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ON WEIGHTED SIMPLICIAL HOMOLOGY

THOMAS J. X. LI AND CHRISTIAN M. REIDYS

ABSTRACT. We develop a framework for computing the homology of weighted simplicial complexes
with coefficients in a discrete valuation ring. A weighted simplicial complex, (X ,v), introduced by
Dawson [Cah. Topol. Géom. Différ. Catég. 31 (1990), pp. 229–243], is a simplicial complex, X , together
with an integer-valued function, v, assigning weights to simplices, such that the weight of any of faces
are monotonously increasing. In addition, weighted homology, Hv

n(X), features a new boundary operator,
∂ v

n . In difference to Dawson, our approach is centered at a natural homomorphism θ of weighted chain
complexes. The key object is Hv

n(X/θ), the weighted homology of a quotient of chain complexes induced
by θ , appearing in a long exact sequence linking weighted homologies with different weights. We shall
construct bases for the kernel and image of the weighted boundary map, identifying n-simplices as either
κn- or µn-vertices. Long exact sequences of weighted homology groups and the bases, allow us to prove
a structure theorem for the weighted simplicial homology with coefficients in a ring of formal power
series R = F[[π]], where F is a field. Relative to simplicial homology new torsion arises and we shall
show that the torsion modules are connected to a pairing between distinguished κn and µn+1 simplices.

1. Introduction

Topology aside, the concept of simplicial complexes is of central importance in a variety of fields
including data analysis and biology. Many real world data-sets exhibit a simplicial structure [13, 15, 12]
and indeed have been organized as such [4, 20, 9]. While the arising simplicial complexes can
straightforwardly be studied via topological data analysis (TDA) [25, 5, 4, 21], a prevalent feature of
data-sets is the presence of additional simplex-specific data [8].

Dawson introduced in 1990 [6] the concept of a weighted simplicial complex as a simplicial complex
equipped with a function v : X → R, mapping simplices to elements of a ring R, such that for simplices
σ ,τ ∈ X with σ ⊆ τ , we have v(σ)|v(τ). Dawson focused on establishing the Eilenberg-Steenrod
axioms based on a weighted version of the Mayer-Vietoris sequence and provided a category-theory
centered treatment. The key difference between standard and weighted simplicial complexes lies in the
weighted boundary operator that incorporates the weight-function v

dv
n(σ) =

n

∑
i=0

v(σ)

v(σ̂i)
· (−1)i

σ̂i,

where σ is a n-simplex and σ̂i denotes the i-th face of σ . By assumption v(σ̂i)|v(σ), whence dv
n is a

well-defined boundary map.
Subsequent contributions of Ren et al. [16] were more application focused, where an extension

of Dawson’s framework to a persistent homology of weighted simplicial complexes was presented,
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followed by [24], where weighted Laplacians were introduced. In [17, 14], weighted simplicial
homology has been expanded to the theory of weighted sheaves over posets to study the (co)homology
of Artin groups with coefficients in certain local systems. In particular, the weight function v(σ) in
their setup is given by the Poincaré series of the parabolic Coxeter subgroup generated by σ (see [17],
Section 2.4).

Bura et al. [1] studied the homology of certain weighted simplicial complexes with coefficients in
discrete valuation rings, arising from the intersections of loops of a pair of RNA secondary structures [3].
[1] connected weighted simplicial homology with simplicial homology via short exact sequences and
certain chain maps θ . These chain maps originated from the inflation map defined in [1] that allowed
to compute the first weighted homology group.

To illustrate how weighted complexes naturally arise and reflecting on [6] and [1], we shall have a
closer look at research collaboration networks. These exhibit a simplicial complex structure as follows:
researchers are considered vertices, and a n-simplex in-between n+ 1 researchers appears if those
researchers appeared together as authors on a paper (by themselves or among others), see Fig. 1.

However, important features cannot be expressed via the simplicial structure alone, as, for instance,
the citation number of a simplex. i.e. the number of citations the n+1 authors appeared on together.
For each simplex, this integer constitutes a weight and, by construction, the weight of a face of a
simplex is larger than or equal to its weight. The weight of a face, however, does not necessarily divide
the weight of its simplex and as a result the weighted homology theory put forward by [6, 16] is not
immediately applicable. To incorporate this type of integer-valued weights, arising in a plethora of
real-world data, we follow [1] and work with homology with coefficients in discrete valuation rings.

Definition 1. A weighted simplicial complex is a pair (X ,ω) consisting of a simplicial complex X and
a non-negative integer function ω : X → N satisfying

σ ⊆ τ =⇒ ω(σ)≥ ω(τ),

for simplices σ ,τ ∈ X.

Definition 2. Let R be an integral domain with π ∈ R \ {0}. The weight function v induced by a
weighted simplicial complex (X ,ω) is given by setting v(σ) = πω(σ). In the following, we also denote
the weighted simplicial complex as (X ,v).

Definition 3. The weighted chain complex Cn(X ,R) is the free R-module generated by all n-simplices
of X. The weighted boundary map ∂ v

n : Cn(X ,R)→Cn−1(X ,R) is given by

∂
v
n (σ) =

n

∑
i=0

v(σ̂i)

v(σ)
· (−1)i

σ̂i =
n

∑
i=0

π
ω(σ̂i)−ω(σ) · (−1)i

σ̂i.

The weighted homology Hv
n(X) of (X ,v) is then the R-module Hv

n(X) = ker∂ v
n/Im ∂ v

n+1.

Clearly, ∂ v
n is well-defined, as the weight satisfies ω(σ̂i)≥ω(σ) and the coefficients v(σ̂i)

v(σ) are always
in R. Our weighted boundary map ∂ v

n can be viewed as taking the reciprocal of the coefficients in
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Dawson’s dv
n. Furthermore, it is straightforward to see that, over discrete valuation rings, weighted

complexes defined via dv
n and ∂ v

n produce equivalent homology theories.
Weighted homology is a generalization of the standard simplicial homology, since the weighted

homology of a complex having constant weighting is isomorphic to its simplicial homology. To illumi-
nate the differences between simplicial and weighted homologies, we revisit the research collaboration
network in Fig. 1. Like simplicial homology, the free part of the weighted homology Hv

1(X) detects
topological features of the network—one-dimensional “hole”. Namely, BCD have not appeared as
co-authors on any papers, but any two of them has written papers together. However, the torsion of
Hv

1(X), which is R/(π)⊕R/(π4), reveals new algebraic invariants of the weighted network. Crucially,
the direct summand R/(π) corresponds to the difference in citation numbers when AB and ABC appear
together on a paper, and R/(π4) matches with the discrepancy in citation counts when AC and ACD
collaborate. This indicates that weighted homology provides a refined picture of novel dependencies
within the data.

7

4 6

A

B

C

D

3

100

100
100

8

100

5

2 1

FIGURE 1. Weighted simplicial complex, (X ,ω), of a research collaboration network com-
posed by filled (gray) and empty (white) triangles. Suppose A,B,C,D represent four authors
that have not appeared as co-authors on any papers, however, {A,B,C} or {A,C,D} have writ-
ten papers together. Suppose that {A,B,C} has been cited twice, while {A,C,D} has been cited
once, i.e., ω(ABC) = 2 and ω(ACD) = 1. Furthermore, any pair appears as authors on some
paper, such that the respective citation numbers are given by ω(AB) = 3,ω(BC) = 4,ω(AC) =

5,ω(CD) = 6,ω(AD) = 7,ω(BD) = 8. Furthermore, suppose each individual author has
been cited 100 times. Then the first simplicial homology group of the complex is given by
H1(X)∼= Z and the first weighted homology group is given by Hv

1(X)∼= R⊕R/(π)⊕R/(π4).
The free submodule of Hv

1(X) satisfies rnk Hv
1(X) = rnk H1(X). Note that the differences in

citation numbers between pairs of simplices AB,ABC and AC,ACD are one and four, which
correspond to the R/(π) and R/(π4) direct summands of the torsion, respectively.
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In this paper, we establish an exact sequence relating simplicial and weighted simplicial complexes.
The main result of this paper is a structure theorem for the weighted simplicial homology with
coefficients in a ring R of formal power series over a field F, i.e., R = F[[π]].

To this end, we utilize the chain map θ , which produces homomorphisms between weighted
homology groups with respect to different weights on the same simplicial complex. The θ -map
generalizes the inflation map employed to relate simplicial and weighted homology in case of bi-
structures [1]. In case R =Q[[π]], we prove that θ is an injective mapping from simplicial homology
with integer coefficients to the weighted homology over R if and only if the integral simplicial homology
has no torsion. The θ -map gives rise to new homology groups, Hv

n(X/θ), constructed via quotients of
chain complexes. We establish a long exact sequence linking weighted homologies having two different
weights, connected via Hv

n(X/θ). Here Hv
n(X/θ) is a weighted analogue of the relative homology of a

pair and our long exact sequence is a weighted analogue of the long exact sequence for a pair. In case
of R = F[[π]], we proceed by constructing distinguished bases for the kernel Hv

n(X
n) and the image

∂ v
n (X) of the weighted boundary map. Such bases do not exist in homology with integer coefficients

and split the set of n-simplices into κn- and µn-simplices. We provide an algorithm producing n-cycles
β̂κ each of which containing exactly one distinguished κn-simplex such that {β̂κn | κn} forms a basis
of Hv

n(X
n) and the set of µn-simplices forms a basis of ∂ v

n (X). We show that the coefficients of β̂κn

can be reduced to F, which in turn, using Nakayama’s Lemma, facilitates the efficient computation
of weighted homology modules [2, 7]. We are then in position to prove the structure theorem for the
weighted simplicial homology. Specifically, we shall prove that the rank of the weighted simplicial
homology equals that of the simplicial homology with coefficients in R, and provide a combinatorial
interpretation for the torsion of weighted homology. We show that there exists a pairing between κn-
and µn+1-simplices of dimension n and (n+1), such that the torsion modules stem from primary ideals
determined by the difference of weights of each respective pair.

We finally present a case study, where we apply the structure theorem to RNA bi-structures [1].
This produces a different, short proof for the weighted homology of the loop complex of an RNA
bi-secondary structure [1].

The paper is organized as follows: in Section 2, we show that θ : Hn(X)→ Hv
n(X) is injective if

and only if Hn(X) has no torsion and establish a long exact sequence for weighted homologies having
different weights. In Section 3, we construct the κn- and µn-basis for the kernel and image of the
weighted boundary map, ∂ v

n . In Section 4 we prove the structure theorem for weighted homology and
in Section 5, we apply our results to RNA bi-structures.

2. First properties of weighted homology

Definition 4. Given two simplicial complexes (X ,v) and (X ,v′), we call v′ � v if v′(σ)|v(σ) for any
σ ∈ X. A mapping θ

v′,v
n : Cn(X ,R) −→Cn(X ,R) between their weighted chain complexes is given by

linearly extending θ
v′,v
n (σ) = v(σ)

v′(σ)σ .

Similar notions have been proposed in different contexts: the map θ that is specifically constructed to
connect the first simplicial and weighted chain groups in the context of RNA bi-secondary structures [1],
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ON WEIGHTED SIMPLICIAL HOMOLOGY 5

and the diagonal map ∆ between chain complexes arising from a weighted sheaf with weights being the
Poincaré polynomials associated with the parabolic Coxeter subgroups (see [17] eq. (4.7)). Both the
map θ and the diagonal map ∆ can be viewed as special cases of θ

v′,v
n , where the weight v′ is constant

1R. Our θ
v′,v
n -map generalizes these concepts to a weighted simplicial complex with two different

weights, and will be the focus of this paper.
The condition v′ � v guarantees that v(σ)

v′(σ) ∈ R and thus θ
v′,v
n is well-defined. By abuse of notation

we shall write θn = θ
v′,v
n .

Lemma 1. Given two simplicial complexes (X ,v) and (X ,v′) with v′ � v, we set θn : Cn(X ,R) −→
Cn(X ,R), θn(σ) = v(σ)

v′(σ)σ . Then we have the commutative diagram

· · · // Cn(X ,R)
∂ v′

n //

θn
��

Cn−1(X ,R) //

θn−1
��

· · ·

· · · // Cn(X ,R)
∂ v

n // Cn−1(X ,R) // · · ·

Proof. Clearly,

θ
v′,v
n−1 ◦∂

v′
n (σ) =

n

∑
i=0

(−1)i v(σ̂i)

v′(σ̂i)
· v
′(σ̂i)

v′(σ)
· σ̂i =

n

∑
i=0

(−1)i v(σ)

v′(σ)

v(σ̂i)

v(σ)
σ̂i = ∂

v
n ◦θ

v′,v
n (σ).

�

Since the θn are chain maps, they induce homomorphisms

Lemma 2. The chain maps θn induce natural homomorphisms

θ̄n : Hv′
n (X)−→ Hv

n(X), θ̄n(∑
j

a jσ j + Im ∂
v′
n+1) = θn(∑

j
a jσ j)+ Im ∂

v
n+1.

Both Lemmas 1 and 2 extend similar results on the inflation map in case of RNA bi-structures
(see [1], Lemma 3) to arbitrary weighted simplicial complexes with weights v′� v. The next proposition
is straightforward to verify:

Proposition 1. Let (A,vA), (A,v′A), (B,vB), (B,v′B), (C,vC) and (C,v′C) be weighted simplicial com-

plexes with weights v′A � vA, v′B � vB and v′C � vC, respectively. Let θn,A = θ
v′A,vA
n , θn,B = θ

v′B,vB
n and

θn,C = θ
v′C,vC
n be θ -maps. Suppose we have two short exact sequences of chain complexes such that

i◦θn,A = θn,B ◦ i
′
and j◦θn,B = θn,C ◦ j

′
, i.e. we have the commutative diagram of short exact sequences

0 // Cn(A,R)
i
′
//

θn,A
��

Cn(B,R)
j
′
//

θn,B
��

Cn(C,R)

θn,C
��

// 0

0 // Cn(A,R)
i // Cn(B,R)

j // Cn(C,R) // 0

.
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ON WEIGHTED SIMPLICIAL HOMOLOGY 6

Then we have the commutative diagram of long exact homology sequences

· · · // H
v′C
n (C)

δ
′
n //

θ̄n,C
��

H
v′A
n−1(A) //

θ̄n−1,A
��

Hv′B
n−1(B) //

θ̄n−1,B
��

H
v′C
n−1(C) //

θ̄n−1,C
��

· · ·

· · · // HvC
n (C)

δn // HvA
n−1(A) // HvB

n−1(B) // HvC
n−1(C) // · · ·

and in particular θ̄n−1,A ◦δ
′
n = δn ◦ θ̄n,C.

Each simplicial complex can be equipped with a constant weight by setting v′(σ) = 1R (the multi-
plicative identity of R) for any σ ∈ X . Accordingly, we obtain the chain map θn : Cn(X)−→Cn(X ,R)
given by θ

v′,v
n (σ) = v(σ)σ , and the induced homomorphism θ̄n : Hn(X)−→ Hv

n(X) between the simpli-
cial homology and the weighted homology.

Theorem 1. Let (X ,v) be a weighted complex with coefficients in R = Q[[π]]. Then the following
assertions are equivalent:
(a) θ̄n induces the short exact sequence

0 // Hn(X)
θ̄n // Hv

n(X)

(b) Hn(X) has no torsion.

Proof. (a)⇒ (b): we show that if Hn(X) has torsion, then θ̄n is not injective. Suppose there exists
some nontrivial ∑i aiσi+ Im ∂n+1 such that q(∑i aiσi+ Im ∂n+1) = 0. Then q(∑i aiσi) = ∂n+1(∑ j z jτ j)

is equivalent to ∑i v(σi)aiσi = ∂ v
n+1(∑ j

z j
q v(τ j)τ j). Consequently,

θ̄n(∑
i

aiσi + Im ∂n+1) = θn(∑
i

aiσi)+ Im ∂
v
n+1 = 0.

(b)⇒ (a): let ∑i aiσi + Im ∂n+1 ∈ Hn(X), where ai ∈ Z and σi ∈Cn(X).
Claim. Suppose θn(∑i∈I aiσi) = ∂ v

n+1(z), then we have for q j ∈Q:

θn(∑
i∈I

aiσi) = ∂
v
n+1(θn+1(∑

j∈J
q jτ j)).

To prove the Claim, let z = ∑ j∈J b jτ j, where z ∈Cn+1(X ,R). We compute

∂
v
n+1(z) = ∑

j,k
b j(−1)k v(τ̂ j,k)

v(τ j)
τ̂ j,k = ∑

i

[
∑

σi⊂τ j

ci, jb j
v(σi)

v(τ j)

]
σi.

Then

(1) ∑
h

ahv(σh)σh = ∑
h

[
∑

σh⊂τ j

ch, jb j
v(σh)

v(τ j)

]
σh,
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ON WEIGHTED SIMPLICIAL HOMOLOGY 7

where {σh} is the set of faces of the set of simplices {τ j} and ah = 0 for h 6∈ I. We write v(τ j) = πm j

and b j = ∑n x j,nπn, where x j,n ∈Q and reformulate eq. (1) via power series

∑
h

ahσh = ∑
h

[
∑

σh⊂τ j
∑
n

ch, jx j,nπ
n−m j

]
σh.(2)

Eq. (2) implies that r j = x j,m j π
m j has the property

θn(∑
i

aiσi) = ∂
v
n+1(∑

j
b jτ j) = ∂

v
n+1(∑

j
r jτ j).

By construction, any r j ≡ 0 mod πm j which implies

∂
v
n+1(∑

j
r jτ j) = ∂

v
n+1(θn+1(∑

j
x j,m j τ j))

and setting q j = x j,m j the Claim follows.
Consequently ζ =∑ j q jτ j has the property θn(∑i aiσi) = (∂ v

n+1◦θn+1)(ζ ). Let q denote the smallest
common multiple of the denominators of the q j. Then q ·ζ has integer coefficients and we have

(∂ v
n+1 ◦θn+1)(q ·ζ ) = θn(q ·∑

i
aiσi).

In view of ∂ v
n+1 ◦θn+1 = θn ◦∂n+1, we derive

θn(q ·∑
i

aiσi) = ∂
v
n+1 ◦θn+1(q ·ζ ) = θn ◦∂n+1(q ·ζ ).

Since θn : Cn(X)→Cn(X ,R) is injective on n-chains, this implies q ·∑i aiσi = ∂n+1(q ·ζ ), i.e. q ·∑i aiσi
is a boundary in Hn(X).

By construction, q · (∑i aiσi + Im ∂n+1) = q ·∑i aiσi + Im ∂n+1 = 0+ Im ∂n+1, whence q · (∑i aiσi +
Im ∂n+1) = 0. Since Hn(X) has no torsion this implies ∑i aiσi + Im ∂n+1 = 0, i.e. ∑i aiσi is a boundary
and thus trivial in Hn(X) and the proof of the theorem is complete. �

Clearly, θ
v′,v
n (Cn(X ,R))⊂Cn(X ,R) and denoting the quotient module by Cn(X/θ v′,v)=Cn(X ,R)/θ

v′,v
n (Cn(X ,R))

we have the following commutative diagram

(3)

0 // Cn(X ,R)
θ

v′,v
n //

∂n
��

Cn(X ,R)
j //

∂ v
n
��

Cn(X/θ v′,v)

∂ v
n
��

// 0

0 // Cn−1(X ,R)
θ

v′,v
n−1 // Cn−1(X ,R)

j // Cn−1(X/θ v′,v) // 0

We shall write θn instead of θ
v′,v
n , and Cn(X/θ) instead of Cn(X/θ v′,v).

Let Hv
n(X/θ) denote the homology with respect to the chain complex {Cn(X/θ),∂ v

n}n.

Theorem 2. (a) Let (X ,v′) and (X ,v) be weighted complexes with coefficients in an integral domain
R. If v′ � v, then we have the long exact homology sequence

(4) // Hv
n+1(X/θ)

δ v
n+1 // Hv′

n (X)
θn // Hv

n(X)
j // Hv

n(X/θ)
δ v

n // Hv′
n−1(X) //
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ON WEIGHTED SIMPLICIAL HOMOLOGY 8

(b) Suppose R = F[[π]], where F is a field and v′(σ) = 1R for any σ , i.e., Hv′
n (X)∼= Hn(X ,R). Then the

long sequence splits into the exact sequences

0 // Hn(X ,R)
θn // Hv

n(X)
j // Hv

n(X/θ) // 0.

Our long exact sequence (4) is a weighted analogue of the long exact sequence for a pair, and the
quotient Hv

n(X/θ) is a weighted analogue of the relative homology. A similar long exact sequence
([17], eq. (4.9)) has also been derived for the weighted complex associated to a weighted sheaf, where
∆∗ and Hk(L∗) in their notations play analogous roles as θ̄n and Hv

n(X/θ), respectively. We also point
out that our exact sequence (4) enhances the long exact sequence (4.9) in [17] by allowing to link
weighted homologies with two different weights v and v′.

Comparing with the previous results on weighted homology [6, 17, 16, 1], we believe that our proofs
for the injectivity of θ̄n in Theorems 1 and 2 are original and utilize the technique involving formal
power series comparison in R = F[[π]].

Proof. In view of the commutative diagram of eq. (3), statement (a) is a standard result from homolog-
ical algebra.

Claim. We have the short exact sequence 0 // Hn(X ,R)
θn // Hv

n(X) .

We first observe that, if θn(∑i∈I aiσi) = ∂ v
n+1(z), then

θn(∑
i∈I

aiσi) = ∂
v
n+1(θn+1(∑

j∈J
r jτ j)),

where r j ∈ R. Let z = ∑ j∈J b jτ j, z ∈Cn+1(X ,R). Then

(5) ∑
h

ahv(σh)σh = ∑
h

[
∑

σh⊂τ j

ch, jb j
v(σh)

v(τ j)

]
σh,

where {σh} is the set of faces of the set of simplices {τ j} and ah = 0 for h 6∈ I. We write v(τ j) = πm j ,
ah = ∑n yh,nπn and b j = ∑n x j,nπn, where x j,n ∈ F. Rewriting eq. (5) via power series we obtain

∑
h

[
∑
n

yh,nπ
n
]

σh = ∑
h

[
∑

σh⊂τ j
∑
n

ch, jx j,nπ
n−m j

]
σh(6)

and eq. (6) implies that r j = ∑n≥m j x j,nπm j has the property

θn(∑
i

aiσi) = ∂
v
n+1(∑

j
b jτ j) = ∂

v
n+1(∑

j
r jτ j).

Furthermore by construction, for any r j holds r j ≡ 0 mod πm j i.e., r j = r′jπ
m j , whence

∂
v
n+1(∑

j
r jτ j) = ∂

v
n+1(θn+1(∑

j
r′jτ j)).

As a result we obtain the equality of n-chains with coefficients in R:

θn(∑
i

aiσi) = ∂
v
n+1(∑

j
b jτ j) = ∂

v
n+1(θn+1(∑

j
r′jτ j)) = θn ◦∂n+1(∑

j
r′jτ j).

Consequently we derive ∑i aiσi = ∂n+1(∑ j r′jτ j), i.e., ∑i aiσi is a boundary in Hn(X ,R).

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

11 May 2023 06:59:59 PDT
220429-Reidys Version 2 - Submitted to Rocky Mountain J. Math.



ON WEIGHTED SIMPLICIAL HOMOLOGY 9

As a result the connecting homomorphisms, δ v
n+1, are trivial, whence the long exact sequence splits

into the exact sequences

0 // Hn(X ,R)
θn // Hv

n(X)
j // Hv

n(X/θ) // 0.

�

Corollary 1. We have the exact sequence

0 // Hn(Xn,R)
θn // Hv

n(X
n)

j // Hv
n(X

n/θ) // 0,

where Xn denotes the n-skeleton of X.

3. Some combinatorics

Lemma 3. Let (X ,v) be a weighted complex with coefficients in R = F[[π]]. Then we have the short
exact sequence of R-modules

(7) 0 // πHn(X ,R) // Hn(X ,R)
ρ̄
// Hn(X ,F) // 0,

where the homomorphism ρ̄ is induced by ρ , which maps a formal power series r ∈ R to its constant
term r̄.

Proof. We first show Ker(ρ̄) ⊂ πHn(X ,R). Suppose ρ̄(∑ j r jτ j + Im ∂n+1) = ∑ j r̄ jτ j + Im ∂̄n+1 =
0. Then there exists some ∑h āhµh ∈ Cn+1(X ,F), producing the equality of n-chains ∑ j r̄ jτ j −
∂̄n+1(∑h āhµh) = ∑ j x̄ jτ j = 0, where each coefficient, x̄ j = 0. Clearly

∑
j

r jτ j + Im ∂n+1 =

[
∑

j
r jτ j−∂n+1,R(∑

h
ahµh)

]
+ Im ∂n+1 ∈ πHn(X ,R),

from which Ker(ρ̄) ⊂ πHn(X ,R) follows. It remains to observe πHn(X ,R) ⊂ Ker(ρ̄), which is
immediate. �

Remark. While Hn(X ,F) is free as an F-module, Hn(X ,F) is not a free R-module. In fact, by
Lemma 3, we can derive that, as an R-module, Hn(X ,F) is full torsion and is composed of m copies of
R/(π), where m = rnk Hn(X ,R). Accordingly, the short exact sequence (7) is not split exact.

Theorem 3. Let (X ,v) be a weighted complex with coefficients in R = F[[π]], and Xn denote the set of
n-simplices in X. Then for each n, there exists a subset of n-simplices, K ( Xn, such that the following
holds
(i) let M = Xn \K, then {∂ v

n (µ)}µ∈M is a basis of ∂ v
n (Cn(X ,R)),

(ii) there exists a distinguished basis B̂v
K of Hv

n(X
n) that can be indexed by K, i.e., B̂v

K = {β̂κ | κ ∈ K},
and we refer to B̂v

K as a K-basis,
(iii) each β̂κ ∈ B̂v

K contains a unique, distinguished simplex κ ∈ K, having coefficient one, and

β̂κ = ∑
µ`∈M

r`µ`+κ, where r` are monomials satisfying degv(µ`) = degr`v(κ),
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ON WEIGHTED SIMPLICIAL HOMOLOGY 10

(vi) let θn(βκ) = v(κ)β̂κ , then Bv
K = {βκ | κ ∈ K} is a basis of Hn(Xn,R),

(v) let γκ = ρ̄(βκ), then {γκ | κ ∈ K} is a basis of Hn(Xn,F) and Hn(Xn,R).
Furthermore, any K and K′ satisfying the above properties have the same cardinality.

Proof. We construct M and B̂v
K recursively via the following procedure: set M0 =∅ and S0 = {σ |

σ ∈Cn(X ,R)}. Label the simplices σi arbitrary and examine them one by one, producing recursively
the sequence (Mi,Si), where M1 = M0∪{µ1 | µ1 = σ1} and S1 = S0 \{σ1}, i.e. we remove σ1 from
S0, relabel as µ1 and add to M0 =∅.

Having constructed (Mm,Sm) we proceed by examining σm+1. We set Sm+1 = Sm \ {σm+1} and
given the equation

(8) ∂
v
n (∑

`

r`µ`+ rm+1σm+1) = 0,

distinguish two scenarios. In case there exists no nontrivial solution of r`,rm+1 ∈ R, we set Mm+1 =
Mm∪{µn+1 = σm+1}. Otherwise, clearing the gcd of r` and rm+1, we either have σm+1 has coefficient
one or some µ` does. In the former case we set Mm+1 = Mm and in the latter

Mm+1 = (Mm \{µ`})∪{µm+1 = σm+1}, Sm+1 = Sm \{σm+1}.
Accordingly we either add a new µ-simplex or replace a previously added µ-simplex, while step
by step examining all n-simplices. In this process we have ∂ v

n (Mm)⊂ ∂ v
n (Mm+1), since a µ-simplex

replaced in Mm is by construction a linear combination of Mm+1 µ-simplices.
The procedure terminates in case of St = ∅ and all simplices have been examined. Mt is by

construction a basis of ∂ v
n (Cn(X ,R)) inducing the bipartition into the set of µ-simplices, M, and the

complimentary set of κ-simplices, K. Since any ∂ v
n (Cn(X ,R))-basis has the same size, any K and K′

satisfying the properties have the same cardinality.
For each κ there exist unique coefficients r` ∈ R, such that β̂κ = ∑r`µ`+κ is a Hv

n(X
n)-cycle and

the β̂κ -cycles are linearly independent: 0 = ∑κ λκ β̂κ implies λκ = 0 for all κ , since the simplex κ

appears uniquely in β̂κ .
Claim 1. B̂v

K = {β̂κ | κ ∈ K} is a basis of Hv
n(X

n).
Let c = ∑h ahσh be a Hv

n(X
n)-cycle. By construction, c contains at least one κ-simplex. We prove

by induction on the number of distinct κ-simplices contained in c that c = ∑κ λκ β̂κ . In case of
the induction basis c contains exactly one κ-simplex, κ0. Then c contains the summand rκ0κ0 and
exclusively µ-simplices, otherwise. Clearly, c− rκ0 · β̂κ0 = c′ is a cycle containing only µ-simplices
which is, by construction, trivial, whence c = rκ0 · β̂κ0 . For the induction step assume c contains (m+1)
κ simplices, κ1, . . .κm+1. Suppose c has the summand rκm+1 . Then c− rκm+1 β̂κm+1 is a cycle that
contains exactly m κ-simplices since β̂κm+1 contains, besides κm+1, only µ-simplices. By induction
hypothesis we then have c− rκm+1 β̂κm+1 = ∑

m
i=1 rκi β̂i and Claim 1 follows.

Claim 2. For each β̂κ = ∑r`µ`+κ , there exist monomials r` satisfying degv(µ`) = deg(r`v(κ)) for
any `.

As a Hv
n(X

n)-cycle, β̂κ satisfies ∂ v
n (β̂κ) = ∂ v

n (∑r`µ`+κ) = 0. For any β̂κ -face σ , we derive

∑
σ⊂µ`

c`
r`

v(µ`)
+ cκ

1
v(κ)

= 0, for σ ⊂ κ, ∑
σ⊂µ`

c`
r`

v(µ`)
= 0, for σ 6⊂ κ,

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

11 May 2023 06:59:59 PDT
220429-Reidys Version 2 - Submitted to Rocky Mountain J. Math.



ON WEIGHTED SIMPLICIAL HOMOLOGY 11

where c` and cκ are ±1. We write v(µ`) = πω(µ`), v(κ) = πω(κ) and r` = ∑n x`,nπn, where x`,n ∈ F.
Rewriting the equations we obtain

∑
n

∑
σ⊂µ`

c`x`,nπ
n−ω(µ`)+ cκπ

−ω(κ) = 0 for σ ⊂ κ

∑
n

∑
σ⊂µ`

c`x`,nπ
n−ω(µ`) = 0 for σ 6⊂ κ.

In particular, taking [π−ω(κ)]-terms, we derive

∑
σ⊂µ`

c`x`,ω(µ`)−ω(κ)+ cκ = 0 for σ ⊂ κ

∑
σ⊂µ`

c`x`,ω(µ`)−ω(κ) = 0 for σ 6⊂ κ.

Let m` = x`,ω(µ`)−ω(κ)π
ω(µ`)−ω(κ) be the monomials obtained by taking [πω(µ`)−ω(κ)]-terms of r`.

Then β̂ ′κ = ∑m`µ`+κ is by construction a Hv
n(X

n)-cycle, and therefore β̂ ′κ = β̂κ since β̂κ is unique.
Accordingly, r` = m`, i.e., r` are monomials satisfying degv(µ`) = deg(r`v(κ)).

Claim 3. Bv
K = {βκ | κ ∈ K} is a basis of Hn(Xn,R), and {γκ | κ ∈ K} is a basis of Hn(Xn,F) and

Hn(Xn,R).
By definition, βκ = θ−1

n (v(κ)β̂κ) = ∑
r`v(κ)
v(µ`)

µ`+ κ . Since r` satisfy degv(µ`) = deg(r`v(κ)) by

Claim 2, βκ is well-defined. Note that ∑i λiβi = 0 implies 0 = ∑i λiθn(βi) = ∑i λiv(κ)β̂i and hence
λiv(κ) = 0 for all i, from which λi = 0 follows.

To prove {βκ | κ ∈ K} generates Hn(Xn,R), we observe that κ retains coefficient one in βκ . In
view of this we proceed as in Claim 1 by induction on the number of distinct κ-edges contained in a
Hn(Xn,R)-cycle.

Analogously we can show, using Lemma 3, that {ρ̄(βκ) | κ ∈ K} is a basis of Hn(Xn,F), observing
that κ appears exclusively in ρ̄(βκ) having coefficient one. Lemma 3 and Nakayama’s Lemma1 imply
that {ρ̄(βκ) | κ ∈ K} is also a basis of Hn(Xn,R), whence Claim 3.

Therefore B̂v
K = {β̂κ | κ ∈ K} is a basis of Hv

n(X
n) satisfying (i)-(v) and the proof is complete. �

Remark. (a) The K-bases of Hv
n(X

n), {β̂κ | κ ∈ K}, depend on F, since F factors into whether or
not eq. (8) has a nontrivial solution in R = F[[π]].
(b) The above proof can be generalized to the case where R is a ring of polynomials over a field,
i.e. R = F[π].

Corollary 2. Let B̂v
K be a K-basis of Hv

n(X
n). Then

Hv
n(X

n/θ)∼=
⊕
κ∈K

R/(v(κ)).

Proof. The projection p : Cn(X ,R) → ⊕σ R/v(σ), given by ∑i aiσ 7→ ∑i(ai + v(σ))σ has kernel
θn(Cn(X ,R)) and consequently Cn(X ,R)/θn(Cn(X ,R)) ∼= ⊕σ R/v(σ). Since v(κ)β̂κ = θn(βκ), each

1Let M be a finitely generated module over a local ring R with maximal ideal m. Then every minimal set of generators of
M is obtained from the lifting of some basis of M/mM.
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ON WEIGHTED SIMPLICIAL HOMOLOGY 12

β̂κ generates a cyclic Hv
n(X

n/θ) submodule isomorphic to R/(v(κ)), from which the Corollary fol-
lows. �

4. The main theorem

Lemma 4. Let (X ,v) be a weighted complex with coefficients in R = F[[π]]. Given v, we consider the
sequence of weight functions (v0,v1, . . . ,vt = v) defined by vr(σ) = v(σ) for dim(σ)≤ r and vr(σ) = 1,
otherwise. Then there exist the exact sequences

0 // Hn(X ,R)
η̄n

n // Hvn
n (X)

j // ⊕κR/(v(κ)) // 0

0 // ⊕µR/(v(µ)) // Hvn−1
n−1 (X)

η̄n
n−1 // Hvn

n−1(X) // 0,

where η̄r
n is induced from

η
r
n(σ) = θ

vr−1,vr
n (σ) =

vr(σ)

vr−1(σ)
σ =

{
v(σ)σ if dim(σ) = r
σ otherwise.

Proof. By construction of vn, the quotient C`(X ,R)/ηn
` (C`(X ,R)) is only nontrivial for `= n, in which

case Cn(X ,R)/ηn
n (Cn(X ,R))∼=⊕σ R/(v(σ)), where the summation is over the set of all n-simplices.

Consequently, the boundary maps ∂̄ vn
n and ∂̄

vn
n+1 are trivial, whence

Hvn
` (X/η

n
` )
∼=

{
⊕σ R/(v(σ)) for `= n
0 for ` 6= n.

The long homology sequence of Theorem 2 then becomes the five term exact sequence

0 // Hvn−1
n (X)

η̄n
n // Hvn

n (X)
j // Hvn

n (X/ηn)
δ

vn
n // Hvn−1

n−1 (X)
η̄n

n−1 // Hvn
n−1(X) // 0

where Hvn−1
n (X) = Hn(X ,R), since all vn−1-weights of n- and (n+1)-simplices are one. By exactness

at Hvn
n (X/ηn

n )
∼=⊕σ R/(v(σ)) and Hvn−1

n−1 (X), we have Im j = Ker δ vn
n and Im δ vn

n = Ker η̄n
n−1. Since

ηn
n−1 |Cn−1(X ,R)= id and id◦∂

vn−1
n = ∂ vn

n ◦ηn
n , we have

Im ∂
vn
n /Im ∂

vn−1
n =⊕µ〈∂ vn

n (µ)〉/〈v(µ)∂ vn
n (µ)〉 ∼=⊕µR/(v(µ))

and the sequence

0 // ⊕
µ R/(v(µ))

∂̄
vn
n // Ker ∂

vn
n−1/Im ∂

vn−1
n

proj // Hvn
n−1(X) // 0

is exact. Since Ker ∂
vn
n−1/Im ∂

vn−1
n = Ker ∂

vn−1
n−1 /Im ∂

vn−1
n = Hvn−1

n−1 (X) this provides an interpretation
of Ker η̄n

n−1, via

0 // ⊕
µ R/(v(µ)) // Hvn−1

n−1 (X)
η̄n

n−1=proj
// Hvn

n−1(X) // 0.
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ON WEIGHTED SIMPLICIAL HOMOLOGY 13

v bipartitions the set of n-simplices into κ- and µ-simplices and using the exactness at Hvn
n (X/ηn

n )
∼=⊕

σ R/(v(σ)), we obtain

0 // Hn(X ,R)
η̄n

n // Hvn
n (X)

j // ⊕
κ R/(v(κ)) // 0.

�

Theorem 4. Let (X ,v) be a weighted complex with coefficients in R = F[[π]]. Let Fv
n and T v

n denote
the free and the torsion submodules of Hv

n(X). Then there exists an exact sequence

0 // Hn(X ,R)
θ̄n // Fv

n
j // ⊕q

s=1 R/(v(κn
s )) // 0,

where {κn
1 , . . . ,κ

n
q}∪̇{κn

q+1, . . . ,κ
n
p}= K is a distinguished bipartition of the κ-simplices of dimension

n. Furthermore, rnkR(Hv
n(X)) = rnkF(Hn(X ,F)) and

T v
n
∼=

p⊕
s=q+1

R/(v(κn
s )/v(µn+1

α(s))),

where α ∈ Sp−q establishes a pairing between κn
s - and µ

n+1
α(s)-simplices of dimension n and (n+ 1),

respectively.

Proof. By the general structure theorem of finitely generated modules over pids, we have Hv
n(X)∼=Fv

n ⊕
T v

n . Furthermore, we have Hv
n(X

n)∼=Fv
n⊕Tv

n, where Fv
n
∼=φ Fv

n , φ( f ) = f +Im ∂ v
n+1 and Tv

n/Im ∂ v
n+1
∼=

T v
n . This follows from the diagram

0 // Ker (p) // Hv
n(X

n)
p

$$

p1 // Hv
n(X)

p2
��

// 0

Fv
n

// 0.

Here Tv
n = Ker (p) and since Fv

n is free, it is projective and we have Hv
n(X

n) = Tv
n ⊕ Fv

n with
Fv

n/Im ∂ v
n+1
∼= Fv

n . Finally, by construction, we have rnk(Im ∂ v
n+1) = rnk(Tv

n).
Let ϕn = ηn+1 ◦ηn, we note that ϕn

n = θn since both maps coincide on n- and (n+1)-simplices.
Claim 1. We have the exact sequence

0 // Hn(X ,R)
θ̄n // Hv

n (X)
j // (

⊕
κn R/(v(κn)))/(

⊕
µn+1 R/(v(µn+1))) // 0.

By Theorem 2 we have the long exact sequence of homology groups

(9)

Hvn+1
n+1 (X/ϕn)

δ
vn+1
n+1 // Hvn−1

n (X)
ϕ̄n

n // Hvn+1
n (X)

j // Hvn+1
n (X/ϕn)

δ
vn+1
n
��

Hvn+1
n−1 (X/ϕn) Hvn+1

n−1 (X)
j
oo Hvn−1

n−1 (X)
ϕ̄n

n−1

oo

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

11 May 2023 06:59:59 PDT
220429-Reidys Version 2 - Submitted to Rocky Mountain J. Math.



ON WEIGHTED SIMPLICIAL HOMOLOGY 14

By construction ϕ̄n
n = θ̄n, Hvn−1

n (X)∼= Hn(X ,R), Hvn+1
n (X) = Hv

n (X) and Hvn+1
n−1 (X/ϕn) = 0. In view of

Cn+1(X/ϕn)∼=
⊕

τn+1 R/(v(τn+1)), where the direct sum ranges over all (n+1)-simplices, τn+1, we
have

∂̄
vn+1
n+1 (Cn+1(X/ϕ

n))∼=
⊕
µn+1

R/(v(µn+1)),

where the summation ranges over all µn+1-simplices which form a basis of ∂
vn+1
n+1 (X). Since Cn−1(X/ϕn)=

0 we obtain ∂̄
vn+1
n : Cn(X/ϕn)→ 0, where Cn(X/ϕn)∼=

⊕
σn R/(v(σn)). Using ∂̄

vn+1
n ◦ ∂̄

vn+1
n+1 = 0, we

derive

(10) Hvn+1
n (X/ϕ

n)∼=

⊕
κn

R/(v(κn))/
⊕
µn+1

R/(v(µn+1))

⊕(⊕
µn

R/(v(µn))

)
.

By Lemma 4 we have the exact sequence

0 // ⊕
µn R/(v(µn))

∂̄
vn+1
n // Hvn−1

n−1 (X)
ϕ̄n

n // Hvn+1
n−1 (X) // 0,

which combined with exactness of eq. (9) at Hvn+1
n (X/ϕn) and eq. (10) gives rise to the exact sequence

of Claim 1:

0 // Hn(X ,R)
θ̄n // Hv

n(X)
j // (

⊕
κn R/(v(κn))/(

⊕
µn+1 R/(v(µn+1))) // 0

and Claim 1 follows.
We proceed by dissecting the exact sequence of Claim 1 into the free and torsion modules.
Claim 2. We have the exact sequence

0 // Hn(X ,R)
θ̄n // Fv

n (X)
j // ⊕q

s=1 R/(v(κn
s )) // 0,

and rnkR(Hv
n(X)) = rnkF(Hn(X ,F)).

In view of θn(Hn(X ,R))⊂ Fv
n (X) and Theorem 2, we have

0 // Hn(X ,R)
θ̄n // Fv

n (X).

Furthermore, by Theorem 2 and Corollary 2,

0 // Hn(Xn,R)
θn // Hv

n(X
n)

j // ⊕
κn R/(v(κn)) // 0.

By restriction, j induces the surjective homomorphism j |Fn : Fv
n→

⊕q
s=1 R/(v(κn

s )) and

0 // Hn(X ,R)
θn // Fv

n (X) //

φ−1

��

⊕q
s=1 R/(v(κn

s )) // 0.

Fv
n

j|Fv
n

77
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ON WEIGHTED SIMPLICIAL HOMOLOGY 15

Since
⊕q

s=1 R/(v(κn
s )) is full torsion, the exact sequence implies rnkR(Hv

n(X)) = rnkR(Hn(X ,R)).
Combing with rnkF(Hn(X ,F)) = rnkR(Hn(X ,R)) derived by Lemma 3, we have rnkR(Hv

n(X)) =
rnkF(Hn(X ,F)), whence Claim 2.

Claim 3. We have

T v
n (X)∼=

|K|⊕
s=q+1

R/(v(κn
s )/(v(µ

n+1
α(s))).

We consider the homomorphism embedding Im ∂ v
n+1 into Tv

n. Since R is pid, there exists a Tv
n-basis,

B1 = {t̂q+1, . . . t̂p} and a Im ∂ v
n+1-basis B0 = {xs · t̂s | s = q+ 1, . . . , p}, where xs ∈ R represent the

invariant factors.
Claim 3 follows from two observations that put these bases into context with Corollary 1 and

Corollary 2. First, since ϕn
n elevates n- as well as (n+1)-simplices to their v-weight, we have

Im ∂
v
n+1/θn(Im ∂n+1) = ∂̄

vn+1
n+1 (Cn+1(X/ϕ

n))∼=
p⊕

s=q+1

R/(v(µn+1
s )).

Secondly, using Hv
n(X

n)∼= Tv
n⊕Fv

n and the commutative diagram

0 // Hn(Xn,R)

id
��

θn // Fv
n

inj
��

j // ⊕q
s=1 R/(v(κn

s )) //

inj
��

0

0 // Hn(Xn,R)
θn // Hv

n(X
n)

j // ⊕
κn R/(v(κn)) // 0

0 // Im ∂n+1

inj

OO

res θn // Tv
n

inj

OO

res j // ⊕p
s=q+1 R/(v(κn

s ))

inj

OO

// 0

we arrive at

Tv
n(X)/θn(Im ∂n+1)∼=

p⊕
s=q+1

R/(v(κn
s )).

In order to see how the κn
s and µn+1

s align, we consider the commutative diagram

0 // Im ∂n+1

id
��

res θn // Tv
n

ψ

��

res j // ⊕p
s=q+1 R/(v(κn

s ))

ψ̄

��

// 0

0 // Im ∂n+1
res θn // Im ∂ v

n+1
res j // ⊕p

s=q+1 R/(v(µn+1
s )) // 0

where we extend ψ(ts) = xs · ts linearly to an R-module homomorphism ψ . Choosing the Tv
n-

and Im ∂ v
n+1-bases B1 and B0, respectively, we have Tv

n(X)/θn(Im ∂n+1) ∼= ∑s〈ts + θn(Im ∂n+1)〉
as well as Im ∂ v

n+1/θn(Im ∂n+1) ∼= ∑s〈xsts + θn(Im ∂n+1)〉. Since R is a discrete valuation ring,
〈ts+θn(Im ∂n+1)〉 and 〈xsts+θn(Im ∂n+1)〉 are primary modules and as such indecomposable, whence
for each q+1≤ s≤ p

〈ts +θn(Im ∂n+1)〉 ∼= R/(v(κn
s1
)) and 〈xsts +θn(Im ∂n+1)〉 ∼= R/(v(µn+1

s2
)).
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ON WEIGHTED SIMPLICIAL HOMOLOGY 16

By the commutativity of the right square,

ψ̄(R/(v(κn
s1
)))∼= ψ̄(〈ts +θn(Im ∂n+1)) = 〈xsts +θn(Im ∂n+1)〉 ∼= R/(v(µn+1

s2
)).

Thus there exists some permutation α that pairs κn
s1

with µn+1
s2

with α(s1) = s2 such that

ψ̄(R/(v(κn
s1
)))∼= R/(v(µn+1

s2
)),

and as a result we arrive at

Tv
n(X)/Im ∂

v
n+1
∼=
[
Tv

n(X)/θn(Im ∂n+1)
]/[

Im ∂
v
n+1/θn(Im ∂n+1)

]
∼=

p⊕
s=q+1

[
R/(v(κn

s ))
]/[

R/(v(µn+1
α(s)))

]
∼=

p⊕
s=q+1

R/(v(κn
s )/v(µn+1

α(s))).

�

Remark. In view of the structure theorem, let us revisit the weighted simplicial complex (X ,v)
depicted in Figure 1. Based on Theorem 3, we compute the K-basis of Hv

1(X
1) given by B̂v

K =

{β̂AC, β̂CB, β̂BA} with K = {AC,CB,BA}, where

β̂AC = AC+πCD+π
2DA

β̂CB =CB+π
4BD+π

2DC

β̂BA = BA+π
4AD+π

5DB.

The µ2-simplices are given by ABC,ACD and thus ∂ v
2 (X) = {∂ v

2 (ABC),∂ v
2 (ACD)}. By Theorem 4,

we derive a partition K = {BA,AC}∪̇{CB} and a pairing α : {BA,AC} −→ {ABC,ACD} with α(BA) =
ABC,α(AC) = ACD. Then the torsion of the first weighted homology Hv

1(X) is given by

T v
1
∼= R/(πω(BA)−ω(ABC))

⊕
R/(πω(AC)−ω(ACD))∼= R/(π)⊕R/(π4).

Since rnk Hv
1(X) = rnk H1(X ,R) = 1, we obtain Hv

1(X)∼= R⊕R/(π)⊕R/(π4).
We refer the readers to [2, 7] for a fast algorithm and its accompanying software implementation for

computing the bijection α and the weighted homology.

5. Case study: RNA bi-structures

RNA is a biomolecule that folds into a helical configuration of its sequence by forming base pairs. The
most prominent class of coarse-grained structures are the RNA secondary structures [22, 19, 18]. An
RNA structure can be represented as a diagram, a labeled graph over the vertex set {1, . . . ,n}, whose
vertices are arranged in a horizontal line and arcs are drawn in the upper half-plane, see Fig. 2. A
vertex corresponds to a nucleotide in the primary sequence, and an arc, denoted by (i, j), represents the
base pairing between the i-th and j-th nucleotides in the RNA structure. The backbone of a diagram is
the sequence of consecutive integers (1, . . . ,n) together with the edges{{i, i+1}|1≤ i≤ n−1}. We
shall distinguish the backbone edge {i, i+1} from the arc (i, i+1), which we refer to as a 1-arc. Two
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ON WEIGHTED SIMPLICIAL HOMOLOGY 17

arcs (i1, j1) and (i2, j2) are crossing if i1 < i2 < j1 < j2. An RNA secondary structure is defined as a
diagram satisfying (1) it does not contain any 1-arcs, (2) any two arcs are non-crossing, (3) any two
arcs do not have a common vertex [22, 19].
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FIGURE 2. LHS: a planar RNA secondary structure with base pairs between nucleotides, and
a loop L is shaded. RHS: its diagram representation on the set of vertices {1, . . . ,91}. The loop
L (shaded) is the set of vertices {9,10,11,12,27,28,46,47,48,65,66,67,68,82,83} covered
by the arc (9,83).

In an RNA secondary structure, a vertex k is covered by an arc (i, j) if i≤ k ≤ j and there exists
no other arc (p,q) such that i < p < k < q < j. A loop is the set of vertices covered by an arc (i, j),
see Fig. 2 RHS. In particular, the exterior loop is given by the set of vertices covered by an artificial
rainbow arc connecting the first and last vertices. A secondary structure can be uniquely decomposed
into loops and the free energy of a structure is calculated as the sum of the energy of its individual
loops [26].

A bi-structure (S,T ) is a pair of secondary structures S and T over the same backbone [10]. We
also represent a bi-structure as a diagram on a horizontal backbone with the S-arcs drawn in the upper
and the T -arcs drawn in the lower half plane, see Fig. 3 LHS. Recall that an S-arc (i, j) and a T -arc
(k, l) are crossing if i < k < j < l or k < i < l < j. Crossing induces an equivalence relation on arcs
for which nontrivial equivalence classes are called crossing components.

The loop complex, K(S,T ), is the nerve formed by S-loops and T -loops of a bi-structure (S,T ).
Specifically, let L be the collection of S-loops and T -loops in a bi-structure (S,T ). A subset
{L0,L1, . . . ,Ld} ⊂ L is a d-simplex of L if the set intersection ∩d

k=0Lk 6= ∅. Let Kd(L ) be
the set of all d-simplices of L . The loop complex, K(S,T ) is a simplicial complex given by
K(S,T ) =

⋃
∞
d=0 Kd(L ) ⊆ 2L . The loop complex X = K(S,T ) can be augmented by assigning

an integer-valued weight ω(σ) to each simplex σ of X , where the weight ω encodes the cardinal-
ity of intersections of loops in the simplex, see Fig. 3 RHS. Clearly, the weight function satisfies
σ ⊆ τ =⇒ ω(σ) ≥ ω(τ). We call (X ,ω) the weighted loop complex of a bi-structure (S,T ), and
Hv

n(X) the weighted homology for the loop complex of (S,T ) [1].
[1] computed the weighted homology for the loop complex of RNA bi-structures. In particular,

[1] showed that the weighted simplicial complex of an arbitrary bi-structure can be transformed via
Whitehead moves [23] to a complex, which does not contain any 3-simplices or 2-simplices having
weight greater than 1. Referring to such complexes as lean, the following holds:

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

11 May 2023 06:59:59 PDT
220429-Reidys Version 2 - Submitted to Rocky Mountain J. Math.
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AB

C

D E

AB

C

D

E

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

FIGURE 3. LHS: A bi-structure (S,T ) with S-loops A,B,C and T -loops D,E, where A and
E are exterior loops covered by artificial rainbow arcs (dashed), and arcs (1,11) and (6,17)
form a crossing component. The loops are given by A = {1,11,12,13,14,15,16,17,18},
B = {1,2,3,5,6,7,8,9,10,11}, C = {3,4,5}, D = {6,7,8,9,10,11,12,13,14,15,16,17} and
E = {1,2,3,4,5,6,17,18}. RHS: its corresponding loop complex given by K(S,T ) =
{A,B,C,D,E,AB,AD,AE,BC,BD,BE,CE,DE,ABD,ABE,ADE,BDE,BCE}. The weights
assigned to simplices in the loop complex encode the size of intersections of loops in the sim-
plex. While ω(A) = 9,ω(B) = 10,ω(C) = 3,ω(D) = 12,ω(E) = 8, the weights of 1-simplices
are given by ω(AB) = ω(BC) = ω(DE) = 2,ω(AD) = 7,ω(AE) = 3,ω(BD) = 6,ω(BE) =
5,ω(CE)= 3 and the weights of 2-simplices are ω(ABD)=ω(ABE)=ω(ADE)=ω(BDE)=
1,ω(BCE) = 2.

Theorem 5. [1] Let (X ,v) be a lean, weighted loop complex of a bi-structure (S,T ), where v(σ) =

πω(σ) is given by the size of the intersection of loops. Let B̂v
K be K-basis of Hv

1(X
1) and M = X1 \K =

{∂ v
1 (µs)} be a basis of ∂ v

1 (X), given by Theorem 3. Then

Hv
2(X)∼= RC

Hv
1(X)∼=⊕κ∈KR/(πω(κ)−1)

Hv
0(X)∼= R⊕

⊕
µα(s)∈M

R/
(

π
ω(vs)−ω(µα(s))

)
,

where C denotes the number of crossing components in (S,T ), vs is a 0-simplex of X and the pairing
(vs,µα(s)) between 0-simplices vs and 1-simplices µα(s) ∈M is given by Theorem 4.

This result can be derived from our structure theorem as follows:

Proof. For simplicial homology with integer coefficients, [3] proved that the loop complex X of
a bi-structure satisfies H2(X) = ZC, H1(X) = 0 and H0(X) = Z. Combing with rnkR(Hv

n(X)) =
rnkF(Hn(X ,F)) by Theorem 4, we have rnk Hv

2(X) =C, rnk Hv
1(X) = 0 and rnk Hv

0(X) = 1.
Since the lean complex X contains no 3-simplices, Hv

2(X) is free, whence Hv
2(X)∼= RC.

Recall that X2 denotes the set of 2-simplices in X . Since rnk Hv
1(X) = 0, Theorem 4 shows there

exists a bijection p between the set K of 1-simplices κ and the set X2 of 2-simplices δ , i.e., the pairings
(κi,δp(i)) for each κi ∈ K. Since each 2-simplex in a lean complex has weight one, i.e. v(δ ) = π , we

have v(κi)
v(δp(i))

= πω(κi)−1. Theorem 4 establishes that Hv
1(X)∼=

⊕
κ∈K R/(πω(κ)−1).
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Similarly, Theorem 4 provides the pairing α between 0-simplices vs and 1-simplices µα(s) ∈M,

i.e., (vs,µα(s)). Consequently, the torsion of Hv
0(X) is given by T v

0
∼=
⊕

µα(s)∈M R/
(

π
ω(vs)−ω(µα(s))

)
,

completing the proof. �

Remark. We can extend the above analysis to the weighted loop complex of τ-structures [11],
which can be viewed as RNA-RNA interaction structures and generalize bi-structures.
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