Orthogonality-preserving lowering differential operator for Laguerre and Jacobi polynomials

Jihad Souissi ${ }^{1}$ Nesrine Abdessamad ${ }^{1}$ and Baghdadi Aloui ${ }^{2}$
${ }^{1}$ Faculty of Sciences of Gabes
Department of Mathematics, Gabes University
Street Erriadh 6072 Gabes, Tunisia
${ }^{2}$ Higher Institute of Industrial Systems of Gabes, Gabes University
Street Salah Eddine Elayoubi 6033 Gabès, Tunisia
e-mails:jihad.souissi@fsg.rnu.tn; nesrineabdessamad385@gmail.com;
Baghdadi.Aloui@fsg.rnu.tn

Abstract

In this paper, we describe all Λ_{c}-classical orthogonal polynomials, where $\Lambda_{c}, c \in \mathbb{C}$ is a fourth-order lowering differential operator. The solutions are the Laguerre $\left\{L_{n}^{(3)}\right\}_{n \geq 0}$ and the Jacobi $\left\{P_{n}^{(\alpha-4,3)}\right\}_{n \geq 0}$. As an illustration, some connection formulas between the polynomial solutions are deduced.

Mathematics Subject Classification: Primary 33C45; Secondary 42C05.
Keywords: Orthogonal polynomials, regular forms, Classical polynomials, Lowering differential operators.

1 Introduction

An orthogonal polynomial sequence $\left\{P_{n}(x)\right\}_{n \geq 0}$ is called classical if $\left\{D P_{n}(x)\right\}_{n \geq 0}$, where $D:=\frac{d}{d x}$ is the standard derivative, is also orthogonal (Hermite, Laguerre, Bessel or Jacobi). This is Sonine-Hahn property [18, 24]. In [25], Hahn gave similar characterization theorems for orthogonal polynomials P_{n} such that the polynomials ΔP_{n} or $D_{q} P_{n},(n \geq 1)$ are again orthogonal. Here ΔP_{n} is the difference operator and $D_{q} P_{n}$ is the q-difference operator.

In a more general setting, let \mathscr{O} be a linear operator acting on the space \mathscr{P} of polynomials in one variable which sends polynomials of degree n to polynomials of degree $n+n_{0}\left(n_{0}\right.$ is a fixed integer). We call a sequence $\left\{P_{n}\right\}_{n \geq 0}$ of orthogonal polynomials \mathscr{O}-classical if there exist a sequence $\left\{Q_{n}\right\}_{n \geq 0}$ of orthogonal polynomials such that $\mathscr{O} P_{n}=Q_{n+n_{0}}$ (where $n \geq 0$ if $n_{0} \geq 0$ and $n \geq n_{0}$ if $n_{0}<0$). The concept of \mathscr{O}-classical orthogonal polynomials has been studied by many authors in the literature, we can see [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 15, 26]

In this paper, we describe all Λ_{c}-classical orthogonal polynomial sequences where $\Lambda_{c}, c \in$ \mathbb{C} is the following differential operator generalizing the Laguerre derivative

$$
\begin{aligned}
\Lambda_{c}: \mathscr{P} & \rightarrow \mathscr{P} \\
f & \mapsto\left(\hat{\Omega}_{3}(x-c) \hat{\Omega}_{3}+2 \hat{\Omega}_{3}\right) f(x)
\end{aligned}
$$

where $\hat{\Omega}_{m}$ is introduced by Dattoli et Ricci (see[21])

$$
\hat{\Omega}_{m}:=\frac{d}{d x} x \frac{d}{d x}+m \frac{d}{d x}, m \neq-n, n \in \mathbb{N} .
$$

The basic idea has been deduced by starting from the Laguerre derivative given in [21]. On the other hand, by using [28], we can easily prove

$$
\left(\hat{\Omega}_{3} x \hat{\Omega}_{3}+2 \hat{\Omega}_{3}\right) L_{n+1}^{(3)}(x)=\Theta_{n} L_{n}^{(1)}(x), n \geq 1
$$

where $\Theta_{n}:=(n+1)(n+2)(n+3)(n+4)$, is the normalisation factor and $\left\{L_{n}^{(\alpha)}(x)\right\}_{n \geq 0}, \alpha \neq$ $-n, n \geq 1$, are the monic orthogonal Laguerre polynomial sequences.

This means that the above family of standard orthogonal polynomials is an Λ-classical polynomial sequence, since it satisfies the Hahn's property for the lowering operator $\Lambda:=$ $\hat{\Omega}_{3} x \hat{\Omega}_{3}+2 \hat{\Omega}_{3}$.

From a more general point of view, for a given $c \in \mathbb{C}$, let $\Lambda_{c}: \mathscr{P} \rightarrow \mathscr{P}$ be the linear operator defined by

$$
\Lambda_{c}:=\hat{\Omega}_{3}(x-c) \hat{\Omega}_{3}+2 \hat{\Omega}_{3}, \quad\left(\Lambda_{0}=\Lambda\right)
$$

The purpose of this paper is to introduce the concept of the Λ_{c}-classical polynomial sequence and to provide a full description of this family of orthogonal polynomials. Especially, we prove that the Λ_{c}-classical polynomial sequences form a subfamily of the D-classical polynomial sequences.

The rest of this paper is organized as follows. In Section 2, we develop the terminology and basic definitions that will be used later on. In Section 3, we exhaustively describe the Λ_{c}-classical sequences.

2 Preliminaries and notations

Let \mathscr{P} be the linear space of polynomials in one variable with complex coefficients. The algebraic dual space of \mathscr{P} will be represented by \mathscr{P}^{\prime}. We denote by $\langle u, p\rangle$ the action of $u \in \mathscr{P}^{\prime}$ on $p \in \mathscr{P}$ and by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geq 0$, the sequence of moments of u with respect to the polynomial sequence $\left\{x^{n}\right\}_{n \geq 0}$.

Let us define the following operations in \mathscr{P}^{\prime}. For linear functionals u, any polynomial q, and any $(a, b, c) \in \mathbb{C} \backslash\{0\} \times \mathbb{C}^{2}$, let $D u=u^{\prime}, q u,(x-c)^{-1} u, \tau_{-b} u$ and $h_{a} u$ be the linear
functionals defined by duality, [14, 17, 18, 29]

$$
\begin{aligned}
& \langle q u, p\rangle:=\langle u, q p\rangle, \quad\left\langle u^{\prime}, p\right\rangle:=-\left\langle u, p^{\prime}\right\rangle \\
& \left\langle(x-c)^{-1} u, p\right\rangle:=\left\langle u, \theta_{c} p\right\rangle, \quad \text { where } \quad \theta_{c} p(x)=\frac{p(x)-p(c)}{x-c}, \\
& \left\langle\tau_{-b} u, p\right\rangle:=\left\langle u, \tau_{b} p\right\rangle, \quad \text { where } \quad \tau_{b} p(x)=p(x-b), \\
& \left\langle h_{a} u, p\right\rangle:=\left\langle u, h_{a} p\right\rangle, \quad \text { where } \quad h_{a} p(x)=p(a x), \quad \text { for every } p \in \mathscr{P} .
\end{aligned}
$$

A linear functional u is called normalized if it satisfies $(u)_{0}=1$.
Let $\left\{P_{n}\right\}_{n \geq 0}$ be a infinite sequence of monic polynomials (SMP) with $\operatorname{deg} P_{n}=n$ and let $\left\{u_{n}\right\}_{n \geq 0}$ be its dual sequence, $u_{n} \in \mathbb{P}^{\prime}$, defined by $\left\langle u_{n}, P_{m}\right\rangle=\delta_{n, m}, n, m \geq 0$. Notice that u_{0} is said to be the canonical functional associated with the SMP $\left\{P_{n}\right\}_{n \geq 0}$. Recall that any $u \in \mathscr{P}^{\prime}$ can be represented as $u=\sum_{n=0}^{+\infty}\left\langle u, P_{n}\right\rangle u_{n}$. So, if $\left\{u_{n}^{[1]}\right\}_{n \geq 0}$ denotes the dual sequence of the SMP $\left\{P_{n}^{[1]}\right\}_{n \geq 0}$ where $P_{n}^{[1]}(x):=(n+1)^{-1} P_{n+1}^{\prime}(x), n \geq 0$, then $D u_{n}^{[1]}=$ $-(n+1) u_{n+1}, n \geq 0$ [30]. Likewise, the dual sequence $\left\{\tilde{u}_{n}\right\}_{n \geq 0}$ of the shifted SMP $\left\{\tilde{P}_{n}\right\}_{n \geq 0}$, where $\tilde{P}_{n}(x):=a^{-n} P_{n}(a x+b)$ with $(a, b) \in \mathbb{C} \backslash\{0\} \times \mathbb{C}$, is given by $\tilde{u}_{n}=a^{n}\left(h_{a^{-1}} \circ \tau_{-b}\right) u_{n}, n \geq 0$ [30].

Let us recall that a form u (linear functional) is said to be quasi-definite (regular) if there exists a unique sequence of monic polynomials $\left\{P_{n}\right\}_{n \geq 0}$, such that [14, 17, 18, 29, 30]

$$
\begin{equation*}
\left\langle u, P_{n} P_{m}\right\rangle=r_{n} \delta_{n, m}, \quad n, m \geq 0, \quad r_{n} \neq 0, \quad n \geq 0 \tag{1}
\end{equation*}
$$

The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is said to be the sequence of monic orthogonal polynomials (SMOP) with respect to u. Note that $u=(u)_{0} u_{0}$, with $(u)_{0} \neq 0$. For any quasi-definite linear functional u and any polynomial φ such that $\varphi u=0$, it is then straightforward to prove that $\varphi=0$, [30].

Lemma 2.1 14, 17, 18, 29]. The $S M P\left\{P_{n}\right\}_{n \geq 0}$, with dual sequence $\left\{u_{n}\right\}_{n \geq 0}$, is orthogonal with respect to u_{0} if and only if one of the following statements hold:
(i) $u_{n}=\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1} P_{n} u_{0}, n \geq 0$.
(ii) $\left\{P_{n}\right\}_{n \geq 0}$ satisfies a Three-Term Recurrence Relation

$$
(\mathrm{TTRR})\left\{\begin{array}{l}
P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0} \tag{2}\\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), n \geq 0
\end{array}\right.
$$

where $\beta_{n}=\left\langle u_{0}, x P_{n}^{2}\right\rangle /\left\langle u_{0}, P_{n}^{2}\right\rangle \in \mathbb{C}$ and $\gamma_{n+1}=\left\langle u_{0}, P_{n+1}^{2}\right\rangle /\left\langle u_{0}, P_{n}^{2}\right\rangle \in \mathbb{C} \backslash\{0\}$.
A linear functional u is said to be positive-definite if it is quasi-definite i.e. it satisfies (1) and $r_{n}>0$ for every nonnegative integer n (see [29]). Note that a linear functional u is quasi-definite but it is not necessarily positive-definite.

The orthogonality is preserved by a shifting in the variable. Indeed, for the shifted sequence $\left\{\tilde{P}_{n}\right\}_{n \geq 0}$ where $\tilde{P}_{n}(x):=a^{-n} P_{n}(a x+b)$ with $(a, b) \in \mathbb{C} \backslash\{0\} \times \mathbb{C}$, the following Three-Term Recurrence Relation holds (see [20, 29])

$$
(\operatorname{TTRR})\left\{\begin{array}{l}
\tilde{P}_{0}(x)=1, \quad \tilde{P}_{1}(x)=x-\tilde{\beta}_{0} \\
\tilde{P}_{n+2}(x)=\left(x-\tilde{\beta}_{n+1}\right) \tilde{P}_{n+1}(x)-\tilde{\gamma}_{n+1} \tilde{P}_{n}(x), n \geq 0
\end{array}\right.
$$

where $\tilde{\beta}_{n}=a^{-1}\left(\beta_{n}-b\right)$ and $\tilde{\gamma}_{n+1}=a^{-2} \gamma_{n+1}$.

A linear functional u is said to be D-classical when it is quasi-definite and there exist two polynomials Φ and Ψ, Φ monic, $\operatorname{deg} \Phi=t \leq 2$, and $\operatorname{deg} \Psi=1$, such that u satisfies a Pearson's equation (see [14, 17, 18, 22, 29, 30, 31)

$$
\begin{equation*}
(\mathrm{PE}) \quad(\Phi u)^{\prime}+\Psi u=0 \tag{3}
\end{equation*}
$$

In such a case, the corresponding SMOP $\left\{P_{n}\right\}_{n \geq 0}$ is said to be D-classical.
Any shift leaves invariant the D-classical character. Indeed, the shifted linear functional $\tilde{u}=\left(h_{a^{-1}} \circ \tau_{-b}\right) u$ fulfils [14, 17, 18, 30,

$$
(\tilde{\Phi} \tilde{u})^{\prime}+\tilde{\Psi} \tilde{u}=0
$$

where $\tilde{\Phi}(x)=a^{-t} \Phi(a x+b)$ and $\tilde{\Psi}(x)=a^{1-t} \Psi(a x+b)$.
It is well-known that any D-classical polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}$ can be characterized by taking into account its orthogonality and a First Structure Relation (FSR) or a Second Structure Relation (SSR) as follows, [13, 17, 20, 22, 23, 30]:

$$
\begin{array}{ll}
(\mathrm{FSR}) & \Phi(x) P_{n+1}^{\prime}(x)=r(x ; n) P_{n+1}(x)+s_{n} P_{n}(x), n \geq 0, \\
(\mathrm{SSR}) & P_{n}(x)=P_{n}^{[1]}(x)+a_{n} P_{n-1}^{[1]}(x)+b_{n} P_{n-2}^{[1]}(x), n \geq 0, \tag{5}
\end{array}
$$

The D-classical orthogonal polynomials are essentially the only polynomial (not just orthogonal polynomial) systems that satisfy a Second-Order Differential Equation (SODE, in short), Bochner [16], (see also [12, 31]), of the form

$$
\begin{equation*}
\Phi(x) P_{n+1}^{\prime \prime}(x)-\Psi(x) P_{n+1}^{\prime}(x)=\omega_{n} P_{n+1}(x), n \geq 0 \tag{6}
\end{equation*}
$$

with $\operatorname{deg} \phi \leq 2, \operatorname{deg} \psi=1$ and where $(n+1)\left(\frac{1}{2} \phi^{\prime \prime}(0) n+\psi^{\prime}(0)\right)=\omega_{n} \neq 0, n \geq 0$. For the four canonical situations (three positive-definite cases, namely Hermite, Laguerre, and Jacobi, and one quasi-definite case, namely Bessel), in the next table we summarize the parameters involved in (2)-(6), (for more details, see [12, 22, [29, 30, 31]).

Some basic characteristics of classical orthogonal polynomials.

(\mathbf{C}_{1}) Hermite: $\quad P_{n}(x)=H_{n}(x), n \geq 0$,
$\beta_{n}=0, n \geq 0, \gamma_{n+1}=\frac{n+1}{2}, n \geq 0$,
$\Phi(x)=1, \quad \Psi(x)=2 x$,
$r(x ; n)=0, s_{n}=n+1, n \geq 0$,
$a_{n}=b_{n}=0, n \geq 0$,
$\omega_{n}=-2(n+1), n \geq 0$.
$\left(\mathbf{C}_{2}\right)$ Laguerre: $\quad P_{n}(x)=L_{n}^{(\alpha)}(x), n \geq 0, \quad(\alpha \neq-n, n \geq 1)$,
$\beta_{n}=2 n+\alpha+1, n \geq 0, \gamma_{n+1}=(n+1)(n+\alpha+1), n \geq 0$,
$\Phi(x)=x, \quad \Psi(x)=x-\alpha-1$,
$r(x ; n)=n+1, s_{n}=\gamma_{n+1}, n \geq 0$,
$a_{n}=n, b_{n}=0, n \geq 0$,
$\omega_{n}=-(n+1), n \geq 0$.
$\left(\mathbf{C}_{3}\right)$ Bessel: $\quad P_{n}(x)=B_{n}^{(\alpha)}(x), n \geq 0, \quad\left(\alpha \neq-\frac{n}{2}, n \geq 0\right)$,
$\beta_{0}=-\frac{1}{\alpha}, \beta_{n}=\frac{1-\alpha}{(n+\alpha-1)(n+\alpha)}, n \geq 0, \gamma_{n}=-\frac{n(n+2 \alpha-2)}{(2 n+2 \alpha-3)(n+\alpha-1)^{2}(2 n+2 \alpha-1)}, n \geq 1$, $\Phi(x)=x^{2}, \quad \Psi(x)=-2(\alpha x+1)$,
$r(x ; n)=(n+1)\left(x-\frac{1}{n+\alpha}\right), s_{n}=-(2 n+2 \alpha+1) \gamma_{n+1}, n \geq 0$,
$a_{n}=\frac{n}{(n+\alpha-1)(n+\alpha)}, n \geq 1, a_{0}=0, \quad b_{n}=\frac{(n-1) n}{(2 n+2 \alpha-3)(n+\alpha-1)^{2}(2 n+2 \alpha-1)}, n \geq 2, b_{0}=b_{1}=0$,
$\omega_{n}=(n+1)(n+2 \alpha), n \geq 0$.
$\left(\mathbf{C}_{4}\right)$ Jacobi: $\quad P_{n}(x)=P_{n}^{(\alpha, \beta)}(x), n \geq 0, \quad(\alpha, \beta \neq-n, \alpha+\beta \neq-n-1, n \geq 1)$,
$\beta_{0}=\frac{\alpha-\beta}{\alpha+\beta+2}, \quad \beta_{n}=\frac{\alpha^{2}-\beta^{2}}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)}, \gamma_{n}=\frac{4 n(n+\alpha+\beta)(n+\alpha)(n+\beta)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta)^{2}(2 n+\alpha+\beta+1)}, n \geq 1$,
$\Phi(x)=x^{2}-1, \quad \Psi(x)=-(\alpha+\beta+2) x+\alpha-\beta$,
$r(x ; n)=(n+1)\left(x-\frac{\alpha-\beta}{2 n+\alpha+\beta+2}\right), s_{n}=-(2 n+\alpha+\beta+3) \gamma_{n+1}, n \geq 0$,
$a_{n}=-\frac{2 n(\alpha-\beta)}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)}, n \geq 1, a_{0}=0, b_{n}=-\frac{4(n-1) n(n+\alpha)(n+\beta)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta)^{2}(2 n+\alpha+\beta+1)}, n \geq 2, b_{0}=b_{1}=0$,
$\omega_{n}=(n+1)(n+\alpha+\beta+2), n \geq 0$.

Notice that a linear functional D-classical is not necessarily positive-definite.
Now, recall that the latter operator is given by

$$
\begin{aligned}
\Lambda_{c}: \mathscr{P} & \longrightarrow \mathscr{P} \\
f & \longmapsto \Lambda_{c}(f)=(x-c)^{3} f^{(4)}+12(x-c)^{2} f^{(3)}+36(x-c) f^{\prime \prime}+24 f^{\prime},
\end{aligned}
$$

It is clear that Λ_{c} lowers the degree by one of any polynomial. Indeed, we have

$$
\begin{align*}
\Lambda_{c}(x-c)^{n+1} & =\left(\hat{\Omega}_{3}(x-c) \hat{\Omega}_{3}+2 \hat{\Omega}_{3}\right)(x-c)^{n+1} \\
& =(n+1)(n+2)(n+3)(n+4)(x-c)^{n}, n \geq 0 \tag{7}
\end{align*}
$$

since $\hat{\Omega}_{3}(x-c)^{n+1}=(n+1)(n+4)(x-c)^{n}, n \geq 0$, (see [21]).
By transposition of the operator Λ_{c}, we get

$$
\begin{equation*}
{ }^{t} \Lambda_{c}=(x-c) f^{(4)}+\left(6(x-c)^{3}-108(x-c)^{2}\right) f^{(2)}-\left(144(x-c)^{3}-36(x-c)-48\right) f^{\prime}-72(x-c)^{2} f \tag{8}
\end{equation*}
$$

For any SMP $\left\{P_{n}\right\}_{n \geq 0}$, we define

$$
\begin{equation*}
Q_{n}(x):=\frac{\Lambda_{c} P_{n+1}(x)}{(n+1)(n+2)(n+3)(n+4)}, \quad n \geq 0 . \tag{9}
\end{equation*}
$$

Clearly, $\left\{Q_{n}\right\}_{n \geq 0}$ is a SMP and $\operatorname{deg} Q_{n}=n$. If $\left\{v_{n}\right\}_{n \geq 0}$ denotes the dual sequence of $\left\{Q_{n}\right\}_{n \geq 0}$, then we have

$$
\begin{equation*}
{ }^{t} \Lambda_{c} v_{n}=(n+1)(n+2)(n+3)(n+4) u_{n+1}, \quad n \geq 0 \tag{10}
\end{equation*}
$$

Note that for $c=0$ and using the representation of Laguerre polynomials in terms of hypergeometric series [27]:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\sum_{\nu=0}^{n}(-1)^{n-\nu}\binom{n}{\nu} \frac{\Gamma(n+\alpha+1)}{\Gamma(\nu+\alpha+1)} x^{\nu} \tag{11}
\end{equation*}
$$

with $\alpha=3$, we obtain

$$
\left((x-c)^{3} D^{4}+12(x-c)^{2} D^{3}+36(x-c) D^{2}+24 D\right) L_{n}^{(3)}(x)=(n+1)(n+2)(n+3)(n+4) L_{n}^{(1)}(x), \quad n \geq 0
$$

Equivalently

$$
\begin{equation*}
L_{n}^{(1)}(x)=\frac{\Lambda_{3,0} L_{n}^{(3)}(x)}{(n+1)(n+2)(n+3)(n+4)}, n \geq 0 \tag{12}
\end{equation*}
$$

This implies that $Q_{n}(x)=L_{n}^{(1)}(x), n \geq 0$, which is an example of solution of our problem. The goal of this manuscript is to describe all of the sequences of Λ_{c}-classical orthogonal polynomials in the Hahn's sense, where $\Lambda_{c}, c \in \mathbb{C}$ is the above operator.

3 The Λ_{c}-classical orthogonal polynomials

Definition 3.1 Let u_{0} be a quasi-definite linear functional and let $\left\{P_{n}\right\}_{n \geq 0}$ be the corresponding SMOP. We call $\left\{P_{n}\right\}_{n \geq 0}$ is Λ_{c}-classical if $\left\{\Lambda_{c} P_{n+1}\right\}_{n \geq 0}$ is also orthogonal. In this case, u_{0} is also said to be an Λ_{c}-classical linear functional.

Our next goal is to describe all of the the Λ_{c}-classical polynomial sequences. Assume that $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ are SMOP satisfying

$$
\begin{align*}
& \left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\beta_{0} \\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), \gamma_{n+1} \neq 0, n \geq 0
\end{array}\right. \tag{13}\\
& \left\{\begin{array}{l}
Q_{0}(x)=1, Q_{1}(x)=x-\xi_{0} \\
Q_{n+2}(x)=\left(x-\xi_{n+1}\right) Q_{n+1}(x)-\lambda_{n+1} Q_{n}(x), \lambda_{n+1} \neq 0, n \geq 0
\end{array}\right. \tag{14}
\end{align*}
$$

The dual sequences of $\left\{P_{n}\right\}_{n \geq 0}$ and $\left\{Q_{n}\right\}_{n \geq 0}$ will be denoted by $\left\{u_{n}\right\}_{n \geq 0}$ and $\left\{v_{n}\right\}_{n \geq 0}$, respectively. By Lemma 2.1 (i), we get

$$
\begin{equation*}
u_{n}=\frac{P_{n}}{\left\langle u_{0}, P_{n}^{2}\right\rangle} u_{0}, n \geq 0 \quad ; \quad v_{n}=\frac{Q_{n}}{\left\langle v_{0}, Q_{n}^{2}\right\rangle} v_{0}, n \geq 0 \tag{15}
\end{equation*}
$$

Based on the characterizations of D-classical polynomials (see for example [17, 19]), we prove, in the following result, that the sequence $\left\{Q_{n}\right\}_{n \geq 0}$ is D-classical.

Lemma 3.1 (i) The sequence $\left\{Q_{n}\right\}_{n \geq 0}$ satisfies the following relation

$$
Q_{n}(x)=Q_{n}^{[1]}(x)+c_{n} Q_{n-1}^{[1]}(x)+d_{n} Q_{n-2}^{[1]}(x), n \geq 0
$$

where

$$
c_{n}=\frac{n}{4}\left(\beta_{n+1}-\xi_{n}\right), n \geq 0, \quad d_{n}=\frac{n-1}{4}\left(\frac{n}{n+4} \gamma_{n+1}-\lambda_{n}\right), n \geq 1, d_{0}=0 .
$$

(ii) The form v_{0} satisfies

$$
(\mathrm{PE}) \quad\left(\Phi v_{0}\right)^{\prime}+\Psi v_{0}=0
$$

where

$$
\begin{aligned}
\kappa \Phi(x) & =d_{2}\left(\lambda_{1} \lambda_{2}\right)^{-1} Q_{2}(x)+c_{1} \lambda_{1}^{-1} Q_{1}(x)+1 \\
\Psi(x) & =\left(\kappa \lambda_{1}\right)^{-1} Q_{1}(x) .(\kappa \text { is a normalization factor })
\end{aligned}
$$

Proof. Let us introduce the sequence of monic polynomials $\left\{Z_{n}\right\}_{n \geq 0}$ given by

$$
\begin{equation*}
(n+1)(n+2)(n+3) Z_{n}(x)=\left[(x-c)^{3} P_{n}(x)\right]^{(3)}, n \geq 0 \tag{16}
\end{equation*}
$$

By taking derivatives in both hand sides of (16) and taking into account (9), we get

$$
\begin{equation*}
Z_{n}^{[1]}(x)=Q_{n}(x), n \geq 0 . \tag{17}
\end{equation*}
$$

Notice that $Z_{n}(x)$ is a monic primitive of $Q_{n}(x)$.
From (13) and (16), we obtain

$$
\begin{aligned}
(n+3)(n+4)(n+5) Z_{n+2}(x)= & 3\left[(x-c)^{3} P_{n+1}(x)\right]^{(2)}+(n+2)(n+3)(n+4)\left(x-\beta_{n+1}\right) Z_{n+1}(x) \\
& -(n+1)(n+2)(n+3) \gamma_{n+1} Z_{n}(x), n \geq 0
\end{aligned}
$$

By differentiating in both sides of the previous identities and inserting (17), we get

$$
\begin{aligned}
4(n+2)(n+3)(n+4) Z_{n+1}(x)= & 4(n+2)(n+3)(n+4) Q_{n+1}(x) \\
& -(n+1)(n+2)(n+3)(n+4)\left(\xi_{n}-\beta_{n+1}\right) Q_{n}(x) \\
& -(n+1)(n+2)(n+3)\left[(n+4) \lambda_{n}-n \gamma_{n+1}\right] Q_{n-1}(x), n \geq 0 .
\end{aligned}
$$

Then, it follows that

$$
\begin{equation*}
Z_{n+1}(x)=Q_{n+1}(x)+e_{n+1} Q_{n}(x)+f_{n} Q_{n-1}(x), n \geq 0 \tag{18}
\end{equation*}
$$

where

$$
e_{n}=\frac{n+1}{4}\left(\beta_{n+1}-\xi_{n}\right) \text { and } f_{n}=\frac{n+1}{4}\left(\frac{n}{n+4} \gamma_{n+1}-\lambda_{n}\right) .
$$

By differentiating both hand sides of (18) and using (17), (i) holds.
Let $\left\{v_{n}^{[1]}\right\}_{n \geq 0}$ be the dual sequence of $\left\{Q_{n}^{11]}\right\}_{n \geq 0}$. From (i), we have $\left\langle v_{0}^{[1]}, Q_{n}\right\rangle=0, n \geq 3$, $\left\langle v_{0}^{[1]}, Q_{2}\right\rangle=d_{2},\left\langle v_{0}^{[1]}, Q_{1}\right\rangle=c_{1}$, and $\left\langle v_{0}^{[1]}, Q_{0}\right\rangle=1$. So, $v_{0}^{[1]}=d_{2} v_{2}+c_{1} v_{1}+v_{0}$, and by (15), we get $v_{0}^{[1]}=\kappa \Phi(x) v_{0}$, where $\kappa \Phi(x)=d_{2} \lambda_{1}^{-1} \lambda_{2}^{-1} Q_{2}(x)+c_{1} \lambda_{1}^{-1} Q_{1}(x)+1$ and κ is a normalization factor. Because $\left(v_{0}^{[1]}\right)^{\prime}=-v_{1}=-\lambda_{1}^{-1} Q_{1} v_{0}$, then $\left(\Phi v_{0}\right)^{\prime}+\Psi v_{0}=0$, where $\Psi(x)=\left(\kappa \lambda_{1}\right)^{-1} Q_{1}(x)$. Hence, (ii) holds.

Lemma 3.2 There are four polynomials E, F, G and H, such that
(i) $(x-c)^{3} v_{0}=E(x) u_{0}$.
(ii) $E(x) Q_{n}^{(4)}(x)+F(x) Q_{n}^{(3)}(x)+G(x) Q_{n}^{\prime \prime}(x)+H(x) Q_{n}^{\prime}+\rho_{0} P_{1} Q_{n}(x)=\rho_{n} P_{n+1}(x), n \geq 0$, where

$$
\begin{aligned}
H(x) & =\rho_{1} P_{2}(x)-\rho_{0} P_{1} Q_{1}(x) \\
G(x) & =\frac{1}{2}\left[\rho_{2} P_{3}(x)-\rho_{0} P_{1} Q_{2}-H(x) Q_{2}^{\prime}\right] \\
F(x) & =\frac{1}{6}\left[\rho_{3} P_{4}(x)-\rho_{0} P_{1} Q_{3}-H(x) Q_{3}^{\prime}-G(x) Q_{3}^{\prime \prime}\right] \\
E(x) & =\frac{1}{24}\left[\rho_{4} P_{5}(x)-\rho_{0} P_{1} Q_{4}-H(x) Q_{4}^{\prime}-G(x) Q_{4}^{\prime \prime}-F(x) Q_{4}^{(3)}\right] \\
\rho_{n} & =(n+1)(n+2)(n+3)(n+4) \frac{\left\langle v_{0}, Q_{n}^{2}\right\rangle}{\left\langle u_{0}, P_{n+1}^{2}\right\rangle} .
\end{aligned}
$$

(iii) The following relations hold
(a)

$$
\begin{aligned}
E(x) C(x) & =\rho_{0} \Phi^{4}(x) P_{1}(x) \\
4 E(x) B(x) & =\Phi^{3}(x) H(x), \\
6 E(x) A(x) & =\Phi^{2}(x) G(x), \\
4 E(x) \tilde{A}(x) & =\Phi(x) F(x),
\end{aligned}
$$

(b) $\gamma_{1} \Phi^{4}(x)=\left[\left\{\left(\rho_{0}^{-1}-\rho_{1}^{-1}\right) x+\rho_{1}^{-1} \xi_{0}-\rho_{0}^{-1} \beta_{1}\right\} C(x)-4 \rho_{1}^{-1} \phi B(x)\right] E(x)$,
where, $\tilde{A}=-\left(\Phi^{\prime}+\Psi\right), A=-\left(2 \Phi^{\prime}+\Psi\right) \tilde{A}+\Phi \tilde{A}^{\prime}, B=-\left(3 \Phi^{\prime}+\Psi\right) A+\Phi A^{\prime}, C=$ $-\left(4 \Phi^{\prime}+\Psi\right) B+\Phi B^{\prime}$.

Proof. From (10) and (15), we obtain

$$
\begin{equation*}
(x-c)^{3}\left[Q_{n}(x) v_{0}^{(4)}+4 Q_{n}^{\prime}(x) v_{0}^{(3)}+6 Q_{n}^{\prime \prime}(x) v_{0}^{\prime \prime}+4 Q_{n}^{(3)} v_{0}^{\prime}+Q_{n}^{(4)} v_{0}\right]=\rho_{n} P_{n+1}(x) u_{0}, n \geq 0 \tag{19}
\end{equation*}
$$

where

$$
\rho_{n}=(n+1)(n+2)(n+3)(n+4) \frac{\left\langle v_{0}, Q_{n}^{2}\right\rangle}{\left\langle u_{0}, P_{n+1}^{2}\right\rangle} .
$$

From (19) with $n=0$, we obtain

$$
\begin{equation*}
(x-c)^{3} v_{0}^{(4)}=\rho_{0} P_{1} u_{0} \tag{20}
\end{equation*}
$$

Using (19) and (20), it follows that

$$
\begin{equation*}
(x-c)^{3}\left[4 Q_{n}^{\prime}(x) v_{0}^{(3)}+6 Q_{n}^{\prime \prime}(x) v_{0}^{\prime \prime}+4 Q_{n}^{(3)} v_{0}^{\prime}+Q_{n}^{(4)} v_{0}\right]=\left[\rho_{n} P_{n+1}(x)-\rho_{0} P_{1} Q_{n}\right] u_{0} \tag{21}
\end{equation*}
$$

For $n=1$, (21) becomes

$$
\begin{equation*}
4(x-c)^{3} v_{0}(3)=H(x) u_{0} \tag{22}
\end{equation*}
$$

where

$$
H(x)=\rho_{1} P_{2}(x)-\rho_{0} P_{1} Q_{1}(x) .
$$

By inserting (22) in (21), we obtain

$$
\begin{equation*}
(x-c)^{3}\left[6 Q_{n}^{\prime \prime}(x) v_{0}^{\prime \prime}+4 Q_{n}^{(3)} v_{0}^{\prime}+Q_{n}^{(4)} v_{0}\right]=\left[\rho_{n} P_{n+1}(x)-\rho_{0} P_{1} Q_{n}-H(x) Q_{n}^{\prime}\right] u_{0} . \tag{23}
\end{equation*}
$$

Taking $n=2$ in (23), we obtain

$$
\begin{equation*}
6(x-c)^{3} v_{0}^{\prime \prime}=G(x) u_{0} \tag{24}
\end{equation*}
$$

where

$$
G(x)=\frac{1}{2}\left[\rho_{2} P_{3}(x)-\rho_{0} P_{1} Q_{2}-H(x) Q_{2}^{\prime}\right] .
$$

By inserting (24) in (23), we obtain

$$
\begin{equation*}
(x-c)^{3}\left[4 Q_{n}^{(3)} v_{0}^{\prime}+Q_{n}^{(4)} v_{0}\right]=\left[\rho_{n} P_{n+1}(x)-\rho_{0} P_{1} Q_{n}-H(x) Q_{n}^{\prime}-G(x) Q_{n}^{\prime \prime}\right] u_{0} . \tag{25}
\end{equation*}
$$

Taking $n=3$ in (25), we obtain

$$
\begin{equation*}
4(x-c)^{3} v_{0}^{\prime}=F(x) u_{0} \tag{26}
\end{equation*}
$$

where

$$
F(x)=\frac{1}{6}\left[\rho_{3} P_{4}(x)-\rho_{0} P_{1} Q_{3}-H(x) Q_{3}^{\prime}-G(x) Q_{3}^{\prime \prime}\right] .
$$

By inserting (26) in (25), we obtain

$$
\begin{equation*}
(x-c)^{3} Q_{n}^{(4)} v_{0}=\left[\rho_{n} P_{n+1}(x)-\rho_{0} P_{1} Q_{n}-H(x) Q_{n}^{\prime}-G(x) Q_{n}^{\prime \prime}-F(x) Q_{n}^{(3)}\right] u_{0} . \tag{27}
\end{equation*}
$$

Hence, taking $n=4$ in (27), (i) holds.
Meanwhile, by substituting $(x-c)^{3} v_{0}=E u_{0}$ in (27) and taking into account the quasidefiniteness of u_{0}, we deduce (ii).

By using Lemma 3.1 (ii), we can write

$$
\begin{equation*}
\Phi v_{0}^{\prime}=\tilde{A} v_{0}, \quad \Phi^{2} v_{0}^{\prime \prime}=A v_{0}, \quad \Phi^{3} v_{0}^{(3)}=B v_{0}, \quad \Phi^{4} v_{0}^{(4)}=C v_{0} \tag{28}
\end{equation*}
$$

where $\tilde{A}=-\left(\Phi^{\prime}+\Psi\right), A=-\left(2 \Phi^{\prime}+\Psi\right) \tilde{A}+\Phi \tilde{A}^{\prime}, B=-\left(3 \Phi^{\prime}+\Psi\right) A+\Phi A^{\prime}, C=-\left(4 \Phi^{\prime}+\right.$ $\Psi) B+\Phi B^{\prime}$.
In contrast, if we multiply (20), (22), (24) and (26) by $\Phi^{4}, \Phi^{3}, \Phi^{2}, \Phi$ successively and we take into account (28), (i) and also the quasi-definiteness of u_{0}, we get (iii) (a).
Using (20), (22), (24), (26) and we take into account (i) and also the quasi-definiteness of u_{0}, we get

$$
\begin{equation*}
\left[Q_{n}^{(4)} \phi^{(4)}+4 \tilde{A} Q_{n}^{(3)} \phi^{(3)}+6 A Q_{n}^{\prime \prime} \phi^{2}+4 Q_{n}^{\prime} B \phi+Q_{n} C\right] E(x)=\rho_{n} P_{n+1}(x) \phi^{4}(x), n \geq 0 \tag{29}
\end{equation*}
$$

Hence, taking $n=1$ in (29), and using (13), (14), we deduce (iii) (b).
Now, we will describe all of the Λ_{c}-classical polynomial sequences.

Theorem 3.1 The Λ_{c}-classical polynomial sequences are, up to a suitable affine transformation in the variable, one of the following D-classical polynomial sequences
(i) $P_{n}(x)=L_{n}^{(3)}(x)$ and $Q_{n}(x)=L_{n}^{(1)}(x), n \geq 0$, with $c=0$.
(ii) $P_{n}(x)=P_{n}^{(\alpha-4,3)}(x)$ and $Q_{n}(x)=P_{n}^{(\alpha, 1)}(x), n \geq 0$, with $c=1$ and where $\alpha \neq$ $-n+4, n \geq 1$.

Proof. From Lemma 3.1, $\left\{Q_{n}\right\}_{n \geq 0}$ is D-classical. We will analyze the following situations:
$\left(\mathbf{S}_{1}\right) .\left\{Q_{n}\right\}_{n \geq 0}$ is the Hermite SMOP. From Table $2\left(\mathbf{C}_{1}\right), C(x)=16 x^{4}-48 x^{2}+12$. Then, from Lemma 3.2 (iii) (a), we get $E(x) C(x)=\rho_{0} P_{1}(x)$. This yields a contradiction.
$\left(\mathbf{S}_{2}\right) .\left\{Q_{n}\right\}_{n \geq 0}$ is the Laguerre SMOP. From Table $2\left(\mathbf{C}_{2}\right), C(x)=x^{4}-4 \alpha x^{3}+6 \alpha(\alpha-$ 1) $x^{2}-4 \alpha(\alpha-1)(\alpha-2) x+\alpha(\alpha-1)(\alpha-2)(\alpha-3)$. Therefore, from Lemma 3.2, (iii), we have

$$
\begin{equation*}
E(x) C(x)=\rho_{0} x^{4} P_{1}(x) \tag{30}
\end{equation*}
$$

From (30), we can deduce, $\operatorname{deg} E=1$, so there exists $(a, b) \in \mathbb{C} \backslash\{0\} \times \mathbb{C}$ such as $E(x)=a x+b$. According to (13), equation(30) becomes
$(a x+b)\left[x^{4}-4 \alpha x^{3}+6 \alpha(\alpha-1) x^{2}-4 \alpha(\alpha-1)(\alpha-2) x+\alpha(\alpha-1)(\alpha-2)(\alpha-3)\right]=\rho_{0} x^{4}\left(x-\beta_{0}\right)$,
which gives, after comparing the degrees

$$
\begin{align*}
a & =\rho_{0}, \tag{32}\\
b & =-\rho_{0}\left(\beta_{0}-4 \alpha\right), \tag{33}\\
\alpha\left(3(\alpha-1)+2\left(\beta_{0}-4 \alpha\right)\right) & =0, \tag{34}\\
\alpha(\alpha-1)\left(2(\alpha-2)+3\left(\beta_{0}-4 \alpha\right)\right) & =0, \tag{35}\\
\alpha(\alpha-1)(\alpha-2)\left(\alpha-3+4\left(\beta_{0}-4 \alpha\right)\right) & =0, \tag{36}\\
\alpha(\alpha-1)(\alpha-2)(\alpha-3)\left(\beta_{0}-4 \alpha\right) & =0 . \tag{37}
\end{align*}
$$

Note that, we need $b=0$ to ensure that $\left\{P_{n}\right\}_{n \geq 0}$ is an orthogonal sequence. Indeed, if we suppose that $b \neq 0$. In view of (34), we can remark two possibilities: either (i) $\alpha \neq 0$ or (ii) $\alpha=0$.
(i) If $\alpha \neq 0$, the equation (34) we gives $2 \beta_{0}=5 \alpha-3$ and $\alpha \neq 1$. By substituting this result in (35), we obtain $\alpha=\frac{1}{5}$. Then, equation (37) we gives $\beta_{0}-4 \alpha=0$, which contradicts $b \neq 0$.
(ii) If $\alpha=0$, equation (33) we gives $b=-\rho_{0} \beta_{0}$, then $E(x)=\rho_{0} P_{1}(x)$ and $C(x)=x^{4}$. Using Lemma 3.2 (iii) (a), we obtain $H(x)=-4 \rho_{0} P_{1}(x), G(x)=6 \rho_{0} P_{1}(x), F(x)=$ $-4 \rho_{0} P_{1}(x)$. Replaced x by β_{0} in Lemma 3.2 (ii), we obtain $P_{n+1}\left(\beta_{0}\right)=0, n \geq 0$. Then, $P_{2}\left(\beta_{0}\right)=-\gamma_{1}=0$, which contradicts the orthogonality of $\left\{P_{n}\right\}_{n \geq 0}$.

Then, $b=0, E(x)=\rho_{0} x$ and the equations (32), (33), (34), (35) and (36) becomes

$$
\begin{align*}
a & =\rho_{0}, \tag{38}\\
\beta_{0} & =4 \alpha, \tag{39}\\
\alpha(\alpha-1) & =0, \tag{40}\\
\alpha(\alpha-1)(\alpha-2) & =0, \tag{41}\\
\alpha(\alpha-1)(\alpha-2)(\alpha-3) & =0 . \tag{42}
\end{align*}
$$

In view of 40, we can remark two possibilities: either $\alpha=0$ or $\alpha=1$. If $\alpha=0$, equation (33) we gives $\beta_{0}=0$, then $E(x)=\rho_{0} x$ and $C(x)=x^{4}$. Using Lemma 3.2 (iii) (a), we obtain $H(x)=-4 \rho_{0} x, G(x)=6 \rho_{0} x, F(x)=-4 \rho_{0} x$. Replaced x by 0 in Lemma 3.2 (ii), we obtain $P_{n+1}(0)=0, n \geq 0$, which contradicts the orthogonality of $\left\{P_{n}\right\}_{n \geq 0}$.

Then $\alpha=1, C(x)=x^{3}(x-4), B(x)=-x^{2}(x-3), A(x)=x(x-2), \tilde{A}(x)=x-1$ and $Q_{n}(x)=L_{n}^{(1)}(x)$, where $\left\{L_{n}^{(1)}\right\}_{n \geq 0}$ is is the sequence polynomials of Laguerre with parameter 1. In this case $\beta_{0}=4$ and using Lemma 3.2 (iii) (a), we obtain $H(x)=-4 \rho_{0}(x-3)$, $G(x)=6 \rho_{0}(x-2), F(x)=-4 \rho_{0}(x-1)$.

Now, Lemma 3.2 (iii) (b) gives $\gamma_{1}=\left[\left\{\left(\rho_{0}^{-1}-\rho_{1}^{-1}\right) x+\rho_{1}^{-1} \xi_{0}-\rho_{0}^{-1} \beta_{1}\right\}(x-4)-4 \rho_{1}^{-1}(x-3)\right] \rho_{0}$. Use the fact that $\xi_{0}=2$, we obtain

$$
\gamma_{1} \rho_{0}^{-1}=\left(\rho_{0}^{-1}-\rho_{1}^{-1}\right) x^{2}+\left[-4 \rho_{0}^{-1}+10 \rho_{1}^{-1}-\rho_{0}^{-1} \beta_{1}\right] x-20 \rho_{1}^{-1}+4 \rho_{0}^{-1} \beta_{1}
$$

which gives, after comparing the degrees $\rho_{0}=\rho_{1}, \beta_{1}=6$ and $\gamma_{1}=4$.
According to Lemma 3.2 (ii) and Lemma 3.1 (i), we have $\rho_{0}=24 \gamma_{1}^{-1}=6, \beta_{n+1}=$ $2 n+6, n \geq 0$ and $\gamma_{n+1}=(n+1)(n+4)$.

Now, using the previous results and Lemma 3.2 (ii), we obtain

$$
6 x Q_{n}^{(4)}-24(x-1) Q_{n}^{(3)}+36(x-2) Q_{n}^{\prime \prime}-24(x-3) Q_{n}^{\prime}+6 P_{1} Q_{n}=\rho_{n} P_{n+1}, n \geq 0,
$$

which gives, after comparing the degrees $\rho_{n}=6, n \geq 0$. therefore

$$
x Q_{n}^{(4)}-4(x-1) Q_{n}^{(3)}+6(x-2) Q_{n}^{\prime \prime}-4(x-3) Q_{n}^{\prime}+P_{1} Q_{n}=P_{n+1}, n \geq 0
$$

In contrast, we have by Lemma3.1(i), $\beta_{n}=2 n+4, n \geq 1$ and $\gamma_{n+1}(n+1)(n+4), n \geq 2$. Then, $P_{n}(x)=L_{n}^{(3)}(x), n \geq 0$, with $Q_{n}(x)=L_{n}^{(1)}(x), n \geq 0$. Making $n=1$ in (9), we get $c=0$. Consequently, the following relations hold:

$$
\begin{align*}
& L_{n}^{(1)}(x)=\frac{\Lambda_{3,0} L_{n}^{(3)}(x)}{(n+1)(n+2)(n+3)(n+4)}, n \geq 0 \tag{44}\\
& x\left\{L_{n}^{(1)}\right\}^{(4)}(x)-4(x-1)\left\{L_{n}^{(1)}\right\}^{(3)}(x)+6(x-2)\left\{L_{n}^{(1)}\right\}^{(2)}(x)-4(x-3)\left\{L_{n}^{(1)}\right\}^{(1)}(x) \\
& \tag{45}\\
& \quad+(x-4) L_{n}^{(1)}(x)=L_{n+1}^{(3)}(x), n \geq 0, .
\end{align*}
$$

(\mathbf{S}_{3}). $\left\{Q_{n}\right\}_{n \geq 0}$ is the Bessel SMOP with parameter $\alpha \neq-n / 2, n \geq 0$. In this case, we get

$$
\begin{aligned}
& A(x)=2(1-\alpha)(3-2 \alpha) x^{2}+4(2 \alpha-3) x+4, \\
& B(x)=-4\left[(1-\alpha)(2-\alpha)(3-2 \alpha) x^{3}+3(2-\alpha)(2 \alpha-3) x^{2}+6(2-\alpha) x-2\right], \\
& C(x)=4\left[(1-\alpha)(2-\alpha)(3-2 \alpha)(5-2 \alpha) x^{4}+4(2-\alpha)(2 \alpha-3)(5-2 \alpha) x^{3}\right. \\
&\left.+12(2-\alpha)(5-2 \alpha) x^{2}-8(5-2 \alpha) x+4\right] .
\end{aligned}
$$

Using Lemma 3.2 (iii) (a), we obtain $E(x) C(x)=\rho_{0} x^{8} P_{1}(x)$. This requires that $\operatorname{deg} C=4$ and $\operatorname{deg} E=5$ because $\operatorname{deg} C \leq 4, \operatorname{deg} E \leq 5$, and $\operatorname{deg} C+\operatorname{deg} E=9$. However, from the previous equation, we must have $C(0)=0$, that contradicts the fact that $C(0)=16$.
$\left(\mathbf{S}_{4}\right) .\left\{Q_{n}\right\}_{n \geq 0}$ is the Jacobi SMOP with parameters α and β satisfying $\alpha, \beta \neq-n, \alpha+$ $\beta \neq-n-1, n \geq 1$. Then, we have

$$
\begin{aligned}
A(x)= & (\alpha+\beta-1)\left[(\alpha+\beta) x^{2}+2(\beta-\alpha) x\right]+(\alpha-\beta)^{2}-(\alpha+\beta) \\
B(x)= & (\alpha+\beta)(\alpha+\beta-1)(\alpha+\beta-2) x^{3}+3(\alpha+\beta-1)(\alpha+\beta-2)(\beta-\alpha) x^{2} \\
& +3(\alpha+\beta-2)\left[(\alpha-\beta)^{2}-(\alpha+\beta)\right] x+(\beta-\alpha)\left[(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right], \\
C(x)= & (\alpha+\beta)(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3) x^{4} \\
& \quad+4(\alpha+\beta-3)(\alpha+\beta-1)(\alpha+\beta-2)(\beta-\alpha) x^{3} \\
& \quad+6(\alpha+\beta-2)(\alpha+\beta-3)\left[(\alpha-\beta)^{2}-(\alpha+\beta)\right] x^{2} \\
& \quad+4(\beta-\alpha)(\alpha+\beta-3)\left[(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right] x \\
& +(\alpha-\beta)^{2}\left[(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right]-3(\alpha+\beta-2)\left[(\alpha-\beta)^{2}-(\alpha+\beta)\right] .
\end{aligned}
$$

By using Lemma 3.2 (iii) (a), we obtain $E(x) C(x)=\rho_{0} \phi^{4}(x) P_{1}(x)$. The fact that $\operatorname{deg} E+$ $\operatorname{deg} C=9, \operatorname{deg} E \leq 5$ and $\operatorname{deg} C \leq 4$, yields $\operatorname{deg} E=5$ and $\operatorname{deg} C=4$. Meanwhile, the previous equation becomes $E(x)$ divides $(x-1)^{4}(x+1)^{4}$, hence there are four situations to be considered. Either $E(x)=\mu(x-1)(x+1)^{4}, E(x)=\mu(x-1)^{4}(x+1), E(x)=\mu(x-1)^{2}(x+1)^{3}$, or $E(x)=\mu(x-1)^{3}(x+1)^{2}$, where μ is a non-zero real number.
$\left(\mathbf{S}_{4,1}\right) . E(x)=\mu(x-1)(x+1)^{4}, \mu \neq 0$. According to Lemma 3.2 (iii), we easily obtain

$$
\begin{equation*}
\mu C(x)=\rho_{0}\left[x^{4}-\left(3+\beta_{0}\right) x^{3}+3\left(1+\beta_{0}\right) x^{2}-\left(1+3 \beta_{0}\right) x+\beta_{0}\right] \tag{46}
\end{equation*}
$$

From Lemma 3.2 (iii) (a) and 46), we get

$$
\left\{\begin{array}{l}
\rho_{0} \beta_{0}=\mu\left\{(\alpha-\beta)^{2}\left[(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right]-3(\alpha+\beta-2)\left[(\alpha-\beta)^{2}-(\alpha+\beta)\right]\right\} \\
-\rho_{0}\left(1+3 \beta_{0}\right)=\mu\left\{(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right\} 4(\beta-\alpha)(\alpha+\beta-3) \\
3 \rho_{0}\left(1+\beta_{0}\right)=\mu\left\{(\alpha-\beta)^{2}-(\alpha+\beta)\right\} 6(\alpha+\beta-2)(\alpha+\beta-3) \\
-\rho_{0}\left(3+\beta_{0}\right)=\mu\{(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3)(\beta-\alpha)\} 4 \\
\rho_{0}=\mu(\alpha+\beta)(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3)
\end{array}\right.
$$

The last three equations of the system, we gives

$$
\frac{\mu}{\rho_{0}}=\frac{1}{(\alpha+\beta)(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3)}, \quad \beta_{0}=\frac{\alpha-7 \beta}{\alpha+\beta}, \quad \beta(\beta-1)=0 .
$$

We can remark two possibilities: either $\beta=0$ or $\beta=1$. If $\beta=0$, we obtain

$$
C(x)=\alpha(\alpha-1)(\alpha-2)(\alpha-3)(x-1)^{4},
$$

Then, by virtue of Lemma 3.2 (iii) (a), we get

$$
P_{1}(1)=H(1)=G(1)=F(1)=0 .
$$

Replaced x by 1 in Lemma 3.2 (ii), we obtain $P_{n+1}(1)=0, n \geq 0$. Then, $P_{2}(1)=-\gamma_{1}=0$, which contradicts the orthogonality of $\left\{P_{n}\right\}_{n \geq 0}$.

Then, $\beta=1$ and by virtue of Lemma 3.2 (ii) and (iii) (a), we obtain successively

$$
\begin{aligned}
H(x) & =\left(\rho_{1}-\rho_{0}\right) x^{2}-\left[\rho_{1}\left(\beta_{0}+\beta_{1}\right)-\rho_{0}\left(\beta_{0}+\xi_{0}\right)\right] x+\rho_{1}\left(\beta_{0} \beta_{1}-\gamma_{1}\right)-\rho_{0} \beta_{0} \xi_{0} \\
H(x) & =4 \mu(\alpha-1)\left[\alpha(\alpha+1) x^{2}+6 \alpha x-\alpha(\alpha-5)\right]
\end{aligned}
$$

which gives, since $\rho_{1}=120 \lambda_{1} \gamma_{1}^{-1} \gamma_{2}^{-1}, \rho_{0}=24 \gamma_{1}^{-1}$ and after comparing the degrees $\gamma_{2}=$ $\frac{40(\alpha+1)(\alpha-2)}{(\alpha+2)(\alpha+3)^{2}(\alpha+4)}, \quad \beta_{1}=\frac{(\alpha-1)(\alpha-7)}{(\alpha+1)(\alpha+3)} \quad$ and $\gamma_{1}=\frac{16(\alpha-3)}{(\alpha+1)^{2}(\alpha+2)}$.
From Table $2\left(\mathbf{C}_{4}\right)$ and by Lemma 3.1 (i), we finally get

$$
\begin{aligned}
\beta_{n} & =\frac{(\alpha-1)(\alpha-7)}{(2 n+\alpha-1)(2 n+\alpha+1)}, n \geq 0, \\
\gamma_{n+1} & =\frac{4(n+1)(n+4)(n+\alpha)(n+\alpha-3)}{(2 n+\alpha)(2 n+\alpha+1)^{2}(2 n+\alpha+2)}, n \geq 0 .
\end{aligned}
$$

Thus, we conclude that $P_{n}(x)=P_{n}^{(\alpha-4,3)}(x)$, and $Q_{n}(x)=P_{n}^{(\alpha, 1)}(x), n \geq 0$ with $\alpha \neq$ $-n+4, n \geq 1$. Now, for $n=1$, in (9), we get $c=\frac{1}{3}\left(5 \xi_{0}-\beta_{0}-\beta_{1}\right)=1$. By Lemma 3.2 (i), $(x-1)^{3} v_{0}=\frac{3(\alpha+1)(\alpha+2)}{2 \alpha(\alpha-1)(\alpha-2)(\alpha-3)}(x-1)(x+1)^{4} u_{0}$. Consequently,

$$
\begin{equation*}
P_{n}^{(\alpha, 1)}(x)=\frac{\Lambda_{3,1} P_{n+1}^{(\alpha-4,3)}(x)}{(n+1)(n+2)(n+3)(n+4)}, \quad n \geq 0 . \tag{47}
\end{equation*}
$$

$\left(\mathbf{S}_{4,2}\right) . E(x)=\mu(x-1)^{4}(x+1), \mu \neq 0$. By a similar computation as in $\left(\mathbf{S}_{4,1}\right)$, we get $P_{n}(x)=P_{n}^{(3, \beta-4)}(x), n \geq 0$, where $\beta \neq-n+4, n \geq 1$, and also $Q_{n}(x)=P_{n}^{(1, \beta)}(x), n \geq 0$, and $c=-1$.
$\left(\mathbf{S}_{4,3}\right) . E(x)=\mu(x-1)^{2}(x+1)^{3}, \mu \neq 0$. According to Lemma 3.2 (iii) (a), we obtain

$$
\begin{equation*}
\mu C(x)=\rho_{0}\left[x^{4}-\left(\beta_{0}+1\right) x^{3}+\left(\beta_{0}-1\right) x^{2}+\left(\beta_{0}+1\right) x-\beta_{0}\right], \tag{48}
\end{equation*}
$$

From Lemma 3.2 (iii) (a) and (46), we get

$$
\left\{\begin{array}{l}
-\rho_{0} \beta_{0}=\mu\left\{(\alpha-\beta)^{2}\left[(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right]-3(\alpha+\beta-2)\left[(\alpha-\beta)^{2}-(\alpha+\beta)\right]\right\}, \\
\rho_{0}\left(\beta_{0}+1\right)=\mu\left\{(\alpha-\beta)^{2}-3 \alpha-3 \beta+2\right\} 4(\beta-\alpha)(\alpha+\beta-3), \\
\rho_{0}\left(\beta_{0}-1\right)=\mu\left\{(\alpha-\beta)^{2}-(\alpha+\beta)\right\} 6(\alpha+\beta-2)(\alpha+\beta-3), \\
-\rho_{0}\left(\beta_{0}+1\right)=\mu\{(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3)(\beta-\alpha)\} 4 \\
\rho_{0}=\mu(\alpha+\beta)(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3)
\end{array}\right.
$$

The last three equations of the system, we gives

$$
\frac{\mu}{\rho_{0}}=\frac{1}{(\alpha+\beta)(\alpha+\beta-1)(\alpha+\beta-2)(\alpha+\beta-3)}, \quad \beta_{0}=\frac{3 \alpha-5 \beta}{\alpha+\beta}, \quad \alpha^{2}+3 \beta^{2}-2 \alpha \beta-\alpha-\beta=0
$$

and by addition the second and the fourth equations of the last system, we obtain

$$
\left\{\begin{array}{l}
\alpha^{2}+3 \beta^{2}-2 \alpha \beta-\alpha-\beta=0 \\
(\beta-\alpha)\left(\alpha^{2}+\beta^{2}-3 \alpha-3 \beta+2\right)=0
\end{array}\right.
$$

We can remark two possibilities: either $\beta=\alpha$ or $\beta \neq \alpha$. Now, if $\alpha=\beta$, then $\beta_{0}=-1$ and $\alpha(\alpha-1)=0$, from the first equation of the last system. This gives a contradiction, since $\rho_{0} \neq 0$.

So $\beta \neq \alpha$ and $\alpha^{2}+\beta^{2}-3 \alpha-3 \beta+2=0$. Consequently, since $\rho_{0} \neq 0$, the unique solutions (α, β) of the last system are $(3,1)$, and $(3,2)$.
$\left(\mathbf{S}_{4,31}\right)$. If $(\alpha, \beta)=(3,1)$, then $\beta_{0}=1$. By virtue of Lemma 3.2 (ii) and (iii) (a), we obtain successively

$$
\begin{aligned}
H(x) & =\left(\rho_{1}-\rho_{0}\right) x^{2}-\left[\rho_{1}\left(\beta_{0}+\beta_{1}\right)-\rho_{0}\left(\beta_{0}+\xi_{0}\right)\right] x+\rho_{1}\left(\beta_{0} \beta_{1}-\gamma_{1}\right)-\rho_{0} \beta_{0} \xi_{0}, \\
H(x) & =4 \mu\left(2 x^{2}-x-1\right),
\end{aligned}
$$

which gives, since $\rho_{1}=120 \lambda_{1} \gamma_{1}^{-1} \gamma_{2}^{-1}, \rho_{0}=24 \gamma_{1}^{-1}$ and after comparing the degrees $\gamma_{2}=$ $\frac{8}{63}, \quad \beta_{1}=\frac{-1}{3}$ and $\gamma_{1}=0$, which contradicts the orthogonality of $\left\{P_{n}\right\}_{n \geq 0}$.
$\left(\mathbf{S}_{4,32}\right)$. If $(\alpha, \beta)=(3,2)$, then $\beta_{0}=-\frac{1}{5}$. By virtue of Lemma 3.2 (ii) and (iii) (a), we obtain successively

$$
\begin{aligned}
H(x) & =\left(\rho_{1}-\rho_{0}\right) x^{2}-\left[\rho_{1}\left(\beta_{0}+\beta_{1}\right)-\rho_{0}\left(\beta_{0}+\xi_{0}\right)\right] x+\rho_{1}\left(\beta_{0} \beta_{1}-\gamma_{1}\right)-\rho_{0} \beta_{0} \xi_{0} \\
H(x) & =48 \mu\left(5 x^{2}+2 x-1\right)
\end{aligned}
$$

which gives, since $\rho_{1}=120 \lambda_{1} \gamma_{1}^{-1} \gamma_{2}^{-1}, \rho_{0}=24 \gamma_{1}^{-1}$ and after comparing the degrees $\gamma_{2}=$ $\frac{5}{49}, \quad \beta_{1}=\frac{-3}{35} \quad$ and $\gamma_{1}=\frac{4}{25}$.
From Table $2\left(\mathrm{C}_{4}\right)$ and by Lemma 3.1 (i), we finally get

$$
\begin{aligned}
\beta_{n} & =\frac{-3}{(2 n+3)(2 n+5)}, n \geq 0, \\
\gamma_{n+1} & =\frac{(n+1)(n+4)}{(2 n+5)^{2}}, n \geq 0 .
\end{aligned}
$$

Thus, we conclude that $P_{n}(x)=P_{n}^{(1,2)}(x)$, and $Q_{n}(x)=P_{n}^{(3,2)}(x), n \geq 0$. Now, for $n=1$, in (9), we get $c=\frac{1}{3}\left(5 \xi_{0}-\beta_{0}-\beta_{1}\right)=\frac{1}{3}$. By Lemma 3.2 (i), $\frac{-16}{189}=\left\langle(x-1)^{3} v_{0}, 1\right\rangle \neq\left\langle E(x) u_{0}, 1\right\rangle=\frac{-451}{42}$. This yields a contradiction.
$\left(\mathbf{S}_{4,4}\right) . E(x)=\mu(x-1)^{3}(x+1)^{2}, \mu \neq 0$. By a similar computation as in $\left(\mathbf{S}_{4,3}\right)$, we get a contradiction.

Acknowledgements

The authors would like to thank the referees for their corrections and many valuable suggestions.

References

[1] F. Abdelkarim and P. Maroni, The D_{ω}-classical orthogonal polynomials, Result. Math. 32 (1997), 1-28.
[2] B. Aloui, F. Marcellán and R. Sfaxi, Classical orthogonal polynomials with respect to a lowering operator generalizing the Laguerre operator, Integral Transforms Spec. Funct. 24(8) (2013), 636-648.
[3] B. Aloui, Hahn's problem with respect to a third-order differential operator, Transylv. J. Math. Mech. 6(2) (2014), 85-100.
[4] B. Aloui, Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising operator, Ramanujan J. 45(2) (2018), 475-481.
[5] B. Aloui, Chebyshev polynomials of the second kind via raising operator preserving the orthogonality, Period. Math. Hung. 76 (2018), 126-132.
[6] B. Aloui, Hermite polynomials and Hahn's theorem with respect to the raising operator, Electronic J. of Math. Anal. and Appl. 6(2) (2018), 157-162.
[7] B. Aloui and J. Souissi, Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials, Ramanujan J. 57(4) (2022), 1355-1365.
[8] B. Aloui and J. Souissi, Hahn's problem with respect to some perturbations of the raising operator $X-c$, Ural Mathematical J. 6(2) (2020), 15-24.
[9] B. Aloui and J. Souissi, Jacobi polynomials and some connection formulas in terms of the action of linear differential operators, Bull. Belg. Math. Soc. Simon Stevin 28(1) (2021), 39-51.
[10] B. Aloui and L. Khériji, Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators, Probl. Anal. Issues Anal. 8(3) (2019), 24-37.
[11] B. Aloui and L. Khériji, A note on the Bessel fomr of parameter 3/2, Transylv. J. Math. Mech. 11(1-2) (2019), 9-13.
[12] W. Al-Salam, Characterization theorems for orthogonal polynomials, In Orthogonal Polynomials: Theory and Practice, P. Nevai Editor. NATO ASI Series C, Vol. 294. Kluwer Acad. Publ., Dordrecht, (1990), 1-24.
[13] W. Al-Salam and T.S. Chihara, Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal. 3 (1972), 65-70.
[14] R. Álvarez-Nodarse, K. Castillo, D. Mbouna and J. Petronilho, On classical orthogonal polynomials related to Hahn's operator, Integral Transforms Spec. Funct., 31 (2020) 487-505.
[15] R. Askey, Divided difference operators and classical orthogonal polynomials. Rocky Mt. J. Math. 19 (1989), 33-37.
[16] S. Bochner, Über sturm-Liouvillesche polynomsysteme, Math Z. 29 (1929), 730-736.
[17] K. Castillo and J. Petronilho, Classical orthogonal polynomials revisited, Results Math., 78 (2023) Article number: 155
[18] K. Castillo and D. Mbouna, Proof of two conjectures on Askey-Wilson polynomials, Proc. Amer. Math. Soc., 151 (2023) 1655-1661.
[19] K. Castillo, D. Mbouna and J. Petronilho, On the functional equation for classical orthogonal polynomials on lattices, J. Math. Anal. Appl., 515 (2022) 126390.
[20] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[21] G. Dattoli and P.E. Ricci, Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions, Georgian Math. J. 10 (2003), 481-494.
[22] J. Geronimus, On polynomials orthogonal with respect to numerical sequences and on Hahn's theorem (in Russian) Izv. Akad. Nauk, 4 (1940), pp. 215-228.
[23] E. Godoy, I. Area, A. Ronveaux and A. Zarzo, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: continuous case, J. Comput. Appl. Math. 84 (1997), 257-275.
[24] V.W. Hahn, Über die Jacobischen polynome und zwei verwandte polynomklassen, Math. Z. 39 (1935), 634-638.
[25] V.W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nach. 2 (1949), 4-34.
[26] L. Khériji and P. Maroni, The H_{q}-classical orthogonal polynomials, Acta. Appl. Math. 71 (2002), 49-115.
[27] N.N. Lebedev, Special functions and their applications, (Revised English Edition, Translated and Edited by Richard Silverman 1965), Dover Publications New York, 1972.
[28] A.F. Loureiro and P. Maroni, Quadratic decomposition of Appell sequences, Expo. Math. 26 (2008), 177-186.
[29] P. Maroni, Une théorie algébrique des polynômes orthogonaux Applications aux polynômes orthogonaux semi-classiques, In Orthogonal Polynomials and their Applications, C. Brezinski et al. Editors, IMACS Ann. Comput. Appl. Math. 9 (1991), 95-130.
[30] P. Maroni, Variations around classical orthogonal polynomials. Connected problems, J. Comput. Appl. Math. 48 (1993), 133-155.
[31] P. Maroni, Fonctions Eulériennes, Polynômes Orthogonaux Classiques, Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales) A 154 Paris. (1994), 1-30.

