous functions from (Jk × X) to X , for k = 1,2, ...m, we can
easily observe that gk(ξk, ν̂λn(ξ

−
k ))−gk(ξk,ν

∗(ξ−k )) converges weakly to 0. It implies that (ν̂λn(θ)−
ν∗(θ)) converges weakly to 0 on Ik for k = 1,2, · · ·m. So, from here we can easily observe that
gk(θ , ν̂λn(θ

−
k ))−gk(θ ,ν

∗(θ−k )) converges weakly to 0, because Ik = (ξk,θk+1]. So, from here we can
say that ν̂λn → ν∗ weakly in L2(Ik); k = 0,1,2, .......m,

ν̂λn → ν∗ weakly in L2(Jk); k = 1,2, .......m

and so ν∗(θ) is a solution to (1.1). Moreover,

ϕ(ν̂λn)→ ϕ(ν∗) as λ → 0

and so (u∗,ν∗) is mild solution to (1.1)-(1.2), that is u∗ ∈ Q. On the other hand, by (4.5) we have
‖u∗‖L2(Ik) ≤ liminf

λn→0
‖ûλn‖L2(Ik) ≤ ‖û‖L2(Ik); k = 0,1,2.......m,

‖u∗‖L2(Jk)
≤ liminf

λn→0
‖ûλn‖L2(Jk)

≤ ‖û‖L2(Jk)
; k = 1,2.......m

for any û ∈ Q and so we deduce that the distance from u∗ to 0 is the smallest, that is

u∗ = PQ(0).(4.7)

Namely, u∗ = 0 if 0 ∈ Q and u∗ ∈ ∂Q if 0 does not belongs to Q. On the other hand, it follows thatûλn → u∗ strongly in L2(Ik); k = 0,1,2, .......m,

ûλn → u∗ strongly in L2(Jk); k = 1,2, .......m
(4.8)

because by (4.5), 
limsup

λn→0
‖ûλn‖L2(Ik) ≤ ‖û‖L2(Ik); k = 0,1,2.......m,

limsup
λn→0

‖ûλn‖L2(Jk)
≤ ‖û‖L2(Jk)

; k = 0,1,2.......m.

Finally, by uniqueness of u∗ is defined by (4.7) holds for all {λn} → 0 so ûλ converges to u∗ and it
implies ν̂λ converges to ν∗ too. �
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5. Example

Let X = L 2([0,π]) and I = [0,b] for 0 < b < ∞. We consider the following inverse problem for first
order linear evolution equation with non-instantaneous impulsive conditions:

(5.1)


∂

∂θ
w(θ ,ϖ) = ∂ 2

∂ϖ2 w(θ ,ϖ)+u(θ)ρ(θ ,ϖ), (θ ,ϖ) ∈ Ik× [0,π]; k = 0,1,2, ......N,

w(θ ,0) = w(θ ,π) = 0, θ ∈ I,
w(0,ϖ) = z(ϖ), ϖ ∈ [0,π],
w(θ ,ϖ) = Sin(kθ)

ekθ
w(θ−k ,ϖ), ϖ ∈ [0,π], θ ∈ Jk; k = 1,2, .....N

and the overdetermined condition is

∫
π/2

0
w(θ ,ϖ) dϖ =

{
αSin(θ), θ ∈ Ik, k = 0,1,2, ....N
0, θ ∈ Jk, k = 1,2, ....N,

(5.2)

where α > 0, and 0 = θ0 = ξ0 < θ1 ≤ ξ1 < ....... < θN < ξN < θN+1 = b are the fixed real numbers
and z ∈ X , ρ ∈C(([0,θ1]∪ (ξk,θk+1])× [0,π];R). We also assume that wλn(ξ

−
k ,ϖ)→ w∗(ξ−k ,ϖ) as

λn → 0, where λn is a decreasing sequence of positive real numbers. We denote I0 = [0,θ1], Ik =
(ξk,θk+1] and Jk = (θk,ξk] for k = 1,2,3, .....N. We define A : D(A)⊂ X → X is the operator given by
Aν = ν ′′ on

D(A) =
{

ν ∈ X : ν
′,ν ′′ ∈ X ,ν(0) = ν(π) = 0

}
,

where ν(θ) = w(θ , .), that is ν(θ)(ϖ) = w(θ ,ϖ). By Lemma (2.1) of [29] (see pg. 234), it is well
known that A is the infinitesimal generator of a C0− semigroup. The inverse problem (5.1)-(5.2) can
be reformulated as the following abstract differential equation in X :

(5.3)


ν ′(θ) = Aν(θ)+u(θ)ζ (θ); θ ∈ Ik, k = 0,1,2, ...,N,

ν(θ) = gk(θ ,ν(θ
−
k )); θ ∈ Jk, k = 1,2, ...,N,

ν(0) = 0

with overdetermined condition

ϕ(ν(θ)) =

{
αSin(θ); θ ∈ Ik, k = 0,1,2....N,

0; θ ∈ Jk, k = 1,2......N,
(5.4)

where functions gk(θ ,ν(θ
−
k ))(ϖ) = Sin(kθ)

ekθ
w(θ−k ,ϖ), ζ (θ)(ϖ) = ρ(θ ,(ϖ)) and

ϕ(ν(θ)) =
∫

π/2

0
ν(θ)(ϖ) dϖ .

Next, we say that (u,w) is the mild solution of (5.1)-(5.2) if (u,ν) is a mild solution of the associated
abstract problem (5.3)-(5.4).

Now, from here we can see that ν0 = 0∈D(A), ζ (θ)= ρ(θ , .)∈C([0,b];R), C(θ)∈PC ([0,b],R) and
ϕ(ζ (θ)) 6= 0 for all θ ∈ Ik; k = 0,1,2, ....N. Hence, by Theorem (3.1), the inverse problem with non-
instantaneous impulsive conditions (5.1)-(5.2) has unique solution.
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Now, if we do not assume that ϕ(ζ (θ)) 6= 0 for all θ ∈ Ik; k = 0,1,2, ....N. Then we will solve our
inverse problem (5.1)-(5.2) by an optimal control approach and for that our minimization problem is
defined as follows:
Find a piecewise continuous function û ∈PC ([0,b];R) such that

J(û) = min
u∈PC ([0,b];R)


J(u) =



1
2
∫ θ1

0 [
∫ π/2

0 w(θ ,ϖ) dϖ −αSin(θ)]2dθ ; θ ∈ I0,

1
2
∫ ξk

θk
[
∫ π/2

0 w(θ ,ϖ) dϖ ]2dθ ; θ ∈ Jk, k = 1,2, ....m,

1
2
∫ θk+1

ξk
[
∫ π/2

0 w(θ ,ϖ) dϖ −αSin(θ)]2dθ ; θ ∈ Ik,

k = 1,2, ....m


for all (u,ν) satisfying system (5.3) and applying the results of section (4) we will get our required
results.

6. Conclusion

In this work, we have considered the inverse problem for the first order abstract non-instantaneous
impulsive differential equation. The main aim of this work is the reconstruction of u and consequently
of ν , as a solution to the considered system. Here we have solved our problem in two situations, one
is for regular data and another is for irregular data. For regular data, we have solved the problem
using a direct approach in which we have used the C0 semigroup theory, Volterra integral equation for
second-kind and duality in functional analysis. Here we found a unique strong solution to the inverse
problem (1.1)-(1.2) under the condition that ϕ(ζ (θ)) 6= 0 for all θ ∈ [0,b]. Next, for irregular data and
more relaxed hypotheses, including also ϕ(ζ (θ)) = 0 for all θ ∈ [0,b], we shall introduce an optimal
control approach. First, we have defined an optimal control problem corresponding to our inverse
problem. Then by defining an approximate optimal control problem, we ensured that the solution
of the original optimal control exists, and then we found the optimal pair. Next, we show that the
characterization of the limit of the sequence of approximate solutions demonstrates that it is a solution
to the original inverse problem (1.1)-(1.2) under specific hypotheses. Note that by a direct approach,
we get the strong solution while, by the optimal control approach, we get the approximate solution to
the considered inverse problem. At last, we have given an example to demonstrate the validity and
accuracy of our results.
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