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1. Introduction

In the past several decades, fractional differential equations have received great attention. Fractional order differential equations
are the extension of the integer order differential equations, which greatly enrich the content of differential equations. There are
many kinds of fractional differential equations, the fractional Schrödinger equation is an important representative.

The classical Schrödinger equation is in the following form

ih̄
∂

∂t
ϕ = −

h̄2

2m
∇2ϕ+ Vϕ,

where V , ϕ denote the potential function and wave function, respectively, i, h̄ are constants. The original fractional Schrödinger
equation was discovered by Laskin when expanding the Feynman path integral, see [1, 2]. Laskin proposed the following model

i
∂

∂t
φ(x, t) = (−∆)αφ+ V(x)φ− f (x, t), (x, t) ∈ RN ×R,

where (−∆)α is the fractional Laplace operator, α ∈ (0,1). Since then, several forms of the Schrödinger equation have been created,
and a lot of research work appeared. Many scholars investigated the existence and multiplicity of solutions to the fractional
Schrödinger equation by using the variational method [6–31]. The problem studied in these articles contains three different types
of operators.

The first class is the Laplace operator [6–11]. The existence of nontrivial radially symmetric solutions for a fractional
Schrödinger equation with critical nonlinear terms were studied by Zhang et al. [7]. Especially, when s = s(·), the Laplace operator
is transformed into the variable order Laplace operator. In [8], Xiang et al. are concerned with the following equation (−∆)s(·)ω+λV(x)ω = α|ω|p(x)−2ω+β|ω|q(x)−2ω, x ∈Ω,

ω = 0, x ∈ ∂Ω,

and they proved an embedding theorem of variable-order fractional Sobolev space for the first time. With the aid of the mountain
pass theorem and Ekeland’s variational principle, they showed the existence of at least two distinct solutions. We also refer to [9]
for related problems.

The second class is the p-Laplace operator [12–22]. Pucci et al. [14] investigated the following nonhomogeneous Schrödinger-
Kirchhoff type problem involving the perturbation term

M
(∫
R2N

|ω(x)−ω(y)|p

|x− y|N+ps dxdy
)
(−∆)s

pω+ V(x)|ω|p−2ω = f (x,ω) + g(x), x ∈ RN .

They firstly established the compact embedding theorem in the whole space RN , which can be applied to many fractional
Schrödinger with p-Laplacian in RN . Particularly, in [17] the author obtained the multiplicity result for a class of fractional
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(p,q)-Laplacian problem in RN . Moreover, the study of Schrödinger equations has already been extended to the case of the
variable-order Laplace operator [18]. So far, there are only a few results involving the Hardy nonlinearity, we refer to the recent
papers of existence of multiple solutions [19] using the theory of genus and [20] using the Nehari manifold approach.

The third class is the p(·)-Laplace operator [23–31]. It’s more complex than the p-Laplace operator, since the p(·)-Laplace
operator is not homogeneous and has no first eigenvalue. For nonlocal Choquard type equations, Biswas and Tiwari [28]
gave the existence result by employing the critical point theorem. Additionally, in [29] they also considered the following
Kirchhoff-Choquard type equation

m
(∫
RN

∫
RN

|ω(x)−ω(y)|p(x,y)

p(x,y)|x−y|N+p(x,y)s(x,y) dxdy +
∫
Ω

V(x) |ω(x)|p(x)

p(x)

) [
(−∆)s(·)

p(·)ω+ V(x)|ω|p(x)−2ω
]

=

(∫
Ω

H(y,ω(y))
|x−y|µ(x,y) dy

)
h(x,ω), x ∈Ω,

ω = 0, x ∈ RN\Ω,

where m is a Kirchhoff type function, (−∆)s(·)
p(·) is the variable-order fractional p(·)-Laplace operator. Under some weaker assumptions

on h compared to that of [28], they proved the existence of ground solution and infinitely many solutions. We also encourage
interested readers to refer to results about fractional p(·)-Laplace operator problems [26, 31].

At present, the double operators problem is one of the active topics, but there are few researches on this kind of problem
[17, 32–34]. As far as we know, there is no work devoted to the study of variable-order fractional p1(x, ·)&p2(x, ·)-Laplacian
Schrödinger equations in RN . Enlightened by the above literature, we discuss the following Schrödinger-Choquard type equation

2∑
i=1

[
(−∆)s(x,·)

pi(x,·)ω+ V(x)|ω|pi(x)−2ω
]

=
ξ|ω|q(x)−2ω

|x|a(x) +

(∫
RN

H(y,ω(y))
|x− y|φ(x,y) dy

)
h(x,ω(x)), x ∈ RN , (Hξ)

where pi(x, ·), s(x, ·), φ(x,y), q(x) and a(x) are continuous functions with pi(x,y)s(x,y) < N for all (x,y) ∈RN ×RN and 0 ≤ a(x) < N.
V ∈ C(RN ,R+) is the potential function, ξ > 0 is a parameter and h ∈ C(RN ×R,R) is a Carathéodory function with H(x,ω) =∫ ω

0 h(x, s)ds. With the help of the symmetric mountain pass theorem, dual fountain theorem and Krasnoselskii’s genus theory, we

obtain the existence of infinitely many solutions. The operator (−∆)s(x,·)
pi(x,·) is the variable-order fractional pi(x, ·)-Laplace operator

defined on C∞0 (RN) by

(−∆)s(x,·)
pi(x,·)ω(x) := P.V.

∫
RN

|ω(x)−ω(y)|
pi(x,y)−2

(ω(x)−ω(y))
|x− y|N+pi(x,y)s(x,y) dy, i = 1,2, x ∈ RN ,

where P.V. stands for the Cauchy principal value. We first introduce some notations. For any real valued function r defined on
domain Θ, denote

r− := min
x∈Θ

r(x), r+ := max
x∈Θ

r(x).

Define

C+(Θ) :=
{
r(x) : r(x) ∈C(Θ,R), 1 < r− ≤ r ≤ r+ <∞

}
.

Through out this article, p∗s(·) =
N p(x)

N−p(x)s(x) denotes the critical exponent, where p(x) = p(x, x) and s(x) = s(x, x). We assume that
s(x,y), p(x,y), φ(x,y), q(x), a(x) and b(x) satisfy the following conditions

(A1): pi(x,y), s(x,y) and φ(x,y) are symmetric, i.e., pi(x,y) = pi(y, x), s(x,y) = s(y, x) and φ(x,y) = φ(y, x) for any (x,y) ∈R2N ,
pmin(x,y) = min{p1(x,y), p2(x,y)} and pmax(x,y) = max{p1(x,y), p2(x,y)}.

(A2): 0 < φ− < φ(x,y) < φ+ < N, 0 < s− < s(x,y) < s+ < 1 < p−i < pi(x,y) < p+
i < p∗s(·).

(A3): a(x),q(x) ∈C(RN), q+ < p−i and 0 ≤ a− < a+ < N.

(B1): b(x) ∈C(RN ,R). For all x ∈ RN , b(x) ≥ 0 and b(x) , 0.
(B2): b(x) ∈ Lβ(x)(RN) and β ∈C+(RN) satisfies b(x) ≥ 0.

Our work is the first consideration for the existence of infinitely many solutions of the variable-order fractional p1(x, ·)&p2(x, ·)-
Laplacian Schrödinger-Choquard equations. It is worth noting that the equation we consider is on the whole space RN , which
is different from the work of [29, 34]. Compared to [26, 31], the double Laplacian operator we deal with is more complex. In
addition, we discuss the problem involving Hardy nonlinearity, which is more general than [17, 32, 33], and we don’t need the
Ambrosetti-Rabinowitz condition for nonlinearity function h.

Throughout this paper, we consider problems (Hξ) under the following conditions for the potential function V and the
nonlinearity h

(V1): V(x) ∈C(RN) and there exists V0 such that infx∈RN V(x) = V0 > 0.

(H1): h(x,−ω) = −h(x,ω), for any (x,ω) ∈ RN ×R.
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(H2): Let θ(x) ∈C+(RN) with θ− > p+
max. Suppose that b(x) satisfies (B2) such that

|h(x,ω)| ≤ b(x)|ω|θ(x)−1, for any (x,ω) ∈ RN ×R,

with pi(x) < θ(x)m− < θ(x)m+ < p∗s(·) and m satisfies

2
m(x,y)

+
φ(x,y)

N
= 2, (x,y) ∈ R2N .

(H3): There exists κ > 0, for any x ∈ RN and ω ∈ (0, κ] satisfies

|h(x,ω)| ≥ b′(x)|ω|θ
′(x)−1,

where b′(x) satisfies (B1) and θ′ ∈C+(RN) with q+ < 2θ′− < 2θ′+ < p−min.

(H4): h(x,ω) = o(|ω|
1
2 p+

max−2ω) as |ω| → 0, uniformly in x ∈ RN .
(H5): lim|ω|→∞

H(x,ω)

|ω|
1
2 p+

max
=∞ uniformly in x ∈ RN .

(H6): There exists λ ≥ 1 such that

λϑ(x,ω) ≥ ϑ(x, τω), for any (x,ω) ∈ RN ×R,

where 0 < τ < 1, and
ϑ(x,ω) = 2ωh(x,ω)− p+

maxH(x,ω).

Remark 1.1. Compared to the well-known Ambrosetti-Rabinowitz condition, the assumption (H6) is weaker.

Remark 1.2. From (H4) and (H6), we obtain H(x,ω) is decreasing in ω ≤ 0 and H(x,ω) is increasing in ω ≥ 0 for all x ∈ RN .
Moreover, we have H(x,ω) ≥ 0 for all x ∈ RN ×R. (see [29]).

The rest of this article reads as follows. In Sect.2, we collect some necessary definitions and basic lemmas of Lµ(x)(RN),
W p(x),p(x,·),s(x,·)(RN) and Lµ(x)

b(x)(R
N) spaces. In Sect.3 we state the main results, i.e. Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Sect.4 discusses the Cerami condition related to the functional Φ. In Sects. 5, 6 and 7, we give the proofs of Theorem 3.1, Theorem
3.2 and Theorem 3.3, respectively.

2. Preliminaries

We introduce the definitions, basic properties and embedding results of some important function spaces, which will be used
later.

2.1. The space Lµ(x)(RN). The variable exponent Lebesgue space is defined as

Lµ(x)(RN) :=
{
ω : ω is a measurable and

∫
RN
|ω(x)|µ(x)dx <∞

}
,

which is a reflexive uniformly convex and separable Banach space (see [23, 25]) with the Luxemburg norm

‖ω‖µ(x) = ‖ω‖Lµ(x)(RN ) := inf
{
χ > 0 :

∫
RN

∣∣∣∣∣ω(x)
χ

∣∣∣∣∣µ(x)
dx ≤ 1

}
.

Define the modular % : Lµ(x)(RN)→ R as %(ω) :=
∫
RN |ω|

µ(x)dx.

Lemma 2.1. ([23]) Suppose that ωn,ω ∈ Lµ(x)(Ω). Then the following properties hold
(i) χ = ‖ω‖µ(x) if and only if %(ωχ ) = 1;

(ii) ‖ω‖µ(x) > 1⇒ ‖ω‖µ
−

µ(x) ≤ %(ω) ≤ ‖ω‖µ
+

µ(x);

(iii) ‖ω‖µ(x) < 1⇒ ‖ω‖µ
+

µ(x) ≤ %(ω) ≤ ‖ω‖µ
−

µ(x);
(iv) ‖ω‖µ(x) < 1 (= 1;> 1)⇔ %(ω) < 1 (= 1;> 1));
(v) limn→∞ ‖ωn −ω‖µ(x) = 0⇔ limn→∞ %(ωn −ω) = 0.

Lemma 2.2. ([25]) The space (Lµ
′(x)(RN),‖ω‖µ′(x)) is conjugate space of space (Lµ(x)(RN),‖ω‖µ(x)), where µ′(x) is the conjugate

function of µ(x). Let
1

µ′(x)
+

1
µ(x)

= 1, x ∈ RN ,

the Hölder type inequality ∣∣∣∣∣∫
RN
ωνdx

∣∣∣∣∣ ≤ (
1

(µ′)−
+

1
µ−

)
‖ω‖µ(x)‖ν‖µ′(x) ≤ 2‖ω‖µ(x)‖ν‖µ′(x),

for all ω ∈ Lµ(x)(RN), ν ∈ Lµ
′(x)(RN) hold.
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Lemma 2.3. ([34]) Assume that µ2(x) : RN → R be a measurable function. If µ1(x) ∈ L∞(RN ) satisfies µ1 ≥ 0, µ1 . 0 and µ1µ2 ≥ 1
a.e. in RN , then for all ω ∈ Lµ1(·)µ2(·)(RN), we have

‖|ω|µ1(·)‖Lµ2(·) ≤ ‖ω‖
µ−1
Lµ1(·)µ2(·)(RN )

+ ‖ω‖
µ+

1
Lµ1(·)µ2(·)(RN )

.

2.2. The space W p(x),p(x,·),s(x,·)(RN). The variable exponents and variable-order fractional Sobolev spaces is defined by

W = W p(x),p(x,·),s(x,·)(RN) :=

ω ∈ Lp(x)(RN) :
∫
RN

∫
RN

|ω(x)−ω(y)|
p(x,y)

χp(x,y)|x− y|N+p(x,y)s(x,y) dxdy <∞ for some χ > 0

 ,
endowed with the norm

|ω|W := [ω]w + ‖ω‖p(x),

where

[ω]w := inf

χ > 0 :
∫
RN

∫
RN

|ω(x)−ω(y)|
p(x,y)

χp(x,y)|x− y|N+p(x,y)s(x,y) dxdy < 1

 .
Define the variable-order fractional Sobolev linear subspace Ei with potential function as follows

Ei =

{
ω : ω ∈W,

∫
RN

V(x)|ω|pi(x)

χpi(x)
dx < +∞ for some χ > 0

}
,

on Ei we use the following norm

‖ω‖Ei := inf
{
χ > 0 : %Ei

(
ω

χ

)
≤ 1

}
, i = 1,2,

where

%Ei (ω) :=
∫
RN

∫
RN

|ω(x)−ω(y)|
pi(x,y)

|x− y|N+pi(x,y)s(x,y) dxdy +

∫
RN

V(x)|ω(x)|pi(x)dx,

is a modular on Ei. Then (W,‖ · ‖W ) and (Ei,‖ · ‖Ei ) are the separable reflexive Banach spaces (see [27, 29]).

Lemma 2.4. ([27]) Suppose that ωn,ω ∈ Ei. Then the following properties hold
(i) χ = ‖ω‖Ei if and only if %Ei (

ω
χ ) = 1;

(ii) ‖ω‖Ei > 1⇒ ‖ω‖
p−i
Ei
≤ %Ei (ω) ≤ ‖ω‖

p+
i

Ei
;

(iii) ‖ω‖Ei < 1⇒ ‖ω‖
p+

i
Ei
≤ %Ei (ω) ≤ ‖ω‖

p−i
Ei

;
(iv) ‖ω‖Ei < 1 (= 1;> 1)⇔ %Ei (ω) < 1 (= 1;> 1));
(v) limn→∞ ‖ωn −ω‖Ei = 0⇔ limn→∞ %Ei (ωn −ω) = 0.

Moreover, in order to study problems (Hξ), we consider the space E = E1
⋂

E2, endowed with the norm

‖ω‖ = ‖ω‖E = ‖ω‖E1 + ‖ω‖E2 .

Obviously, the Banach space (E,‖ · ‖E) is separable and reflexive, E∗ is the dual space of E. It is not difficult to obtain the following
embedding theorem according to the above norm and Theorem 2.10 in ([28, 29]).

Theorem 2.1. Let Ω ∈ RN be a smooth bounded domain, p(x,y) and s(x,y) satisfying (A1) and (A2), respectively, with
p(x,y)s(x,y) < N for any (x,y) ∈Ω×Ω. Assume that (V1) holds and θ(x) ∈C+(Ω) satisfies

1 < θ− = min
x∈Ω

θ(x) ≤ θ(x) < p∗s(·),

for all x ∈Ω. Then, the space E is continuous compact embedded in Lθ(x)(Ω).

Theorem 2.2. Suppose that (A1)-(A2) and (V1) hold with p(x,y)s(x,y) < N and let µ ∈C+(Ω) such that p∗s(·) > µ(x) ≥ p(x) for
any x ∈ RN . Then the embedding E(RN) ↪→ Lµ(x)(RN) is continuous.

Note that the embedding E(RN) ↪→ Lµ(x)(RN) is no longer compact. In order to overcome this difficulty, we introduce a new
space.
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2.3. The space Lµ(x)
b(x)(R

N). Assume that b(x) satisfying (B1) and µ(x) ∈C+(RN), we define

Lµ(x)
b(x)(R

N) :=
{
ω : ω is a measurable and

∫
RN

b(x)|ω(x)|µ(x)dx <∞
}
,

with the norm

‖ω‖µ(x),b(x) = ‖ω‖Lµ(x)
b(x) (RN ) := inf

{
χ > 0 :

∫
RN

b(x)
∣∣∣∣∣ω(x)
χ

∣∣∣∣∣µ(x)
dx ≤ 1

}
.

Obviously, the semimodular %µ(x),b(x)(ω) =
∫
RN b(x)|ω|µ(x)dx.Moreover, the space (Lµ(x)

b(x)(R
N ),‖ω‖µ(x),b(x)) is a reflexive and separable

Banach space (see [24]).

Lemma 2.5. ([24]) Suppose that ωn,ω ∈ Lµ(x)
b(x)(Ω). Then the following properties hold

(i) χ = ‖ω‖µ(x),b(x) if and only if %µ(x),b(x)(ωχ ) = 1;

(ii) ‖ω‖µ(x),b(x) > 1⇒ ‖ω‖µ
−

µ(x),b(x) ≤ %µ(x),b(x)(ω) ≤ ‖ω‖µ
+

µ(x),b(x);

(iii) ‖ω‖µ(x),b(x) < 1⇒ ‖ω‖µ
+

µ(x),b(x) ≤ %µ(x),b(x)(ω) ≤ ‖ω‖µ
−

µ(x),b(x);
(iv) ‖ω‖µ(x),b(x) < 1 (= 1;> 1)⇔ %µ(x),b(x)(ω) < 1 (= 1;> 1));
(v) limn→∞ ‖ωn‖µ(x),b(x) = 0⇔ limn→∞ %µ(x),b(x)(ωn) = 0.

We present the following embedding results.

Theorem 2.3. Suppose that (A1)-(A3) and (V1) hold. Let µ(x) ∈C+(RN) such that 1 < µ− < µ+ < p∗s(·) for any x ∈ RN . Let (B2)
hold with β(x) satisfying

p(x) ≤ η(x) =
β(x)µ(x)
β(x)−1

≤ p∗s(·), x ∈ RN .

Then, the embedding E ↪→ Lµ(x)
b(x)(R

N) is continuous. Moreover, if η+ < p∗s(·) for any x ∈ RN , then the embedding E ↪→ Lµ(x)
b(x)(R

N) is
compact.

Proof. By Theorem 2.2, we have that the embedding E ↪→ Lµ(x)(RN) is continuous. Next, analogously to the proof of Lemma 2.4
in ([26]), we prove that Ei ↪→ Lµ(x)

b(x)(R
N), so E ↪→ Lµ(x)

b(x)(R
N), where the embedding is continuous and compact. �

Taking especially b(x) = |x|−a(x), we obtain a corollary of Theorem 2.3 as follows.

Corollary 1. Suppose that p, a, µ ∈C(RN), 0 ≤ a(x) < N for x ∈ RN . If µ satisfies the condition

p(x) ≤ η(x) =
Nµ(x)

N −a(x)
≤ p∗s(·), x ∈ RN ,

then the embedding E(RN) ↪→ Lµ(x)
|x|−a(x) (R

N) is continuous and compact.

Proof. For any x ∈ RN , we can find ε > 0 small enough such that

a(x) < N −ε, p(x) ≤ η(x) =
(N −ε)µ(x)
N −ε−a(x)

≤ p∗s(·).

Applying Theorem 2.3 to the case that b(x) = |x|−a(x) and β(x) = N−ε
a(x) , we obtain the corollary. �

Remark 2.1. The p∗(x) =
p(x)(N−a(x))

N−p(x) is called the critical Sobolev Hardy exponent. In this paper, we only deal with the case
involving subcritical Sobolev Hardy exponents.

3. Statement of the main theorems

For the sake of the following statement, we give some definitions and corresponding variational forms related to the problem (Hξ).

Definition 3.1. We say that ω ∈ E is a weak solution of the problem (Hξ), if
2∑

i=1

〈Ψ′pi
(ω),ψ〉 =

∫
RN

ξ|ω|q(x)−2ωψ

|x|a(x) dx +

∫
R2N

H(x,ω(x))h(y,ω(y))ψ(y)
|x− y|φ(x,y) dxdy,(3.1)

for all ψ ∈ E, where

Ψpi (ω) =

∫
RN×RN

|ω(x)−ω(y)|
pi(x,y)

pi(x,y)|x− y|N+pi(x,y)s(x,y) dxdy +

∫
RN

V(x)|ω|pi(x)

pi(x)
dx,

and

〈Ψ′pi
(ω),ψ〉 =

∫
RN

∫
RN

|ω(x)−ω(y)|
pi(x,y)−2

(ω(x)−ω(y))(ψ(x)−ψ(y))
|x− y|N+pi(x,y)s(x,y) dxdy +

∫
RN

V(x)|ω|pi(x)−2ωψdx.
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The functional Φ : E→ R associated with equations (Hξ) is defined by

Φ(ω) :=
2∑

i=1

Ψpi (ω)−
∫
RN

ξ|ω|q(x)

q(x)|x|a(x) dx−
1
2

∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y) dxdy,(3.2)

for all ω ∈ E. Under our assumptions, the functional Φ : E→ R is of class C1(E,R) and for all ω,ψ ∈ E

〈Φ′(ω),ψ〉 :=
2∑

i=1

〈Ψ′pi
(ω),ψ〉−

∫
RN

ξ|ω|q(x)−2ωψ

|x|a(x) dx−
∫
R2N

H(x,ω(x))h(y,ω(y))ψ(y)
|x− y|φ(x,y) dxdy.(3.3)

Moreover, we can observe that ω ∈ E is a critical point of the functional Φ if and only if ω ∈ E is a weak solution of problems (Hξ).

Lemma 3.1. ([28]) Let (A3) hold and m1(x,y),m2(x,y) ∈C+(R2N) satisfy
1

m1(x,y)
+
φ(x,y)

N
+

1
m2(x,y)

= 2, for any (x,y) ∈ R2N .

If f ∈ Lm+
1 (RN)

⋂
Lm−1 (RN) and g ∈ Lm+

2 (RN)
⋂

Lm−2 (RN), then∣∣∣∣∣∣
∫
RN×RN

f (x)g(x)
|x− y|φ(x,y) dxdy

∣∣∣∣∣∣ ≤C1

(
‖ f ‖

Lm+
1 (RN )

‖g‖
Lm+

2 (RN )
+ ‖ f ‖

Lm−1 (RN )
‖g‖

Lm−2 (RN )

)
,

where C1 is a positive constant , independent of f and g.

Corollary 2. In particular, by taking f (x) = g(x) = |ω(x)|θ(x), ω ∈W and m1(x,y) = m2(x,y) = m(x,y), one has 2
m(x,y) +

φ(x,y)
N =

2, (x,y) ∈ R2N with ∫
RN×RN

|ω(x)|θ(x)|ω(y)|θ(y)

|x− y|φ(x,y) dxdy ≤C2

(
‖|ω|θ(·)‖2

Lm+ (RN )
+ ‖|ω|θ(·)‖2

Lm− (RN )

)
,

where m ∈C+(RN) and p(x, x) ≤ θ(x)m− ≤ θ(x)m+ < p∗s(·). Furthermore, C2 is a positive constant, independent of ω.

Theorem 3.1. Suppose that (A1)-(A3), (V1), (H1)-(H2) and (H5) hold. Then, for any ξ ∈ (0, ξ∗], equations (Hξ) has infinitely
many large energy solutions.

Theorem 3.2. Suppose that (A1)-(A3), (V1) and (H1)-(H3) hold. Then, equations (Hξ) has infinitely many nontrivial solutions
with negative energy converging to 0.

Theorem 3.3. Suppose that (A1)-(A3) and (V1) hold and h satisfy (H1)-(H3). Then, equations (Hξ) possess infinitely many small
negative energy solutions.

4. Cerami condition

The main task of this section is to verify the Cerami (Ce) condition. As being known, the Cerami condition is weaker than the
Palais-Smale compactness condition.

Definition 4.1. Let E be a Banach space, Φ ∈C1(E,R). If any (Ce)c sequence {ωn}n∈N ⊂ E, namely

(4.1) Φ(ωn)→ c, (1 + ‖ωn‖)Φ′(ωn)→ 0 in E∗, as n→∞,

have a convergent subsequence in E, then Φ satisfies the (Ce) condition at the level c ∈ R.

Lemma 4.1. If the conditions (A1)-(A3), (B1)-(B2), (V1) and (H5)-(H6) are satisfied, then the sequence {ωn}n∈N is bounded in E.

Proof. Let {ωn}n∈N ⊂ E be a Cerami sequence of Φ satisfying

(4.2) |Φ(ωn)| ≤ c,

for some constant c > 0, and

(4.3) (1 + ‖ωn‖)Φ′(ωn)→ 0 in E∗ as n→∞,

which implies that

〈Φ′(ωn),ωn〉 → 0 as n→∞.(4.4)

Now, we prove that {ωn}n∈N is bounded in E. By contradiction, assume that

(4.5) ‖ωn‖ →∞, as n→∞.

Set υn =
ωn
‖ωn‖

. Then {υn}n∈N ⊂ E and ‖υn‖ = 1. By Theorem 2.3, there exists a subsequence {υn}n∈N such that

(4.6) υn ⇀υ weakly in E, υn→ υ strongly in Lµ(x)
b(x)(R

N), υn→ υ a.e. in RN ,
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for µ(x) ∈ (1, p∗s(·)) and |υ| ≥ 0.
Let Ω0 := {x ∈ RN : |υ(x)| > 0}. Thus, we have |ωn(x)| → +∞ for all x ∈Ω0. Therefore, by the hypothesis (H5), for any x ∈Ω0

and sufficiently large n, we obtain

(4.7) lim
n→∞

H(x,ωn)

‖ωn‖
1
2 p+

max
= lim

n→∞

H(x,ωn)|υn|
1
2 p+

max

|ωn|
1
2 p+

max
= +∞.

From Fatou’s lemma, we get

(4.8) liminf
n→∞

∫
RN

H(y,ωn)|υn|
1
2 p+

max

|x− y|φ(x,y)|ωn|
1
2 p+

max
dy ≥

∫
Ω0

liminf
n→∞

H(y,ωn)|υn|
1
2 p+

max

|x− y|φ(x,y)|ωn|
1
2 p+

max
dy = +∞.

Combing (4.7) and (4.8), we have

(4.9)
(∫
RN

H(y,ωn)
|x− y|φ(x,y) dy

)
H(x,ωn)
‖ωn‖p

+
max
→ +∞, as n→∞.

Therefore

(4.10) lim
n→∞

∫
RN

(∫
RN

H(y,ωn)
|x− y|φ(x,y) dy

)
H(x,ωn)
‖ωn‖p

+
max

dx = +∞.

As a consequence of (4.1), we derive∫
R2N

H(x,ωn(x))H(y,ωn(y))
|x− y|φ(x,y) dxdy ≤2

2∑
i=1

Ψpi (ωn)−2
∫
RN

ξ|ωn|
q(x)

q(x)|x|a(x) dx +C3.

Without loss of generality, taking p1(x, ·) < p2(x, ·), and we get∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y)‖ωn‖p

+
max

dxdy

≤
1

‖ωn‖p
+
max

[
2
p−1
‖ωn‖

p+
1 +

2
p−2
‖ωn‖

p+
2

]
−

2ξ‖υn‖
q−

q+‖ωn‖p
+
max−q−

+
C3

‖ωn‖p
+
max

≤
2
p−1
−

2ξ‖υn‖
q−

q+‖ωn‖p
+
max−q−

+
C3

‖ωn‖p
+
max

.(4.11)

Hence,

lim
n→∞

∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y)‖ωn‖p

+
max

dxdy ≤
2
p−1
,(4.12)

and this contradicts (4.10).
Therefore, we assume that υ = 0 and again arrive at a contradiction. We have υn→ 0 in Lµ(x)

b(x)(R
N) and υn→ 0 a.e. in RN . As

Φ(tωn) is continuous function in t ∈ [0,1], there exists tn ⊂ [0,1] such that

(4.13) Φ(tnωn) := max
t∈[0,1]

Φ(tωn).

Let un := (2ζ)1/p−2 υn =
(2ζ)1/p−2 ωn
‖ωn‖

, and ζ > 1
2

(
p+

1
p+

2

) p−2
p−1 −p−2 . Hence, using the continuity of H, we deduce limn→+∞H(x,un) = 0.

Therefore, as n→ +∞ ∫
R2N

H(x,un(x))H(y,un(y))
|x− y|φ(x,y) dxdy→ 0.(4.14)

According to ‖ωn‖ →∞ as n→∞, we have (2ζ)1/p−2

‖ωn‖
∈ (0,1) for large enough n. Thus, from (4.14) we obtain

Φ(tnωn) ≥ Φ(un) =

2∑
i=1

Ψpi (un)−
1
2

∫
R2N

H(x,un(x))H(y,un(y))
|x− y|φ(x,y) dxdy−

∫
RN

ξ|un|
q(x)

q(x)|x|a(x) dx

=

2∑
i=1

Ψpi (un) + on(1) ≥
(2ζ)p−1 /p−2

p+
1

‖υn‖
p+

1
E1

+
2ζ
p+

2
‖υn‖

p+
2

E2
+ on(1)

≥
ζ

2p+
1−2 p+

2

(
‖υn‖E1 + ‖υn‖E2

)p+
1 + on(1)

=
ζ

2p+
1−2 p+

2

+ on(1),(4.15)
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where we have used that ‖υn‖X2 ≤ ‖υn‖X1 + ‖υn‖X2 = ‖υn‖ = 1, and also that 2p−1(ap + bp) ≥ (a + b)p for a,b > 0. Due to ζ being
arbitrary, we have the following conclusion

Φ(tnωn) =∞, as n→∞.(4.16)

Since 0 ≤ tnωn ≤ ωn and the hypothesis (H6) yields

2
∫
RN

h(x, tnωn)tnωndx =

∫
RN

p+
maxH(x, tnωn)dx +

∫
RN
ϑ(x, tnωn)dx

≤

∫
RN

p+
maxH(x, tnωn)dx +

∫
RN
λϑ(x,ωn)dx.(4.17)

By passing to a new subsequence, if necessary, we can assume that 0 < tn < 1 for n sufficiently large. Indeed, the fact that Φ(0) = 0
implies that tn , 0 and (4.16) combined with (4.2) implies that tn , 1. Thus,

0 =tn
d
dt

Φ(tωn)|t=tn = 〈Φ′(tnωn), tnωn〉

=

2∑
i=1

∫
RN×RN

|tnωn(x)− tnωn(y)|
pi(x,y)

|x− y|N+pi(x,y)s(x,y) dxdy +

∫
RN

V(x)|tnωn|
pi(x)dx


−

∫
R2N

H(x, tnωn(x))h(y, tnωn(y))tnωn(y)
|x− y|φ(x,y) dxdy−

∫
RN

ξ|tnωn|
q(x)

|x|a(x) dx.(4.18)

Therefore, for each sufficiently large n, combining (4.2), (4.4), (4.17) and (4.18), we have

1
λ

Φ(tnωn) + on(1) =
1
λ

[
Φ(tnωn)−

1
p+

max
〈Φ′(tnωn), tnωn〉

]
=

1
λ

2∑
i=1

Ψpi (tnωn)−
1
λ

∫
RN

ξ|tnωn|
q(x)

q(x)|x|a(x) −
1

λp+
max

2∑
i=1

〈Ψ′pi
(tnηn), tnηn〉+

1
λp+

max

∫
RN

ξ|tnωn|
q(x)

|x|a(x)

+
1

2λp+
max

∫
RN

(∫
RN

H(y, tnωn(y))
|x− y|φ(x,y) dy

) (
2h(x, tnωn(x))tnωn(x)− p+

maxH(x, tnωn(x))
)
dx

≤

2∑
i=1

Ψpi (tnωn)−
∫
RN

ξ|tnωn|
q(x)

q(x)|x|a(x) −
1

p+
max

2∑
i=1

〈Ψ′pi
(tnηn), tnηn〉+

1
p+

max

∫
RN

ξ|tnωn|
q(x)

|x|a(x)

+
1

2p+
max

∫
RN

∫
RN

H(y, tnωn(y))
|x− y|φ(x,y) ϑ(x,ωn(x))dxdy

≤

2∑
i=1

Ψpi (ωn)−
∫
RN

ξ|ωn|
q(x)

q(x)|x|a(x) −
1

p+
max

2∑
i=1

〈Ψ′pi
(ηn), tnηn〉+

1
p+

max

∫
RN

ξ|ωn|
q(x)

|x|a(x)

+
1

2p+
max

∫
RN

∫
RN

H(y,ωn(y))
|x− y|φ(x,y) ϑ(x,ωn(x))dxdy

=Φ(ωn)−
1

p+
max
〈Φ′(ωn),ωn〉 = c + on(1),(4.19)

as n→∞, which contradicts (4.16). Hence, we have that the sequence {ωn}n∈N is bounded in E. �

Lemma 4.2. If conditions (A1)-(A3), (B1)-(B2), (V1), and (H2) are satisfied, then the sequence {ωn}n∈N has a strong convergent
subsequence.

Proof. By Lemma 4.1, {ωn}n∈N is bounded in E. Thus, there exists ω ∈ E, and we can extract a subsequence, denoted by {ωn}n∈N

again, satisfies

(4.20) ωn ⇀ ω weakly in E, ωn→ ω strongly in Lµ(x)
b(x)(R

N), ωn→ ω a.e. in RN .

Furthermore, we have

|〈Φ′(ωn),ωn −ω〉| ≤ ‖Φ
′ (ωn)‖(‖ωn‖E + ‖ω‖E)→ 0, as n→∞.

Since ωn is bounded in E and Φ′(ωn)→ 0, we derive that

〈Φ′(ωn),ωn −ω〉 → 0, as n→∞,

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

18 Jun 2024 01:11:43 PDT
240408-lishuai Version 3 - Submitted to Rocky Mountain J. Math.



9

and it follows that

on(1) =〈Φ′(ωn),ωn −ω〉

=〈Ψ′p1
(ωn),ωn −ω〉+ 〈Ψ

′
p2

(ωn),ωn −ω〉

−

∫
R2N

H(x,ωn(x))h(y,ωn(y))(ωn −ω)(y)
|x− y|φ(x,y) dxdy−

∫
RN

ξ|ωn|
q(x)−2ωn(ωn −ω)(x)
|x|a(x) dx.(4.21)

From (H2), Lemma 2.5 and Theorem 2.3, we obtain

‖H(·,ωn)‖m+ ≤C4

(∫
Ω

b(x)|ωn|
θ(x)m+

dx
) 1

m+

≤C4 max
{
‖ωn‖

θ−

θ(x)m+,b(x),‖ωn‖
θ+

θ(x)m+,b(x)

}
(4.22)

≤C4 max
{
Cθ−

θ(x)m+‖ωn‖
θ− ,Cθ+

θ(x)m+‖ωn‖
θ+ }

,

that is H(·,ωn) ∈ Lm+
(RN). Similarly, we have

‖H(·,ωn)‖m− ≤C5 max
{
Cθ−

θ(x)m−‖ωn‖
θ− ,Cθ+

θ(x)m−‖ωn‖
θ+ }

.(4.23)

Thus, combined with (4.22)-(4.23) and Lemma 3.1, we obtain∣∣∣∣∣∣
∫
RN×RN

H(x,ωn(x))h(y,ωn(y))(ωn −ω)(y)
|x− y|φ(x,y) dxdy

∣∣∣∣∣∣
≤C6 (‖H(x,ωn(x))‖m+‖h(y,ωn(y))(ωn −ω)(y)‖m+ + ‖H(x,ωn(x))‖m−‖h(y,ωn(y))(ωn −ω)(y)‖m− )

≤C7 max
{
Cθ−

θ(x)m+‖ωn‖
θ− ,Cθ+

θ(x)m+‖ωn‖
θ+ }
‖h(y,ωn(y))(ωn −ω)(y)‖m+

+C7 max
{
Cθ−

θ(x)m−‖ωn‖
θ− ,Cθ+

θ(x)m−‖ωn‖
θ+ }
‖h(y,ωn(y))(ωn −ω)(y)‖m− .(4.24)

Next, using (H2), we get

‖h(y,ωn)(ωn −ω)‖m
+

m+

≤

∫
RN

b(y)|ωn|
(θ(y)−1)m+

(ωn −ω)m+

dy

≤2(θ+−1)m+

(∫
RN

b(y)|ωn −ω|
θ(y)m+

dy +

∫
RN

b(y)|ω|(θ(y)−1)m+

(ωn −ω)m+

dy
)

→0.(4.25)

It follows from (4.20) that
∫
RN b(y)|ω|(θ(y)−1)m+

(ωn −ω)m+
dy→ 0 as n→∞. According to Lemma 2.5 and strong convergence of

sequences, we obtain
∫
RN b(y)|ωn −ω|

θ(y)m+
dy→ 0 as n→∞.

Similarly, we have

‖h(y,ωn)(ωn −ω)‖m− = on(1), as n→∞.(4.26)

Hence, combining with (4.24)-(4.26), we derive

lim
n→∞

∫
RN×RN

H(x,ωn(x))h(y,ωn(y))(ωn −ω)(y)
|x− y|φ(x,y) dxdy = 0.(4.27)

Analogously to the proof (4.25), we infer∫
RN

ξ|ωn|
q(x)−2ωn(ωn −ω)
|x|a(x) dx ≤ 2q+−1

(∫
RN

ξ|ωn −ω|
q(x)

|x|a(x) dx +

∫
RN

ξ|ω|q(x)−1(ωn −ω)
|x|a(x) dx

)
→ 0,(4.28)

as n→∞. Therefore, from (4.27) and (4.28), we conclude that

lim
n→∞

[
〈Ψ′p1

(ωn),ωn −ω〉+ 〈Ψ
′
p2

(ωn),ωn −ω〉
]

= 0.(4.29)

From (4.20) and the Fatou lemma, it follows that

liminf
n→∞

〈Ψ′pi
(ωn),ωn〉 ≥ 〈Ψ

′
pi

(ω),ω〉.(4.30)

By (4.29), we have, as n→∞,

o(1) = 〈Ψ′p1
(ωn),ωn −ω〉+ 〈Ψ

′
p2

(ωn),ωn −ω〉 ≥ 〈Ψ
′
pi

(ωn),ωn −ω〉.(4.31)
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Fixed (x,y) ∈ RN ×RN , according to the Young inequality, we get

|ωn(x)−ωn(y)|pi(x,y)−1|ω(x)−ω(y)|

≤
1

p′i (x,y)
|ωn(x)−ωn(y)|pi(x,y) +

1
pi(x,y)

|ω(x)−ω(y)|pi(x,y)

≤
1

(p′i )
−
|ωn(x)−ωn(y)|pi(x,y) +

1
p−i
|ω(x)−ω(y)|pi(x,y),(4.32)

and

|ωn(x)|pi(x)−1|ω(x)| ≤
1

(p′i )−
|ωn(x)|pi(x) +

1
(pi)−

|ω(x)|pi(x),(4.33)

so that

〈Ψ′pi
(ωn),ωn −ω〉 ≥〈Ψ

′
pi

(ωn),ωn〉− 〈Ψ
′
pi

(ωn),ω〉(4.34)

≥Cpi

(
〈Ψ′pi

(ωn),ωn〉− 〈Ψ
′
pi

(ω),ω〉
)
,

which combined with (4.31) and (4.34) yield

lim
n→∞
〈Ψ′pi

(ωn),ωn〉 = 〈Ψ
′
pi

(ω),ω〉.(4.35)

However, using (4.20) and the Brézis-Lieb type lemma for variable exponent in [30], we obtain

on(1) + 〈Ψ′pi
(ωn −ω),ωn −ω〉 = 〈Ψ

′
pi

(ωn),ωn〉− 〈Ψ
′
pi

(ω),ω〉,(4.36)

which joint with (4.35), we have

lim
n→∞

%Ei (ωn −ω) = 0,

according to Lemma 2.4, we finally achieve that ωn→ ω in E as n→∞.
�

5. Proofs of Theorem 3.1

Let E be a separable and reflexive real Banach space, then there exists {e j} ∈ E and {e∗j} ∈ E∗ such that E = span{e j : j = 1,2, ...}, E∗ =

span{e∗j : j = 1,2, ...} and

〈e∗i ,e j〉 =

 1, i = j ;

0, i , j .

Set Ei = span{ei : i = 1,2, ...}, and denote Xk =
⊕k

i=1 Ei,Yk =
⊕∞

i=k Ei. We state the symmetric mountain pass theorem, i.e. Theorem
5.1 below.

Theorem 5.1. ([9]). Let E be a real infinite dimensional Banach space, E = Xk
⊕

Yk and dim Xk <∞. Φ ∈C1(E,R) be even with
Φ(0) = 0. Suppose Φ satisfying (PS ) condition and
(i) there are constants α,γ > 0 such that infω∈Yk ,‖ω‖=αΦ(ω) ≥ γ;
(ii) for every finite dimensional subspaces E

′

⊂ E there exists M = M(E
′

) > 0 such that maxω∈E′ ,‖ω‖≥M Φ(ω) ≤ 0.
Then Φ possesses an unbounded sequence of critical values.

Proof of Theorem 3.1. From (4.22) and (4.23), one has∣∣∣∣∣∣
∫
RN×RN

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y) dxdy

∣∣∣∣∣∣ ≤C8
(
‖H(·,ω(·))‖2m+ + ‖H(·,ω(·))‖2m−

)
≤C9 max

{
‖ω‖2θ

−

,‖ω‖2θ
+ }
.
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Let ω ∈ Yk such that ‖ω‖ = α ∈ (0,1). Thus, using the Lemma 2.4 and Theorem 2.3, we get

Φ(ω) :=
2∑

i=1

Ψpi (ω)−
1
2

∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y) dxdy−

∫
RN

ξ|ω|q(x)

q(x)|x|a(x) dx

≥
1
p+

1
‖ω‖

p+
1

E1
+

1
p+

2
‖ω‖

p+
2

E2
−

C12

2
|ω‖2θ

−

−
ξ

q−
‖ω‖

q−

q(x),|x|−a(x)

≥
1

2p+
min−1 p+

max

‖ω‖p
+
min −

C12

2
‖ω‖2θ

−

−
ξCq−

q+
‖ω‖q−

=αp+
min

 1

2p+
min−1 p+

max

−
C12

2
α2θ−−p+

min

− ξCq−

q−
αq−.(5.1)

Choosing α ∈ (0,min{1, [1/2p+
min−1 p+

maxC12]1/(2θ−−p+
min)}), we deduce

Φ(ω) ≥
1

2p+
min p+

max

αp+
min −

ξCq−

q+
αq−.

Taking ξ∗ = q+βp+
min−q−/2p+

min+1 p+
maxCq− . Then for any ξ ∈ (0, ξ∗], we obtain

Φ(ω) ≥
1

2p+
min+1 p+

max

αp+
min = γ > 0.

Thus, condition (i) holds.
By (H5), for any C10 > 0, there exists a positive constant C11 such that

|H(x,ω)| ≥C10|ω|
p+
max
2 , for each x ∈ RN and |ω| >C11.

Obviously, there exists CE′ > 0 that satisfies ‖ω‖q(x),|x|−a(x) ≥ CE′‖ω‖, since all norms are equivalent on the finite dimensional
Banach space E′. For t > 1, we get

Φ(tω) :=
2∑

i=1

Ψpi (tω)−
1
2

∫
R2N

H(x, tω(x))H(y, tω(y))
|x− y|φ(x,y) dxdy−

∫
RN

|tω|q(x)

q(x)|x|a(x) dx

≤
tp+

1

p−1
‖ω‖

p+
1

E1
+

tp+
2

p−2
‖ω‖

p+
2

E2
−

C2
10tp+

max

2

∫
R2N

|ω(x)|
p+
max
2 |ω(y)|

p+
max
2

|x− y|φ(x,y) dxdy−
tq−

q+
‖ω‖

q+

q(x),|x|−a(x)

=
tp+

max

p−min
‖ω‖p

+
max −

C2
10tp+

max

2

∫
R2N

|ω(x)|
p+
max
2 |ω(y)|

p+
max
2

|x− y|φ(x,y) dxdy−
tq−

q+
CE′‖ω‖

q+

.(5.2)

If C10 is big enough to satisfy

1
p−min
‖ω‖p

+
max <

C2
10

2

∫
R2N

|ω(x)|
p+
max
2 |ω(y)|

p+
max
2

|x− y|φ(x,y) dxdy.

So, it follows from (5.2) that

Φ(tω)→−∞,

as t→∞, by q+ < p+
max. Therefore, there exists M0 > 0 large enough such that Φ(ω) < 0 for all ω ∈ E′ with ‖ω‖ = M > 1 and

M ≥ M0. This completes the proof.
�

6. Proofs of Theorem 3.2

In order to prove Theorem 3.2, we will use the Dual Fountain Theorem.

Theorem 6.1. ([12]). Suppose that Φ ∈C1(E,R) satisfies the (Ce)∗c condition for every c ∈ [dk0 ,0]. If for any k ≥ k0, there exists
ςk > ρk > 0 satisfies the following properties
(i) Φ(−ω) = Φ(ω);
(ii) yk = inf{Φ(ω) : ω ∈ Yk,‖ω‖ = αk} ≥ 0;
(iii) xk = sup{Φ(ω) : ω ∈ Xk,‖ω‖ = ρk} < 0;
(iv) zk = inf{Φ(ω) : ω ∈ Yk,‖ω‖ ≤ αk} → 0 as k→∞,
then J has a sequence of negative critical points ωk such that J(ωk)→ 0.
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Definition 6.1. If any (Ce)∗c sequence {ωk}k∈N in E with ωk ∈ Xk, namely

(6.1) Φ(ωk)→ c, (1 + ‖ωk‖)(Φ|Xk )′(ωk)→ 0 in E∗, as n→∞,

have a convergent subsequence in E, then Φ satisfies the (Ce)∗c condition at the level c ∈ R.

Lemma 6.1. Assume that the hypotheses in Theorem 3.2 hold. Then Φ satisfies the (Ce)∗c condition.

Proof . Let c ∈ R and the sequence {ω j} j∈N ⊂ E such that {ω j} ∈ X j, Φ(ω j)→ c and (1 + ‖ω j‖)(Φ|X j )
′(ω j)→ 0 as j→ +∞, which

implies that
〈Φ′(ω j),ω j〉 = 〈(Φ|X j )

′(ω j),ω j〉 → 0.

Similar to the proof of Lemma 4.1, we can prove that {ω j} is bounded. So, there exists a subsequence, denoted for {ω j}, and
ω0 ∈ E such that ω j ⇀ ω0 weakly in E. As E =

⋃
j X j = span{e j : j ≥ 1}, we choose ν j ∈ X j such that ν j → ω0 strongly in E.

Hence, using the facts Φ′|X j (ω j)→ 0 and ω j − ν j ⇀ 0 in X j, we obtain

〈Φ′(ω j),ω j −ω0〉 = 〈Φ
′(ω j),ω j − ν j〉+ 〈Φ

′(ω j),v j −ω0〉 → 0.

Again recalling the proof of Lemma 4.2, we deduce ω j→ ω0 strongly in E. Then, we conclude that Φ satisfies the (Ce)∗c condition.
Furthermore, we obtain that Φ′(ω j)→ Φ′(ω0) as j→ +∞.

Next, we prove that Φ′(ω0) = 0. Indeed, taking ωl ∈ Xl, for j ≥ l, we get

〈Φ′(ω0),ωl〉 =〈Φ
′(ω0)−Φ′(ω j),ωl〉+ 〈Φ

′(ω j),ωl〉

=〈Φ′(ω0)−Φ′(ω j),ωl〉+ 〈Φ
′|X j (ω j),ωl〉 → 0,

as j→ +∞. Thus, Φ′(ω0) = 0 in E∗, this show that Φ satisfies the (Ce)∗c condition for each c ∈ R. The proof is over. �

Lemma 6.2. Let µ(x) ∈C+(RN), and µ(x) < p∗s(·) for any x ∈ RN . For each k ∈ N, define

ϑk = sup
ω∈Yk ,‖ω‖E=1

‖ω‖Lµ(x)
b(x) (RN ).

Then, limk→∞ϑk = 0.

Proof . It is clear that 0 < ϑk+1 ≤ ϑk <∞, and so that ϑk→ ϑ ≥ 0 as k→∞. For each k ≥ 0, there exists ωk ∈ Yk satisfies ‖ωk‖E = 1
and ‖ωk‖Lµ(x)

b(x) (RN ) ≥
ϑk
2 . By definition of Yk, ωk ⇀ 0 in E. Theorem 2.3 implies that ωk → 0 in Lµ(x)

b(x)(R
N), and as result ϑ = 0. The

proof is over. �

Proof of Theorem 3.2. From (H1) and Lemma 6.1, we have that Φ(ω) is even and satisfies (Ce)∗c condition for each c ∈ R. Next,
we prove conditions (ii)-(iv) are true for Φ(ω). Firstly, for every ω ∈ Yk with ‖ω‖ < 1, we derive

Φ(ω) :=
2∑

i=1

Ψpi (ω)−
1
2

∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y) dxdy−

∫
RN

|ω|q(x)

q(x)|x|a(x) dx

≥
1
p+

1
‖ω‖

p+
1

E1
+

1
p+

2
‖ω‖

p+
2

E2
−

C9

2
‖ω‖2θ

−

−
1

q−
‖ω‖

q−

q(x),|x|−a(x)

≥
1

2p+
min−1 p+

max

‖ω‖p
+
min −C12‖ω‖

2θ− −C13ϑ
q−
k ‖ω‖

q−,(6.2)

we may choose M ∈ (0,1) small such that
1

2p+
min p+

max

‖ω‖p
+
min ≥C12‖ω‖

2θ− ,

holds for any ω ∈ E with ‖ω‖ < M. Then, we get

Φ(ω) ≥
1

2p+
min p+

max

‖ω‖p
+
min −C13ϑ

q−
k ‖ω‖

q−.

We choose

ςk = (C132p+
min p+

maxϑ
q−
k )

1
p+
min−q− ,

since p+
min > q−, it follows that

ςk → 0, k→ +∞.

Thus, there exists k0 such that ςk ≤ M as k > k0. Hence, we get

yk = inf
ω∈Yk ,‖ω‖=ςk

Φ(ω) ≥ 0,

as k→ +∞. So, the condition (ii) is fulfilled.
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Secondly, for any ω ∈ Xk, ‖ω‖ = ρk with ςk > ρk > 0, by (H3) and all norms are equivalent on the finite dimensional Banach
space, we have

Φ(ω) :=
2∑

i=1

Ψpi (ω)−
1
2

∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y) dxdy−

∫
RN

|ω|q(x)

q(x)|x|a(x) dx

≤
1
p−1
‖ω‖

p−1
E1

+
1
p−2
‖ω‖

p−2
E2
−

1
2

∫
R2N

b′(x)|ω|θ
′(x)b′(y)|ω|θ

′(y)

θ′(x)θ′(y)|x− y|φ(x,y) dxdy−
∫
RN

|ω|q(x)

q(x)|x|a(x) dx

≤
1

p−min
‖ω‖p

−
min −CXk‖ω‖

q+ −
1
2

d

<0,(6.3)

as p−min > q+, d =
∫
R2N

b′(x)|ω|θ
′(x)b′(y)|ω|θ

′(y)

θ′(x)θ′(y)|x−y|φ(x,y) dxdy and ρk small enough. Thus, the condition (iii) also holds.
Finally, from verification of (i), one has that for k ≥ k0 and ω ∈ Yk with ‖ω‖ ≤ ςk,

Φ(ω) ≥ −C13ϑ
q−
k ‖ω‖

q− ≥ −C13ϑ
q−
k ς

q−
k → 0,

by ϑk → 0 and ςk → 0 as k→∞. Moreover, Xk
⋂

Yk , ∅, we obtain zk < yk < 0, so limk→∞ zk = 0. Therefore, all conditions of
Theorem 6.1 are satisfied. The proof is completed.

�

7. Proofs of Theorem 3.3

In order to prove Theorem 3.3, we recall some related knowledge of Krasnoselskii’s genus.

Definition 7.1. Let E be a real Banach space and set

Λ = {B ∈ E\{0} : B = −B and B is compact }.

For B ∈ Λ. The genus γ(B) of B is defined as

γ(B) = inf{k ∈ N : ∃$ ∈C(B,Rk\{0}), $(−x) = −$(x)}.

If such a k does not exist, we set γ(B) =∞. Moreover, set γ(∅) = 0.

Lemma 7.1. If E = RN and ∂Ω be the boundary of an open, symmetric, and bounded subset Ω ⊂ RN with 0 ∈ Ω, then γ(∂Ω) = N.
Furthermore, if S k−1 be a (k−1)-dimensional sphere in Rk, then γ(S k−1) = k.

Lemma 7.2. ([35]) Let Φ ∈C1(Ek,R) be an even and bounded from below functional on infinite dimensional Banach space EK

which satisfies the Palais-Smale condition. If there exists

Λk = {D ∈ Λ : γ(D) ≥ k} such that sup
ω∈Λk

Φ(ω) < 0, for any k ∈ N,

then Φ admits a sequence of critical point {ωk} satisfies Φ(ωk) ≤ 0, ωk , 0.

Proof of Theorem 3.3. Assume that g ∈C∞([0,+∞),R) satisfies 0 ≤ g(t) ≤ 1, t ∈ [0,+∞) and for every ε > 0

g(t) =

 0, if t ≥ ε,

1, if t ∈ [0, ε2 ].

For G(ω) = g(‖ω‖), we consider the functional

I(ω) :=
2∑

i=1

Ψpi (ω)−
1
2

G(ω)
∫
R2N

H(x,ω(x))H(y,ω(y))
|x− y|φ(x,y) dxdy−

∫
RN

ξ|ω|q(x)

q(x)|x|a(x) dx.(7.1)

It is clear that I ∈C1(E,R). Next, we prove that I has a sequence of nontrivial critical points {ωn} with ωn→ 0 as n→∞ in E,
then Theorem 3.3 is proved. In fact, for any ε > 0, there exists N > 0 such that ‖ωn‖ ≤

ε
2 for all n > N, thus, I(ωn) = Φ(ωn), this

means that {ωn} are also the critical points of Φ.
For ‖ω‖ ≥ 1, by (7.1), we have

I(ω) ≥
1
p+

1
‖ω‖

p+
1

E1
+

1
p+

2
‖ω‖

p+
2

E2
−
ξ

q−
‖ω‖

q−

q(x),|x|−a(x)

≥
1

2p−min−1 p+
max

‖ω‖p
−
min −

ξCq+

q−
‖ω‖q+→∞,(7.2)
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as ‖ω‖ →∞, q+ < p−min, so I(ω) is coercive. Then I(ω) is bounded from below and satisfies the (Ce) condition analogously to the
proof of Lemma 4.1-4.2. From (H1), we obtain I(−ω) = I(ω) and I(0) = 0.

For any k ∈N, we choose a k-dimensional linear subspace Ek of E. As all norms are equivalent on Ek, there exists σk ≤min{1, ε2 }
such that ω ∈ Ek with ‖ω‖ ≤ σk. Set

Sσk = {ω ∈ Ek : ‖ω‖ = σk}.

For ‖ω‖ ∈ Sσk and t ∈ (0,1), from (6.3), we get

I(tω) :=
2∑

i=1

Ψpi (tω)−
1
2

G(tω)
∫
R2N

H(x, tω(x))H(y, tω(y))
|x− y|φ(x,y) dxdy−

∫
RN

|tω|q(x)

q(x)|x|a(x) dx

≤
tp−1

p−1
‖ω‖

p−1
E1

+
tp−2

p−2
‖ω‖

p−2
E2
−

t2θ′+

2

∫
R2N

b′(x)|ω|θ
′(x)b′(y)|ω|θ

′(y)

θ′(x)θ′(y)|x− y|φ(x,y) dxdy−
tq+

q+

∫
RN

|ω|q(x)

|x|a(x) dx

=
tp−min

p−min
‖ω‖p

−
min −

t2θ′+

2
d−

tq+

q+
CEk‖ω‖

q+

.(7.3)

As p−min > 2θ′+ > q+, we can find tk ∈ (0,1) such that

I(tkω) < 0, for all ω ∈ Sσk ,

that is

I(ω) < 0, for all ω ∈ S tkσk .

Therefore

S tkσk ⊂ Λk = {ω ∈ E : I(ω) < 0}.

Furthermore, since S tkσk is a sphere in Ek, we deduce that S tkσk is a k-dimensional subspace of Ek. By Lemma 7.1, we have

γ(S tkσk ) = k + 1.

So

γ(D) ≥ γ(S tkσk ) = k + 1.

Thus, there exists Λk such that

sup
ω∈Λk

I(ω) < 0.

Hence, by Lemma 7.2, the proof is completed.
�

8. Conclusions

In this article, we study a class of variable-order fractional p1(x, ·)&p2(x, ·)-Laplacian Schrödinger-Choquard equation. Based
on the three different critical point theorems, the existence of infinitely many solutions are derived. The main innovation of this
paper is the use of weighted Lebesgue spaces to overcome the difficulty of the compact embedding result in RN and the double
Laplace operator we consider is more complex. Moreover, the equation including Hardy nonlinearity and the function h(x,ω) does
not satisfy the Ambrosetti-Rabinowitz condition. In addition, our work is inspiring for future research as regards the existence of
solutions for Schrödinger double phase problems with variable exponents.
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the fractional p-Laplacian in RN”, Calc. Var. Partial. Differ. Equ. 54(3) (2015), 2785–2806.
[15] Y. Pu, J. Liu and C. Tang, ”Existence of weak solutions for a class of fractional Schröinger equation with periodic potential”,
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