DEPTH AND SINGULAR VARIETIES OF EXTERIOR EDGE IDEALS

MATTHEW MASTROENI, JASON MCCULLOUGH, ANDREW OSBORNE, JOSHUA RICE, AND COLE WILLIS

Abstract

Edge ideals of finite simple graphs are well-studied over polynomial rings. In this paper, we initiate the study of edge ideals over exterior algebras, specifically focusing on the depth and singular varieties of such ideals. We prove an upper bound on the depth of the edge ideal associated to a general graph and a more refined bound for bipartite graphs, and we show that both are tight. We also compute the depth of several large families of graphs including cycles, complete multipartite graphs, spider graphs, and Ferrers graphs. Finally, we focus on the effect whiskering a graph has on the depth of the associated edge ideal.

1. Introduction

Let V be a vector space with basis e_{1}, \ldots, e_{n} over a field \mathbb{k}, and let $E=\bigwedge_{\mathbb{k}}\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be the exterior algebra of V. The standard basis elements $e_{k_{1}} \wedge \cdots \wedge e_{k_{s}}$ of E, with $k_{1}<\ldots<k_{s}$, are called monomials in E, and an ideal I of E generated by monomials is called a monomial ideal. Given a finite, simple graph G with vertex set v_{1}, \ldots, v_{n}, we consider the corresponding edge ideal $I_{E}(G)=\left(e_{i} \wedge e_{j} \mid\left\{v_{i}, v_{j}\right\}\right.$ is an edge of $\left.G\right)$. The corresponding ideals $I_{S}(G)$ over a polynomials ring S are well-studied, where there are many results linking combinatorial properties of G to algebraic properties of $I_{S}(G)$. The situation over exterior algebras is the focus of this paper.

Monomial ideals more generally were studied by Aramova, Avramov, and Herzog. It follows from [AAH00, 1.3] that $I_{S}(G)$ and $I_{E}(G)$ have the same regularity for any graph G. On the other hand, the depths of $E / I_{E}(G)$ and $S / I_{S}(G)$ can be quite different. The aim of this paper is to bound, and in some cases compute exactly, the depth of $E / I_{E}(G)$ in terms of combinatorial properties of G.

Our main results include a tight general upper bound on depth of edge ideals.
Theorem 4.1. Let G be a graph on n vertices, none of which are isolated. Then

$$
\operatorname{depth}_{S} S / I_{S}(G) \leq n+2-2 \sqrt{n} \quad \text { and } \quad \operatorname{depth}_{E} E / I_{E}(G) \leq n+1-2 \sqrt{n}
$$

Moreover, when n is a square, both sets of bounds are tight.
The first inequality recovers a result of Hà and Hibi [HH21, 4.2]. In the case of bipartite graphs, we prove a similar upper bound on the depth of edge ideals.

[^0]Theorem 4.4. Let G be a bipartite graph on n vertices, none of which are isolated. Then

$$
\operatorname{depth}_{S} S / I_{S}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor \quad \text { and } \quad \operatorname{depth}_{E} E / I_{E}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor-1
$$

Moreover, both bounds are tight.
We also compute the depths and singular varieties of exterior edge ideals of several large classes of graphs including complete graphs, complete multipartite graphs, cycles, paths, spiders, and star graphs. We show how one can algorithmically compute the depth of any tree, although an exact formula is likely not possible; see Example 3.1. Finally, we investigate the effect of whiskering a graph on the depth of the associated edge ideal, which is distinct from the situation over a polynomial ring; see Corollary 3.18 and Remark 3.19.

The rest of this paper is organized as follows. Section 2 collects the necessary background and notation that we need for the remainder of the paper and includes several propositions that will be useful in our later proofs. In Section 3, we compute the depth and singular varieties of some general families of graphs, such as cycle graphs, complete multipartite graphs, and whiskered graphs. In Section 4, we provide several upper bounds on the depth of edge ideals. In particular, we establish tight upper bounds over E and S of the depth of an edge ideal and a tight upper bound of the projective dimension of an edge ideal over S and a tight upper bound of the complexity of an edge ideal over E.

2. BACKGROUND

2.1. Depth and Singular Varieties. Let $E=\bigwedge_{\mathbb{k}}\left\langle e_{1}, \ldots, e_{n}\right\rangle$ denote an exterior algebra over the field \mathbb{k} in n variables. We recall that E has a \mathbb{k}-basis consisting of all monomials $e_{T}=e_{i_{1}} e_{i_{2}} \cdots e_{i_{r}}$ for each subset $T=\left\{i_{1}<i_{2}<\cdots<i_{r}\right\} \subseteq[n]=\{1,2, \ldots, n\}$. (We omit the wedge products in the remainder of the paper.) There is a natural grading $E=\bigoplus_{r=0}^{n} E_{r}$, where E_{r} is the subspace spanned by all monomials e_{T} with $|T|=r$, and we call elements of E_{r} homogeneous of degree r. See [HH11] for further details and any unexplained terminology.

Let M be a graded E-module, and take $\ell \in E_{1}$. We say that ℓ is M-regular if

$$
\left(0:_{M} \ell\right):=\{m \in M \mid \ell m=0\}=\ell M .
$$

Otherwise ℓ is M-singular. The set of all M-singular elements in E_{1} is called the singular variety of M, which we denote by $V_{E}(M)$. (This is called the rank variety of M in [AAH00].) A sequence $\ell_{1}, \ldots, \ell_{r}$ of linear forms in E is called an M-regular sequence if ℓ_{i} is regular on $M /\left(\ell_{1}, \ldots, \ell_{i-1}\right) M$ for all $i \leq r$. The depth of M, denoted $\operatorname{depth}_{E} M$, is the maximum length of such a regular sequence. The following result gathers useful results about the singular varieties of modules over E.

Theorem 2.1 ([AAH00, 3.1, 3.2, 4.1]). Let E be an exterior algebra in n variables over an algebraically closed field \mathbb{k}, and let L, M, and N be finitely generated graded E-modules. Then:
(a) $V_{E}(M)$ is a cone in the vector space E_{1}.
(b) If $I \subseteq E$ is a monomial ideal, then $V_{E}(E / I)$ is a union of finitely many coordinate subspaces of E_{1}.
(c) $\operatorname{depth}_{E} M=\operatorname{codim}_{E_{1}} V_{E}(M)$.
(d) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence of E-linear maps, then any one of the sets $V_{E}(L), V_{E}(M), V_{E}(N)$ is contained in the union of the other two.
(e) $V_{E}\left(M \otimes_{\mathbb{k}} N\right)=V_{E}(M) \cap V_{E}(N)$.

As an easy corollary, we prove a depth lemma for modules in a short exact sequence.
Corollary 2.2. Let E be an exterior algebra over an algebraically closed field \mathbb{k}, and let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of finitely generated graded E-modules. Then the depth of any one of the modules L, M, N is at least the minimum of the depths of the other two, and equality holds if the other two modules have different depths.

Proof. We only prove the corollary statement for L since the remaining arguments are identical. Suppose without loss of generality that $\operatorname{depth}_{E} M \leq \operatorname{depth}_{E} N$. By part (c) of the preceding theorem

$$
\operatorname{dim} V_{E}(N)=n-\operatorname{depth}_{E} N \leq n-\operatorname{depth}_{E} M=\operatorname{dim} V_{E}(M)
$$

Part (d) of the preceding theorem yields

$$
\operatorname{dim} V_{E}(L) \leq \max \left\{\operatorname{dim} V_{E}(M), \operatorname{dim} V_{E}(N)\right\}=\operatorname{dim} V_{E}(M)
$$

Therefore

$$
\operatorname{depth}_{E} M=n-\operatorname{dim} V_{E}(M) \leq n-\operatorname{dim} V_{E}(L)=\operatorname{depth}_{E} L
$$

proving the first claim.
We now prove the second claim. Suppose that $\operatorname{depth}_{E} M<\operatorname{depth}_{E} N$. Using the previous claim, we have the two inequalities

$$
\begin{aligned}
& \operatorname{depth}_{E} L \geq \min \left\{\operatorname{depth}_{E} M, \operatorname{depth}_{E} N\right\}=\operatorname{depth}_{E} M \\
& \operatorname{depth}_{E} M \geq \min \left\{\operatorname{depth}_{E} L, \operatorname{depth}_{E} N\right\}=\operatorname{depth}_{E} L
\end{aligned}
$$

Therefore depth ${ }_{E} M=\operatorname{depth}_{E} L$.
In practice, it is often easier to specify the singular variety of an E-module M as the vanishing set of some collection of polynomials. We let $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ denote the ring of polynomial functions on E_{1}, where x_{i} is the linear functional dual to e_{i}, and for any ideal $I \subseteq S$, we set $V(I)=\left\{\ell \in E_{1} \mid f(\ell)=0\right.$ for all $\left.f \in I\right\}$. The following result allows one to compute singular varieties over an exterior algebra with an added variable.

Proposition 2.3 ([MM22, 4.1, 4.2]). Let E^{\prime} be an exterior algebra over an algebraically closed field \mathfrak{k}, and let $E=E^{\prime}\langle e\rangle$ denote an exterior algebra in one more variable. Denote by
S^{\prime} and $S=S^{\prime}[x]$ the polynomial rings over \mathbb{k} dual to E^{\prime} and E respectively, and let M be a finitely generated graded E^{\prime}-module with $V_{E^{\prime}}(M)=V(I)$ for some ideal $I \subseteq S^{\prime}$. Then:
(a) $V_{E}\left(M \otimes_{\mathbb{k}} \mathbb{k}\langle e\rangle /(e)\right)=V(I S)$, and $\operatorname{depth}_{E}\left(M \otimes_{\mathbb{k}} \mathbb{k}\langle e\rangle /(e)\right)=\operatorname{depth}_{E^{\prime}} M$.
(b) $V_{E}\left(M \otimes_{\mathbb{k}} \mathbb{k}\langle e\rangle\right)=V(x, I S)$, and $\operatorname{depth}_{E}\left(M \otimes_{\mathbb{k}} \mathbb{k}\langle e\rangle\right)=\operatorname{depth}_{E^{\prime}} M+1$.

For an E-module M, the complexity of M is

$$
\operatorname{cx}_{E} M=\inf \left\{c \in \mathbb{Z} \mid \beta_{i}^{E}(M) \leq \alpha i^{c-1} \text { for some } \alpha \in \mathbb{R} \text { and all } i \geq 1\right\}
$$

(See Subsection 2.3 for a review of the Betti numbers $\beta_{i}^{E}(M)$ in the commutative case.) The complexity of M can be thought of as the size of the minimal free resolution of an E-module, similar to the projective dimension of an S-module. There is an Auslander-Buchsbaum style theorem relating depth and complexity.

Theorem 2.4. [AAH00, 3.2] If \mathbb{k} is an infinite field and M is a finitely generated E-module, then each maximal M-regular sequence has $\operatorname{depth}_{E} M$ elements, and

$$
\operatorname{depth}_{E} M+\mathrm{cx}_{E} M=n
$$

2.2. Exterior Edge Ideals. Let G be a finite, simple graph with vertices v_{1}, \ldots, v_{n}. The exterior edge ideal of G is the ideal of the exterior algebra $E=\bigwedge_{\mathbb{k}}\left\langle e_{1}, \ldots, e_{n}\right\rangle$ defined by:

$$
I_{E}(G)=\left(e_{i} e_{j} \mid\left\{v_{i}, v_{j}\right\} \text { is an edge of } G\right)
$$

Our aim is to study the depth and singular variety of the quotient ring $E / I_{E}(G)$ for various families of graphs. In this subsection, we record some general observations about working with quotients by exterior edge ideals that will be useful in the subsequent sections.

Notation. Throughout the remainder of this paper, unless explicitly specified otherwise, G will denote a (finite, simple) graph with vertices $v_{1}, \ldots, v_{n}, E=\bigwedge_{\mathbb{k}}\left\langle e_{1}, \ldots, e_{n}\right\rangle$ denotes the corresponding exterior algebra over a fixed algebraically closed field \mathbb{k} of characteristic zero, $I=I_{E}(G) \subseteq E$ is the exterior edge ideal of G, and $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ denotes the dual polynomial ring.

For simplicity, we denote the depth, complexity, and singular variety of $E / I_{E}(G)$ by $\operatorname{depth}_{E} G, \operatorname{cx}_{E} G$, and $V_{E}(G)$ respectively. We also write $\operatorname{pd}_{S} G$ and depth G for the projective dimension and depth of $S / I_{S}(G)$ over S, where $I_{S}(G)=\left(x_{i} x_{j} \mid\left\{v_{i}, v_{j}\right\}\right.$ is an edge of $\left.G\right)$ is the more common commutative edge ideal in S.

If v_{i} and v_{j} are vertices of G, we write $v_{i} v_{j}$ to denote that $\left\{v_{i}, v_{j}\right\}$ is an edge of G. The closed neighborhood of the vertex v_{i} is the set $N\left[v_{i}\right]=N\left(v_{i}\right) \cup\left\{v_{i}\right\}$ of neighbors of v_{i} together with v_{i}. For any unexplained graph-theoretic terminology, we refer the reader to [Wes96].

The following occurs frequently enough as a special case in the arguments of the rest of the paper that it is worth mentioning to avoid future confusion.

Remark 2.5 (The empty graph). When G is the empty graph, there are no vertices or edges of G so that $E / I_{E}(G)=E=\mathbb{k}$. Since $E_{1}=0$, there are no linear forms with which to form a regular sequence so that depth ${ }_{E} G=0$ and $V_{E}(G)=0=E_{1}$.

Proposition 2.6. Let v_{i}, v_{j} be vertices of G, and suppose that $v_{i} v_{j}$ is an edge of G. Then:
(a) $\operatorname{depth}_{E} G \geq \min \left\{\operatorname{depth}_{E}\left(G \backslash v_{i}\right), \operatorname{depth}_{E}\left(G \backslash N\left[v_{i}\right]\right)\right\}$.
(b) $\operatorname{depth}_{E} G \geq \min \left\{\operatorname{depth}_{E}\left(G \backslash v_{i} v_{j}\right), \operatorname{depth}_{E}\left(G \backslash\left(N\left[v_{i}\right] \cup N\left[v_{j}\right]\right)\right)\right\}$.

Proof. If we set $W=N\left[v_{i}\right], G^{\prime}=G \backslash W$, and $G^{\prime \prime}=G \backslash v_{i}$ and we let E^{\prime} and $E^{\prime \prime}$ denote the corresponding exterior algebras on the vertices of G^{\prime} and $G^{\prime \prime}$ respectively, then we have a short exact sequence of E-modules

$$
\begin{equation*}
0 \longrightarrow \frac{E}{I_{E^{\prime}}\left(G^{\prime}\right) E+\left(e_{j} \mid v_{j} \in W\right)} \xrightarrow{e_{i}} \frac{E}{I_{E}(G)} \longrightarrow \frac{E}{I_{E^{\prime \prime}}\left(G^{\prime \prime}\right) E+\left(e_{i}\right)} \longrightarrow 0 . \tag{2.1}
\end{equation*}
$$

The first and last modules in the above exact sequence are isomorphic to $E^{\prime} / I_{E^{\prime}}\left(G^{\prime}\right)$ and $E^{\prime \prime} / I_{E^{\prime \prime}}\left(G^{\prime \prime}\right)$ respectively so that $\operatorname{depth}_{E} G \geq \min \left\{\operatorname{depth}_{E} G^{\prime}, \operatorname{depth}_{E} G^{\prime \prime}\right\}$ by Corollary 2.2. (Note that depth ${ }_{E} E^{\prime} / I_{E^{\prime}}\left(G^{\prime}\right)=\operatorname{depth}_{E^{\prime}} E^{\prime} / I_{E^{\prime}}\left(G^{\prime}\right)$ by Proposition 2.3 so that there is no harm in writing $\operatorname{depth}_{E}\left(G^{\prime}\right)$. The second depth inequality follows similarly from the short exact sequence

$$
0 \longrightarrow \frac{E}{I_{E^{\prime}}\left(G^{\prime}\right) E+\left(e_{j} \mid v_{j} \in W\right)} \stackrel{e_{i} e_{j}}{\longrightarrow} \frac{E}{I_{E}\left(G^{\prime \prime}\right)} \longrightarrow \frac{E}{I_{E}(G)} \longrightarrow 0,
$$

where $W=N\left[v_{i}\right] \cup N\left[v_{j}\right], G^{\prime}=G \backslash W$, and $G^{\prime \prime}=G \backslash v_{i} v_{j}$.
Proposition 2.7. Suppose G is a disjoint union $G=G^{\prime} \sqcup G^{\prime \prime}$ for some subgraphs $G^{\prime}, G^{\prime \prime}$. Then

$$
V_{E}(G)=V_{E}\left(G^{\prime}\right) \cap V_{E}\left(G^{\prime \prime}\right)
$$

and depth ${ }_{E} G=\operatorname{depth}_{E} G^{\prime}+\operatorname{depth}_{E} G^{\prime \prime}$.
Proof. If E^{\prime} and $E^{\prime \prime}$ denote the corresponding exterior algebras on the vertices of G^{\prime} and $G^{\prime \prime}$ respectively, then $E / I_{E}(G) \cong E^{\prime} / I_{E^{\prime}}\left(G^{\prime}\right) \otimes_{\mathbb{k}} E^{\prime \prime} / I_{E^{\prime \prime}}\left(G^{\prime \prime}\right)$ so that the statement about singular varieties follows from Theorem 2.1. If S, S^{\prime}, and $S^{\prime \prime}$ denote the polynomial rings dual to E, E^{\prime}, and $E^{\prime \prime}$ and we write $V_{E^{\prime}}\left(G^{\prime}\right)=V\left(I^{\prime}\right)$ and $V_{E^{\prime \prime}}\left(G^{\prime \prime}\right)=V\left(I^{\prime \prime}\right)$ for some ideals $I^{\prime} \subseteq S^{\prime}$ and $I^{\prime \prime} \subseteq S^{\prime \prime}$, then $V_{E}(G)=V_{E}\left(G^{\prime}\right) \cap V_{E}\left(G^{\prime \prime}\right)=V\left(I^{\prime} S+I^{\prime \prime} S\right)$ by Proposition 2.3. Since $I^{\prime} S$ and $I^{\prime \prime} S$ are ideals generated by polynomials in disjoint sets of variables, it follows that

$$
\operatorname{depth}_{E} G=\operatorname{ht}\left(I^{\prime} S+I^{\prime \prime} S\right)=\operatorname{ht} I^{\prime}+\operatorname{ht} I^{\prime \prime}=\operatorname{depth}_{E} G^{\prime}+\operatorname{depth}_{E} G^{\prime \prime}
$$

Proposition 2.8. Let v_{i} and v_{j} be vertices of G, and set

$$
J=\left(e_{k} \mid v_{k} \in N\left[v_{i}\right] \cap N\left[v_{j}\right]\right)+\left(e_{a} e_{b} \mid v_{a} \in N\left(v_{i}\right), v_{b} \in N\left(v_{j}\right)\right) .
$$

Then $\left(I_{E}(G): e_{i}-e_{j}\right)=I_{E}(G)+\left(e_{i}-e_{j}\right)+J$.

Proof. Set $L=I_{E}(G)+\left(e_{i}-e_{j}\right)+J$. Observe that if v_{k} is adjacent to both v_{i} and v_{j}, then both $e_{k} e_{i}$ and $e_{k} e_{j}$ are in $I_{E}(G)$ and so $e_{k} \in\left(I_{E}(G): e_{i}-e_{j}\right)$. (This includes the possibility $k=i, j$ since, for example, $e_{i}^{2}=0$.) Similarly, if v_{a} is adjacent to v_{i} and v_{b} is adjacent to v_{j}, then $e_{a} e_{b} e_{i}, e_{a} e_{b} e_{j} \in I_{E}(G)$. Thus, $e_{a} e_{b} \in\left(I_{E}(G): e_{i}-e_{j}\right)$. Since $\left(e_{i}-e_{j}\right)^{2}=0$, this shows that $L \subseteq\left(I_{E}(G): e_{i}-e_{j}\right)$.

Now, let $f \in\left(I_{E}(G): e_{i}-e_{j}\right)$. To show that $f \in L$, we may write f as a linear combination of monomials

$$
f=e_{i} e_{j} \sum_{T} \lambda_{T, i, j} e_{T}+e_{i} \sum_{T} \lambda_{T, i} e_{T}+e_{j} \sum_{T} \lambda_{T, j} e_{T}+\sum_{T} \lambda_{T} e_{T},
$$

where $\lambda_{T, i, j}, \lambda_{T, i}, \lambda_{T, j}, \lambda_{T} \in \mathbb{k}$ and T runs over all subsets of $[n]$ not containing i or j in each sum. Without loss of generality, we may assume that none of the monomials of f belong to L. In particular, since $e_{i} e_{j}=\left(e_{i}-e_{j}\right) e_{j} \in L$ we can subtract the first sum from f and assume $\lambda_{T, i, j}=0$ for all T. Then we have

$$
\left(e_{i}-e_{j}\right) f=\sum_{T}\left(\lambda_{T, i}+\lambda_{T, j}\right) e_{i} e_{j} e_{T}+\sum_{T} \lambda_{T} e_{i} e_{T}-\sum_{T} \lambda_{T} e_{j} e_{T},
$$

where all monomials appearing on the right are distinct, and so, they must all belong to $I_{E}(G)$. If $\lambda_{T} \neq 0$, then $e_{i} e_{T}, e_{j} e_{T} \in I_{E}(G)$ so that either $e_{T} \in I_{E}(G)$ or there exist $a, b \in T$ such that $e_{i} e_{a}, e_{j} e_{b} \in I_{E}(G)$. Either way, we see that $e_{T} \in L$ contrary to our assumption, so we must have $\lambda_{T}=0$ for all T.

Similarly, if $\lambda_{T, i}+\lambda_{T, j} \neq 0$, then $e_{i} e_{j} e_{T} \in I_{E}(G)$ implies there is an $a \in T$ such that $e_{i} e_{a}$ or $e_{j} e_{a}$ belongs to $I_{E}(G)$. Suppose without loss of generality that $e_{i} e_{a} \in I_{E}(G)$. If $\lambda_{T, i} \neq 0$, then $e_{i} e_{T} \in L$ contrary to our assumption on f, so we must have $\lambda_{T, i}=0$ so that $\lambda_{T, j} \neq 0$. But then $e_{j} e_{T}$ is a monomial of f divisible by $e_{j} e_{a}=e_{i} e_{a}-\left(e_{i}-e_{j}\right) e_{a} \in L$, which also contradicts our assumption. Hence, we must have $\lambda_{T, i}+\lambda_{T, j}=0$ for all T so that

$$
f=\sum_{T} \lambda_{T, i}\left(e_{i}-e_{j}\right) e_{T} \in L
$$

Corollary 2.9. With the same notation as in the preceding proposition, if $N\left[v_{i}\right] \cap N\left[v_{j}\right]=\varnothing$ and every vertex in $N\left(v_{i}\right)$ is adjacent to every vertex in $N\left(v_{j}\right)$, then $e_{i}-e_{j}$ is regular on $E / I_{E}(G)$. Furthermore, if $G /\left(v_{i} \sim v_{j}\right)$ denotes the graph obtained by identifying v_{i} and v_{j}, then

$$
\operatorname{depth}_{E} G \geq \operatorname{depth}_{E} G /\left(v_{i} \sim v_{j}\right)+1
$$

Proof. The extra assumptions imply that $J \subseteq I_{E}(G)+\left(e_{i}-e_{j}\right)$ so that $\left(I_{E}(G): e_{i}-e_{j}\right)=$ $I_{E}(G)+\left(e_{i}-e_{j}\right)$, which is equivalent to $e_{i}-e_{j}$ being regular on $E / I_{E}(G)$. If we set $H=$ $G /\left(v_{i} \sim v_{j}\right)$, the second statement follows from the observation that $\left(I_{E}(G), e_{i}-e_{j}\right)=$ $\left(I_{E}(H), e_{i}-e_{j}\right)$.
2.3. Free Resolutions and Graded Betti Numbers. For modules that are quotients of the exterior algebra by a monomial ideal, we can detect depth using tools from commutative algebra whose definitions we recall in this subsection.

If I is an ideal generated by homogeneous polynomials in a polynomial ring $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ over a field, a free resolution of the quotient ring $R=S / I$ is an exact sequence of homomorphisms

$$
0 \rightarrow F_{p} \xrightarrow{d_{p}} F_{p-1} \rightarrow \cdots \rightarrow F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} R \rightarrow 0,
$$

where each $F_{i} \cong S^{r_{i}}$ is a free S-module (that is, the image of each map in the sequence is the kernel of the preceding map). Concretely, we can represent each map d_{i} as multiplication by a matrix with entries in S. Every quotient ring R has a free resolution that is minimal in the sense the entries of the matrices representing the maps d_{i} are all homogeneous polynomials of positive degree, and this resolution is unique up to isomorphism.

By imposing a grading on the free modules F_{i} in the minimal free resolution of R so that the maps d_{i} preserve degrees, we can write each free module as a direct sum $F_{i} \cong \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i, j}}$, where $S(-j)$ denotes the free graded S-module whose d-th graded component is $S(-j)_{d}=$ S_{d-j}. The numbers $\beta_{i, j}^{S}(R):=\beta_{i, j}$ that record the number of basis elements of F_{i} of degree j are then called the graded Betti numbers of R over S. When I is a monomial ideal, the minimal free resolution of R even admits a finer \mathbb{Z}^{n}-grading, where $\operatorname{deg} x_{i}=\mathbf{e}_{i}$ is the i-th standard basis vector of \mathbb{Z}^{n}. In that case, for each $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, we denote by $\beta_{i, \mathbf{a}}^{S}(R)$ the corresponding multigraded Betti number of R over S. In particular, when I is squarefree monomial and $\beta_{i, \mathbf{a}}^{S}(R) \neq 0$, it follows from the Taylor resolution, for example, that every entry of a is either 0 or 1 . See [Pee11] for further details.

The next result provides the important connection between measuring depth of monomial ideals over an exterior algebra and free resolutions over a polynomial ring.

Theorem 2.10 ([AAH00, 3.1, 3.2, 4.2]). Let E be an exterior algebra in n variables over an algebraically closed field $\mathbb{k}, J \subseteq E$ be a monomial ideal, and I be the corresponding squarefree monomial ideal of the dual polynomial ring S. Denote by Σ the set of non-vanishing multidegrees in the minimal free resolution of S / I. Then

$$
\begin{gathered}
V_{E}(E / J)=\bigcup_{\mathbf{a} \in \Sigma} V\left(x_{i} \mid a_{i}=0\right) \\
\operatorname{depth}_{E} E / J=n-\max \left\{j \mid \beta_{i, j}^{S}(S / I) \neq 0\right\} .
\end{gathered}
$$

Example 2.11. Consider the edge ideal $I_{E}\left(C_{3}\right)=\left(e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}\right) \subseteq E=\bigwedge_{\mathbb{k}}\left\langle e_{1}, e_{2}, e_{3}\right\rangle$, and let $I_{S}\left(C_{3}\right)=\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right) \subseteq S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ denote the corresponding edge ideal in the dual polynomial ring. It can be checked that the minimal free resolution of $R=S / I_{S}\left(C_{3}\right)$ is

$$
0 \longrightarrow S(-1,-1,-1)^{2} \xrightarrow{d_{2}} \begin{gathered}
S(-1,-1,0) \\
\oplus \\
S(-1,0,-1) \\
S(0,-1,-1)
\end{gathered} \xrightarrow{d_{1}} S \longrightarrow 0
$$

where

$$
d_{2}=\left(\begin{array}{cc}
x_{3} & 0 \\
-x_{2} & x_{2} \\
0 & -x_{1}
\end{array}\right) \quad d_{1}=\left(\begin{array}{lll}
x_{1} x_{2} & x_{1} x_{3} & x_{2} x_{3}
\end{array}\right)
$$

so that the only nonzero multidegrees are $\Sigma=\{(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$ and the only nonzero graded Betti numbers of R are $\beta_{0,0}^{S}(R)=1, \beta_{1,2}^{S}(R)=3$ and $\beta_{2,3}^{S}(R)=2$. Hence, the above theorem implies that

$$
\begin{gathered}
V_{E}\left(C_{3}\right)=V(0)=E_{1} \\
\operatorname{depth}_{E} C_{3}=3-3=0
\end{gathered}
$$

We will see that this example is greatly generalized in Theorem 3.7 below.

Corollary 2.12. Let G be a graph on n vertices, and let E and S be the corresponding exterior algebra and polynomial ring over \mathfrak{k} as above. Then

$$
\operatorname{depth}_{E} G \leq \operatorname{depth}_{S} G-1
$$

with equality if $I_{S}(G)$ has a linear free resolution over S.

Proof. As $I_{S}(G)$ is generated by quadratic monomials, $\beta_{i, j}^{S}\left(S / I_{S}(G)\right)=0$ for $i>0$ and $j \leq i$. Thus $\beta_{p, j}^{S}\left(S / I_{S}(G)\right) \neq 0$ for some $j \geq p+1$, where $p=\operatorname{pd}_{S} S / I_{S}(G)$. Thus

$$
\operatorname{depth}_{E} G=n-\max \left\{j \mid \beta_{i, j}^{S}\left(S / I_{S}(G)\right) \neq 0\right\} \leq n-p-1=\operatorname{depth}_{S} G-1
$$

where the last equality is the Auslander-Buchsbaum Formula [Pee11, 15.3]. When $I_{S}(G)$ has a linear free resolution, equality follows from Theorem 2.10.

Remark 2.13. We note that the above inequality is both tight and the difference depth ${ }_{S} G-$ $\operatorname{depth}_{E} G$ can be arbitrarily large. For example, since $I_{S}\left(K_{n}\right)$ is Cohen-Macaulay of height $n-1$, it will follow from Corollary 3.10 that

$$
\operatorname{depth}_{S} K_{n}-1=n-1-\operatorname{ht} I_{S}\left(K_{n}\right)=0=\operatorname{depth}_{E} K_{n} .
$$

On the other hand, if C_{n} denotes the cycle graph on n vertices, then $\operatorname{depth}_{E} C_{n}=0$ by Theorem 3.7, yet

$$
\operatorname{depth}_{S} C_{n}=\left\{\begin{array}{lll}
\left\lfloor\frac{n}{3}\right\rfloor & \text { if } n \equiv 1 & (\bmod 3) \\
\left\lfloor\frac{n+2}{3}\right\rfloor & \text { if } n \neq 1 & (\bmod 3)
\end{array}\right.
$$

by [Bou10, 5.0.6]. Thus, the difference $\operatorname{depth}_{S} G-\operatorname{depth}_{E} G$ can be arbitrarily large.

3. Some Singular Variety Computations

In this section, we compute the singular varieties and depths of several large classes of graphs, including paths, cycles, spider graphs, star graphs, complete multipartite graphs, and trees. We also investigate the effect whiskering a graph has on its depth.

3.1. Trees and Cycles.

Theorem 3.1. Let G be a graph with a vertex $w=v_{n}$ of degree one, and let v be the unique vertex adjacent to w. Then

$$
V_{E}(G)=\left(V_{E}(G \backslash w) \cap V\left(x_{n}\right)\right) \cup V_{E}(G \backslash N[v])
$$

so that

$$
\operatorname{depth}_{E} G=\min \left\{\operatorname{depth}_{E}(G \backslash w)+1, \operatorname{depth}_{E}(G \backslash N[v])\right\} .
$$

Proof. Let $\Sigma(G)$ denote the set of multidegrees of basis elements for any free module in the minimal free resolution of $S / I_{S}(G)$ over S. We may assume the vertices of G have been numbered so that v_{1}, \ldots, v_{r} are the neighbors of v different from $w, v=v_{r+1}$, and $w=v_{n}$. We also set $G^{\prime}=G \backslash w, S^{\prime}=\mathbb{k}\left[x_{1}, \ldots, x_{n-1}\right]$, and $S^{\prime \prime}=\mathbb{k}\left[x_{r+2}, \ldots, x_{n-1}\right]$. We then have a short exact sequence of graded S-modules

$$
0 \longrightarrow S /\left(I_{S}\left(G^{\prime}\right): x_{r+1} x_{n}\right)(-2) \xrightarrow{x_{r+1} x_{n}} S / I_{S^{\prime}}\left(G^{\prime}\right) S \longrightarrow S / I_{S}(G) \longrightarrow 0,
$$

where $\left(I_{S}\left(G^{\prime}\right): x_{r+1} x_{n}\right)=I_{S^{\prime \prime}}(G \backslash N[v]) S+\left(x_{1}, \ldots, x_{r}\right)$. Let F_{\bullet} and F_{\bullet}^{\prime} denote the minimal free resolutions of $S /\left(I_{S}\left(G^{\prime}\right): x_{r+1} x_{n}\right)$ and $S / I_{S^{\prime}}\left(G^{\prime}\right) S$ respectively. We note that F_{\bullet}^{\prime} is obtained from the minimal free resolution of $S^{\prime} / I_{S^{\prime}}\left(G^{\prime}\right)$ over S^{\prime} by tensoring with S since S is free over S^{\prime} so that the set of multidegrees of basis elements for any free module in F_{\bullet}^{\prime} is precisely $\Sigma\left(G^{\prime}\right)$ (after identifying \mathbb{Z}^{n-1} with $\left.\mathbb{Z}^{n-1} \times\{0\} \subseteq \mathbb{Z}^{n}\right)$. Additionally, since

$$
S /\left(I_{S}\left(G^{\prime}\right): x_{r+1} x_{n}\right) \cong S^{\prime \prime} / I_{S^{\prime \prime}}(G \backslash N[v]) \otimes_{\mathbb{k}} \mathbb{k}\left[x_{1}, \ldots, x_{r+1}, x_{n}\right] /\left(x_{1}, \ldots, x_{r}\right),
$$

we know that F_{\bullet} can be obtained as the tensor product over \mathbb{k} of the minimal free resolution of $S^{\prime \prime} / I_{S^{\prime \prime}}(G \backslash N[w])$ over $S^{\prime \prime}$ with the Koszul complex on the variables x_{1}, \ldots, x_{r}. Hence, if $\Delta=\{0,1\}^{r}$, we see that the set of multidegrees of basis elements for any free module in F_{\bullet} is

$$
\Sigma(G \backslash N[v])+\Delta=\{\mathbf{a}+\mathbf{b} \mid \mathbf{a} \in \Sigma(G \backslash N[v]), \mathbf{b} \in \Delta\},
$$

where we again identify \mathbb{Z}^{r} with $\mathbb{Z}^{r} \times\{0\}^{n-r} \subseteq \mathbb{Z}^{n}$.
If $\varphi: F_{\bullet}(-2) \rightarrow F_{\bullet}^{\prime}$ is any chain map lifting $S /\left(I_{S}\left(G^{\prime}\right): x_{r+1} x_{n}\right)(-2) \xrightarrow{x_{r+1} x_{n}} S / I_{S^{\prime}}\left(G^{\prime}\right) S$, then as observed in [Bou10, 2.1.1], the mapping cone of φ provides a minimal free resolution of $S / I_{S}(G)$ since every multidegree $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ appearing as a shift in F_{\bullet}^{\prime} must have $a_{n}=0$. Since the i-th free module in the mapping cone of φ is just $F_{i}^{\prime} \oplus F_{i-1}$ for $i>0$ and S if $i=0$, it follows that

$$
\Sigma(G)=\Sigma\left(G^{\prime}\right) \cup\left(\Sigma(G \backslash N[v])+\Delta+\mathbf{e}_{r+1}+\mathbf{e}_{n}\right) .
$$

Hence, Theorem 2.10 and Proposition 2.3 imply that

$$
\begin{aligned}
V_{E}(G) & =\left(\bigcup_{\mathbf{a} \in \Sigma\left(G^{\prime}\right)} V\left(x_{i}, x_{n} \mid a_{i}=0\right)\right) \cup\left(\bigcup_{\mathbf{b} \in \Sigma(G \backslash N[v])} V\left(x_{i} \mid b_{i}=0\right)\right) \\
& =\left(V_{E}(G \backslash w) \cap V\left(x_{n}\right)\right) \cup V_{E}(G \backslash N[v]),
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{depth}_{E} G & =\operatorname{codim}_{E_{1}} V_{E}(G) \\
& =\min \left\{\operatorname{codim}_{E_{1}}\left(V_{E}(G \backslash w) \cap V\left(x_{n}\right)\right), \operatorname{codim}_{E_{1}} V_{E}(G \backslash N[v])\right\} \\
& =\min \left\{\operatorname{depth}_{E}(G \backslash w)+1, \operatorname{depth}_{E}(G \backslash N[v])\right\} .
\end{aligned}
$$

As a consequence of the preceding theorem, we recover the following result of McCullough and Mere on the singular varieties of path graphs.

Corollary 3.2 ([MM22, 4.3]). Let P_{n} denote the path graph on $n \geq 1$ vertices with edges $v_{i} v_{i+1}$ for all $i<n$.
(a) If $n \equiv 1(\bmod 3)$, then $\operatorname{depth}_{E} P_{n}=1$ and

$$
V_{E}\left(P_{n}\right)=\bigcup_{i \equiv 1(\bmod 3)} V\left(x_{i}\right)
$$

(b) If $n \not \equiv 1(\bmod 3)$, then $\operatorname{depth}_{E} P_{n}=0$ and $V_{E}\left(P_{n}\right)=E_{1}$.

Proof. For the $n \leq 3$, the result is a straightforward computation, which we omit. If $n \geq 4$ and the result holds for $k<n$, then applying the preceding theorem with $w=v_{n}$ yields $V_{E}\left(P_{n}\right)=\left(V_{E}\left(P_{n-1}\right) \cap V\left(x_{n}\right)\right) \cup V_{E}\left(P_{n-3}\right)$. If $n \not \equiv 1(\bmod 3)$, then $V_{E}\left(P_{n-3}\right)=E_{1}$ by Proposition 2.3 and induction so that $V_{E}\left(P_{n}\right)=E_{1}$ and $\operatorname{depth}_{E} P_{n}=0$. If $n \equiv 1(\bmod 3)$, then

$$
\left.V_{E}\left(P_{n-3}\right)=\bigcup_{i \equiv 1(\bmod 3)}^{i<n}\right\} \quad V\left(x_{i}\right) \quad \text { and } \quad V\left(P_{n-1}\right)=E_{1}
$$

so that

$$
V_{E}\left(P_{n}\right)=V\left(x_{n}\right) \cup\left(\bigcup_{i \equiv 1} \bigcup_{\substack{\bmod 3) \\ i<n}} V\left(x_{i}\right)\right)=\bigcup_{i \equiv 1(\bmod 3)} V\left(x_{i}\right),
$$

whence $\operatorname{depth}_{E} P_{n}=1$.

Since every tree has a degree one vertex, we also note that the above theorem can be used to recursively compute the depth or singular variety of any tree.

Example 3.3. Consider the tree G shown below.

The table in Figure 3.1 shows two sequences of subgraphs obtained by deleting one whisker and its closed neighborhood at a time until we obtain a pair of paths for which the depth is known by Corollary 3.2. We then apply Theorem 3.1 to recursively compute the depth of the original tree. In this case, we have strategically chosen the vertices to delete so that the

i	$G_{i}=G_{i-1} \backslash v_{i}$	$\operatorname{depth}_{E} G_{i}$	$G_{i}^{\prime}=G_{i-1} \backslash N\left[v_{i}\right]$	$\operatorname{depth}_{E} G_{i}^{\prime}$
0		1	-	-
1		1		1
2		0	$\begin{array}{ccc} v_{3} & v_{4} & v_{8} \\ 0 & 0 & \circ \end{array}$	3
3		0	$v_{7} \bigcirc-\bigcirc v_{8}$	0

Figure 3.1. Computing Depth by Trimming Whiskers
graphs G_{i}^{\prime} have immediately recognizable depth, but in general, one may obtain a repeatedly branching tree of subgraphs.

The following modification of the depth equality in the theorem will be useful later.

Corollary 3.4. Let G be a graph with a vertex w of degree one, and let v be the unique vertex adjacent to w. Then

$$
\operatorname{depth}_{E} G=\min \left\{\operatorname{depth}_{E}(G \backslash v), \operatorname{depth}_{E}(G \backslash N[v])\right\} .
$$

Proof. By Proposition 2.6, we know that

$$
\operatorname{depth}_{E} G \geq \min \left\{\operatorname{depth}_{E}(G \backslash v), \operatorname{depth}_{E}(G \backslash N[v])\right\} .
$$

In the case where $\operatorname{depth}_{E}(G \backslash v)$ and $\operatorname{depth}_{E}(G \backslash N[v])$ are different, we get the desired result via Corollary 2.2.

So, suppose depth${ }_{E}(G \backslash v)=\operatorname{depth}_{E}(G \backslash N[v])$. Applying Proposition 2.6 again to the graph $G \backslash w$, we have

$$
\operatorname{depth}_{E}(G \backslash w) \geq \min \left\{\operatorname{depth}_{E}(G \backslash\{v, w\}), \operatorname{depth}_{E}(G \backslash N[v])\right\}
$$

Since $G \backslash v=(G \backslash\{v, w\}) \sqcup\{w\}$, we have $\operatorname{depth}_{E}(G \backslash v)=\operatorname{depth}_{E}(G \backslash\{v, w\})+1$. Since the depths of $G \backslash v$ and $G \backslash N[v]$ were assumed to be equal and $G \backslash\{v, w\}$ has depth one less than that of $G \backslash v$, we get that $\operatorname{depth}_{E}(G \backslash w)=\operatorname{depth}_{E}(G \backslash v)-1$ by Corollary 2.2. Finally, we use Theorem 3.1 to calculate the depth of G :

$$
\begin{aligned}
\operatorname{depth}_{E} G & =\min \left\{\operatorname{depth}_{E}(G \backslash w)+1, \operatorname{depth}_{E}(G \backslash N[v])\right\} \\
& =\min \left\{\operatorname{depth}_{E}(G \backslash v), \operatorname{depth}_{E}(G \backslash N[v])\right\} .
\end{aligned}
$$

A spider graph is a tree that has exactly one vertex of degree greater than 2. This vertex will be called the head. Since no other vertex can have degree bigger than 2 , the spider will have induced paths coming off from the head. We will call these paths the legs.

Denote by $S P_{n_{1}, \ldots, n_{k}}$ a spider with legs of lengths $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$, and label the vertices of the leg of length n_{r} as $v_{0}=v_{r, 0}, v_{r, 1}, \ldots, v_{r, n_{r}}$ where v_{0} is the head of the spider.

Theorem 3.5. Let $S P_{n_{1}, \ldots, n_{k}}$ be a spider graph, and let $E=\bigwedge_{\mathbb{k}}\left\langle e_{0}, e_{r, i} \mid 1 \leq r \leq k, 1 \leq i \leq n_{r}\right\rangle$ be the corresponding exterior algebra. Then

$$
V_{E}\left(S P_{n_{1}, \ldots, n_{k}}\right)=\left(\bigcap_{n_{r} \equiv 1(\bmod 3)} \bigcup_{i \equiv 1(\bmod 3)} V\left(x_{r, i}\right)\right) \cup\left(\bigcap_{n_{r} \equiv 2(\bmod 3)} \bigcup_{i \equiv 2(\bmod 3)} V\left(x_{r, i}\right)\right),
$$

and $\operatorname{depth}_{E} S P_{n_{1}, \ldots, n_{k}}=\min \{p, q\}$, where p is the number of legs whose length is congruent to 1 mod 3 and q is the number of legs whose length is congruent $2 \bmod 3$.

Proof. Set $G=S P_{n_{1}, \ldots, n_{k}}$. If $n_{r}=1$ for all r, then $G=K_{1, k}$ is a complete bipartite graph, and the statement of the theorem asserts that $\operatorname{depth}_{E} G=0$ and $V_{E}(G)=E_{1}$ since the rightmost intersection is an intersection over an empty collection. This case follows from Corollary 3.10, so we may assume that $n_{r} \geq 2$ for some r.

By deleting the head v_{0} of the spider, we obtain an exact sequence of E-modules as (2.1) where $G \backslash v_{0}=P_{n_{1}} \sqcup \cdots \sqcup P_{n_{k}}$ and $G \backslash N\left[v_{0}\right]=P_{n_{1}-1} \sqcup \cdots \sqcup P_{n_{k}-1}$. By combining Proposition
2.7, Proposition 2.3, and Corollary 3.2, we compute the respective singular varieties

$$
V_{E}\left(G \backslash v_{0}\right)=\bigcap_{r=1}^{k} V_{E}\left(P_{n_{r}}\right)=\bigcap_{n_{r} \equiv 1(\bmod 3)} V_{E}\left(P_{n_{r}}\right)=\bigcap_{n_{r} \equiv 1(\bmod 3)}\left(\bigcup_{i \equiv 1(\bmod 3)} V\left(x_{r, i}\right)\right),
$$

and

$$
V_{E}\left(G \backslash N\left[v_{0}\right]\right)=\bigcap_{r=1}^{k} V_{E}\left(P_{n_{r}-1}\right)=\bigcap_{n_{r} \equiv 2(\bmod 3)} V_{E}\left(P_{n_{r}-1}\right)=\bigcap_{n_{r} \equiv 2(\bmod 3)}\left(\bigcup_{i \equiv 2(\bmod 3)} V\left(x_{r, i}\right)\right)
$$

where we choose the variables $x_{r, i}$ with $i \equiv 2(\bmod 3)$ in the last equality since the r-th component of $G \backslash N\left[v_{0}\right]$ has vertices labeled by $v_{r, 2}, v_{r, 3}, \ldots, v_{r, n_{r}}$.

In the former case, we can rewrite $V_{E}\left(G \backslash v_{0}\right)$ as a union of linear subspaces determined by the vanishing of p variables $x_{r, i_{r}}$ where for each r with $n_{r} \equiv 1(\bmod 3)$ we choose one $i_{r} \leq n_{r}$ with $i_{r} \equiv 1(\bmod 3)$. Similarly, we can rewrite $V_{E}\left(G \backslash N\left[v_{0}\right]\right)$ as a union of linear subspaces determined by the vanishing of q variables $x_{r, i_{r}}$ where for each r with $n_{r} \equiv 2$ $(\bmod 3)$ we choose one $i_{r} \leq n_{r}$ with $i_{r} \equiv 2(\bmod 3)$. By Theorem 2.1, we know that $V_{E}(G) \subseteq$ $V_{E}\left(G \backslash v_{0}\right) \cup V_{E}\left(G \backslash N\left[v_{0}\right]\right)$. However, we also know that $V_{E}\left(G \backslash v_{0}\right) \subseteq V_{E}(G) \cup V_{E}\left(G \backslash N\left[v_{0}\right]\right)$, and since it is clear that none of the linear subspaces whose union is $V_{E}\left(G \backslash v_{0}\right)$ is contained in any of the linear subspaces whose union is $V_{E}\left(G \backslash N\left[v_{0}\right]\right)$, we must have $V_{E}\left(G \backslash v_{0}\right) \subseteq V_{E}(G)$. An analogous argument shows that $V_{E}\left(G \backslash N\left[v_{0}\right]\right) \subseteq V_{E}(G)$ as well so that

$$
V_{E}(G)=V_{E}\left(G \backslash v_{0}\right) \cup V_{E}\left(G \backslash N\left[v_{0}\right]\right) .
$$

Finally, because every component of $V_{E}\left(G \backslash v_{0}\right)$ has codimension p and every component of $V_{E}\left(G \backslash N\left[v_{0}\right]\right)$ has codimension q, it follows that

$$
\operatorname{depth}_{E} G=\operatorname{codim}_{E} V_{E}(G)=\min \{p, q\}
$$

Example 3.6. The graph $S P_{1,2,3,4}$ is shown below.

Since $S P_{1,2,3,4}$ has 2 legs of length congruent to $1 \bmod 3$ and 1 leg of length congruent to 2 $\bmod 3$, the previous proposition shows that $\operatorname{depth}_{E} S P_{1,2,3,4}=\min (2,1)=1$ and

$$
\begin{aligned}
V_{E}\left(S P_{1,2,3,4}\right) & =V\left(x_{1,1}\right) \cap\left(V\left(x_{4,1}\right) \cup V\left(x_{4,4}\right)\right) \cup\left(V\left(x_{2,2}\right)\right) \\
& =V\left(x_{1,1}, x_{4,1}\right) \cup V\left(x_{1,1}, x_{4,4}\right) \cup V\left(x_{2,2}\right) .
\end{aligned}
$$

Having seen how to compute the depth and singular varieties of trees, we now turn our attention to cycles.

Theorem 3.7. Let C_{n} denote a cycle graph on $n \geq 3$ vertices. Then $\operatorname{depth}_{E} C_{n}=0$.
Proof. We assume that the vertices v_{1}, \ldots, v_{n} of C_{n} have been labeled so that the edges are $v_{i} v_{i+1}$ for $i<n$ and $v_{1} v_{n}$, and we consider cases based on the residue of $n \bmod 3$. If $n \equiv 1$ $(\bmod 3)$ or $n \equiv 2(\bmod 3)$, applying Proposition 2.6 to the deletion of the vertex v_{n} yields

$$
\operatorname{depth}_{E} C_{n} \geq \min \left\{\operatorname{depth}_{E} P_{n-1}, \operatorname{depth} P_{n-3}\right\}
$$

When $n \equiv 1(\bmod 3)$, Corollary 3.2 yields that $\operatorname{depth}_{E} P_{n-3}=1$ and $\operatorname{depth}_{E} P_{n-1}=0$. Consequently, $\operatorname{depth}_{E} C_{n}=0$ by Corollary 2.2 . When $n \equiv 2(\bmod 3), \operatorname{depth}_{E} P_{n-3}=0$ and $\operatorname{depth}_{E} P_{n-1}=1$, so the result follows similarly.

Now, suppose $n \equiv 0(\bmod 3)$. We may further assume that $n \geq 6$, since the case $n=3$ is handled by Corollary 3.10. Let G denote the graph obtained from C_{n} by adding the edge $v_{1} v_{3}$. Applying Proposition 2.6 to the deletion of the edge $v_{1} v_{3}$ yields

$$
\operatorname{depth}_{E} C_{n} \geq \min \left\{\operatorname{depth}_{E} P_{n-5}, \operatorname{depth}_{E} G\right\}
$$

Since $\operatorname{depth}_{E} P_{n-5}=1$ by Corollary 3.2, we aim to show $\operatorname{depth}_{E} G=0$ in order to prove that depth $C_{n}=0$ by Corollary 2.2. Applying Proposition 2.6 again to the deletion of the edge $v_{1} v_{n}$ yields

$$
\operatorname{depth}_{E} G \geq \min \left\{\operatorname{depth}_{E} H, \operatorname{depth}_{E} P_{n-5}\right\}
$$

where $H=G \backslash v_{1} v_{n}$ is the following graph.

Hence, it further suffices to show that depth ${ }_{E} H=0$. Deleting the vertex v_{4} from H yields

$$
\operatorname{depth}_{E} H \geq \min \left\{\operatorname{depth}_{E}\left(P_{2} \sqcup P_{n-5}\right), \operatorname{depth}_{E}\left(C_{3} \sqcup P_{n-4}\right)\right\} .
$$

By Proposition 2.7, Corollary 3.2, and Corollary 3.10, we see that $\operatorname{depth}_{E}\left(P_{2} \sqcup P_{n-5}\right)=$ $0+1=1$ and $\operatorname{depth}_{E}\left(C_{3} \sqcup P_{n-4}\right)=0+0=0$. Hence, depth ${ }_{E} H=0$ by Corollary 2.2 as wanted.
3.2. Duplicating and Coning. A vertex of a graph which is connected to every other vertex is called universal, and graphs with a universal vertex are called cones. Proposition 3.8 states that all cones have depth 0 . Special cases of cones include complete graphs, wheel graphs, and windmill graphs.

Proposition 3.8. If G is a graph with at least two vertices having a universal vertex v, then $\operatorname{depth}_{E} G=0$.

Proof. Let u be any vertex of G different from v, and let H denote the graph obtained by adding a whisker $v w$ to the graph $G \backslash u v$. By Theorem 3.1, we see that

$$
\operatorname{depth}_{E} H=\min \left\{\operatorname{depth}_{E}(G \backslash u v)+1, \operatorname{depth}_{E}\{u\}\right\}=1 .
$$

We note that G is isomorphic to the graph obtained from H by identifying the vertices u and w. Since $N[w] \cap N[u]=\varnothing$ and every vertex in $N(w)=\{v\}$ is adjacent to every vertex in $N(v)$ by assumption, Corollary 2.9 implies that $\operatorname{depth}_{E} H \geq \operatorname{depth}_{E} G+1$. Since $\operatorname{depth}_{E} H=1$, it follows that $\operatorname{depth}_{E} G=0$.

A vertex v^{\prime} is called a duplicate of another vertex v if $N\left(v^{\prime}\right)=N(v)$.
Proposition 3.9. If G is a graph with a duplicate vertex v and $\operatorname{depth}_{E}(G \backslash v)=0$, then $\operatorname{depth}_{E} G=0$.

Proof. If $H=G \backslash v$ and w denotes a duplicate of v in G, we note that $G \backslash N[v]=$ $(H \backslash N[w]) \sqcup\{w\}$. Applying Proposition 2.6 to the deletion of v as well as Proposition 2.7 yields

$$
\operatorname{depth}_{E} G \geq \min \left\{\operatorname{depth}_{E}(H \backslash N[w])+1, \operatorname{depth}_{E} H\right\} .
$$

Since $\operatorname{depth}_{E} H=0$ by hypothesis, Corollary 2.2 implies that $\operatorname{depth}_{E} G=\operatorname{depth}_{E} H=0$ as desired.

A complete graph with n vertices is a graph K_{n} in which every vertex is universal. A complete r-partite graph $K_{n_{1}, \ldots, n_{r}}$ is a graph whose vertices can be partitioned into r disjoint sets of cardinalities n_{1}, \ldots, n_{r} so that no two vertices in the same set are adjacent, and there is an edge between every pair of vertices from different sets. Complete multipartite graphs include complete graphs since $K_{1, \ldots, 1}=K_{r}$ and star graphs, which are trees of the form $K_{1, n}$.

By duplicating a universal vertex, we can combine the previous two results to obtain the following.

Corollary 3.10. For $K_{n_{1}, \ldots, n_{r}} \neq K_{1}$, we have $\operatorname{depth}_{E} K_{n_{1}, \ldots, n_{r}}=0$.
Proof. We prove the claim by induction on the size of n_{1}, and we note that the base case is handled by Proposition 3.8 since $K_{n_{1}, \ldots, n_{r}} \neq K_{1}$. So assume $n_{1} \geq 2$ and that the corollary holds for all complete multipartite graphs $K_{m_{1}, \ldots, m_{s}}$ with $m_{1}<n_{1}$. If v is a vertex in the set of size n_{1} in the partition of the vertices of $K_{n_{1}, \ldots, n_{r}}$, then v is a duplicate vertex since $n_{1} \geq 2$ and $K_{n_{1}, \ldots, n_{r}} \backslash v=K_{n_{1}-1, n_{2}, \ldots, n_{r}}$ has depth 0 by induction, so the result follows from Proposition 3.9.
3.3. Whiskering. Given a graph G, define $W(G, m)$ to be the graph formed by attaching m new degree 1 vertices to each vertex of G. Then $W(G, m)$ is called a whiskering of G and the degree 1 vertices (or their incident edges) are called whiskers.

Theorem 3.11. Let G be a graph on n vertices, and let $m>0$. Then

$$
\operatorname{depth}_{E} W(G, m)=m \operatorname{depth}_{E} W(G, 1)
$$

Proof. We will argue by induction on $n \geq 0$. When $n=0$, both $W(G, m)$ and $W(G, 1)$ are the empty graph, which has depth zero.

Now, suppose that $n \geq 1$ and that the result holds for all graphs with fewer than n vertices. Let v a vertex of G of degree d. Observe that by Corollary 3.4 we have

$$
\begin{aligned}
\operatorname{depth}_{E} W(G, 1) & =\min \left\{\operatorname{depth}_{E}(W(G, 1) \backslash v), \operatorname{depth}_{E}(W(G, 1) \backslash N[v])\right\} \\
& =\min \left\{1+\operatorname{depth}_{E}(W(G \backslash v, 1)), d+\operatorname{depth}_{E}(W(G \backslash N[v], 1))\right\} .
\end{aligned}
$$

Using Corollary 3.4 again and our inductive assumption, we then calculate

$$
\begin{aligned}
\operatorname{depth}_{E} W(G, m) & =\min \left\{\operatorname{depth}_{E}(W(G, m) \backslash v), \operatorname{depth}_{E}(W(G, m) \backslash N[v])\right\} \\
& =\min \left\{m+\operatorname{depth}_{E} W(G \backslash v, m), d m+\operatorname{depth}_{E} W(G \backslash N[v], m)\right\} \\
& =\min \left\{m+m \operatorname{depth}_{E} W(G \backslash v, 1), d m+m \operatorname{depth}_{E} W(G \backslash N[v], 1)\right\} \\
& =m \min \left\{1+\operatorname{depth}_{E} W(G \backslash v, 1), d+\operatorname{depth}_{E} W(G \backslash N[v], 1)\right\} \\
& =m \operatorname{depth}_{E} W(G, 1) .
\end{aligned}
$$

Given a graph G, a set of vertices of G is an independent set if no two vertices in the set are adjacent. The independence number $\alpha(G)$ is the largest number of vertices in any independent subset of G.

Theorem 3.12. Let G be a graph with n vertices. Then $\operatorname{depth}_{E} W(G, 1)=n-\alpha(G)$.
Proof. We will argue by induction on $n \geq 0$. When $n=0, W(G, 1)$ is the empty graph so that depth $W(G, 1)=0=0-0=n-\alpha(G)$.

Now, suppose that $n \geq 1$ and that the result holds for all graphs with fewer than n vertices. Let A be a maximal independent set of G, and let v be a vertex in A with degree d in G. By Corollary 3.4, we have

$$
\begin{aligned}
\operatorname{depth}_{E} W(G, 1) & =\min \left\{\operatorname{depth}_{E}(W(G, 1) \backslash v), \operatorname{depth}_{E}(W(G, 1) \backslash N[v])\right\} \\
& =\min \left\{1+\operatorname{depth}_{E} W(G \backslash v, 1), d+\operatorname{depth}_{E} W(G \backslash N[v], 1)\right\} \\
& =\min \{1+n-1-\alpha(G \backslash v), d+n-d-1-\alpha(G \backslash N[v])\} \\
& =\min \{n-\alpha(G \backslash v), n-1-\alpha(G \backslash N[v])\} \\
& =n-\max \{\alpha(G \backslash v), 1+\alpha(G \backslash N[v])\} .
\end{aligned}
$$

If A^{\prime} is an independent subset of $G \backslash v$, then it is also independent in G because $G \backslash v$ is an induced subgraph of G, so $\alpha(G \backslash v) \leq \alpha(G)$. If $A^{\prime \prime}$ is independent in $G \backslash N[v]$, then
$A^{\prime \prime} \cup\{v\}$ is independent in G, so $1+\alpha(G \backslash N[v]) \leq \alpha(G)$. Further, $A \backslash\{v\}$ is independent in $G \backslash N[v]$ so $1+\alpha(G \backslash N[v])=\alpha(G)$. Hence

$$
\operatorname{depth}_{E} W(G, 1)=n-\max \{\alpha(G \backslash v), 1+\alpha(G \backslash N[v])\}=n-\alpha(G)
$$

A vertex cover of a graph G is a set C of vertices of G such that every edge has one of its ends in G. A vertex cover C is minimal if no proper subset of C is a vertex cover. It is easy to see that $C=\left\{i_{1}, \ldots, i_{r}\right\}$ is a minimal vertex cover of G if and only if the prime ideal $P_{C}=\left(x_{i_{1}}, \ldots, x_{i_{r}}\right) \subseteq S$ is a minimal prime of $I_{S}(G)$ [HH11, 9.1.4]. The vertex cover number $\beta(G)$ is the smallest number of vertices in any vertex cover of G. Hence, ht $I_{S}(G)=\beta(G)$. As a consequence of [Wes96, 3.1.21], we have the following corollary.

Corollary 3.13. For any graph G, we have $\operatorname{depth}_{E} W(G, 1)=\mathrm{ht} I_{S}(G)$.
Since $W(G, 1)$ is Cohen-Macaulay [Vil90, 2.2], we also recover a special case of a purely commutative result of Biermann and Van Tuyl [BVT13, 4.7] which gives the regularity of whiskered graphs.

Corollary 3.14. For any graph G, we have $\operatorname{reg} W(G, 1)=\operatorname{dim} S / I_{S}(G)$.
Proof. Let n be the number of vertices of G, and let S^{\prime} denote the polynomial ring of $W(G, 1)$ in $2 n$ variables. Applying Theorem 2.10, the previous corollary, and the fact that $W(G, 1)$ is Cohen-Macaulay gives

$$
\operatorname{ht} I_{S}(G)=\operatorname{depth}_{E} W(G, 1)=2 n-\operatorname{pd}_{S^{\prime}} W(G, 1)-\operatorname{reg} W(G, 1)
$$

The set of vertices of G is a minimal vertex cover, and since $W(G, 1)$ is Cohen-Macaulay, all minimal vertex covers have the same size so that $\mathrm{pd}_{S^{\prime}} W(G, 1)=\mathrm{ht} I_{S^{\prime}}(W(G, 1))=n$. And so, it follows that reg $W(G, 1)=n-\mathrm{ht} I_{S}(G)=\operatorname{dim} S / I_{S}(G)$.

Example 3.15. As a consequence of Theorem 3.12, we can compute the depth of every Cohen-Macaulay tree G, as every such tree is of the form $W\left(G_{0}, 1\right)$ for some tree G_{0} [Vil90, $2.4,2.5]$. For example, the tree G below is Cohen-Macaulay since it is the whiskering of the tree G_{0} on the vertices v_{1}, \ldots, v_{10}, but it is not a spider.

We have $\operatorname{depth}_{E} G=\beta\left(G_{0}\right)=3$ since $\left\{v_{3}, v_{5}, v_{8}\right\}$ is a vertex cover of G_{0} of minimum size.

Corollary 3.16. Let $n \geq 1$. Then:
(a) $\operatorname{depth}_{E} W\left(P_{n}, 1\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
(b) $\operatorname{depth}_{E} W\left(C_{n}, 1\right)=\left\lceil\frac{n}{2}\right\rceil$ for $n \geq 3$.
(c) $\operatorname{depth}_{E} W\left(K_{n}, 1\right)=n-1$.

Proof. (a) If P_{n} has edges $v_{i} v_{i+1}$ for each $i<n$, then every independent set of P_{n} is of the of the form $\left\{v_{i_{1}}, \ldots, v_{i_{t}}\right\}$ where $1 \leq i_{1} \leq \cdots \leq i_{t} \leq n$ and $i_{j+1} \geq i_{j}+2$ for all $j<t$. From this, it easily follows that $t \leq\left\lfloor\frac{n+1}{2}\right\rfloor=\left\lceil\frac{n}{2}\right\rceil$. In particular, we see that $\left\{v_{1}, v_{3}, \ldots, v_{2 t-1}\right\}$ is independent for $t=\left\lceil\frac{n}{2}\right\rceil$ so that $\alpha\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ and $\operatorname{depth}_{E} W\left(P_{n}, 1\right)=n-\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor$ by Theorem 3.12.
(b) If A is an independent set of C_{n}, there is at least one vertex v not in A so that A is independent in $C_{n} \backslash v=P_{n-1}$. As we already observed that $\alpha\left(C_{n} \backslash v\right) \leq \alpha\left(C_{n}\right)$ in the proof of Theorem 3.12, it follows that $\alpha\left(C_{n}\right)=\alpha\left(P_{n-1}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ so that $\operatorname{depth}_{E} W\left(C_{n}, 1\right)=$ $n-\left\lfloor\frac{n}{2}\right\rfloor=\left\lceil\frac{n}{2}\right\rceil$.
(c) This follows immediately from the fact that every maximal independent set of K_{n} consists of only one vertex.

Example 3.17. The graph $W\left(K_{4}, 3\right)$ is shown below.

Combining the preceding corollary with Theorem 3.11, we see that depth $W\left(K_{4}, 3\right)=$ $(4-1) 3=9$. The next section will show that this graph has maximal depth among all graphs with 16 vertices (and more generally, that $W\left(K_{m}, m-1\right)$ has maximal depth among all graphs with m^{2} vertices).

We now consider the behavior of the depth of a graph upon iteratively whiskering every vertex at least twice. Given a graph G and integers $m_{1}, \ldots, m_{k}>0$, we define the graph $W\left(G, m_{1}, \ldots, m_{k}\right)$ recursively by

$$
W\left(G, m_{1}, \ldots, m_{k}\right):=W\left(W\left(G, m_{1}, \ldots, m_{k-1}\right), m_{k}\right) .
$$

When $m_{i}=m$ for all i, we also denote this graph by simply $W^{k}(G, m)$. The following result shows that the depth of these graphs is solely dependent on the number of vertices of the original graph and the number of whiskers added.

Corollary 3.18. Let G be a graph on n vertices, and let $m_{1}, m_{2}, \ldots, m_{k}>0$ for some $k \geq 2$. Then

$$
\operatorname{depth}_{E} W\left(G, m_{1}, \ldots, m_{k}\right)=n\left(m_{1}+1\right)\left(m_{2}+1\right) \cdots\left(m_{k-2}+1\right) m_{k}
$$

In particular, for any $m>0$ and $k \geq 2$, we have

$$
\operatorname{depth}_{E} W^{k}(G, m)=n m(m+1)^{k-2}
$$

Proof. Suppose that $k=2$. By Theorem 3.11, we may assume that $m_{2}=1$. Hence, it suffices to show that $\operatorname{depth}_{E} W\left(G, m_{1}, 1\right)=n$. If A is a maximal independent set of $W\left(G, m_{1}\right)$, we can partition A into sets A_{v} for each vertex v of G, where A_{v} is the set of vertices in A equal to v or a whisker of v in $W\left(G, m_{1}\right)$. If $v \in A_{v}$, then $\left|A_{v}\right|=1$, and otherwise, the maximality of A forces $\left|A_{v}\right|=m_{1}$. From this, it follows that the set of whiskers of $W\left(G, m_{1}\right)$ is the unique independent set of maximum size. And so, Theorem 3.12 yields $\operatorname{depth}_{E} W\left(G, m_{1}, 1\right)=n$. The general case follows immediately by a simple induction on k after applying the $k=2$ case to the graph $G^{\prime}=W\left(G, m_{1}, \ldots, m_{k-2}\right)$, which is easily seen to have $n\left(m_{1}+1\right) \cdots\left(m_{k-2}+1\right)$ vertices.

Remark 3.19. While the preceding corollary shows that for any two graphs G, G^{\prime} on n vertices, $\operatorname{depth}_{E} W\left(G, m_{1}, m_{2}\right)=\operatorname{depth}_{E} W\left(G^{\prime}, m_{1}, m_{2}\right)$, it is not true that depth $W\left(G, m_{1}\right)=$ $\operatorname{depth}_{E} W\left(G^{\prime}, m_{1}\right)$. For example, $\operatorname{depth}_{E} W\left(P_{4}, 1\right)=2$ while $\operatorname{depth}_{E} W\left(C_{4}, 1\right)=3$ by Proposition 3.16. This is contrary to the case over a polynomial ring where $\operatorname{depth}_{S} W(G, 1)=n$ for any graph G on n vertices since $W(G, 1)$ is always Cohen-Macaulay [Vil90, 2.2].

4. Bounds on Depth of Edge Ideals

In this section, we prove some upper bounds on the depth of edge ideals. The first main result is a tight upper bound on the depth of arbitrary graphs. Then we prove a more refined bound for bipartite graphs.

Let G be a graph. A subset of pairwise disjoint edges is a matching; if the edges in a matching form an induced subgraph of G, it is an induced matching. The maximum size of an induced matching of G is the induced matching number, denoted $\operatorname{im}(G)$. The maximal size of a minimal vertex cover is denoted $\tau_{\max }(G)$. In particular, for any minimal vertex cover C of a graph G, we have

$$
|C| \leq \tau_{\max }(G)=\operatorname{bight} I_{S}(G) \leq \operatorname{pd}_{S} S / I_{S}(G)
$$

Next, we give a general upper bound on the depth of exterior and symmetric algebra edge ideals, the first of which recovers [HH21, 4.2].

Theorem 4.1. Let G be a graph on n vertices, none of which are isolated. Then

$$
\begin{array}{ll}
\operatorname{depth}_{S} G \leq n+2-2 \sqrt{n}, & \operatorname{pd}_{S} G \geq 2 \sqrt{n}-2, \\
\operatorname{depth}_{E} G \leq n+1-2 \sqrt{n}, & \operatorname{cx}_{E} G \geq 2 \sqrt{n}-1
\end{array}
$$

Moreover, when n is a square, both sets of bounds are tight.
Proof. By [DS13, 4.7], $\operatorname{pd}_{S} G \geq n-\operatorname{im}(G)$. That $\operatorname{im}(G) \leq n+2-2 \sqrt{n}$ was noted first in [Fav88] and follows from [BC79, Theorem 6]. Combining these yields $\mathrm{pd}_{S} G \geq 2 \sqrt{n}-2$. By the Auslander-Buchsbaum Formula [Pee11, 15.3], $\operatorname{depth}_{S} G \leq n+2-2 \sqrt{n}$. The latter two inequalities follow from Corollary 2.12 and Theorem 2.4. That both bounds are tight follows from the proof of Corollary 4.2.

Corollary 4.2. Suppose G is a graph on $n=m^{2}$ vertices with no isolated vertices. Then $\operatorname{depth}_{E} G=n+1-2 \sqrt{n}$ if and only if $G=W\left(K_{m}, m-1\right)$.

Proof. Suppose $\operatorname{depth}_{E} G=n+1-2 \sqrt{n}=m^{2}-2 m+1$. By Corollary 2.12 and Theorem 4.1, $\operatorname{depth}_{S} G=m^{2}-2 m+2$, and so, $\operatorname{pd}_{S} G=2 m-2$. By [HH21, 3.1], $\tau_{\max }(G)=2 m-2$ and hence by [HH21, 5.4], G is one of the following graphs:
(1) $P_{2} \sqcup P_{2}$
(2) C_{4}
(3) $W\left(K_{m}, m-1\right)$.

By Theorem 3.7, depth $C_{E}=0 \neq 1$, so we may disregard C_{4}. That depth ${ }_{E} P_{2} \sqcup P_{2}=0 \neq 1$ follows from Proposition 2.7 and Corollary 3.2. Finally, $\operatorname{depth}_{E} W\left(K_{m}, m-1\right)=(m-1)^{2}$ by Theorem 3.11 and Corollary 3.16, completing the proof.

Next, we focus on the depth of bipartite graphs where stronger statements are possible. We first compute the depth of Ferrers graphs. Let $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}>0$ be a sequence of positive integers. The associated Ferrers graph is the bipartite graph on vertex set $\left\{v_{1}, \ldots, v_{m}\right\} \sqcup\left\{w_{1}, \ldots, w_{\lambda_{1}}\right\}$ and edge set $\left\{\left\{v_{i}, w_{j}\right\} \mid 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq \lambda_{i}\right\}$. Ferrers graphs are exactly those bipartite graphs with the property that, after potentially reordering the vertices, if $\left\{v_{i}, w_{j}\right\}$ is an edge then so is $\left\{v_{k}, w_{l}\right\}$ for all $1 \leq k \leq i$ and $1 \leq l \leq j$. Corso and Nagel characterized Ferrers graphs as exactly the bipartite graphs whose symmetric edge ideals have linear free resolutions in [CN09, 4.2]. Using this, we compute the depths of edge ideals of Ferrers graphs.

Proposition 4.3. Suppose G is a Ferrers graph associated to a sequence of integers $\lambda_{1}>$ $\lambda_{2}>\cdots>\lambda_{m}>0$. Then

$$
\operatorname{depth}_{S} G=m+\min _{j}\left\{\lambda_{1}-\lambda_{j}-j+1\right\}
$$

and

$$
\operatorname{depth}_{E} G=m+\min _{j}\left\{\lambda_{1}-\lambda_{j}-j\right\}
$$

Proof. Let $n=\lambda_{1}+m$ be the number of vertices of G. It follows from [CN09, 2.2] that $\operatorname{pd}_{S} G=\max _{j}\left\{\lambda_{j}+j-1\right\}$. By the Auslander-Buchsbaum Formula, $\operatorname{depth}_{S} G=n-\operatorname{pd}_{S} G=$ $m+\min _{j}\left\{\lambda_{1}-\lambda_{j}-j+1\right\}$. Since $I_{S}(G)$ has a linear free resolution, it follows from Corollary 2.12 that depth ${ }_{E} G=m+\min _{j}\left\{\lambda_{1}-\lambda_{j}-j\right\}$.

Finally, we give a tight upper bound on the depth of bipartite graphs.
Theorem 4.4. Let G be a bipartite graph on n vertices none of which are isolated. Then

$$
\begin{array}{ll}
\operatorname{depth}_{S} G \leq\left\lfloor\frac{n}{2}\right\rfloor, & \operatorname{pd}_{S} G \geq\left\lceil\frac{n}{2}\right\rceil \\
\operatorname{depth}_{E} G \leq\left\lfloor\frac{n}{2}\right\rfloor-1, & \operatorname{cx}_{E} G \geq\left\lceil\frac{n}{2}\right\rceil+1
\end{array}
$$

Moreover, both sets of bounds are tight.
Proof. Let G be bipartite on vertex set $V=A \sqcup B$. Then A and B are minimal vertex covers of G. So $\left\lceil\frac{n}{2}\right\rceil \leq \max \{|A|,|B|\} \leq \operatorname{pd}_{S} G$, and again by the Auslander-Buchsbaum Formula, $\operatorname{depth}_{S} G=n-\operatorname{pd}_{S} G \leq n-\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor$. The second two inequalities again follow from Corollary 2.12 and Theorem 2.4. That both bounds are tight follows by considering the Ferrers graph associated to the sequence $\lambda_{i}=\left\lceil\frac{n}{2}\right\rceil-i+1$ for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ and applying the previous proposition.

It seems difficult to completely characterize bipartite graphs G satisfying the equality $\operatorname{depth}_{S} G=\left\lfloor\frac{n}{2}\right\rfloor$. Indeed, such graphs include all Cohen-Macaulay bipartite graphs, Ferrers graphs with $\lambda_{i} \leq m-i+1$ from the previous corollary, and at least some graphs which are neither. There are also non-Ferrers bipartite graphs satisfying $\operatorname{depth}_{E} G=\left\lfloor\frac{n}{2}\right\rfloor-1$ such as the following.

Example 4.5. Let G be the following bipartite graph.

The corresponding edge ideal $I_{S}(G)$ has the following Betti table.

	0	1	2	3	4	5	6
$0:$	1	-	-	-	-	-	-
$1:$	-	17	50	66	47	18	3
$2:$	-	-	1	3	3	1	-

It follows from Corollary 2.12 that $\operatorname{depth}_{S} G=6=\frac{12}{2}$ and $\operatorname{depth}_{E} G=5=\frac{12}{2}-1$. Yet, since $\operatorname{reg}_{S} G=2, G$ is not a Ferrers graph, and since $\left(x_{1}, x_{2}, x_{7}, x_{8}, x_{9}\right)$ is a minimal prime of height $5, I_{S}(G)$ is not Cohen-Macaulay.

Acknowledgements

Computations with Macaulay2 [GS] were very helpful while working on this project. Mastroeni was supported by an AMS-Simons Travel Grant. McCullough was supported by National Science Foundation grant DMS-1900792.

References

[AAH00] Annetta Aramova, Luchezar L. Avramov, and Jürgen Herzog. Resolutions of monomial ideals and cohomology over exterior algebras. Trans. Amer. Math. Soc., 352(2):579-594, 2000.
[BC79] B. Bollobás and E. J. Cockayne. Graph-theoretic parameters concerning domination, independence, and irredundance. J. Graph Theory, 3(3):241-249, 1979.
[Bou10] Rachelle R. Bouchat. Free resolutions of some edge ideals of simple graphs. J. Commut. Algebra, 2(1):1-35, 2010.
[BVT13] Jennifer Biermann and Adam Van Tuyl. Balanced vertex decomposable simplicial complexes and their h-vectors. Electron. J. Combin., 20(3):Paper 15, 12, 2013.
[CN09] Alberto Corso and Uwe Nagel. Monomial and toric ideals associated to Ferrers graphs. Trans. Amer. Math. Soc., 361(3):1371-1395, 2009.
[DS13] Hailong Dao and Jay Schweig. Projective dimension, graph domination parameters, and independence complex homology. J. Combin. Theory Ser. A, 120(2):453-469, 2013.
[Fav88] O. Favaron. Two relations between the parameters of independence and irredundance. Discrete Math., 70(1):17-20, 1988.
[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[HH11] Jürgen Herzog and Takayuki Hibi. Monomial ideals, volume 260 of Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London, 2011.
[HH21] Huy Tài Hà and Takayuki Hibi. MAX MIN vertex cover and the size of Betti tables. Ann. Comb., 25(1):115-132, 2021.
[MM22] Jason McCullough and Zachary Mere. G-quadratic, LG-quadratic, and Koszul quotients of exterior algebras. Comm. Algebra, 50(8):3284-3300, 2022.
[Pee11] Irena Peeva. Graded syzygies, volume 14 of Algebra and Applications. Springer-Verlag London, Ltd., London, 2011.
[Vil90] Rafael H. Villarreal. Cohen-Macaulay graphs. Manuscripta Math., 66(3):277-293, 1990.
[Wes96] Douglas B. West. Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

Iowa State University, Department of Mathematics, Ames, IA, USA
Email address: mmastro@iastate.edu
Iowa State University, Department of Mathematics, Ames, IA, USA Email address: jmccullo@iastate.edu

Iowa State University, Department of Mathematics, Ames, IA, USA
Email address: osborne1@iastate.edu
Iowa State University, Department of Mathematics, Ames, IA, USA
Email address: jar238@iastate.edu
University of Minnesota, School of Mathematics, Minneapolis, Mn, USA
Email address: will7405@umn.edu

[^0]: 2020 Mathematics Subject Classification. Primary: 05E40, 15A75, 16E05; Secondary: 05C25, 13C70.
 Key words and phrases. Exterior algebra, edge ideal, depth, singular variety, free resolution.

