
Multiplicity of homoclinic solutions for fractional
discrete Laplacian equation

Huabo Zhang∗

School of Science, Nantong University, Nantong, Jiangsu, 226019
and

School of Mathematics and Information Science, Guangzhou University
Guangzhou, Guangdong, 510006, People’s Republic of China

Abstract: In this paper, the existence and multiplicity of homoclinic solutions
are considered for the following equation:

(−∆1)su(n) + V (n)u(n) = f(n, u(n)) for n ∈ Z,

where (−∆1)s denotes the fractional discrete Laplacian, the sequence V (n) is the
potential, and f(n, u) is a sequence of functions. Under some conditions on V
and f , the existence of ground state sign-changing homoclinic solution u1 and
ground state homoclinic solution u0 are obtained. Moreover, it is proved that the
energy of u1 is more than twice of the energy of u0 and so that u0 6= u1. We also
study the multiplicity of solutions in case of concave-convex nonlinearity. To the
best of our knowledge, this is the first attempt in the literature on the multiplic-
ity of homoclinic solutions for fractional discrete Schrödinger type equation. In
addition, we also can improve the known results of the corresponding continuous
nonlinear Schrödinger equation.

Keywords: Fractional discrete Laplacian, Sign-changing solution, Nonnega-
tive solution, Variational method.

1 Introduction and main results

In this paper, we are interested in the existence, energy property of the ground
state homoclinic solutions of the following discrete fractional Schrödinger type
equation:

(−∆1)su(n) + V (n)u(n) = f(n, u(n)) for n ∈ Z, (1.1)
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where (−∆1)s denotes the fractional discrete Laplacian as a special case of (−∆h)
s

with h = 1, which is defined by

(−∆h)
su(hn) =

1

Γ(−s)

∫ ∞
0

(et∆hu(hn)− u(hn))
dt

t1+s

and

(−∆h)u(nh) = − 1

h2
(u((n+ 1)h)− 2u(nh) + u((n− 1)h)).

In above formulation, v(t, nh) = et∆hu(nh) is the flow of the following semidiscrete
heat equation {

∂tv(t, hn) = ∆hv(t, hn), in Zh × (0,∞),

v(0, hn) = u(hn), on Zh,

where Zh = {hn : n ∈ Z}.
A solution u of the equation (1.1) is homoclinic if lim

n→±∞
u(n) = 0.

In our paper, the discrete fractional Laplacian operator (−∆1)s can be defined
in a simpler way as follows, for all n ∈ Z and 0 < s < 1,

(−∆1)su(n) =
∑

m∈Z,m 6=n

(u(n)− u(m))Ks(n−m),

where the discrete kernel Ks(m) is given by

Ks(m) =
4sΓ(1/2 + s)√
π|Γ(−s)|

· Γ(|m| − s)
Γ(|m|+ 1 + s)

,

for any m ∈ Z \ {0} and Ks(0) = 0. We recall that Ks(m) possesses a delay
property, that is, for 0 < s < 1, there exist two constants 0 < ds ≤ Ds such that
for any m ∈ Z \ {0}, one has

ds
|m|1+2s

≤ Ks(m) ≤ Ds

|m|1+2s
.

The delay property can be referred to Theorem 1.1 [8].
The Schrödinger type equation has extensive research background, for exam-

ples, it can be used to describe an electron in a planetary system or an electro-
magnetic field. For more mathematical and physical background on Schrödinger
type problems, we refer the readers to [2, 3, 4, 24] and the references therein.
After the pioneering work of Lions [14, 15], many interesting results have been
obtained for the Schrödinger type equation. Similar problems have been consid-
ered over the past few decades, see for examples, [1, 16, 23] and so on. Discrete
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nonlinear Schrödinger equations are very important nonlinear lattice models in
condensed matter physics and biology. A central problem for discrete nonlinear
Schrödinger equations is the existence of gap solitons ( see [5, 10, 11, 17, 19, 22]
and its references). The gap solitons in the discrete nonlinear Schrödinger equa-
tions is an isolated standing wave with time frequency in a continuous spectrum
gap, which decays to zero at infinity. The main methods to establish the existence
of gap solitons include centre manifold reduction and variational methods ( see
[22]). The gap solitons when optical pulses propagate in a saturated nonlinear
medium can be simulated by using the discrete nonlinear Schrödinger equations
with a unbounded potential ( see for examples, [7, 26, 28]). The −∆ +V form of
discrete Schrödinger operator is widely used in the description of random walks,
wave propagation in crystals, nonlinear integrable lattice theory and other fields,
for examples, we refer the readers to [25, 27] and its literature. On the other
hand, there is a fundamental problem of approximating the continuous fractional
Laplace problem in terms of discrete fractional Laplace problem. In recent years,
more and more attention has been paid to the fractional Laplace function and
its related problems. Fractional Laplace operators appear in the fields as diverse
as anomalous diffusion, finance and optimization. We refer the readers to the
references [20, 21], which studied a fractional version of the discrete time related
nonlinear Schrödinger equation, the low order nonlinear modes and their stability
of the system as discrete Laplacian fractional exponential function are numeri-
cally calculated.

Usually, one may attempt to solve this kind problem through either varia-
tional approaches or topological methods. The existence of nontrivial solutions
of nonlinear Schrödinger equation with a compulsive potential V (n) has been
studied in the literature. The unbounded potential V (n) guarantees a compact
embedding from some subspace of l2 to lp for p ≥ 2, which allows us to deal with
the lack of compactness of PS sequences. Zhang and Pankov in [31] have studied
the existence of nontrivial solutions for nonlinear Schrödinger equation with un-
bounded potential V (n), the authors adopted the Nehari manifold minimization
method. On the other hand, for discrete fractional case, there have been few
results. In [13], the authors considered the multiplicity of homoclinic solutions
for a discrete fractional difference equation:

(−∆h)
s
pu(hn)+V (n)|u(hn)|p−2u(hn) = λa(n)|u(hn)|q−2u(n)+b(n)|u(hn)|r−2u(hn),

(1.2)

where λ > 0 is a parameter, s ∈ (0, 1), 1 < q < p, a(n) ∈ l
p

p−q , b(n) ∈ l∞, (−∆h)
s
p

is the discrete fractional p-Laplacian operator with h > 0 and V (n) is the positive
potential, f(u(hn)) = λa(n)|u(hn)|q−2u(hn) + b(n)|u(hn)|r−2u(hn) is a nonlinear
function combining convex nonlinearity with concave nonlinearity. Under some
appropriate conditions, they showed that the problem possesses two nontrivial
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and nonnegative homoclinic solutions by using constraint variational method.
Motivated by the works of [8, 16], we first study the homoclinic solutions of

the following equation:

(−∆1)su(n) + V (n)u(n) = f(n, u(n)), n ∈ Z. (1.3)

For V , we have the following hypotheses:

(V ) V (n) ≥ V0 for all n ∈ Z with constant V0 > 0 and lim
|n|→∞

V (n) = +∞.

(V ′) V (n) ≥ 1 for all n ∈ Z and
∑
n∈Z

V −1(n) < +∞.

As for f(n, t) : Z× R→ R, we assume the following hypotheses:

(f1) f(n, t) is continuous differentiable with respect to t for every n ∈ Z; f(n, t)t >
0, t 6= 0;

(f2) For any ε > 0, there exists Cε > 0 such that f(n, t)t ≤ εt2+Cε|t|p, for all n ∈
Z and 2 < p < +∞;

(f3) lim
t→∞

F (n,t)
t2

= +∞, where F (n, t) =
∫ t

0
f(n, s)ds;

(f4) f(n,t)
|t| is a strictly increasing function of t ∈ R\{0} for every n ∈ Z.

For equation (1.3), we have give the following three results.

Theorem 1.1. Suppose that conditions (V ), and (f1)− (f4) are satisfied. Then
the equation (1.1) has a ground state sign-changing homoclinic solution u1.

Remark 1.1. As far as we know, Theorem 1.1 seems to be a new result of
fractional discrete Schrödinger equation in sign-changing solutions. We would
also like to point out that although the proof idea of Theorem 1.1 is inspired by
the reference [9], the proof of Theorem 1.1 is not trivial at all due to the appearance
of non-local discrete fractional Laplacian.

Theorem 1.2. Suppose the assumption of Theorem 1.1 holds, then we have

I(u1) > 2I(u0),

where u1 is the ground state sign-changing homoclinic solution obtained in The-
orem 1.1, u0 is the ground state homoclinic solution and the energy functional
I(∗) is defined in Section 2 (2.1).
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Theorem 1.2 indicates that the sign-changing solution is never the ground
state solution of the equation (1.1).

Theorem 1.3. Suppose that conditions (V ′), and (f1)- (f2) are satisfied. Fur-
thermore, we suppose that f(n, t) satisfies the following (AR) condition: there
exists µ > 2 and R > 0 such that

f(n, t)t ≥ µF (n, t) > 0, ∀ n ∈ Z, |t| ≥ R.

Then the equation (1.1) has a mountain pass type homoclinic solution u2.

It is not clear whether u2 6= ui for i = 0, 1. For the equation with the
presentation as in (1.2), we have the following result for the case of a(n) ≡ a,
b(n) ≡ b and p = 2 with a > 0, b > 0 which is not included in the consideration
of [13]. For simplicity we take a = 1 and b = 1 without loss of generality.

Theorem 1.4. Suppose that V (n) satisfies the condition (V ), then there exists
two nonnegative homoclinic solutions for the following equation

(−∆1)su(n) + V (n)u(n) = λ|u(n)|q−2u(n) + |u(n)|p−2u(n) for n ∈ Z, (1.4)

where λ ∈ (0,Λ0), Λ0 is a positive constant, 1 < q < 2 < p, p is defined in the
assumption (f2).

Remark 1.2. Comparing with [13], the term λ|u(n)|q−2u(n) is not a special case

of λa(n)|u(n)|q−2u(n), since in [13] it is required that a(n) ∈ l
p

p−q . On the other
hand, in view of b(n) ≡ b, we can take b(n) = 1, in the sense of a certain
re-scaling.

To the best of our knowledge, there is little theoretical research on the discrete
fractional Laplacian equations except [13, 30], which obtained the homoclinic
or positive solutions, our paper seems to be the first work which obtained the
sign-changing solutions for discrete fractional Laplacian equations by the sign-
changing Nehari set. We also mention that our results are new even for s = 1.

The rest of this paper proceeds as follows. Section 2 is devoted to the varia-
tional setting and we will prove four lemmas, which will be used in the proofs of
our main results. In Section 3, we prove Theorem 1.1-1.4.

2 The variational framework and preliminary

results

Firstly, we introduce the Banach space lp(Z) as follows:

lp(Z) := {u(n) : Z→ R,
∑
n∈Z

|u(n)|p < +∞},
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with the norm ‖u‖p = (
∑
n∈Z
|u(n)|p)1/p. l∞(Z) is the set {u(n) : Z→ R} such that

‖u‖∞ := supn∈Z |u(n)| < +∞. Then ,we have lp(Z) ⊂ lq(Z) when 1 ≤ p ≤ q ≤
+∞ ( see [12]).

Let

E := {u ∈ l2(Z)|‖u‖ < +∞},

where ‖ · ‖ is defined by ‖u‖ = (u, u)
1
2 with

(u, v) =
∑
n∈Z

∑
m∈Z

(u(n)− u(m))(v(n)− v(m))Ks(n−m) +
∑
n∈Z

V (n)u(n)v(n).

Then, E is a Hilbert space with the inner product (·, ·) and norm ‖ · ‖. In [30], it
was showed that under the condition (V),

‖u‖V =

(∑
n∈Z

V (n)|u(n)|2
) 1

2

is an equivalent norm of E. According to Lemma 2.1 in [30], we know if u ∈ l2(Z),
we have ∑

n∈Z

∑
m∈Z

|u(n)− u(m)|2Ks(n−m) ≤ C2‖u‖2 < +∞.

Then the embedding E ↪→ lq(Z)(2 ≤ q ≤ +∞) is continuous. That is, there exists
a constant Cq such that ‖u‖q ≤ Cq‖u‖ for any u ∈ E, q ∈ [2,+∞]. Furthermore,
according to Lemma 2.3 in [13], we know E ↪→ lp(Z) is compact for p ∈ [2,+∞)
under the assumption (V ).

The solution of Eq.(1.1) is the critical points of the functional given by

I(u) =
1

2

∑
n∈Z

∑
m∈Z

|u(n)− u(m)|2Ks(n−m) +
1

2

∑
n∈Z

V (n)|u(n)|2 −
∑
n∈Z

F (n, u(n)),

(2.1)

where F (n, u) =
∫ u

0
f(n, t)dt. Moreover, under our condition (f1), I belongs to

C1, so the Fréchet derivative of I is

〈I ′(u), v〉 =
∑
n∈Z

∑
m∈Z

(u(n)− u(m))(v(n)− v(m))Ks(n−m)

+
∑
n∈Z

V (n)u(n)v(n)−
∑
n∈Z

f(n, u(n))v(n), (2.2)

for any u, v ∈ E (see Lemma 2.5 and Lemma 2.6 in [30]). Furthermore, if u ∈ E
is a solution of (1.1) and u± 6= 0, then u is a sign-changing solution of (1.1),
where

u+(n) = max{u(n), 0}, u−(n) = min{u(n), 0}.
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Taking u(n) = u+(n) + u−(n), the sign-changing solution of Eq.(1.1), into (2.1)
and (2.2), we have

I(u) = I(u+(n)) + I(u−(n)) +
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m),

(2.3)

〈I ′(u), u+(n)〉 = 〈I ′(u+(n)), u+(n)〉

+
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m), (2.4)

and

〈I ′(u), u−(n)〉 = 〈I ′(u−(n)), u−(n)〉

+
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m). (2.5)

Now we define

M = {u(n) ∈ E, u±(n) 6= 0 and 〈I ′(u), u+(n)〉 = 〈I ′(u), u−(n)〉 = 0}.

We expect to prove that the functional I has a minimum point on M, and then
prove that this minimum point is a sign-changing solution of (1.1).

In the beginning, we show that the setM 6= ∅ and it has the Nehari manifold
structure.

Lemma 2.1. Assume that assumptions (V ) and (f1)-(f4) hold, if u ∈ E with
u± 6= 0, then there is a unique pair (θu, tu) of positive numbers such that θuu

+(n)+
tuu
−(n) ∈M.

Proof. Fix u = u+ + u− ∈ E with u± 6= 0. From (f2), for any ε > 0, there exists
Cε > 0 such that

f(n, u(n))u(n) ≤ ε|u(n)|2 + Cε|u(n)|p, for all n ∈ Z. (2.6)

Then, for any positive parameters θ, t, by using the embedding E ↪→ lq(Z)(2 ≤
q ≤ +∞), i.e. ‖u+(n)‖qq ≤ Cq‖u+(n)‖q, we have that

〈I ′(θu+ + tu−), θu+〉 ≥ θ2‖u+(n)‖2 − εθ2
∑
n∈Z

|u+(n)|2 − Cεθq
∑
n∈Z

|u+(n)|q

+ θt
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)

≥ θ2‖u+(n)‖2 − εC2θ
2‖u+(n)‖2 − CεCqθq‖u+(n)‖q

= (1− εC2)θ2‖u+(n)‖2 − CεCqθq‖u+(n)‖q.
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Choosing ε > 0 such that (1− εC2) > 0. Since q > 2, we have that 〈I ′(θu+ +
tu−), θu+〉 > 0, for θ small enough and all t > 0.

Similarly, we obtain that 〈I ′(θu+ + tu−), tu−〉 > 0, for t small enough and all
θ ≥ 0.

Therefore, there is a δ1 > 0 such that

〈I ′(δ1u
+ + tu−), δ1u

+〉 > 0, 〈I ′(θu+ + δ1u
−), δ1u

−〉 > 0, for all θ, t > 0. (2.7)

On the other hand, the assumptions (f1) - (f4) imply that

F (n, t) ≥ 0, n ∈ Z. (2.8)

By (f4), we have

f(n, t)t− 2F (n, t) > 0, for all n ∈ Z, t ∈ R\{0}, (2.9)

and f(n, t)t− 2F (n, t) is an strictly increasing function with respect to t.
Therefore, choose θ = δ2 > δ1, if t ∈ [δ1, δ2] and δ2 is large enough, by (2.8)

and assumptions (f3), the term
∑
n∈Z

f(n, δ2u
+(n))δ2u

+(n) is major when δ2 is large,

so we have

〈I ′(δ2u
+ + tu−), δ2u

+〉 = (δ2)2‖u+(n)‖2 −
∑
n∈Z

f(n, δ2u
+(n))δ2u

+(n)

+ δ2t
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m) < 0.

On the other hand, by direct computations, we have

〈I ′(θu+ + tu−), tu−〉 = t2‖u−(n)‖2 −
∑
n∈Z

f(n, tu−(n))tu−(n)

+ θt
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m) < 0.

Hence, we deduce that

〈I ′(δ2u
+ + tu−), δ2u

+〉 < 0, 〈I ′(θu+ + δ2u
−), δ2u

−〉 < 0, for all θ, t ∈ [δ1, δ2].
(2.10)

From (2.7), (2.10), the assumptions of Miranda’s Theorem in [18] are satisfied.
Thus there is (θu, tu) ∈ (0,∞)× (0,∞) such that θuu

+ + tuu
− ∈M.
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Now we turn to prove the pair (θu, tu) is unique. If u ∈ M, in view of the
definition of M, we have

‖u±(n)‖2 +
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)

=
∑
n∈Z

f(n, u±(n))u±(n). (2.11)

We will show that the pair (θu, tu) = (1, 1) is the unique pair such that θuu
+ +

tuu
− ∈ M. Let (θ0, t0) be a pair of numbers such that θ0u

+ + t0u
− ∈ M with

0 < θ0 ≤ t0. We have

θ2
0‖u+(n)‖2 + θ0t0

∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)

=
∑
n∈Z

f(n, θ0u
+(n))θ0u

+(n), (2.12)

and

t20‖u−(n)‖2 + θ0t0
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)

=
∑
n∈Z

f(n, t0u
−(n))t0u

−(n). (2.13)

From (2.13), we deduce that

‖u−(n)‖2 +
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)

≥
∑
n∈Z

f(n, t0u
−(n))

t0
u−(n). (2.14)

Combining (2.11) with (2.14), we obtain that

0 ≥
∑
n∈Z

[
f(n, t0u

−(n))

t0u−(n)
− f(n, u−(n))

u−(n)
](u−(n))2.

By using the assumption (f4), we get t0 ≤ 1. Analogously, from (2.11), (2.12)
and 0 < θ0 ≤ t0, we have that

0 ≤
∑
n∈Z

[
f(n, θ0u

+(n))

θ0u+(n)
− f(n, u+(n))

u+(n)
](u+(n))2.

By using the assumption (f4), we get θ0 ≥ 1. Consequently, θ0 = t0 = 1.
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In the case u 6∈ M, we suppose that there are (θ1, t1), (θ2, t2) such that

u1(n) = θ1u
+(n) + t1u

−(n) ∈M, u2(n) = θ2u
+(n) + t2u

−(n) ∈M.

Thus,

u2(n) = (
θ2

θ1

)θ1u
+(n) + (

t2
t1

)t1u
−(n) = (

θ2

θ1

)u+
1 (n) + (

t2
t1

)u−1 (n) ∈M.

According to u1 ∈M and the previous case, we have

θ2

θ1

=
t2
t1

= 1.

Hence, (θu, tu) is the unique pair such that θuu
+ + tuu

− ∈M.

With the same conditions as in Lemma 2.1, we have the following three results.

Lemma 2.2. Fix u ∈ E with u± 6= 0 such that 〈I ′(u), u±〉 ≤ 0. Then, the unique
pair (θu, tu) in Lemma 2.1 satisfies 0 < θu, tu ≤ 1.

Proof. Suppose θu ≥ tu > 0, since θuu
+(n) + tuu

−(n) ∈M, then we have

θ2
u‖u+(n)‖2 + θ2

u(
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m))

≥ θ2
u‖u+(n)‖2 + θutu(

∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m))

=
∑
n∈Z

f(n, θuu
+(n))θuu

+(n). (2.15)

On the other hand, the assumption 〈I ′(u), u+〉 ≤ 0 gives that

‖u+(n)‖2 + (
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m))

≤
∑
n∈Z

f(n, u+(n))u+(n). (2.16)

Combining (2.15) with (2.16), we then get

0 ≥
∑
n∈Z

[
f(n, θuu

+(n))

θuu+(n)
− f(n, u+(n))

u+(n)
](u+(n))2dx,

which implies θu ≤ 1, Therefore, we have 0 < θu, tu ≤ 1.

Lemma 2.3. For fixed u ∈ E with u± 6= 0, (θu, tu) is the unique maximum point
of the function ϕ : (R+ × R+)→ R defined as ϕ(θ, t) = I(θu+(n) + tu−(n)).
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Proof. As proved in Lemma 2.1, (θu, tu) is the unique critical point of ϕ in (R+×
R+), by the assumption (f3), we obtain ϕ(θ, t)→ −∞ uniformly as |(θ, t)| → ∞.
Next, we prove that the maximum point of ϕ(θ, t) cannot be achieved on the
boundary of (R+ × R+). Indirectly, without loss of generality, we suppose that
(0, t̄) is a maximum point of ϕ(θ, t). But, we have

ϕ(θ, t̄) = I(θu+(n) + t̄u−(n)) = θ2I(u+(n)) + t̄2I(u−(n))

+θt̄(
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)),

since t̄(
∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m)) > 0, it is an increasing

function with respect to θ with θ > 0 small enough, so we get a contradiction.
So far, we have proved this Lemma.

Next, we turn to prove that the following minimization

c1 := inf{I(u) : u(n) ∈M} (2.17)

can be achieved by an element u1 ∈ M. This is an important point in proving
the existence of sign-changing solutions of equation (1.1).

Lemma 2.4. c1 > 0 can be achieved by an element u1 ∈M.

Proof. For every u ∈ M, we have 〈I ′(u), u〉 = 0. Then, for any ε > 0, by (f2),
one gets

‖u‖2 =
∑
n∈Z

∑
m∈Z

(u(n)− u(m))2Ks(n−m) +
∑
n∈Z

V (n)|u(n)|2

=
∑
n∈Z

f(n, u)u ≤ ε
∑
n∈Z

|u|2 + Cε
∑
n∈Z

|u|p

≤ εC2‖u‖2 + CεCp‖u‖p.

We may choose ε = 1
2C2

such that

‖u‖ ≥ (
1

2CεCp
)1/(p−2) > 0. (2.18)

In view of (f1) and (f2), there exists T0 > 0, such that for all n ∈ Z and |t| ≤ T0,
we have F (n, t) ≤ (1/4C2

2)t2. Since u = 1 · u+ + 1 · u− ∈ M, by Lemma 2.3, we
have

I(u(n)) ≥ I(
T0

‖u‖
u(n)) =

T 2
0

2
−
∑
n∈Z

F (n,
T0

‖u‖
u(n))

≥ T 2
0

2
− T 2

0

4C2
2‖u‖2

∑
n∈Z

|u(n)|2 ≥ T 2
0

4
, (2.19)
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for all u ∈M and so c1 ≥ T 2
0

4
> 0 is well defined.

Let {ũk} ⊂ M such that I(ũk) → c1. Then in view of the definition of
{ũk}, we are going to prove {ũk} is bounded in E. Indirectly, we suppose that
‖ũk‖ → ∞. We define vk = ũk/‖ũk‖ ∈ E, then we have ‖vk‖ = 1. By Sobolev’s
embedding, we may suppose that vk → v̄ in lp(Z) for 2 ≤ s < +∞ in subsequence
sense. If v̄ = 0, for fixed T > [2(1+c1)]1/2, by (f2) and (f3), there exists a constant

C̃ such that

lim sup
k→∞

∑
n∈Z

F (n, Tvk) ≤ lim
k→∞

T 2‖vk‖2
2 + C̃ lim

k→∞
‖vk‖pp = 0. (2.20)

Let lk = T/‖ũk‖. In view of above inequality, we have

c1 +o(1) = I(ũk) ≥ I(lkũk) =
l2k
2
‖ũk‖2−

∑
n∈Z

F (n, Tvk) =
T 2

2
+o(1) > c1 +1+o(1),

which is a contradiction. Therefore we deduce that v 6= 0.
Now we have limk→∞ |ũk(n)| = ∞ for n ∈ {n ∈ Z : v̄(n) 6= 0}. In fact,

otherwise, we have limk→∞ |vk| = 0, which is a contradiction. By (f3) and the
definition of vk, we have

0 = lim
k→∞

c1 + o(1)

‖ũk‖2
= lim

k→∞

I(ũk)

‖ũk‖2

= lim
k→∞

[
1

2
‖vk‖2 −

∑
n∈Z,ũk(n) 6=0

F (n, ũk)

ũ2
k

v2
k]

≤ 1

2
−

∑
n∈Z,v̄(n)6=0

lim inf
k→∞

F (n, ũk)

ũ2
k

v2
k = −∞.

This contradiction shows that {ũk} is bounded in E. Hence there exists u1 ∈ E
such that ũ±k ⇀ u±1 in E. By assumption {ũk} ⊂ M, we have 〈I ′(ũk), ũ±k 〉 = 0,
that is

‖ũ±k ‖
2 +

∑
n∈Z

∑
m∈Z

(−ũ−k (n)ũ+
k (m)− ũ+

k (n)ũ−k (m))Ks(n−m) =
∑
n∈Z

f(n, ũ±k )ũ±k .

(2.21)

From (f2), for any ε > 0, there exists Cε > 0 such that

f(n, u(n))u(n) ≤ εu(n)2 + Cε|u(n)|p, for all n ∈ Z.

Since ũk ∈M, by (2.18), there exists µ > 0 such that

µ ≤ ‖ũ±k ‖
2 <

∑
n∈Z

f(n, ũ±k )ũ±k ≤ ε
∑
n∈Z

|ũ±k |
2 + Cε

∑
n∈Z

|ũ±k |
p.

12

30 May 2023 02:00:23 PDT
220529-Zhang-2 Version 5 - Submitted to Rocky Mountain J. Math.



Since {ũk} is bounded in E, there exists a constant C > 0 such that

µ ≤ εC + Cε
∑
n∈Z

|ũ±k (n)|p.

Choosing ε = µ
2C

,we get ∑
n∈Z

|ũ±k (n)|p ≥ µ

2Cε
> 0.

By the compactness of the embedding E ↪→ lq(Z) for 2 ≤ q < +∞, we get∑
n∈Z

|u±1 (n)|p ≥ µ

2Cε
> 0, (2.22)

thus we have u±1 6= 0. Combining (f2) with the compactness of E ↪→ lq(Z) for
2 ≤ q < +∞, we have

lim
k→+∞

∑
n∈Z

f(n, ũ±k )ũ±k =
∑
n∈Z

f(n, u±1 )u±1 , lim
k→+∞

∑
n∈Z

F (n, ũ±k ) =
∑
n∈Z

F (n, u±1 ).

(2.23)

On the other hand, combining the weak semicontinuity of norm ‖u‖ with

(−ũ−k (n)ũ+
k (m)− ũ+

k (n)ũ−k (m)) ≥ 0,

by using compactness of the Sobolev embedding, we can obtain 〈I ′(u1), u±1 〉 ≤ 0.
From Lemma 2.2, there exists (θu, tu) ∈ (0, 1]× (0, 1] such that ū := θuu

+
1 (n) +

tuu
−
1 (n) ∈M. By using (2.9), the fact 〈I ′(ū), ū〉 = 0, 〈I ′(ũk), ũk〉 = 0 and Lemma

2.3, we deduce that

c1 ≤ I(ū)− 1

2
〈I ′(ū), ū〉 =

1

2

∑
n∈Z

(f(n, ū)ū− 2F (n, ū))

=
1

2

∑
n∈Z

(f(n, θuu
+
1 (n))θuu

+
1 (n)− 2F (n, θuu

+
1 (n)))

+
1

2

∑
n∈Z

(f(n, tuu
−
1 (n))tuu

−
1 (n)− 2F (n, tuu

−
1 (n)))

≤ 1

2

∑
n∈Z

(f(n, u1)u1 − 2F (n, u1)) = I(u1)− 1

2
〈I ′(u1), u1〉

≤ lim inf
k→∞

[I(ũk)−
1

2
〈I ′(ũk), ũk〉] = c1.

Consequently, ū = u1 and I(u1) = c1.
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3 The proof of main results

3.1 Proof of Theorem 1.1.

To prove Theorem 1.1, we only need to prove the following result.

Lemma 3.1. u1 ∈M in Lemma 2.4 is a critical point of the functional I in E.

Proof. For simplicity, we omit the subscript to write u1 = u = u+ +u− ∈M and
so c1 = I(u). We have 〈I ′(u), u+(n)〉 = 〈I ′(u), u−(n)〉 = 0. In view of Lemma
2.3, for (θ, t) ∈ (R+ × R+)\(1, 1), (1, 1) is the unique maximum point, we have

I(θu+(n) + tu−(n)) < I(u+(n) + u−(n)) = c1. (3.1)

If I ′(u) 6= 0, there exists δ > 0 and γ > 0 such that

‖I ′(v)‖ ≥ γ, for all ‖v − u‖ ≤ 3δ.

Since u ∈ M bounded in E, similar to the proof of (2.22), if u ∈ M, we have
‖u±‖ > L, for a constant L > 0, we can assume that 6δ < L. Let D :=
(1

2
, 3

2
) × (1

2
, 3

2
) and g(θ, t) = θu+(n) + tu−(n). It follows from Lemma 2.3 again

that

c̄1 := max
∂D

I ◦ g < c1. (3.2)

We let ε := min{(c1 − c̄1)/2, γδ/8} and Sδ := B(u, δ), By using Lemma 2.3 in
[29], there exists a deformation η having the following properties:

(a) η(1, u) = u if u /∈ I−1([c1 − 2ε, c1 + 2ε] ∩ S2δ);

(b) η(1, Ic1+ε ∩ S2δ) ⊂ Ic1−ε;

(c) I(η(1, u)) ≤ I(u) for all u ∈ E.
By the above items (a) and (c), we have

max
(θ,t)∈D̄

I(η(1, g(θ, t))) < c1. (3.3)

We now prove that η(1, g(D))∩M 6= ∅, which is a contradiction to the definition
of c1. Let ψ(θ, t) := η(1, g(θ, t)) and

Ψ(θ, t) := (
1

θ
〈I ′(ψ(θ, t)), (ψ(θ, t))

+〉, 1

t
〈I ′(ψ(θ, t)), (ψ(θ, t))

−〉).

The claim holds if there exists (θ0, t0) ∈ D such that Ψ(θ0, t0) = (0, 0). By the
definition of ‖ · ‖ and direct computation, we have

‖g(θ, t)− u‖2 = ‖(θ − 1)u+ + (t− 1)u−‖2

≥ |θ − 1|2‖u+‖2

> |θ − 1|2(6δ)2,
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and |θ − 1|2(6δ)2 > 4δ2 ⇔ θ < 2/3 or θ > 4/3, using (a) and the range of θ,
for θ = 1

2
and for every t ∈ [1

2
, 3

2
] we have g(1

2
, t) /∈ S2δ, so from (a), we have

ψ(1
2
, t) = g(1

2
, t). Thus

Ψ(
1

2
, t) = (2〈I ′(1

2
u+ + tu−),

1

2
u+〉, 1

t
〈I ′(1

2
u+ + tu−), tu−〉).

By direct computations, we know that

〈I ′(1

2
u+ + tu−),

1

2
u+〉 = 〈I ′(1

2
u+),

1

2
u+〉

+
t

2

∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m) ≥ 〈I ′(1

2
u),

1

2
u+〉 > 0,

from which we obtain

〈I ′(1

2
u+ + tu−),

1

2
u+〉 > 0, for every t ∈ [

1

2
,
3

2
]. (3.4)

Similarly, for θ = 3
2

and for every t ∈ [1
2
, 3

2
] we have ψ(3

2
, t) = g(3

2
, t), so that

〈I ′(3

2
u+ + tu−),

3

2
u+〉 = 〈I ′(3

2
u+),

3

2
u+〉

+
3t

2

∑
n∈Z

∑
m∈Z

(−u−(n)u+(m)− u+(n)u−(m))Ks(n−m) ≤ 〈I ′(3

2
u),

3

2
u+〉 < 0,

so that

〈I ′(3

2
u+ + tu−),

3

2
u+〉 < 0, for every t ∈ [

1

2
,
3

2
]. (3.5)

Similarly we have,

〈I ′(θu+ +
1

2
u−),

1

2
u−〉 > 0, for every θ ∈ [

1

2
,
3

2
],

〈I ′(θu+ +
3

2
u−),

3

2
u−〉 < 0, for every θ ∈ [

1

2
,
3

2
]. (3.6)

Since Ψ is continuous on D, according to (3.4)-(3.6), by Miranda’s theorem ( see
[18]), we have Ψ(θ0, t0) = 0 for some (θ0, t0) ∈ D, so η(1, g(θ0, t0)) = ψ(θ0, t0) ∈
M, which is contradicted to (3.3). From this, we can conclude that u is a critical
point of I in E.

By Lemma 3.1, we obtain a sign-changing solution of equation (1.1), since
u1 ∈ E ⊂ l2(Z). By the integrability of u1 ∈ l2(Z), we obtain lim

n→±∞
u1(n) = 0, so

it is homoclinic.
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3.2 Proof of Theorem 1.2.

Let u1 ∈ E be a sign-changing solution of (1.1), and denote by

N := {u ∈ E\{0} : 〈I ′(u), u〉 = 0}.

Similar to Lemma 2.4, we see that the following positive number

c0 := inf
u∈N

I(u) (3.7)

is well defined. We will prove c1 > 2c0.
Proof of Theorem 1.2. As standard processes as in proving Lemma 2.1-

Lemma 3.1 above, by using the Nehari fiber mapping skills, one can see that
there exists u0 ∈ N such that I ′(u0) = 0 in E and I(u0) = c0. That is, u0 is a
nonnegative ground state solution of equation (1.1).

Reviewing that u1 = u+(n) + u−(n) is a sign-changing solution obtained in
Theorem 1.1. Similarly as the proof of Lemma 2.1, there is a unique positive
number θu+(n) such that

θu+(n)u
+(n) ∈ N . (3.8)

In view of (2.4), since 〈I ′(u1), u+(n)〉 = 0, we have

〈I ′(u+(n)), u+(n)〉 < 0. (3.9)

Using (3.8) and (3.9), similar to the proof of Lemma 2.2, we obtain

θu+(n) ∈ (0, 1).

Similarly, we can prove that there is an unique θu−(n) ∈ (0, 1) such that

θu−(n)u
−(n) ∈ N .

Finally, by direct calculation, since u ∈ M, by Lemma 2.3, (1, 1) is the unique
maximum point of the function ϕ(θ, t) = I(θu+(n) + tu−(n)), one gets

2c0 ≤ I(θu+(n)u
+(n)) + I(θu−(n)u

−(n))

≤ I(θu+(n)u
+(n) + θu−(n)u

−(n)) < I(u+(n) + u−(n)) = c1.

That is I(u1) > 2c0. The proof of Theorem 1.2 is complete.
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3.3 Proof of Theorem 1.3.

We are ready to prove Theorem 1.3.

Proof. We can easily check that the functional I satisfies the mountain pass
geometric structure. In fact, I(0) = 0. For any w ∈ E \ {0}, by (f2) and Sobolev
embedding, we have

I(w) =
1

2
‖w‖2 −

∑
n∈Z

F (n,w)

≥ (
1

2
− εC2)‖w‖2 − CεCp‖w‖p.

Since p > 2, we can choose ε small enough and small ρ > 0 such that I(w) ≥ α > 0
with ‖w‖ = ρ. On the other hand, for fixed ϕ ∈ E \ {0}, by (AR) condition, we
know I(tϕ) = t2

2
‖ϕ‖2 −

∑
n∈Z

F (n, tϕ) → −∞ as t → +∞. Hence, we deduce that

there exists e = t0ϕ for t0 large enough such that ‖e‖ > ρ and I(e) < 0.
By using the (AR) condition, we deduce that the (PS)c̃ sequence {ũk} ⊂ E

(satisfying I(ũk) → c̃ and I ′(ũk) → 0) is bounded in E and satisfies the (PS)c̃
conditions. In fact, for k large enough, by using the (AR) condition, one has

C + o(1)‖ũk‖ ≥ I(ũk)−
1

µ
〈I ′(ũk), ũk〉

≥ (
1

2
− 1

µ
)‖ũk‖2 −

∑
{n∈Z:|ũk(n)|≤R}

(F (n, ũk(n))− 1

µ
f(n, ũk(n))ũk(n)).

For the case |ũk(n)| ≤ R, by choosing ε = 1 in (f2), there exists a constant
C > 0 such that |f(n, u)| ≤ C for |u| ≤ R and any n ∈ Z, then we have
|F (n, u) − 1

µ
f(n, u)u| ≤ C|u|. Using Hölder inequality and that for any u ∈ E,∑

n∈Z
|u| ≤ (

∑
n∈Z

V −1(n))
1
2‖u‖, there holds

C + o(1)‖ũk‖ ≥ (
1

2
− 1

µ
)‖ũk‖2 −

∑
{n∈Z:|ũk(n)|≤R}

C|ũk| ≥ C1(‖ũk‖2 − ‖ũk‖),

we deduce that ‖ũk‖ is bounded. Then there exists u2 ∈ E such that ũk ⇀ u2 in
E and ũk → u2 in l2(Z) in subsequence sense. Therefore, in view of I ′(ũk) → 0
and ũk ⇀ u2 in E, we have

lim
k→∞
〈I ′(ũk)− I ′(u2), ũk − u2〉 = 0. (3.10)
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Using a similar discussion as proof of (2.23), one can deduce that

lim
k→+∞

∑
n∈Z

(f(n, ũk)− f(n, u2))(ũk − u2) = 0.

This fact together with (3.10) yields that ‖ũk − u2‖ → 0 as k → +∞. That
is, ũk → u2 in E. Hence, we have proved the existence of mountain pass type
solution u2 for the equation (1.1).

3.4 Proof of Theorem 1.4.

Now we consider the problem (1.4), the method used to prove existence of two
nonnegative homoclinic solutions is similar to [6], with a little difference. We
define the functional associated with equation (1.4) as follows:

J(u) =
1

2

∑
n∈Z

∑
m∈Z

|u(n)− u(m)|2Ks(n−m)

+
1

2

∑
n∈Z

V (n)|u(n)|2 −
∑
n∈Z

(
λ

q
|u(n)|q +

1

p
|u(n)|p), (3.11)

then, J(u) ∈ C1 (see Lemma 2.5 and Lemma 2.6 in [13]) and the Fréchet deriva-
tive of J is

〈J ′(u), v〉 =
∑
n∈Z

∑
m∈Z

(u(n)− u(m))(v(n)− v(m))Ks(n−m)

+
∑
n∈Z

V (n)u(n)v(n)−
∑
n∈Z

(λ|u(n)|q−2u(n) + |u(n)|p−2u(n))v(n).

We define the fibering map Φu(t) := J(tu), so

Φ′u(t) = J ′t(tu) = t
∑
n∈Z

∑
m∈Z

|u(n)− u(m)|2Ks(n−m)

+t
∑
n∈Z

V (n)|u(n)|2 −
∑
n∈Z

(λtq−1|u(n)|q + tp−1|u(n)|p),

Φ′′u(t) = J ′′t (tu) =
∑
n∈Z

∑
m∈Z

|u(n)− u(m)|2Ks(n−m) +
∑
n∈Z

V (n)|u(n)|2

−
∑
n∈Z

(λ(q − 1)tq−2|u(n)|q + (p− 1)tp−2|u(n)|p).
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Now define three subsets N+, N− and N 0 of NJ := {u ∈ E\{0} : 〈J ′(u), u〉 = 0}
respectively as follows:

N+ = {u ∈ NJ : Φ′′u(1) > 0},
N 0 = {u ∈ NJ : Φ′′u(1) = 0},
N− = {u ∈ NJ : Φ′′u(1) < 0}.

In order to prove Theorem 1.4, we present two Lemmas, which are important
materials used in proving Theorem 1.4 and different from the method in [6].

Lemma 3.2. There exists Λ0 > 0, such that for any λ ∈ (0,Λ0), N 0 = ∅.

Proof. Suppose that N 0 6= ∅ for any λ > 0. Therefore, for u ∈ N 0, we have
〈J ′(u), u〉 = 0 and Φ′′u(1) = 0. That is,

‖u‖2 =
∑
n∈Z

(λ|u(n)|q + |u(n)|p),

‖u‖2 =
∑
n∈Z

(λ(q − 1)|u(n)|q + (p− 1)|u(n)|p).

From the above equalities, we have

(2− q)‖u‖2 = (p− q)
∑
n∈Z

|u(n)|p,

(p− 2)‖u‖2 = λ(p− q)
∑
n∈Z

|u(n)|q.

By the Sobolev embedding, we have

‖u‖2 ≤ Cp
p− q
2− q

‖u‖p, ‖u‖2 ≤ λCq
p− q
p− 2

‖u‖q.

It follows that there exists two positive constants C ′ and C ′′ such that C ′ ≤
‖u‖ ≤ λC ′′. This is a contradiction if λ is sufficiently small. Hence, we deduce
that there exists a positive constant Λ0 such that N 0 = ∅ for all λ ∈ (0,Λ0).

Lemma 3.3. If u is a local minimizer of J on NJ and u /∈ N 0, then J ′(u) = 0.

Proof. Suppose that u is a local minimizer of J on NJ . By Lagrange multipliers,
there exists µ ∈ R, such that J ′(u) = µK ′(u), where K(u) is defined by

K(u) = ‖u‖2 −
∑
n∈Z

(λ|u(n)|q + |u(n)|p).

Since u ∈ NJ , we have µ〈K ′(u), u〉 = 0. The fact u /∈ N 0 implies that 〈K ′(u), u〉 =
Φ′′u(1) 6= 0. Therefore, µ = 0. It follows that J ′(u) = 0.
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In order to understand the fibering map, we define the function πu as follows:

πu(t) = t2−q‖u‖2 − tp−q
∑
n∈Z

|u(n)|p.

We notice that tu ∈ NJ if and only if πu(t) = λ
∑
n∈Z
|u(n)|q, for t > 0. Moreover,

π′u(t) = (2− q)t1−q‖u‖2 − (p− q)tp−q−1
∑
n∈Z

|u(n)|p. (3.12)

By direct computations, we deduce that if tu ∈ NJ , then

tq−1π′u(t) = Φ′′u(t). (3.13)

Therefore, tu ∈ N+ (or tu ∈ N−) if and only if tu ∈ N and π′u(t) > 0 (or
π′u(t) < 0).

Fixed u ∈ E and u 6= 0. By (3.12), πu(t) satisfies the following properties:

(a) πu(t) has a unique maximum at t = tmax =

(
(2−q)‖u‖2

(p−q)(
∑
n∈Z
|u(n)|p)

)1/(p−2)

;

(b) π′u(t) > 0 on (0, tmax) and π′u(t) < 0 on (tmax,+∞);

(c) πu(0) = 0 and limt→+∞ πu(t) = −∞.

On the other hand, if 0 < λ
∑
n∈Z
|u(n)|p < Φu(tmax), then there exists t1 and t2

with 0 < t1 < tmax < t2 such that πu(t1) = πu(t2) = λ
∑
n∈Z
|u(n)|p and π′u(t1) > 0,

π′u(t2) < 0. (3.12) implies that Φ′u(t1) = Φ′u(t2) = 0. By (3.13), we also know that
Φ′′u(t1) > 0, Φ′′u(t2) < 0. Therefore, the fibering map Φu(t) has a local minimum
at t1 and a local maximum at t2 such that t1u ∈ N+ and t2u ∈ N−. By property
(b), we know tu /∈ NJ for t 6= ti, i = 1, 2. This fact implies that Φ′u(t) 6= 0 for
t ∈ (0, t1). Combining with the fact that t1 is a local minimum of Φu(t) and
Φ′u(t) ∈ C[0,+∞), we deduce that Φ′u(t) < 0 for t ∈ (0, t1). Moreover, noticing
Φu(0) = 0, we know Φu(t1) = J(t1u) < 0.

Now we are ready to prove Theorem 1.4.
Proof of Theorem 1.4. In view of Lemma 3.2, we can choose a constant Λ0 > 0
such that NJ = N+ ∪ N− for all λ ∈ (0,Λ0) and N+ ∩ N− = ∅. Since u ∈ NJ ,
we have

J(u) = (
1

2
− 1

p
)‖u‖2 − λ(

1

q
− 1

p
)
∑
n∈Z

|u(n)|q.

Since 1 < q < 2 and J(u) ∈ C1, by Sobolev embedding, we have J(u) is coercive,
bounded from below in NJ . So, we take the minimizing sequence {ũk} ⊂ N+
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satisfying limk→∞ J(ũk) = infu∈N+ J(u), which is bounded in E, and converges
to ũ weakly. In fact, ũ 6= 0, since J(ũ) ≤ lim infk→∞ J(ũk) < 0. Moreover,
there exists t3 > 0 such that t3ũ ∈ N+ and J(t3ũ) < 0. Hence, it follows that
infu∈N+ J(u) < 0.

Next, we show that ũk → ũ in E. If not, then ‖ũ‖ < lim infk→∞ ‖ũk‖. Thus,
for {ũk} ⊂ N+, since ũk → ũ in lr(Z) for 2 ≤ r < +∞ (in subsequence sense),
we have

lim
k→∞

Φ′ũk(t3) = lim
k→∞

(
t3‖ũk‖2 −

∑
n∈Z

(λtq−1
3 |ũk(n)|q + tp−1

3 |ũk(n)|p)
)

> t3‖ũ‖2 −
∑
n∈Z

(λtq−1
3 |ũ(n)|q + tp−1

3 |ũ(n)|p) = Φ′ũ(t3) = 0.

That is, Φ′ũk(t3) > 0 for k large. Since ũk = 1 · ũk ∈ N+, that is, t1 = 1, we have
Φ′ũk(t) < 0 for t ∈ (0, 1) and Φ′ũk(1) = 0. Hence, t3 > 1. The fact that Φũ(t) is
decreasing on (0, t3) implies that

J(t3ũ) ≤ J(ũ) < lim
k→∞

J(ũk) = inf
u∈N+

J(u) < 0,

which is a contradiction. Therefore ũk → ũ 6= 0 strongly in E. Moreover,
reviewing that N 0 = ∅ for any λ ∈ (0,Λ0) and Φ′′ũ(1) = limk→∞Φ′′ũk(1) ≥ 0, we
obtain ũ ∈ N+. This implies

lim
k→∞

J(ũk) = J(ũ) = inf
u∈N+

J(u).

That is, ũ is a minimizer of J(u) on N+. Next, we claim that |ũ| is also a mini-
mizer of J(u) on N+. Since J(|ũ|) ≤ J(ũ) < 0 and Φ′′ũ(1) = (2− q)λ

∑
n∈Z
|ũ(n)|q +

(2− p)
∑
n∈Z
|ũ(n)|p > 0, we only need to show that Φ′|ũ|(1) = 0. In fact, Φ′|ũ|(1) ≤ 0

since ‖|ũ|‖ ≤ ‖ũ‖. By contradiction, we suppose that Φ′|ũ|(1) < 0, then, from the

analysis of fibering map Φ|ũ|(t), we know that there is t4 > 0 such that t4 ˜|u| ∈ N+,
i.e., Φ′′|ũ|(t4) > 0 and Φ′|ũ|(t4) = 0. Hence, t4 6= 1. Similarly, we notice that t4 is a

minimizer of Φ|ũ|(t) = J(t|ũ|), we have

J(t4|ũ|) < J(|ũ|) ≤ J(ũ) = inf
u∈N+

J(u),

which is a contradiction. Thus, Φ′|ũ|(1) = 0 and then, Φ′′|ũ|(1) = Φ′′ũ(1) =

(2 − q)λ
∑
n∈Z
|ũ(n)|q + (2 − p)

∑
n∈Z
|ũ(n)|p > 0. Therefore, |ũ| ∈ N+ ⊂ NJ and

J(|ũ|) = infu∈N+ J(u). That is, |ũ| is a nonnegative minimizer of J(u) on N+.
The existence of nonnegative minimizer for J(u) on N− follows similar arguments
as above.
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Therefore, by above fibering map discussions, we deduce that J(u) has a non-
trivial nonnegative local minimizer on N+ and N− respectively. By using Lemma
3.3, J(u) has two nontrivial critical points in E ⊂ l2(Z), which are two nonnega-
tive homoclinic solutions of problem (1.4). The proof is complete.
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