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Abstract

In this paper, we describe all A.-classical orthogonal polynomials, where A., ¢ € Cis
a fourth-order lowering differential operator. The solutions are the Laguerre {LS’)}“ZO

and the Jacobi {P£a74,3)}n20' As an illustration, some connection formulas between
the polynomial solutions are deduced.
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1 Introduction

An orthogonal polynomial sequence {P,(x)},>o is called classical if {DP,(x)},>0, where
D = % is the standard derivative, is also orthogonal (Hermite, Laguerre, Bessel or Jacobi).
This is Sonine-Hahn property [18], 24]. In [25], Hahn gave similar characterization theorems
for orthogonal polynomials P, such that the polynomials AP, or D,FP,, (n > 1) are again
orthogonal. Here AP, is the difference operator and D, P, is the g-difference operator.

In a more general setting, let & be a linear operator acting on the space & of polynomials
in one variable which sends polynomials of degree n to polynomials of degree n + ng (ng is
a fixed integer). We call a sequence { P, },>¢ of orthogonal polynomials &-classical if there
exist a sequence {Q,, },>0 of orthogonal polynomials such that &P, = Q,, 1y, (where n > 0 if
no > 0 and n > ng if ng < 0). The concept of &-classical orthogonal polynomials has been
studied by many authors in the literature, we can see [1, 2} 3], 4], 5], ©, [7, 8, [10] 1], @, 15, 26]
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In this paper, we describe all A -classical orthogonal polynomial sequences where A., ¢ €
C is the following differential operator generalizing the Laguerre derivative

AN: P — P
f (Qg(l’ — C)Qg + 2(2;;)]”(3:),

where Q,, is introduced by Dattoli et Ricci (see[21])

The basic idea has been deduced by starting from the Laguerre derivative given in [21].
On the other hand, by using [28], we can easily prove

(ngfzg + 2(23) L9 (z) = 0,LV(z), n > 1,

where 0, := (n+1)(n+2)(n+ 3)(n+4), is the normalisation factor and {Lﬁla) () }ns0, @ #
—n, n > 1, are the monic orthogonal Laguerre polynomial sequences.

This means that the above family of standard orthogonal polynomials is an A-classical
polynomial sequence, since it satisfies the Hahn’s property for the lowering operator A :=
Q225 + 290s.

From a more general point of view, for a given ¢ € C, let A, : & — & be the linear
operator defined by

AC = Qg(l’ - C)Qg + 2@3, (A() = A)

The purpose of this paper is to introduce the concept of the A.-classical polynomial se-
quence and to provide a full description of this family of orthogonal polynomials. Especially,
we prove that the A.-classical polynomial sequences form a subfamily of the D-classical
polynomial sequences.

The rest of this paper is organized as follows. In Section 2] we develop the terminology
and basic definitions that will be used later on. In Section [3| we exhaustively describe the
A -classical sequences.

2 Preliminaries and notations

Let & be the linear space of polynomials in one variable with complex coefficients. The
algebraic dual space of & will be represented by &’. We denote by (u,p) the action of
u€ P onpe P and by (u), := (u,2™), n > 0, the sequence of moments of u with respect
to the polynomial sequence {z"},>0.

Let us define the following operations in &?’. For linear functionals u, any polynomial
q, and any (a,b,c) € C\{0} x C?, let Du = v/, qu, (x — ¢)"'u, 7_pu and h,u be the linear
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functionals defined by duality, [14. [17, 18], 29]

<C]U,p> = <U,(]p>, <ulap> = —<U,p,>,

(2= 0w, ) = {6, where Op(a) = X022,

(T_pu, p) := (u, 7pp), where mnp(z)=p(z—>b),

(hqu, p) := (u, hyp), where hy,p(z)=p(ax), forevery pe X.

A linear functional u is called normalized if it satisfies (u)o = 1.

Let {P,}n>0 be a infinite sequence of monic polynomials (SMP) with deg P, = n and let
{un }n>0 be its dual sequence, u,, € P, defined by (un, Pn) = 6nm, n, m > 0. Notice that
ug is said to be the canonical functional associated with the SMP {P,},>o. Recall that
any u € &' can be represented as u = > (u, P)u,. So, if {u,[zl]}nzo denotes the dual

n=0
sequence of the SMP {RL”}@O where P} () == (n+1)7'P! (x), n > 0, then Dull =
—(n+Dupir, n >0 [30]. Likewise, the dual sequence {y, }»>o of the shifted SMP {F, },>o,
where P,(z) := a " P, (ax+b) with (a,b) € C\{0} xC, is given by @,, = a™(hy-107_p)tp,n >0
[30].
Let us recall that a form u (linear functional) is said to be quasi-definite (regular) if there
exists a unique sequence of monic polynomials { P, },>0, such that [14], 17, 18], 29| 30]

(u, PoPp) = 10pm, n, m>0, r,#0, n>0. (1)

The sequence { P, },>¢ is said to be the sequence of monic orthogonal polynomials (SMOP)
with respect to u. Note that u = (u)oup, with (u)g # 0. For any quasi-definite linear
functional u and any polynomial ¢ such that pu = 0, it is then straightforward to prove that
v =0, [30].

Lemma 2.1 [7J,[17,18,129]. The SMP {P,},>0, with dual sequence {u,}n>0, is orthogonal
with respect to uqg if and only if one of the following statements hold:

(i) up = (ug, P2Y"*Pyug, n > 0.
(ii) {P.}n>0 satisfies a Three-Term Recurrence Relation

Py(z) =1, P(x)=1z— B,
(TTRR) { P io(z) = (2 — Bps1) Pos1 () — Yms1 Pol(x), n >0, (2)

where B, = (uo, 2P7)/{uo, P7) € C and yo11 = (uo, P7y1)/(uo, P) € C\{0}.

A linear functional u is said to be positive-definite if it is quasi-definite i.e. it satisfies
and r, > 0 for every nonnegative integer n (see [29]). Note that a linear functional u is
quasi-definite but it is not necessarily positive-definite.
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The orthogonality is preserved by a shifting in the variable. Indeed, for the shifted
sequence {P,},>o where P,(z) := a "P,(ax + b) with (a,b) € C\{0} x C, the following
Three-Term Recurrence Relation holds (see [20, 29])

1?0(@ =1, pl(ﬁi) =T - Bo,

(TTRR) { Pria(x) = (2 = Bu1) Para () = Fnga Pulz), n >0,

where 3, = a=(8, —b) and 3,11 = a2y, 11.

Notice that {]Bn}nzo is orthogonal with respect to the linear functional @y = (hg-107_p)ug.

A linear functional wu is said to be D-classical when it is quasi-definite and there exist
two polynomials & and ¥, ® monic, deg® =t < 2, and deg ¥ = 1, such that u satisfies a
Pearson’s equation (see [14] [17, 18], 22] 29, 30, [31])

(PE) (®u) + Pu = 0. (3)

In such a case, the corresponding SMOP {P,},>¢ is said to be D-classical.
Any shift leaves invariant the D-classical character. Indeed, the shifted linear functional
@ = (hq—1 o 7_p)u fulfils [14] 17, 18] 30]

(da) + Vi =0,

where ®(z) = a~'®(ax + b) and V(z) = a' " (az + b).

It is well-known that any D-classical polynomial sequence {P,},>o can be characterized
by taking into account its orthogonality and a First Structure Relation (FSR) or a Second
Structure Relation (SSR) as follows, [13] 17, 20l 22} 23] [30]:

(FSR)  @(z)Fp,1(7) = r(z;n) Puga () + snPu(x), n >0, (4)
(SSR)  Pu(x) = PV(z) + a, P, (z) + b, Py (x), n >0, (5)
The D-classical orthogonal polynomials are essentially the only polynomial (not just or-

thogonal polynomial) systems that satisfy a Second-Order Differential Equation (SODE;, in
short), Bochner [16], (see also [12, [31]), of the form

(@) Py (2) = W(@) Py (2) = w P (1), n > 0, (6)

with deg ¢ < 2, deg¢) = 1 and where (n+1)(3¢”(0)n+¢'(0)) = w, # 0, n > 0. For the four
canonical situations (three positive-definite cases, namely Hermite, Laguerre, and Jacobi,
and one quasi-definite case, namely Bessel), in the next table we summarize the parameters
involved in (2)—(6), (for more details, see [12} 22, 29} 30, [31]).
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Some basic characteristics of classical orthogonal polynomials.

(C1) Hermite: P,(z) = Hn(z), n >0,
Bn=0,n>0vu1 =28 n>0,

O(z) =1, ¥(z)=2z,

r(z;n)=0,sp=n+1, n>0,

ap =bp=0,n2>0,

wp =—-2(n+1),n>0.

(C2) Laguerre: P,(z) = Lsf‘)(:v), n>0, (a#-n,n>1),
Bn=2n+a+1,n>0, 1 =Mn+1)(n+a+1), n>0,
d(z)=2, Y(@)=z—a-—1,

r(@in) =n+1, 80 = Yni1, n >0,

an =n, b, =0,n2>0,

wnp =—(n+1),n>0.

(Cs) Bessel: P,(z)= lea)(x), n>0, (a#-%5,n>0),

_ 1 _ 1— _ n(n+2a—2)
Po =5 Bn = Granmrey "2 0 7 = ~mTmassmta—D?@ntzact) " 2 b
O(z) =2, V(z) = —2(azx+ 1),
r(zin) = (n+1)(& — ;755)s sn = —(2n 4+ 2a + 1)yny1, n >0,

_ _ (n—=1)n _ _
n>1a =0, bn= Gri2a=3)(nta—1)2@nt2a=1) "2 2 bo =b1 =0,

a

"= TafasD(nFa)
wn = (n+1)(n+2a), n > 0.

(C4) Jacobi: P,(z) = P,(La’ﬁ)(a:), n>0, (a, B#-n, a+B#-n—-1,n>1),

_ _a—p _ a2-p2 _ 4n(n+a+8)(nt+a)(n+8)
fo = 355+3> Pr = GnrarmEntatite 10 = @ntatBs-1)(@ntatf)?ntathtn)’ " 21,
P(z) =2 ~1, V(z)=—(a+f+2z+a—p,
r(zin) = (n+1)(z — m), sn=—02n+a+ B+ 3)ynt1, n >0,

_ 2n(a—pB) _ _ 4(n—1)n(n+a)(n+pB) _ _
an = ~ GnFatB) @Entatata P2 L ao =0, bn = — Gntatp-D(@ntath) @ntatsin’ "2 2 bo =b1 =0,
wp=MmM+1)(n+a+B+2),n>0.

Notice that a linear functional D-classical is not necessarily positive-definite.
Now, recall that the latter operator is given by

AN: Y — P
fo— Adf)=(@—=)fD +12(x — )?f® +36(x — ) f +24f,

It is clear that A, lowers the degree by one of any polynomial. Indeed, we have
Az — )"t = <Q3(1’ — )3 + 2@g> (x —c)"*!
= n+1)(n+2)(n+3)(n+4)(z—0c)", n>0, (7)

since Q3(z — )" = (n+ 1)(n+4)(z — ¢)", n >0, (see [21]).
By transposition of the operator A., we get

A= (=) fD+(6(x—c)*—~108(z—c)?) fP = (144(z—c)> =36(x—c) —48) f' —T2(x—c)*f. (8)
For any SMP {P,},>0, we define

Ae P () "0 (9)

R T [ [ e [ M
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Clearly, {@y }n>0 is a SMP and deg @,, = n. If {v, } >0 denotes the dual sequence of {Q,, } >0,
then we have
"Av, = (n+1)(n+2)(n+3)(n+Dupi, n>0. (10)

Note that for ¢ = 0 and using the representation of Laguerre polynomials in terms of
hypergeometric series [27]:

1) = v (M) e (1)

v=0

with o = 3, we obtain
<(x—c)3D4+12(x—c)2D3+36(x—c)D2+24D> L (z) = (n+1)(n+2) (n+3) (n+4) LD (z), n > 0.

Equivalently

Aso L () n>0 (12)
S+ D +2)(n+3)(n+4) T

This implies that Q,(z) = L%l)(m), n > 0, which is an example of solution of our problem.
The goal of this manuscript is to describe all of the sequences of A.-classical orthogonal
polynomials in the Hahn’s sense, where A., ¢ € C is the above operator.

3 The A.-classical orthogonal polynomials

Definition 3.1 Let ug be a quasi-definite linear functional and let {P,},>0 be the corre-
sponding SMOP. We call {P,}n>0 s Ac-classical if {A.Py11}n>0 s also orthogonal. In this
case, ug s also said to be an A.-classical linear functional.

Our next goal is to describe all of the the A.-classical polynomial sequences. Assume
that {P,}n>0 and {Q, }n>0 are SMOP satisfying

{ Po(LE)ZL P1<£L'>:[B—Bo, (13)

Poa(z) = (2 = Buy1) Par1(2) = g1 Pa(®), Y1 # 0, n >0,

{ Qo(x) =1, Ql(x) =T — 507 (14)
Qn+2(2) = (2 = &1) Qna1(2) — A1 Qn(2), Appr #0, n > 0.

The dual sequences of {P,},>0 and {Q,},>0 Will be denoted by {u,},>0 and {v,}n>0, re-
spectively. By Lemma [2.1] (i), we get

P’Vl Q?’L

ug, n >0 ; v, =
<u07P7%> ° <UO7Q%L>

Based on the characterizations of D-classical polynomials (see for example [I7, [19]), we
prove, in the following result, that the sequence {@, },>0 is D-classical.

Up = v, n > 0. (15)

6
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Lemma 3.1 (i) The sequence {Qn}n>0 satisfies the following relation

(SSR)  Qu(x) = Q@) + caQul(2) + dn @il 5(2), n > 0,

where

n—1, n
(

n
_Z(ﬁn-‘rl_gn)vnz()) dn: 4 n+4

Tn+1 — )\n)y n Z ]-7 dO = 0.
(ii) The form vy satisfies
(PE) (CI)U())/ + \I/U[) = O,

where

I{(I)(ZL‘) = dg()\l)\g)_ng(fL’) + Cl)\l_lQl(ZL‘) +1
U(z) = (kM) 'Qi(2). (k is a normalization factor)

Proof. Let us introduce the sequence of monic polynomials {7, },>0 given by

(n+ 1)(n+2)(n+3)Zu(x) = [(z — ¢)*Pu(2)]¥, n>0. (16)
By taking derivatives in both hand sides of and taking into account @, we get
Z(x) = Qu(z), n > 0. (17)

Notice that Z,(x) is a monic primitive of @, (z).

From and , we obtain

(n+3)(n+4)(n+5)Zuia(@) = 3[(@ =) Pua(@)]” + (0 +2)(n+3)(n + 4)(z = Bus1) Znia (@)
—(n+1)(n+2)(n+3)ymt1Zn(x), n > 0.

By differentiating in both sides of the previous identities and inserting , we get

A+ 2)(n+3)(n+ 4 Zuis (@) = A+ 2)(n+3)(n+ Qi ()
~(n+ )0+ 2)(n+ 3)(n +4)(€0 — Brst) Qula)
—(n+ )0+ 2)(n + 3)[(n+ DAy — 1301 Qur (2), 1> 0.

Then, it follows that
Zn+1($) = QnJrl(x) + €n+1Qn($) + annfl(x)a n Z 0. (18>

where ] )
B B = &) and fu =" (T = M),

By differentiating both hand sides of and using , (i) holds.

Let {127[11]}“20 be the dual sequence of {Qn }n>0. From (i), we have (v([)l], n) =0, n>3,
o Qo) = do, W,Q1) = ¢, and W, Qo) = 1. So, v} = dyvs + c1v1 + vy, and by
(15), we get v([)” = k®(2)vy, where k®(x) = doA]' N\ Q2(2) + 1A\ 'Q1(z) + 1 and  is a
normalization factor. Because (v([)l])’ = —v; = —A'Q1vp, then (®vg) + Wvy = 0, where
U(z) = (kA1) 7'Q1 (). Hence, (ii) holds. n

€n =
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Lemma 3.2 There are four polynomials E, F', G and H, such that
(i) (z — ¢)3vy = E(x)up.

(ii) E}(L@@S" (@) + F(2)QY (2) + G(2)QL(x) + H(2)Q!, + poPLQn(x) = puPrsa(z), n >0,

H(z) = piP(z) = poPiQi(x),
1

Glz) = 5 [p2P3(x) — poPrQ2 — H(2)Qs),

F(z) = é[/)gﬂ(ﬂﬂ) — poP1Qs — H(z)Q4 — G(x) g]>

) = o [piPox) — pPiQs — H()Q; — Gn)Q) ~ F)QLY],
pn = (m+1)(n+2)(n+3)(n+ 4)%.
(iii) The following relations hold
(a)
E(x)C(x) po®* () Pr (),
AE(x)B(r) = @%(x)H(x),
6E(r)A(x) = $(2)G().
1B(2)A(z) = @(@)F(2),

(b) n®*(x) = [{(pg" — pr )z + o1 & — po Bi}C(2) — dpy ' ¢B(2)] E(x),

where, A = —(®' + V), A = —(20' + V)A + A, B = —(30' + V)A + dA, C =
—(49' + ¥)B + OB

Proof. From and , we obtain
(x = [Qulx)ug” +4Q, (x)vy” +6Q7 (2)0 + 40P + QP vo] = puPasi(@)uo, n > 0, (19)

where )
<U07 Qn>

pn=(m+1)(n+2)(n+3)(n+4) (wo, P2,

From ((19) with n = 0, we obtain
(z — ¢)*v{!) = poPruo. (20)
Using and , it follows that
(x —c) [4@;(:1:)1)83) +6Q(x)v) +4QP vy + QW vg] = [puPrti(x) — poPiQnug.  (21)

8
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For n =1, becomes
4(x — c)vy(3) = H(z)uo,

where
H(z) = p1Pa(z) — poP1 Q1 ().
By inserting in , we obtain
(& — )*[6Qu (x)vg +4QP v + QVvo] = [pnPusa() — poPrQn — H ()@, uo-
Taking n = 2 in (23]), we obtain
6(x — c)*v) = G(z)uo,

where ]
G(33) =3 [p2P3(x) — poP1Qa — H(2)Qs].
By inserting (24]) in , we obtain
(= )[4t + Qo] = [pnPrna () = poPrQu — H(2)Q,, = G(2) Q] uo.
Taking n = 3 in , we obtain
4(x — ¢)*v) = F(x)uo,
where

F(x) = ¢ [psPil) — moPiQs — ()@} — Gla)Q3).

By inserting in , we obtain

(z —c)?QWy, = [pnPrsi(z) — poP1Qy — H(2)Q), — G(2)Qln — F(J/‘)QS)}UO
Hence, taking n = 4 in (27)), (i) holds.

(22)

(23)

(24)

(27)

Meanwhile, by substituting (x — ¢)3vg = Eug in and taking into account the quasi-

definiteness of ug, we deduce (ii).
By using Lemma [3.1] (ii), we can write

Puj = Ay, d*) = Av, @31)(()3) = Buy, (I)4U(()4) = Cvg,

where A = —(&' + U), A = —(20' + V)A + ®A', B = —(3' + V)A + dA', C =
U)B + B’

(28)

— (49" +

In contrast, if we multiply [20), (22), (24) and (26) by @*, @3, ®* & successively and we

take mto account 29, @ and also the quasi-definiteness of up, we get (iii) (a).

Using (20), (22), (24), (26) and we take into account (i) and also the quasi-definiteness of

Ug, we get

[QWo™ +4AQP ¢ + 6AQ!¢* + 4Q,Bo + QuC|E(z) = pu Py ()9 (), n >0,

Hence, taking n =1 in (29), and using (13)), (14), we deduce (iii) (b).

Now, we will describe all of the A -classical polynomial sequences.

9
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Theorem 3.1 The A.-classical polynomial sequences are, up to a suitable affine transfor-
mation in the variable, one of the following D-classical polynomial sequences

(i) Pu(x) = LY () and Q,(z) = Lg)(x), n >0, with ¢ = 0.

(ii) Po(z) = P (@) and Qu(z) = PY*(z), n > 0, with ¢ = 1 and where o #
—n+4, n>1.

Proof. From Lemmal[3.1] {Q,},>0 is D-classical. We will analyze the following situations:
(S1)- {Qn}n>0 is the Hermite SMOP. From Table 2] (C,), C(x) = 162* — 4822 + 12.
Then, from Lemma [3.2] (iii) (a), we get E(x)C(x) = poPyi(x). This yields a contradiction.
(S2). {Qn}n>o is the Laguerre SMOP. From Table [2| (C,), C(z) = z* — 4ax® + 6a(a —
Da? — da(a — 1)(a — 2)z + a(a — 1)(a — 2)(a — 3). Therefore, from Lemma [3.2} (iii), we
have
E(x)C(x) = poa* Pi(x), (30)

From ({30)), we can deduce, deg E' = 1, so there exists (a,b) € C\{0} xC such as F(z) = ax+b.
According to , equation becomes

(az+b)[2* —4az® +6a(a— 1)z —da(a—1)(a—2)z+a(a—1)(a—2)(a—3)] = poz*(z—F),

(31)

which gives, after comparing the degrees
a = po, (32)
b = —po(fo — 4a), (33)
a(3(a—1)+2(8 —4a)) = 0, (34)
ala—1)(2(a—2) +3(6 — 4a)) = 0, (35)
afa—1)(a—2)(a—3+4(F —4a)) = 0, (36)
ala—1)(a—2)(a—-3)(fy —4a) = 0. (37)

Note that, we need b = 0 to ensure that {P,},>o is an orthogonal sequence. Indeed, if we
suppose that b # 0. In view of (34), we can remark two possibilities: either (i) o # 0 or (ii)
a=0.

(i) If a # 0, the equation we gives 20y = ba — 3 and a # 1. By substituting this
result in (35)), we obtain a = % Then, equation we gives By — 4a = 0, which
contradicts b # 0.

(ii) If & = 0, equation we gives b = —pofy, then E(x) = poPi(z) and C(z) = z*.
Using Lemma (iii) (a), we obtain H(x) = —4poPi(z), G(z) = 6poPi(z), F(z) =
—4po Py (z). Replaced = by ffy in Lemma 3.2 (ii), we obtain P,11(8) = 0, n > 0. Then,
Py(6y) = —y1 = 0, which contradicts the orthogonality of { P, },>o.

10
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Then, b =0, E(zx) = ppr and the equations , , , and becomes

a = po, (38)

Bo = 4da, (39)

ala—1) = 0, (40)
ala—1)(a—2) = 0, (41)
ala—1)(a—2)(a-3) = 0. (42)
(13)

In view of , we can remark two possibilities: either « = 0 or a« = 1. If @ = 0, equation
(33) we gives By = 0, then E(z) = pozr and C(z) = z*. Using Lemma (iii) (a), we obtain
H(z) = —4pox, G(z) = 6pox, F(x) = —4pox. Replaced z by 0 in Lemma [3.2] (i), we obtain
P,+1(0) =0, n > 0, which contradicts the orthogonality of {P,},>o.

Then a = 1, C(z) = 2*(z — 4), B(z) = —2%(z —3), A(z) = z(x — 2), A(z) =z — 1 and
Qn(x) = Lgl)(m), where {Lg)}nzo is is the sequence polynomials of Laguerre with parameter
1. In this case fy = 4 and using Lemma (iii) (a), we obtain H(z) = —4po(z — 3),
G(z) = 6po(x — 2), F(x) = —4po(x — 1).

Now, Lemma[3.2](iii) (b) gives 11 = [{(p5 " —pi z+p1 " So—p5 ' B }w—4)—4p; (2 —3)] po.
Use the fact that £ = 2, we obtain

Yyt = (py " — pr e + [—4py 4 10p7t — py Bile — 207" + 4pg B,

which gives, after comparing the degrees pg = p1, f1 = 6 and ~; = 4.

According to Lemma (ii) and Lemma (i), we have py = 247;* = 6, B =
2n+6, n>0and 7,41 = (n+1)(n+4).
Now, using the previous results and Lemma (ii), we obtain

62QY — 24(x — 1)QYP) + 36(x — 2)Q,, — 24(x — 3)Ql, + 6P1Q,, = puPrs1, n >0,
which gives, after comparing the degrees p, = 6, n > 0. therefore
2QY) —A(x = 1)QY +6(z — 2)Q,, — 4(z = 3)Q;, + PLQu = Pusr, n 20,

In contrast, we have by Lemma[3.1] (i), 8, = 2n+4, n > 1 and Y41 (n+1)(n+4), n > 2.
Then, P,(z) = Lg’)(a:), n > 0, with Q,(x) = L%l)(x), n > 0. Making n = 1 in (9), we get
¢ = 0. Consequently, the following relations hold:

AL () N
n+Dm+2)nt3)ntd) "=
LI (2) — 4(2 = 3){LP} V()

LY (@) — 4o = D{LPYO (@) + 6( — 2){L] n
+(x —4)LW (z) = n+1(.ﬁ£), n>0,. (45)

L) =

—
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(S3). {Qn}n>o is the Bessel SMOP with parameter o # —n/2, n > 0. In this case, we
get

Alr) = 2(1—0a)(3—2a)z? +4(2a — 3)x + 4,

B(z) = —4[(1-a)(2—a)(3—2a)z’+3(2 — a)(2a — 3)2* 4+ 6(2 — o)z — 2],

Clz) = 4[(1-a)(2—a)(3 —2a)(5 — 2a)z* + 4(2 — a)(2a — 3)(5 — 2a)2”
+12(2 — a)(5 — 2a)2” — 8(5 — 2a)z + 4].

Using Lemma (iii) (a), we obtain E(z)C(x) = pex®P;(x). This requires that degC' = 4
and deg F = 5 because degC < 4, deg F < 5, and degC' + deg F = 9. However, from the
previous equation, we must have C'(0) = 0, that contradicts the fact that C'(0) = 16.

(S4). {Qn}n>o0 is the Jacobi SMOP with parameters a and (3 satisfying o, 8 # —n, a+
08 # —n —1,n > 1. Then, we have

Alw) = (a+8-1[(a+pB)z”+2(8 —a)z] + (a = B)* — (o + B),
B(xz) = (a+B8)(a+B-1)(a+p—-2)a*+3(a+ 8- 1)(a+8—2)(8—a)’
13(a+ 8- 2)[(@— B2 — (a+B)e+(B—a)(a— B —3a—33+2,
C(z) = (a+B)(a+B—1)(a+8-2)(a+p—3)"
+4(a+ B =3)a+ - 1)(a+—-2)(3 - a)z®
+6(a+ 5 =2)(a+ B =3)[(a = p)’ = (a + f)]+*
48— a)(a+ B =3)[(a— B)* —3a — 33 + 2]z
+(a=B)?*[(a—B)* =3a=38+2] =3(a+F—2)[(a—B)*—(a+3)].
By using Lemma (iii) (a), we obtain E(z)C(x) = po¢*(x)Pi(x). The fact that deg £ +
degC =9, deg EF < 5 and degC' < 4, yields deg E = 5 and degC' = 4. Meanwhile, the
previous equation becomes E(x) divides (x—1)*(z+1)%, hence there are four situations to be
considered. Either E(z) = pu(z—1)(z+1)*, E(x) = plz—1)*(x+1), E(z) = p(z—1)*(z+1)3,
or E(z) = u(z — 1)3(x + 1)?, where y is a non-zero real number.
(S41)- E(z) = p(x — 1)(z + 1)*, p # 0. According to Lemma (iii), we easily obtain

pC(x) = po[r* — (3 + Bo)a® + 3(1 + Bo)a* — (1 + 3)x + (o] (46)
From Lemma [3.2f (iii) (a) and . we get
?[(a

polo = pf{ (o — ) B)? =3a—38+2] = 3(a+ 8 —2)[(a—B)* = (a+ B)]},
—po(1+38) = N{(Oé— B)? —3a =36+ 2}4(6 — a)(a + - 3),

3p0(1 + Bo) = pf(a — B)* = (a + B)}6(a + B — 2) (o + 5 — 3),

—po(3+Bo) = p{(a+ B =1)(a+ B —2)(a+F—3)(8—a)}4,
po=pla+B)(a+B—-1)(a+p—=2)(a+p-3).

The last three equations of the system, we gives

no 1 By = 7ﬁ
po (a+B)a+B-D(a+f-2)(a+ps-3)" 7 oz+ﬂ

<+

B(6—-1)=0.
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We can remark two possibilities: either =0 or 8= 1. If 3 = 0, we obtain
C(z) = a(a = 1)(a —2)(a = 3)(z - 1)",
Then, by virtue of Lemma [3.2] (iii) (a), we get
P(1)=H(1)=G(1)=F(1)=0.

Replaced x by 1 in Lemma (ii), we obtain P,41(1) =0, n > 0. Then, Py(1) = —y; =0,
which contradicts the orthogonality of {P,},>o.
Then, $ =1 and by virtue of Lemma (i) and (iii) (a), we obtain successively

H(z) = (p1—po)a® = [p1(Bo + Br) — po(Bo + &)l + p1(BoBr — 1) — pobobo,
H(z) = 4p(la—1)[a(a+1)2* + 6az — a(a — 5)],

which gives, since p; = 120)\171_ vt po = 247! and after comparing the degrees 7, =

40(a+1)(a—2) ﬁ (a—T7) and _ 16(a—3)
(a+2)(a+3)2(a+4)’ 1= oc—‘rl (oc+3) Nn= (a+1)2(a+2) "
From Table 2] (C4) and by Lemma[3.1] (i), we finally get

B (= 1)(ax—=T7)
b = 2n+a—-1)2n+a+1) nz0,
dn+1)(n+4)(n+a)(n+a—3)

2n+a)2n+a+1)22n+a+2)’

Tn+1

Thus, we conclude that P,(z) = P *¥(2), and Q,(z) = PV (z), n > 0 with a #
—n+4, n> 1. Now, for n =1, in (9), we get ¢ = %(550 — Bo — (1) = 1. By Lemma (i),

_1)\3 o 3(a+1)(a+2)
(z —1)%vp = 2a(a—T1)(a—2)(a—3)

(x — 1)(z + 1)*uy. Consequently,

A31Pa 43)( ) n>0 (47)

‘%M“@:(n+nmﬁaxn+am+4y =

(S42). E(z) = p(z —1)*(xz + 1), p # 0. By a similar computation as in (Sy1), we get
P,(x) = Pﬁg’ﬂ%)(x), n > 0, where § # —n+4, n > 1, and also Q,(z) = Rgl’ﬁ)(x), n > 0,
and ¢ = —1.

(S43). E(x) = p(x —1)*(x + 1)%, u # 0. According to Lemma [3.2] (iii) (a), we obtain

nC(z) = pola* — (Bo + 1)z* + (Bo — 1)2* + (Bo + 1)z — Bo], (48)
From Lemma (iii) (a) and (46)), we get

—pofo = p{(e = B)*[(a = B)* = 3a =38+ 2] = 3(a+ B—2)[(a = B)* — (a+ 3)]},
po(Bo+1) = p{(a —B)*> —=3a —36+2}(B — a)(a+ 3 —3),

po(Bo — 1) = p{(a — B)* — (a + B)}6(a + 8 — 2) (o + 5 — 3),

—po(Bo+1) = p{(a+ B —-1)(a+ 8 —=2)(a+ B -3)(8—a)}4,
po=pla+p)a+pB—-1)(a+B-2)(a+p-3).
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The last three equations of the system, we gives

I 1 3a— 50
W @iAat i Daif-D@rs-8 T v
and by addition the second and the fourth equations of the last system, we obtain

a?+332-2aB8 —a—3=0,
(B—a)(a®+3*—3a—33+2)=0.

a*+35°—2a—a—p3 = 0,

We can remark two possibilities: either § = « or § # a. Now, if @ = 3, then fy = —1 and
ala — 1) = 0, from the first equation of the last system. This gives a contradiction, since
po 7 0.

So 3 # o and o? + 32 — 3o — 33 +2 = 0. Consequently, since py # 0, the unique solutions
(o, B) of the last system are (3,1), and (3,2).

(Sa31). If (o, B) = (3,1), then §y = 1. By virtue of Lemma (ii) and (iii) (a), we
obtain successively

H(z) = (p1—po)x® —[p1(Bo+ Br) — po(Bo + &)l + p1(BoB — ) — pobolo,
H(z) = 4u(22* — 2 —1),

which gives, since p; = 120\;7; 75 ', po = 2477 " and after comparing the degrees v, =
%, 6 = %1 and v; = 0, which contradicts the orthogonality of { P, },>o.

(Su32). If (o, B) = (3,2), then By = —1. By virtue of Lemma (i) and (iii) (a), we
obtain successively

H(z) = (p1—po)z® = [p1(Bo + B1) — po(Bo + &)z + p1(Bor — 1) — pofoo,
H(z) = 48u(5z*+ 2z — 1),

1

which gives, since p; = 120\;7; 175 ', po = 247, and after comparing the degrees v, =

5 _ -3
97 51—— and v = 25
From Table 2| (C4) and by Lemma (i), we finally get
-3
n  — ) > 07
b = Gnranss) "
(n+1)(n+4)
n = N > 0.
Tn+1 (2n 1 5)2 n

Thus, we conclude that P,(z) = Pr(Ll’z) (x), and Q,(z) = P (), n > 0. Now, forn =1,

in ([9), we get ¢ = (56 — fo — A1) = 5. By Lemma (1),

T2 = ((x — 1)%vg, 1) # (E(x)uo, 1) = 451 . This yields a contradiction.

(S44). E(x) =plx—1)3(z+1)2 p 7é 0 By a similar computation as in (S, 3), we get a

contradiction. n
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