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9 Abstract In this paper, we discuss a class of fractional Schrédinger-Choquard equations, which involve the variable-order fractional
10 pi(x,-)&p1(x,-)-Laplacian and Hardy nonlinearity. The main innovation of this paper is the use of weighted Lebesgue spaces to
11 overcome the difficulty with the compact embedding result for variable exponents and variable-order fractional Sobolev spaces in
12 RM. In addition, the existence of infinitely many solutions for the problem are derived by utilizing the three different critical point
13 theorems. Here the nonlinearity s(x,w) does not satisfy the classical Ambrosetti-Rabinowitz condition.
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19 1. Introduction

20

— In the past several decades, fractional differential equations have received great attention. Fractional order differential equations
— are the extension of the integer order differential equations, which greatly enrich the content of differential equations. There are

22 many kinds of fractional differential equations, the fractional Schrédinger equation is an important representative.
25 The classical Schrodinger equation is in the following form

24

- 0 n?

25 1h5[<p:—%V290+V<p,

26 where V, ¢ denote the potential function and wave function, respectively, i, /i are constants. The original fractional Schrodinger
27 equation was discovered by Laskin when expanding the Feynman path integral, see [1, 2]. Laskin proposed the following model

il 0 nrgay e
29 za—t¢(x,t)—(— Y b+ V)b — fx 1), (x.1) € RN xR,

3? where (—A)? is the fractional Laplace operator, @ € (0, 1). Since then, several forms of the Schrodinger equation have been created,

3¢ and a lot of research work appeared. Many scholars investigated the existence and multiplicity of solutions to the fractional

a2 Schroédinger equation by using the variational method [6-31]. The problem studied in these articles contains three different types

— of operators.
—  The first class is the Laplace operator [6—11]. The existence of nontrivial radially symmetric solutions for a fractional

. Schrodinger equation with critical nonlinear terms were studied by Zhang et al. [7]. Especially, when s = s(-), the Laplace operator
35

is transformed into the variable order Laplace operator. In [8], Xiang et al. are concerned with the following equation

36

— (=A)*Ow+AV()w = alwlPY 2w+ BlwliP 2w, x e Q,
37

38 w=0, x€dQ,

39 and they proved an embedding theorem of variable-order fractional Sobolev space for the first time. With the aid of the mountain
40 pass theorem and Ekeland’s variational principle, they showed the existence of at least two distinct solutions. We also refer to [9]
41 for related problems.

4o Thesecond class is the p-Laplace operator [12-22]. Pucci et al. [14] investigated the following nonhomogeneous Schrédinger-

3 Kirchhoff type problem involving the perturbation term

— - P

44 M(f Ma’xd)}) (—A)‘I‘;w + V@’ 2w = f(x,w)+g(x), xeRY.
- sy ey

4 They firstly established the compact embedding theorem in the whole space RY, which can be applied to many fractional

P Schrodinger with p-Laplacian in RY. Particularly, in [17] the author obtained the multiplicity result for a class of fractional
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. (p,q)-Laplacian problem in RY. Moreover, the study of Schrodinger equations has already been extended to the case of the
— variable-order Laplace operator [18]. So far, there are only a few results involving the Hardy nonlinearity, we refer to the recent
S papers of existence of multiple solutions [19] using the theory of genus and [20] using the Nehari manifold approach.

4 The third class is the p(-)-Laplace operator [23-31]. It’s more complex than the p-Laplace operator, since the p(-)-Laplace
5 operator is not homogeneous and has no first eigenvalue. For nonlocal Choquard type equations, Biswas and Tiwari [28]
6 gave the existence result by employing the critical point theorem. Additionally, in [29] they also considered the following

"7 Kirchhoff-Choquard type equation

8 () -0 ()P lwlP™) 5C) P02
o m(for o s dady + o, VOO 2 ) [(-4)0 0+ V(020
10 _( [ Howo)
10 = ( fQ ) dy) h(x,w), x€Q,
m w=0, xeRM\Q,
12
—— where m is a Kirchhoff type function, (—A)“‘(') is the variable-order fractional p(-)-Laplace operator. Under some weaker assumptions
13 yp () 4 p P p

a2 on h compared to that of [28], they proved the existence of ground solution and infinitely many solutions. We also encourage
— interested readers to refer to results about fractional p(-)-Laplace operator problems [26, 31].

At present, the double operators problem is one of the active topics, but there are few researches on this kind of problem
16 [17, 32-34]. As far as we know, there is no work devoted to the study of variable-order fractional p;(x,-)&ps(x,-)-Laplacian

17 Schrodinger equations in RY. Enlightened by the above literature, we discuss the following Schrodinger-Choquard type equation

18 2
— (x)-2

D) -2, | _ Sl w H(y,w(y)) N
19 ;[( AP 0+ VI 0| = | o e @i @), xR, (He)
20 B

21 where p;(x,-), s(x,-), ¢(x,¥), g(x) and a(x) are continuous functions with p;(x,y)s(x,y) < N for all (x,y) € R¥ xRN and 0 < a(x) < N.
0 VeC (RN, R*) is the potential function, & > 0 is a parameter and & € C(RY xR,R) is a Carathéodory function with H(x,w) =
o3 fow h(x, s)ds. With the help of the symmetric mountain pass theorem, dual fountain theorem and Krasnoselskii’s genus theory, we
5, Obtain the existence of infinitely many solutions. The operator (—A); (1)(():))

e {oe) N
o5 defined on C3°(R™) by

is the variable-order fractional p;(x,-)-Laplace operator

26

- (=) w(x) 1= PL. f 0 O™ (W) W)
RN

|x— y|N+Pi(JC,y)S(-’Cs,V)

27 pi(x.) dy,i=1,2, xeR",

28 where P.V. stands for the Cauchy principal value. We first introduce some notations. For any real valued function r defined on
29 domain ©, denote

30 r~ :=minr(x), rt = maxr(x).
— x€® xe®

31

—_ Define

32

p Ci(®):={r(x): r(x)€eCO,R), 1 <r  <r<rt<o}.

33
—  Through out this article, p’s‘(,) = %

” denotes the critical exponent, where p(x) = p(x, x) and s(x) = s(x, x). We assume that
— s(x,y), p(x,y), ¢(x,Y), g(x), a(x) and b(x) satisfy the following conditions
35

— (Al): pi(x,y), s(x,y) and ¢(x,y) are symmetric, i.e., p;(x,y) = pi(y, x), s(x,y) = s(y, x) and ¢(x,y) = #(y, x) for any (x,y) € RV,

* Pmin(x,y) = min{p1(x,y), p2(x,y)} and ppax(x,y) = max{pi(x,y), p2(x,y)}.

87 (A2): 0<¢™ <g(x,y)<¢p® <N,0<s™ <s(x,y)<s* <1<p; <pi(x,y <pf< Py
% (A3): a(x),q(x) € CRY), g* < p; and 0 <a™ <a* <N.

% (B1): b(x) € C(RY,R). For all x e R¥, b(x) > 0 and b(x) # 0.

40 (B2): b(x) € IFORN) and B € C,(RV) satisfies b(x) > 0.

41

—  Our work is the first consideration for the existence of infinitely many solutions of the variable-order fractional pi(x,-)&p2(x,-)-
2 Laplacian Schrodinger-Choquard equations. It is worth noting that the equation we consider is on the whole space RY, which
43 s different from the work of [29, 34]. Compared to [26, 31], the double Laplacian operator we deal with is more complex. In

44 addition, we discuss the problem involving Hardy nonlinearity, which is more general than [17, 32, 33], and we don’t need the
45 Ambrosetti-Rabinowitz condition for nonlinearity function A.

46 Throughout this paper, we consider problems (Hg) under the following conditions for the potential function V and the
47 nonlinearity A

48 (V1): V(x) e C(RY) and there exists V; such that inf pnv V(x) = Vi > 0.

49 (H1): h(x,—w) = —h(x,w), forany (x,w) € RN xR.
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(H2): Let 6(x) € C.(RN) with 6~ > P Suppose that b(x) satisfies (B2) such that
|h(x,w)| < b(x)|w"™L, for any (x,w) € RN xR,
with p;(x) < 0(x)m~ < (x)m* < pz(_) and m satisfies

2 +me=

_— 2, (x, RN,
oy TN R wYE

(H3): There exists « > 0, for any x € RY and w € (0,«] satisfies
Ih(x,w)| = b ()l O,
where b’(x) satisfies (B1) and ¢ € C,(R") with g* <20~ <20'* < Prin®
(H4): h(x,w)= o(lwl%/’:ﬂufza)) as |w| = 0, uniformly in x € RV,

(HS): limy,se Hf;j” = oo uniformly in x € RV,
‘w 2 Pmax

(H6): There exists A > 1 such that

[R|=[e]e]e|~]ofa]s]|e]n]~

3
A(x,w) = ¥(x,Tw), for any (x,w) € RN xR,

14
E where 0 < 7 < 1, and
16 Hx, w) = 20h(x,w) = ) H(x,w).

17 Remark 1.1. Compared to the well-known Ambrosetti-Rabinowitz condition, the assumption (H6) is weaker.

8 Remark 1.2. From (H4) and (H6), we obtain H(x,w) is decreasing in w < 0 and H(x,w) is increasing in w > 0 for all x € RN,

9 Moreover, we have H(x,w) > 0 for all x e RYN xR. (see [29]).

20

2T The rest of this article reads as follows. In Sect.2, we collect some necessary definitions and basic lemmas of L“(’C)(RN ),

= WP-pe)sGe)(RNY apd L’;Eg (RM) spaces. In Sect.3 we state the main results, i.e. Theorem 3.1, Theorem 3.2 and Theorem 3.3.

22 Sect.4 discusses the Cerami condition related to the functional ®. In Sects. 5, 6 and 7, we give the proofs of Theorem 3.1, Theorem
23 3.2 and Theorem 3.3, respectively.

24
25 2. Preliminaries

26

— We introduce the definitions, basic properties and embedding results of some important function spaces, which will be used
" Nater.

28

29 2.1. The space [*(RN). The variable exponent Lebesgue space is defined as

0. [FORNY .= {w : w is a measurable and f lw(X) P dx < oo},

31 RN

3o Which is a reflexive uniformly convex and separable Banach space (see [23, 25]) with the Luxemburg norm

33 . w(x) X

- lwlluxy = llwll o gny = lnf{)( >0: f —| dx<1;.

34 RV X

35 Define the modular 0: LFORN) 5 R as o(w) = f]RN |wF® dx.

36 Lemma 2.1. ([23]) Suppose that w,,w € L[HX(Q). Then the following properties hold
87 () x = llwllu if and only if o() = 1;

.o - +
B (i) Ml > 1= ol < o) < lwlf!,;
39 ... + -
i) ol < 1= ol <) < lolf
(i) ol < 1 (= 13> 1) & ow) < 1 (= ;> D);

i (V) im0 [lwy _w”y(x) =0 e lim,—00(wy —w) = 0.

42 ,
—~ Lemma 2.2. ([25]) The space (I D(RN), |lwll¢(x) is conjugate space of space (L™ (RN), [|wl|u(x)), where 1’ (x) is the conjugate

43 function of u(x). Let
44 1

45 H(x) i IH -

f wvdx
RN

49 for all w € FWRN),v € FW(RN) hold.

1, xeR",

“®_ the Holder type inequality
47

1 1
18 < ((ﬂ')i + ;)”w”y(x)”‘/”y'(x) < 2||w||p(x)||vl|y’(x)a
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1
— Lemma 2.3. ([34]) Assume that 1> (x) : RN — R be a measurable function. If u; (x) € L®(RY) satisfies y; > 0, gy 20 and pyuo > 1
2 a.e. in RV, then for all w € IF1O2O(RN), we have

ot Nl oo < llwlf +llwlf

lﬂ[()ﬂz()(RN) Ul[()/Q()(RN)

2.2. The space WP&-P:)55)(RN), The variable exponents and variable-order fractional Sobolev spaces is defined by

p(x.y)
W = WP@pe)s@) gNy = ) o) € [PORNY - f f w(x) = w(y)] dxdy < oo for some y > 0V
N JRN Xp(x,y)|x_y|N+p(x,y)s(x,.\)

jele|~]ofo]s]e

o endowed with the norm

—

m lwlw := [wly + w5,
12
— where
(x.y)
Y . () )™
14 - .
14 [w],y := inf {X >0: jﬂ;N \fRN P =y NP dxdy<15;.
15
16 Define the variable-order fractional Sobolev linear subspace E; with potential function as follows
17 _
o V() |w|Pi®
18 Ei:{w:wGW, de<+00forsome)(>0 s
— RN Xl’i(x)
19
b0 O E; we use the following norm
21 llwlle, ::inf{x>o:95i(9)s 1}, =12,
22 X
o3 Where
24 _ jw(x) - ()" Pi(x)
- ok;(w) == LN jl;N P —— _dxdy+ » V(x)|w(x)|Pdx,

2? is a modular on E;. Then (W, ||-|lw) and (E;,||-||g;) are the separable reflexive Banach spaces (see [27, 29]).

27

— Lemma 2.4. ([27]) Suppose that w,,w € E;. Then the following properties hold
%% (i) x =llwllg, if and only if o, () = 1

29 +

30 o () lwllg; > 1 =>||w|| . <OF (w)<IIwIIZ’;

3¢ (i) [lwllg, <1 =>||w||E’ <ok (w)<||w||E ;

5 (W) llwllg; <1 (=1:>1) © 0p(w) <1(=1;>1);

o (V) im0 [lwy, _w”E; =0 e lim, e QE,(wn -w)=0.

33

34 Moreover, in order to study problems (Hy), we consider the space E = E; () E, endowed with the norm
35

3% llwll = llwlle = llwllg, +llwllk,-

87 °”_ Obviously, the Banach space (E, || -||g) is separable and reflexive, E* is the dual space of E. It is not difficult to obtain the following
38 embedding theorem according to the above norm and Theorem 2.10 in ([28, 29]).

39
— Theorem 2.1. Let Q € RY be a smooth bounded domain, p(x,y) and s(x,y) satisfying (A1) and (A2), respectively, with
p(x y)s(x,y) < N for any (x,y) € QX Q. Assume that (V1) holds and 8(x) € C+(Q) satisfies

42 1 <6 =minf(x) < 6(x) < pj(,),

E xeQ ’

44 forall x e Q. Then, the space E is continuous compact embedded in L#9(Q).
45

5 Theorem 2.2. Suppose that (A1)-(A2) and (V1) hold with p(x,y)s(x,y) <N and let u € C,, (Q) such that pﬁ(_) > u(x) > p(x) for
L, any x¢€ RV, Then the embedding E(RY) — L*®(RN) is continuous.
48 Note that the embedding E(RY) «— L*™(RY) is no longer compact. In order to overcome this difficulty, we introduce a new

49 space.
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1
— 2.3. The space LZEQ (RM). Assume that b(x) satisfying (B1) and u(x) € C, (RM), we define

with the norm

[FORNY = {a) : w is a measurable and f b)) P dx < oo},
RN

w(x)

X

b(x)
H(x)
”w”y(x),b(x) = ”w”L’ﬁg;(RN) = 1nf{)( > 0 . LN b(x)| dx < 1} .
L.u(x)

Obviously, the semimodular 0,(x),b(x)(w) = fRN b(x)|wl*@dx. Moreover, the space ( bo) RM), lwllu(x),60x)) 18 a reflexive and separable

Banach space (see [24]).

— Lemma 2.5. ([24]) Suppose that w,,w € LZ((X (€2). Then the following properties hold

10 . . .

— () x = llwlluo.b00) if and only if 00,600 (F) = 15

LR I - +

E (11) ”w”,u(x),b(x) >1= ”w“Z(x),b(x) < Qy(x),h(x)(w) < “w”Z(X),b(X)’
cee + -

15 D Nl b < 1= llwllz(x),b(x) < Ouw.bxn (W) < ”‘””Z(x),b(x);

— (V) [ollu@xbex <1 (= 1> 1) © gy pww) <1 (=1;>1));

g (v) lim;, e ”wn”p(x),b(x) =0 & lim, Qy(x),b(x)(wn) =0.

6 We present the following embedding results.
17 Theorem 2.3. Suppose that (A1)-(A3) and (V1) hold. Let u(x) € C.(RY) such that 1 <y~ <pu* < p’;(.) for any x e RV, Let (B2)
1g hold with B(x) satisfying

_ Bux) _ N

< = < , eR™.
19 p(x) <n(x) Boy—1 ~Psor ¥
%0 Then, the embedding E — Lg’g; (R™) is continuous. Moreover, if 7 < Py, forany xe RY, then the embedding E <> LZEX RNy is
2 compact.
22
— Proof. By Theorem 2.2, we have that the embedding E < I#®(RY) is continuous. Next, analogously to the proof of Lemma 2.4
— in ([26]), we prove that E; < L’;g; RN), s0 E — L’;g; (RM), where the embedding is continuous and compact. m]
24
o5  Taking especially b(x) = |x|7*™, we obtain a corollary of Theorem 2.3 as follows.

26 Corollary 1. Suppose that p, a,u€C (RM), 0 < a(x) < N for x e RV, If u satisfies the condition

27 Npu(x)

s Px) <n(x) = o

<pyy XE RY,
29 then the embedding E(RY) — Lﬁ(‘)_‘lm (RY) is continuous and compact.

30

o Proof. For any x € R¥, we can find & > 0 small enough such that

o (N-o( _ .

32 a(x) <N-g, px)<nx)= N—e—a(n = Psor
33
v Applying Theorem 2.3 to the case that b(x) = |x|7*™ and B(x) = %, we obtain the corollary. O

35 Remark 2.1. The pr(x) = %}:&gm is called the critical Sobolev Hardy exponent. In this paper, we only deal with the case

3¢ involving subcritical Sobolev Hardy exponents.

37

8 3. Statement of the main theorems

39 For the sake of the following statement, we give some definitions and corresponding variational forms related to the problem (Hy).

0" Definition 3.1. We say that w € E is a weak solution of the problem (H), if

41
2 _

o ' ol 2wy H(x, w(x)h(y, o)WY ()

42 = == ¥

43 oy ;(‘Pm(w),w) [RN | x4 dut R2V |x — [0 by,

44 forally € E, where

45 ¥ ()= f lw(x) - wl"” dxdy + f V@)l dx

® " RNEN Pi(6,y)|x = yNpiCenstoy) VP

47 and

- i(xy)-2

48 , ~ (@) = 0" (W) — )W) - () -2

o (P, (w),¥) = L y L y ey dxdy + N V(x)|w| wydx.
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The functional @ : E — R associated with equations (Hy) is defined by

2
~ [ el 1 HEw)H(,w())
(3.2) D(w) ._;Tp,.(w) 7T o T ey

for all w € E. Under our assumptions the functional @ : E — R is of class C'(E,R) and for all w,y € E

(x)-2
3.3) (@ @)=Y <Ly'< ) — f g™ wp ) [ HECODRG.0GNO) ) 0

EE R2V e — y[pe

i=

Moreover, we can observe that w € E is a critical point of the functional @ if and only if w € E is a weak solution of problems (Hp).

jele|~]o|als]|e]m]=

Lemma 3.1. ([28]) Let (A3) hold and m, (x,y), ma(x,y) € C(R*) satisfy
11 1 " o(x,y) + 1
12 mi(x,y) N ma(x,y)
13 If fe T ®RY)N L™ (RV) and g € L3 (RN) (N L2 (RN), then
f S(x)g(x) dxdy
RN

14
xRN |X— Y|¢(x’y)

—
o

=2, forany (x,y) € RV,

ligll +IAl llgll

15
16 where C; is a positive constant , independent of f and g.

7 Corollary 2. In particular, by taking f(x) = g(x) = Jw(x)|"®, w € W and m;(x,y) = my(x,y) = m(x,y), one has
18 2 (x,y) e R?N with

19 f Jw(20)|” e (y) |
RNXRN

20 |x — y|6Cey) L (RN ))

51 Where me C, RN and p(x,x) < 0(x)m™ < O(x)m™ < p:(,). Furthermore, C; is a positive constant, independent of w.

<ci(in

£ @My 18 s =Ny L@y S <RN>)’

2 Py _
m(x,y) + N

dxdy < cz(|||w|9”|| +llwl®|

mt RN)

22 Theorem 3.1. Suppose that (A1)-(A3), (V1), (H1)-(H2) and (H5) hold. Then, for any ¢ € (0,&£7], equations (H) has infinitely
23 many large energy solutions.

24 Theorem 3.2. Suppose that (A1)-(A3), (V1) and (H1)-(H3) hold. Then, equations (H) has infinitely many nontrivial solutions

25 with negative energy converging to 0.

26
- Theorem 3.3. Suppose that (A1)-(A3) and (V1) hold and # satisfy (H1)-(H3). Then, equations (H) possess infinitely many small
— negative energy solutions.

28

29 4. Cerami condition

30

a1 The main task of this section is to verify the Cerami (Ce) condition. As being known, the Cerami condition is weaker than the

5 Palais-Smale compactness condition.

33 Definition 4.1. Let E be a Banach space, ® € C YE,R). If any (Ce). sequence {wy }nen C E, namely

34 (4.1) D(wy) = ¢, (1+[|w )P’ (@,) = 0 in E*, as n — ,

% havea convergent subsequence in E, then @ satisfies the (Ce) condition at the level ¢ € R.

z% Lemma 4.1. If the conditions (A1)-(A3), (B1)-(B2), (V1) and (H5)-(H6) are satisfied, then the sequence {w;,},en is bounded in E.
3? Proof. Let {wp}nen C E be a Cerami sequence of @ satisfying

9 42) D(w)l < c.

40 for some constant ¢ > 0, and

% 4.3) (1 +lwa )@ (wy) — 0 in E* as n — oo,

43 Which implies that

44 (4.4) (@' (wp),wp)y = 0 as n — oo,

45 Now, we prove that {w,},ayv is bounded in E. By contradiction, assume that

‘E 4.5) [|lwpl|l = o0, as n — oo.

g Set v, = T :H' Then {v, }nen C E and ||u,|| = 1. By Theorem 2.3, there exists a subsequence {v,}nen such that
49 (4.6) v, — v weakly in E, v, — v strongly in ngg(RN), vp = vae. inRY,
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1
— for u(x) € (l,pﬁ(_)) and |v| > 0.
Let Qg :=
3 and sufficiently large n, we obtain

N

5 47)

[}

2 From Fatou’s lemma, we get

8
— (4.8) liminf
9 n—oo

RN

10 Combing (4.7) and (4.8), we have
1
L (49

—

3 Therefore
14
15 (4.10)

6 Asa consequence of (4.1), we derive
17

18

H(x,w,(x))H(y, wn(y))

{x e R : [u(x)| > 0}. Thus, we have |w,(x)| = +co for all x € Q. Therefore, by the hypothesis (HS), for any x € Qq

1
. H(x,w)|uy|2Phar
= lim =

n—oo |wn|%1’r+r-tax
1+
H(y, wp)luy|2Pmax

Ay 2 f
I_x — y|¢(x»)") |wn | 2 Pmax Qg
f HO.wn)
y

e Xy [P

f f Hy o)
34y

o \ g Ty

H(x,wy,)

wn” jp:r-ulx

lim

n—oo ||

+00.

1
H(Y, wp)|v| 2Pnax

I — Y[ |y | 3 Pirax

liminf dy = +c0.

n—oo

H(x,w,)

el

— 400, as n — 0o,

H(x,w,)

lim m
||(,_)n | |Pmux

n—oo

= 400.

W, |99
§| nl dx+ Cs.

19

R2N

2
dxdy <2 ) ¥, -2 —
|x — y[#Ce») w ; pilen) fRN q(x)lx}e

2? Without loss of generality, taking p;(x,-) < pa2(x,-), and we get

H(x, w(x)H(y,w(y))

21

oo RV |x — y[$ED| |y, ||Pinax

3 1 2 2 2] |wylle” c
23 _—+[—,||wn||"T+—,||wn||f’3]— n ol -
24 llcwp|[Pmax | Py P, g llewp||Pmax=a" lcvy,||Pmax
= p

% @11 (2ol G

26 Py qtllwnllPme=a™  flwy|[Pmas

27 Hence,

% 412 m f Hoow)HG 00) ;0 2

2 n>e0 Jeon |x — y|)| |y || P Ty

30 and this contradicts (4.10).
31

Therefore, we assume that v = 0 and again arrive at a contradiction. We have v,, — 0 in

LZEX))(RN) and v, » 0 a.e. inRV. As

30 ®@(iw,) is continuous function in 7 € [0, 1], there exists £, C [0, 1] such that

33 (4.13) D(tywy) 1= max D(twy).
— t€[0,1]
34
% et Uy = (20) P2y, = (zgl)lw |2|“’”, and £ > & ( ;)”1 "2 Hence, using the continuity of H, we deduce lim,_, o H(x,u,) = 0
36
— Therefore, as n — +oo
37
o H(x, H(y,
o (414) (x, un(x)) 0], u"(y))dxdy 50
. R2N [x— y|¢(x*))
= @™
40 According to ||w,|| = oo as n — oo, we have o € (0,1) for large enough n. Thus, from (4.14) we obtain
4
— H(x,un(X)H(y, un(y)) &9
(1, > y dxdy — Sl
@ (tan) > ©(ty) = Z =3 | T e xdy= | S
43
i 2
2 )p 1/p;y 2
a =D 1) S 2wy + —gnunn 4 ou(D)
45 i=l i
™ 5t
. = (lalle, + alle,)™ +0a(1)
47 2%
; 4.15 = ¢ 1
- ( . ) - P+*2 + +0n( )’
49 2517"p;
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1
— where we have used that |[v,llx, < llvallx, +|[uallx, = llvall = 1, and also that 2r-1(a? +b?) > (a+b)? for a,b > 0. Due to { being

2 . . .
— arbitrary, we have the following conclusion
3

4 (4.16) O(t,wy) = 00, as n — oo,

2 Since 0 < t,wy, < w, and the hypothesis (H6) yields

2[ h(x,tnwn)tnwndx:f p;,aXH(x,tnw,,)dx+f (X, tywy,)dx
RN RN RN

—

4.17) Sf p:;aXH(x,t,,w,,)dx+f A (x, wy)dx.
RN RN

o By passing to a new subsequence, if necessary, we can assume that 0 < ¢, < 1 for n sufficiently large. Indeed, the fact that ®(0) = 0
— implies that ,, # 0 and (4.16) combined with (4.2) implies that ,, # 1. Thus,

d
S 0 =ty - D(twn)li=g, = (V' (tyon), tnon)
14 !
5 : 110 () =ty )" -
5 => f IO dxdy + f VOltywaPOdx
16 p RN xRN |x—y| +pi(x.y)s(x,y) RN
17 H(x,t h(y,t, t IR
L (4.18) (X, thwn (X)h(y (nxw;z()’)) nwn(y)dxdy_ 3 nU;r(LL)
18 R2N [x — yoes YA
19 Therefore, for each sufficiently large n, combining (4.2), (4.4), (4.17) and (4.18), we have
20
- l ,
217 _(D(tnwn) +o,(1) = [(D(tnwn) (D (tna)n)’tnwn>]
22 max
on gltnwnlq(x) fltna)nlq(x)
23 Y, (thw, — v, 1 +
27 Z p,(n n) RN l](x)|x|“(") /lpmax IZ;< (ﬂnn) nnﬂ> ’lpmax RN |x|a(x)
o5 1 H(y, t,w,(y))
25 Loy f ( iy 4y | 2k ()t (X) = P H (X, tawon (1)) dix
26 Pmax RN |X yl
27 §|tnwn |q(x §|lnwn |q(x)
- Y, (thw W (t 1, + — _—
28 Z PO o G P Z< )+ e
29 1 H(, tywn
2 + f f —(y n< (y))ﬁ(x,a)n(x))dxdy
30 2pmax RN JRN |)C _y|¢(x’y)
31 $Iwn|q(x) Ew, |1
j— < ¥ P’ t +
:E Z pl( )= RN Q(X)lxl"(") pmax ;< (7771) nnn) pmax RN |x|a(x)
33 1 Hoy.
= f BOwn0) iy o (x))dixdy
:i 2pmux RN RV |x— )’|¢(”)
35 ,
= (4.19) =0(w,) - (D (wn), wn) = c+0,(1),
36 max
37 as n — oo, which contradicts (4.16). Hence, we have that the sequence {w, }sen is bounded in E. ]
38

29 Lemma 4.2. If conditions (A1)-(A3), (B1)-(B2), (V1), and (H2) are satisfied, then the sequence {wj},en has a strong convergent
o subsequence.

41 Proof. By Lemma 4.1, {wy}nen is bounded in E. Thus, there exists w € E, and we can extract a subsequence, denoted by {w }nen
42 again, satisfies

e (4.20) wy, = wweakly in E, w, - w strongly in L‘;Ef))(RN), wy,— wae. inRY.

45 Furthermore, we have

p KD (wp), wn = w)| <O (wp)ll(lwalle + llwllE) — 0, as n — oo

47
o Since w,, is bounded in E and ®’(w,) — 0, we derive that

49 (D (W), w, —w) — 0, as n — oo,
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1
— and it follows that

2
3 on(1) (@' (wy), Wy — W)
i :(\P;;l(wn)’wn -w) +<lP/p2(“-)n)a Wy — W)
i (421) H(x,w, (x))h(y, Wy (y?)(wn - (U)(Y) dxdy _ f ‘flwnlq(x)izwn(a)n - w)(x) dx.
6 R2N |x — y|#lxy) RN | [
7 From (H2), Lemma 2.5 and Theorem 2.3, we obtain
8 1
9 422 IHC, 0l <Cs ( fQ () |w, "0 dx) < Camax {lwnlly e oy Nnly e i)
10
" <Camax {Ch Nl Chey i llonll” )

2 that is H(-,wy,) € L™ (RY). Similarly, we have
13

4 (423) IHC, @)l < Csmax {Ch,Nwll” . Ch - lleonll” ).

15 Thus, combined with (4.22)-(4.23) and Lemma 3.1, we obtain

16

— f Hx, 0, ()R, 0,(0)) (@, — 0)(y)

17 - dxdy

— RN xRN |x — y[C)

18

= <C6 (1H (X, ()l 110, 0n (3D @n = @)Wt + I, 0l 17, 0 (D)) @n = )G )
19 - - +

o <Crmax {Cl e llwall” . Cl e llwnl” HIAGY, n (D)@ = @)Dl

21 (424) +Crmax (Ch Nl Cl - lonll” IR, wn () (@n = )Pl

22 Next, using (H2), we get

23

27 1A (y, wn)(wn — w)”%+

5 < f b)|w, PO~ (@, - w)™ dy

26 RY

27 <@=bm ( f by)lw, — " dy + f b ™D (w, - w)™ dy
2? RN RN

2? (4.25) —0.

30 It follows from (4.20) that fRN b(y)la)l(g(")"l)’”+ (wp — a))’"+ dy — 0 as n — co. According to Lemma 2.5 and strong convergence of

31 sequences, we obtain fRN b(y)|wy, —a)le(y)"ﬁdy — 0asn— oo.

32 Similarly, we have

33

= (4.26) 1Ay, wp)(Wn = W)~ = 0n(1), as n — oo.
34

55 Hence, combining with (4.24)-(4.26), we derive

H h -
%427 lim (2, Wp (X)) Ay, W (M) (Wn — W)(Y) dxdy = 0.
37 n—o JpNyRN |_x _y|¢(x,y)
38 Analogously to the proof (4.25), we infer
39 . _
E (4.28) flwnlq(x) 2(4),1(0.),1 -w) dx < 2q+71 é‘:lwn _w|q(x) §|w|q(x) l(wn -w) -0,
= RN | x| RN x| RN | x|
4
— as n — oo. Therefore, from (4.27) and (4.28), we conclude that
42
43 (429) lim [(¥), (@n),@n = @)+ (¥, (). 0n ~ )| =0.
“ From (4.20) and the Fatou lemma, it follows that
45
‘E (4.30) liminf (¥, (Wn), wn) 2 (¥, (w),w).
‘i By (4.29), we have, as n — oo,
48
49 (431 o(1) = (¥}, (Wn), wp = W) + (), (Wn), Wy = W) 2 (), (W), Wy — W).
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1
— Fixed (x,y) € RN xR¥, according to the Young inequality, we get

2
3 | () = @MV () = ()]
4
5 S wn() ~ wa I + () = ()P
o Pi(x,y) pi(x,y)
6 1 ,
— (4.32) S——Jwn(x)— PO + —Jw(x) — w(y) PO,
7 ) p;
8
— and
9
10 = ()= 1 = 1 =
— (433) lwn PO ()] < ==lwa (P + ——lw ()P,
11 ) ®)
— so that
13
i (4.34) <\IJ;7, (wWn), Wy — w) Z<l{1,pl- (wn), wp) — <\P;7l (wn),w)
15 ’ ’
b 2Cp, (P}, (@n). wn) = (), (@), 0)).
17 which combined with (4.31) and (4.34) yield
18
19 (4.35) JL%(‘%K%%%) =(¥),,(w),w).
20
o1 However, using (4.20) and the Brézis-Lieb type lemma for variable exponent in [30], we obtain
%2 (4.36) 0n(1) + (¥}, (Wn = W), wp = w) = (P, (Wn), wy) = (P, (), w),
23

24 which joint with (4.35), we have

25 .
— lim og,(w, —w) =0,
26 n—oo

27 according to Lemma 2.4, we finally achieve that w, — w in E as n — oo.

28 m}
29

30 5. Proofs of Theorem 3.1

31

3? Let E be a separable and reflexive real Banach space, then there exists {¢;} € E and {ej.} € E* suchthat E =spanfe;: j=1,2,..}, E* =

?; span{ej :j=12,..}and

:i l,i=j;
35 (ef,ej) =

0,i#j.

36

37 Set E; =span{e; : i =1,2,...}, and denote X} = EB?:] E;. Y, = @Zk E;. We state the symmetric mountain pass theorem, i.e. Theorem
38 5.1 below.

39

E Theorem 5.1. ([9]). Let E be a real infinite dimensional Banach space, E = X @ Y and dim Xy < oo. ® € CL(E, R) be even with

41 ©(0) =0. Suppose @ satisfying (PS) condition and
(1) there are constants @,y > 0 such that inf ey, jjufj=o P(W) = ;

42 ) ,

— (ii) for every finite dimensional subspaces E' C E there exists M = M(E ) > 0 such that max E lwll=M O(w) <0.
— Then @ possesses an unbounded sequence of critical values.

44

45 Proof of Theorem 3.1. From (4.22) and (4.23), one has

46

v H(x, w(x)H(y,w(y))

ul f S ddy| <Cs (IHC,wOIE +IHC0OIE,)

28 RVXRN |x — y|#t)

. <Comax |l " }.
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1
— Let w € Y such that ||lw|| = @ € (0,1). Thus, using the Lemma 2.4 and Theorem 2.3, we get

2
B D)= W)= [ L) [ ol
n B N R PR &V (0l
5 1 o1 s Ci2, g & 4
e >— — -_= - =
: 2l + el =2l =2l
7 +  Cpo - &C, _
7 > ————lwllPmin = ==l - =]l
8 2Pmin Dhax 2 q
RANGR)) =aPmin (; - @a%pzm] _q aof
i zp;'—”_lprnax 2 q
11 Choosing @ € (0,min{1,[1/2Pmin~" p* . C15]"/ 7 ~Pin)}), we deduce
12
2 1 (o
13 O(w) > +—ap:zin—§ f a?”.
I zpmi"pr;ax q
-5 Taking ¢&* = " BPmin=4= [ 2Pmin* pt  C,-. Then for any £ € (0,£], we obtain
. 1 .
E DO(w) > 70’17""’" =y>0.
17 2P min Pr-'r—mx

E Thus, condition (i) holds.
E By (HY), for any Cjo > 0, there exists a positive constant Cy; such that

Pha
20 |H(x,w)| > Crolw| 2™, for each x € RY and |w| > Cy;.

21
o Obviously, there exists Cg > 0 that satisfies ||w||q(x),|xl—a(x) > Cpr||lwl|, since all norms are equivalent on the finite dimensional

- Banach space E’. For ¢t > 1, we get

S (x)
24 D(1w) = Zlyp; (te0) — % jl; N H(x,tw(x))H(y, tw(y)) didy— jI; ltwld i
i=1

25 |x = y[oCe») N g(x)]x]®

2? + + 2 ;mx Pinax Prax -

o <+ s - S WOl = 6O 2 gy - 2 g
. Spp e 2 Jpv x— PGy YT Mg e
28 N - i .

PR tpmax C [pmax w x mzax a) "éllvl tq*

29 (5.2) =—— je||Pmar — =10 f Ol = WON 2y —Cprllwl?.

2 Prin 2 Jrwv o x—ylPey) q

31 If Cyp is big enough to satisfy

3? 2 Pinax Pinax

= Lo Ch [ ) 2 o) ™

5 —— flwllPhor < 10 dxdy.

® 2 Jran Tyl

% So, it follows from (5.2) that

35

36 O(tw) — —oo,

; as t — oo, by g* < pf .. Therefore, there exists My > 0 large enough such that ®(w) < 0 for all w € E’ with ||wl|= M > 1 and
38 M > My. This completes the proof.

39 o

40

a1 6. Proofs of Theorem 3.2

42 1In order to prove Theorem 3.2, we will use the Dual Fountain Theorem.

= Theorem 6.1. ([12]). Suppose that & € C'(E,R) satisfies the (Ce);. condition for every ¢ € [dy,,0]. If for any k > ko, there exists
“ Sk > pr > 0 satisfies the following properties

B () &(-w) = dw);

46 (ii) y = inf{®(w) : w € Yy, |l = ax} = 0;

47 (iii) i = sup(®(w) : w € Xy, llwll = o} < 0;

48 (iv) zx = inf{®(w) : w € Yy, llwll < ax} — 0 as k — oo,

49 then J has a sequence of negative critical points wy such that J(wy) — 0.

18 Jun 2024 01:11:43 PDT
240408-lishuai Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

12

1
— Definition 6.1. If any (Ce) sequence {wy}ren in E with wy € Xj, namely
2
5 (6.1 D(wi) = ¢, (1 +]lwil)(Plx,) (wr) = 0 in E*, as n — oo,

"4 have a convergent subsequence in E, then ® satisfies the (Ce); condition at the level ¢ € R.

5 Lemma 6.1. Assume that the hypotheses in Theorem 3.2 hold. Then ® satisfies the (Ce);: condition.

6
. Proof. Let c &R and the sequence {w;}jerr C E such that {w;} € X, ®(w;) — ¢ and (1 +[|w;|)(@lx;)' (@) = 0 as j — +oo, which
' implies that

8 (@ (w)),w)) ={(Plx,) (), w;) = 0.

9
— Similar to the proof of Lemma 4.1, we can prove that {w;} is bounded. So, there exists a subsequence, denoted for {w;}, and

— wp € E such that w; — wo weakly in E. As E = J;X; = span{e; : j > 1}, we choose v; € X; such that v; — wy strongly in E.

m Hence, using the facts CI>'|Xj(wj) — 0and w;—v; — 0in X}, we obtain

12

5 (' (w)),wj—wo) = (D (w)),w;—Vv;)+ (D (wj),v;—wp) = 0.

14 Again recalling the proof of Lemma 4.2, we deduce w; — wy strongly in E. Then, we conclude that @ satisfies the (Ce); condition.

Furthermore, we obtain that ®’(w;) — ®'(wp) as j — +oo.

% Next, we prove that @’ (wp) = 0. Indeed, taking w; € X, for j > I, we get

17 (@' (wo), wi) =(D' (wo) = D' (w)), wp) +{ D (w)), wr)

18 =(@'(wo) = ' (). w1} + (@' Ly, (@) 1) > 0,

19 as j— +oo. Thus, ®’(wp) = 0 in E*, this show that @ satisfies the (Ce)}: condition for each ¢ € R. The proof is over. m}

20
— Lemma 6.2. Let u(x) € C.(RY), and u(x) < pz(,) for any x € RN, For each k € N, define
21

. I = su W, ux
22 £ et leollyey
23 .

~" Then, limg_,c ¥ = 0.

24

2? Proof. ltis clear that 0 < 9,1 < 9y < oo, and so that ¥y — & > 0 as k — co. For each k > 0, there exists wy € Yy satisfies ||wil|lg = 1

v and ”wk”Lﬁxi(RN) > %. By definition of Y, wy — 0 in E. Theorem 2.3 implies that wy; — 0 in LZEQ(RN), and as result # = 0. The

— proof is over. ]

®Ny

2? Proof of Theorem 3.2. From (H1) and Lemma 6.1, we have that ®(w) is even and satisfies (Ce); condition for each ¢ € R. Next,
29 we prove conditions (ii)-(iv) are true for ®(w). Firstly, for every w € Y} with ||w|| < 1, we derive

% : L [ Hxo@)HE, o) jwl
- D(w) := Z'{’pi((u) 3 o) dxd —f o 4x
5 —~ RN |x = y|Pee) R’V q(0)lxl
32
- 1 pto 1 py Co sp 1 -
> 1, Y9 TP
% 2l + el = S0P = 2ol
34 + - - —
& (62 > ————llwllPnin = Cpallol™ =139 Tl
- 2Pmin™" piax
36 we may choose M € (0, 1) small such that
37 1 . _
g ————lwllPmin > Callwl*,
:E 2pminp;;mx
39 holds for any w € E with [Jw|| < M. Then, we get
40 1 o —
. D(w) 2 ——jol|nin — Cra e
. I‘Vllllpmax

42 We cho
2 We choose ) y
“ Sk = (C132Pmin it ) Pmin™0"

a4 .
— since p;;lm > ¢~ , it follows that

i sr— 0, k— +oo.

4 .

° Thus, there exists kg such that ¢y < M as k > ky. Hence, we get

47

— y= inf ®w)=0,
48 weY llwll=s

ﬁ as k — +o0. So, the condition (ii) is fulfilled.

18 Jun 2024 01:11:43 PDT
240408-lishuai Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

13

1 . . o .
— Secondly, for any w € Xy, |lw|| = px with ¢x > pr > 0, by (H3) and all norms are equivalent on the finite dimensional Banach
2 space, we have

3
il 2

1 H(x, H(y, q(x)

4 D(w) ::Z‘I’p.(w)— — (x, WD HE, () dxdy—f —la)I X
5 pel 2 Jron |x — y[Ptxy) RN ()X
o L L B e ) 900
B yﬂwﬁ+‘ﬂm?‘ﬂf Wl Vb ll” “@_f'ii__“

7 Pi 1 2 2 gy (06 (p)lx —yld) RN g(x)]x|2)
a 1 - 1
8 <—lw||Pmin — Cx, ||| 7+ - Ed

9 min
10 (63) <0,

g o () o’ ()

M oas Donin > qt,d= £:<2N %dxdy and py small enough. Thus, the condition (iii) also holds.
12 Finally, from verification of (i), one has that for k > ko and w € Y with ||wl| < ¢k,
13 _ _ — g-
e D(w) = ~Cr3? [0l = ~Ci3997¢I™ -0,

15 by 9 — 0 and ¢; — 0 as k — co. Moreover, X () Yx # 0, we obtain z; < yx < 0, so limg_,o zx = 0. Therefore, all conditions of

6 Theorem 6.1 are satisfied. The proof is completed.

— O
17

8 7. Proofs of Theorem 3.3

19
o0 Inorder to prove Theorem 3.3, we recall some related knowledge of Krasnoselskii’s genus.

21 Definition 7.1. Let E be a real Banach space and set

2 A ={BeE\{0}: B=—-Band Bis compact }.

23

on For B € A. The genus y(B) of B is defined as

o5 y(B)=inflke N: dw e C(B,Rk\{O}), w(—x) = —w(x)}.

26 TIf such a k does not exist, we set y(B) = co. Moreover, set y(0) = 0.

27

— Lemma 7.1. If E = R" and dQ be the boundary of an open, symmetric, and bounded subset Q@ c R with 0 € Q, then y(/Q) = N.
-l Furthermore, if S¥~! be a (k — 1)-dimensional sphere in R¥, then y(S k=1y = k.

29

50 Lemma7.2. ([35])) Let®eC 1(E;,R) be an even and bounded from below functional on infinite dimensional Banach space Ex

3T which satisfies the Palais-Smale condition. If there exists

32 Ay ={D € A : y(D) > k} such that sup ®(w) <0, for any k€ N,

- wEA

33
37 then ® admits a sequence of critical point {wy} satisfies ®(wy) < 0, wy # 0.

35 Proof of Theorem 3.3. Assume that g € C*°([0, +0),R) satisfies 0 < g(¢) < 1, t € [0, +c0) and for every € > 0

36 0, ifr>e,
37 g =
o 1, ifre[0,5].
38
:g For G(w) = g(J|wl]), we consider the functional
— 2
1 H H q(x)
© @ (W)= ) ¥y (w) - >G(w) f Co@CDHG, 00N 4 gy [
41 P 2 R2N |x = yéCe») RV g(x)|x|4)

42 Ttis clear that 7 € C!(E,R). Next, we prove that 7 has a sequence of nontrivial critical points {w,} with w, — 0 as n — oo in E,
43 then Theorem 3.3 is proved. In fact, for any € > 0, there exists N > 0 such that ||w,|| < 5 for all n > N, thus, 7(w,) = ®(wy), this
44 means that {w,} are also the critical points of ®.

45 For|lw| = 1, by (7.1), we have

3

46

1@ 2ol + Lol - £ e

—_— = E E - —a(x)
47 p?’ 1 p%’ 2 q q(x),|x|

a7 1 e

® (12 > —————lwlPrin = =7 — oo,
49 2Pmin™ pr-ttax q

18 Jun 2024 01:11:43 PDT
240408-lishuai Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

14
1
— as |jw|| =& o0, g* < Dopin> 80 £ (w) is coercive. Then J(w) is bounded from below and satisfies the (Ce) condition analogously to the
2 proof of Lemma 4.1-4.2. From (H1), we obtain 7 (—w) = 7 (w) and 7(0) = 0.

For any k € N, we choose a k-dimensional linear subspace Ej of E. As all norms are equivalent on Ey, there exists o <min{1, 5§}
such that w € E; with ||w|| < 0. Set

S ={w € Ey t |lwll = o).

4
5
6
- For ||lwl|| € S+, and 7 € (0, 1), from (6.3), we get
5
9

> o)
I(w) 1=y | ¥, (1w) - %G(zw) B 10HO100)) 4 4, fR e’
i=1

v ey v qOolde@
o T R A 00 )00 Y A G 1
» <—llwlly, + —lll} - —— ] o dxdy—— e
o 12 P 2 Jrv @(0)0 ()lx —yo q* Jrv |«
E t[’;u'n I l26’+ " gt
13 (7.3) =——llwl|nin = ——=d = —Cg,Jlwll" .
- min q
14
5 As p,. >20"" > g*, we can find #; € (0, 1) such that
16 I(tw) <0, forallwe S,
— that is
o I(w) <0, forallw € Sy,
o0 Therefore
21 Shoy CAr={weE: I(w)<0}.
22 Furthermore, since S 1o, 18 a sphere in Ey, we deduce that S, is a k-dimensional subspace of E;. By Lemma 7.1, we have
23
27 Y(Stktrk)=k+1'
25 So
2 Y(D) > ¥(S o) = k+ 1.
27 Thus, there exists Ay such that
2
8 sup J(w) < 0.
29 wEAk
30 Hence, by Lemma 7.2, the proof is completed.
31 m}
32
33 8. Conclusions
il In this article, we study a class of variable-order fractional p;(x,-)&p2(x,-)-Laplacian Schrédinger-Choquard equation. Based
35

on the three different critical point theorems, the existence of infinitely many solutions are derived. The main innovation of this
36 paper is the use of weighted Lebesgue spaces to overcome the difficulty of the compact embedding result in RV and the double
37 Laplace operator we consider is more complex. Moreover, the equation including Hardy nonlinearity and the function A(x, w) does
38 not satisfy the Ambrosetti-Rabinowitz condition. In addition, our work is inspiring for future research as regards the existence of
39 solutions for Schrodinger double phase problems with variable exponents.
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