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GENERALIZED HYERS-ULAM STABILITY OF SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORM

ARUMUGAM PONMANA SELVAN AND MASAKAZU ONITSUKA

ABSTRACT. The purpose of this present paper is to study the Hyers-Ulam stability and Hyers-Ulam-
Rassias stability of homogeneous and non-homogeneous second-order linear differential equations ap-
plying Laplace transform method. In particular, our results can guarantee stability over unbounded
intervals, and in special cases the obtained Hyers-Ulam constants match the best Hyers-Ulam constants.
In addition, the results obtained are conditioned on the convergence of the Laplace transform of some
function.

1. Introduction

In 1940, Ulam [39] gave a wide range of talk before a Mathematical Colloquium at the University of
Wisconsin in which he presented a list of unsolved problems. It motivated the study of stability prob-
lems for various functional equations. Among the problems raised by Ulam, the following question is
concerned about the stability of homomorphisms: Let G1 be a group and let G2 be a group endowed
with a metric ρ . Given ε > 0, does there exists a δ > 0 such that if f : G1 → G2 satisfies

ρ( f (xy), f (x) f (y))< δ ,

for all x,y ∈ G, then we can find a homomorphism h : G1 → G2 exists with

ρ( f (x),h(x))< ε,

for all x ∈ G1? If the answer is affirmative, we say that the functional equation for homomorphisms is
stable. In 1941, Hyers [13] was the first mathematician to present the result concerning the stability
of functional equations. He brilliantly answered the question of Ulam, the problem for the case of
approximately additive mappings on Banach spaces. In course of time, the theorem formulated by
Hyers was generalized by Rassias [33], Aoki [4] and Bourgin [9] for additive mappings (see also
[31]).

A generalization of Ulam’s problem was recently proposed by replacing functional equations with
differential equations: The differential equation

g
(

f ,u,u′,u′′, · · · ,u(n)
)
= 0

has the Hyers-Ulam stability if for a given ε > 0 and a function v such that∣∣∣g( f ,v,v′,v′′, · · · ,v(n)
)∣∣∣≤ ε,
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 2

there exists a solution u of g
(

f ,u,u′,u′′, · · · ,u(n)
)
= 0 such that |v(t)−u(t)| ≤ κ(ε) and

lim
ε→0

κ(ε) = 0.

If the preceding statement is also true when we replace ε and κ(ε) by ϕ(t) and φ(t), where ϕ ,φ
are appropriate functions not depending on u and v explicitly, then we say that the corresponding
differential equation has the generalized Hyers-Ulam stability. Obłoza seems to be the first author
who has investigated the Hyers-Ulam stability of linear differential equations [26, 27]. Thereafter, in
1998, Alsina and Ger [2] investigated the Hyers-Ulam stability of differential equations. They proved
the following result.

Theorem 1.1. Assume that a differentiable function v : I →R is a solution of the differential inequality
|v′(t)− v(t)| ≤ ε , where I is an open subinterval of R. Then there exists a solution u : I → R of the
differential equation u′(t) = u(t) such that for any t ∈ I, we have |v(t)−u(t)| ≤ 3ε .

This result has been generalized by Takahasi [38]. He proved that the Hyers-Ulam stability holds
true for the Banach space valued differential equation u′(t) = λu(t). Indeed, the Hyers-Ulam stability
has been proved for the first order linear differential and difference equations in more general settings
[3, 8, 11, 14, 15, 16, 18, 19, 20, 21]. Jung [14] proved a similar result for the differential equation
r(t)u′(t) = u(t), where r(t) is a nonzero function. For more recent results about this subject, we can
refer to [5, 7, 10, 22, 28, 29, 35].

To the best of our knowledge, stability analysis using the Laplace transform was first studied by
Rezaei, Jung and Rassias [34] in 2013. The next year Alqifiary and Jung [1] proved the generalized
Hyers-Ulam stability of linear differential equations by using the Laplace transform method (see also
[6, 36, 37, 41, 42]). In 2020, Murali, Ponmana Selvan and Park [23] have investigated the Hyers-Ulam
stability of the linear differential equations using Fourier transform method (see also [12, 32, 40]).
Very recently, Jung, Ponmana Selvan and Murali [17] established the various forms of Hyers-Ulam
stability of the first-order linear differential equations with constant coefficients by using Mahgoub
integral transform (see also [30]). Then, Murali et al. [24] investigated the different forms of Hyers-
Ulam stability and Mittag-Leffler-Hyers-Ulam stability of second order linear differential equation of
the form u′′(t)+µ2u(t) = q(t) by using Aboodh transform method (see also [25]).

Motivated and connected with the above literature, in this paper, our main intention is to study the
Hyers-Ulam stability of the following second order linear differential equations

u′′(t)+αu′(t)+βu(t) = 0(1.1)

and

u′′(t)+αu′(t)+βu(t) = q(t)(1.2)

for all t ∈R, u(t)∈C2(R) and q(t)∈C(R), using the Laplace transform method. A detailed definition
will be given in the next section, the factor 3 of ε in Theorem 1.1 is called a Hyers-Ulam constant.
Note here that many of the Ulam stability analyzes using the various transforms described earlier
restrict interval I to a bounded interval. For example, I = [a,b], −∞ < a < b < ∞. Alternatively, we
can point out the possibility that the Hyers-Ulam constant depends on the width of the interval and
diverges when t → ∞. That is, the obtained conclusion is given in the form of |v(t)−u(t)| ≤ εL(t) for
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 3

t ∈ [a,∞), but limt→∞ L(t) = ∞. Unfortunately, this case is not Ulam stable on I = [a,∞) in the sense
defined in the next section. However, our study shows that the above L(t) can be chosen without
depending on t ∈ R. In other words, the novelty of our paper is that we can take the interval I as
the whole of real numbers. If the inequality |v(t)− u(t)| ≤ Kε holds for t ∈ R, then naturally this
inequality holds for t ∈ [a,b] as well, where K > 0 is a Hyers-Ulam constant and −∞ < a < b < ∞. If
there is a minimum Hyers-Ulam constant, it is called the best Hyers-Ulam constant. For example, it is
also known that the factor K = 3 of ε in Theorem 1.1 is not best Hyers-Ulam constant for the equation
u′(t) = u(t). Its best constant is known to be K = 1 (see, [28]). The second novelty of our study is
to derive the best Hyers-Ulam constants for equations (1.1) and (1.2). So we get sharper results on R
than the previous studies.

2. Preliminaries

Here, we give some definitions of Hyers-Ulam stability and generalized Hyers-Ulam stability of equa-
tions (1.1) and (1.2).

Definition 2.1. Let I be an interval of R. We say that equation (1.1) has the Hyers-Ulam stability,
if there exists a constant K > 0 with the following property: For every ε > 0 and every v(t) ∈ C2(I)
satisfying the inequality ∣∣v′′(t)+αv′(t)+βv(t)

∣∣≤ ε,
for all t ∈ I, there exists a solution u(t) ∈C2(I) satisfies (1.1) such that

|v(t)−u(t)| ≤ Kε,

for all t ∈ I. We call such a K a Hyers-Ulam constant for (1.1).

Definition 2.2. Let I be an interval of R, and let ϕ(t) be a positive function on I. We say that equation
(1.1) has the Hyers-Ulam-Rassias stability with respect to ϕ(t), if we change both ε’s in Definition
2.1 to εϕ(t) and still K > 0 exists. We call such a K a Hyers-Ulam-Rassias constant for (1.1).

Definition 2.3. Let I be an interval of R. We say that equation (1.2) has the Hyers-Ulam stability,
if there exists a constant K > 0 with the following property: For every ε > 0 and every v(t) ∈ C2(I)
satisfying the inequality ∣∣v′′(t)+αv′(t)+βv(t)−q(t)

∣∣≤ ε,
for all t ∈ I, there exists a solution u(t) ∈C2(I) satisfies (1.2) such that

|v(t)−u(t)| ≤ Kε,

for all t ∈ I. We call such a K a Hyers-Ulam constant for (1.2).

Definition 2.4. Let I be an interval of R, and let ϕ(t) be a positive function on I. We say that equation
(1.2) has the Hyers-Ulam-Rassias stability with respect to ϕ(t), if we change both ε’s in Definition
2.3 to εϕ(t) and still K > 0 exists. We call such a K a Hyers-Ulam-Rassias constant for (1.2).

Remark 2.5. In Definitions 2.2 and 2.4, if ϕ(t)≡ 1, then the Hyers-Ulam-Rassias stability with respect
to ϕ(t)≡ 1 becomes just Hyers-Ulam stability.

If there is a minimum Hyers-Ulam constant, we call it the best Hyers-Ulam constant.
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 4

3. Main results

The first main result of this paper is as follows.

Theorem 3.1. Let ε > 0 and ϕ(t) be a positive function on R. Let λ1 and λ2 be the roots of s2+αs+
β = 0. Suppose that v(t) ∈C2(R) satisfies∣∣v′′(t)+αv′(t)+βv(t)

∣∣≤ εϕ(t)

for t ∈ R. Then (i) and (ii) below hold:
(i) if λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for ℜ(s) ≥ min{ℜ(λ1),ℜ(λ2)}, then there

exists a solution u(t) ∈C2(R) of (1.1) such that

|v(t)−u(t)| ≤ ε
|λ1 −λ2|

∫ ∞

0
ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for t ∈ R;
(ii) if λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s)≥ ℜ(λ1), then there exists a solution

u(t) ∈C2(R) of (1.1) such that

|v(t)−u(t)| ≤ ε
∫ ∞

0
ϕ(t +σ)σe−ℜ(λ1)σ dσ

for t ∈ R.

Proof. Let ε > 0 and ϕ(t)> 0 for t ∈ R. Let λ1 and λ2 be the roots of s2 +αs+β = 0. Suppose that
v(t) ∈C2(R) satisfies ∣∣v′′(t)+αv′(t)+βv(t)

∣∣≤ εϕ(t)(3.1)

for all t ∈ R. Suppose that the Laplace transform of the function ϕ(t) which given by

Φ(s) := L {ϕ(t)}=
∫ ∞

0
e−stϕ(t)dt

converges absolutely for ℜ(s)≥ min{ℜ(λ1),ℜ(λ2)} if λ1 ̸= λ2; that is,∫ ∞

0

∣∣e−stϕ(t)
∣∣dt < ∞(3.2)

for ℜ(s) ≥ min{ℜ(λ1),ℜ(λ2)} if λ1 ̸= λ2. Moreover, we suppose that the Laplace transform of the
function tϕ(t) converges absolutely if λ1 = λ2; that is,∫ ∞

0

∣∣te−stϕ(t)
∣∣dt < ∞(3.3)

for ℜ(s)≥ ℜ(λ1) if λ1 = λ2. Note that (3.3) implies (3.2) because∫ ∞

0

∣∣∣ϕ(t)e−λ1t
∣∣∣dt =

∫ 1

0

∣∣∣ϕ(t)e−λ1t
∣∣∣dt +

∫ ∞

1

∣∣∣ϕ(t)e−λ1t
∣∣∣dt

≤
∫ 1

0

∣∣∣ϕ(t)e−λ1t
∣∣∣dt +

∫ ∞

1
|t|
∣∣∣ϕ(t)e−λ1t

∣∣∣dt

<
∫ 1

0

∣∣∣ϕ(t)e−λ1t
∣∣∣dt +

∫ ∞

0

∣∣∣ϕ(t)te−λ1t
∣∣∣dt < ∞
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 5

holds.
Define a function p : R→ C by

p(t) :=
1

ϕ(t)
(
v′′(t)+αv′(t)+βv(t)

)
(3.4)

for all t ∈ R. In view of (3.1), we have |p(t)| ≤ ε for all t ∈ R. Using this with (3.2) and (3.4), we
have ∣∣∣∣∫ ∞

0
e−st (v′′(t)+αv′(t)+βv(t)

)
dt
∣∣∣∣= ∣∣∣∣∫ ∞

0
e−stϕ(t)p(t)dt

∣∣∣∣
≤ ε

∫ ∞

0

∣∣e−stϕ(t)
∣∣dt < ∞

for ℜ(s) > max{ℜ(λ1),ℜ(λ2)}. Thus, the Laplace transform L {v′′(t)+αv′(t)+βv(t)} converges
for s > max{ℜ(λ1),ℜ(λ2)}. From the basic theory of the Laplace transform, we find that L {v′′(t)},
L {v′(t)} and L {v(t)} converge respectively. Needless to say, L {ϕ(t)p(t)} also converges from
(3.4). Taking Laplace transform from p(t)ϕ(t), we have

L {p(t)ϕ(t)}= L {v′′(t)}+αL {v′(t)}+βL {v(t)}

= (s2 +αs+β )L {v(t)}− (s+α)v(0)− v′(0),

and thus

L {v(t)}= L {p(t)ϕ(t)}+(s+α)v(0)+ v′(0)
s2 +αs+β

for ℜ(s)> max{ℜ(λ1),ℜ(λ2)}. Since λ1 and λ2 are the roots of s2 +αs+β = 0, we see that λ1 and
λ2 satisfy s2 +αs+β = (s−λ1)(s−λ2) = 0, λ1 +λ2 =−α , and λ1λ2 = β . Thus, we have

L {v(t)}= L {p(t)ϕ(t)}+(s−λ1 −λ2)v(0)+ v′(0)
(s−λ1)(s−λ2)

=
v(0)

s−λ1
+

L {p(t)ϕ(t)}−λ1v(0)+ v′(0)
(s−λ1)(s−λ2)

= v(0)L
{

eλ1t
}
+
(
L {p(t)ϕ(t)}−λ1v(0)+ v′(0)

)
L

{
eλ1t

}
L

{
eλ2t

}
= v(0)L

{
eλ1t

}
+
(
L {p(t)ϕ(t)}−λ1v(0)+ v′(0)

)
L

{
eλ1t ∗ eλ2t

}
= v(0)L

{
eλ1t

}
+L

{
p(t)ϕ(t)∗

(
eλ1t ∗ eλ2t

)}
+
(
−λ1v(0)+ v′(0)

)
L

{
eλ1t ∗ eλ2t

}
for t ≥ 0, where the symbol ∗ denotes convolution. Hence we obtain the solution of the equation

v′′(t)+αv′(t)+βv(t) = ϕ(t)p(t)(3.5)

as

v(t) = v(0)eλ1t +
(
−λ1v(0)+ v′(0)

)
eλ1t ∗ eλ2t + p(t)ϕ(t)∗

(
eλ1t ∗ eλ2t

)
(3.6)
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 6

for t ≥ 0, by using the inverse Laplace transform. Note here that from the definition of the convolution,
we have

eλ1t ∗ eλ2t =
∫ t

0
eλ1(t−τ)eλ2τdτ

and

p(t)ϕ(t)∗
(

eλ1t ∗ eλ2t
)
=

∫ t

0
p(t − τ)ϕ(t − τ)

∫ τ

0
eλ1(τ−σ)eλ2σ dσdτ

for t ≥ 0. These two functions and eλ1t can be defined not only for t ≥ 0, but also for t < 0. Similarly,
they are twice continuously differentiable on R. Hence, it can be seen that the function v(t) is a
solution of (3.5) not only for t ≥ 0, but also for t < 0. That is, v(t) is defined on R, and is a solution
of (3.5) on R. Now, define the function

v0(t) := v(0)eλ1t +
(
−λ1v(0)+ v′(0)

)
eλ1t ∗ eλ2t(3.7)

on R. Then v0(t) is a solution of (1.1) because if p(t)≡ 0, then (3.5) becomes (1.1). Note that

eλ1t ∗ eλ2t =
∫ t

0
eλ1(t−τ)eλ2τdτ = eλ1t

∫ t

0
e−(λ1−λ2)τdτ

=


eλ1t − eλ2t

λ1 −λ2
if λ1 ̸= λ2,

teλ1t if λ1 = λ2.

(3.8)

First, we consider the case λ1 ̸= λ2. Define the function

u1(t) := c1eλ1t + c2eλ2t

on R, where

c1 :=
1

λ1 −λ2

∫ ∞

0
p(τ)ϕ(τ)e−λ1τdτ and c2 :=− 1

λ1 −λ2

∫ ∞

0
p(τ)ϕ(τ)e−λ2τdτ.

Note that c1 and c2 are well-defined, because |p(t)| ≤ ε for all t ∈ R and the Laplace transform
Φ(s) = L {ϕ(t)} converges absolutely for ℜ(s)≥ min{ℜ(λ1),ℜ(λ2)}. Actually, we have∣∣∣∣∫ t

0
p(τ)ϕ(τ)e−λiτdτ

∣∣∣∣≤ ∫ t

0
|p(τ)|

∣∣∣ϕ(τ)e−λiτ
∣∣∣dτ ≤ ε

∫ t

0

∣∣∣ϕ(τ)e−λiτ
∣∣∣dτ

≤ ε
∫ ∞

0

∣∣∣ϕ(τ)e−λiτ
∣∣∣dτ < ∞

for t ≥ 0 and i ∈ {1,2}. Thus, c1 and c2 are constants, so that u1(t) is a solution of (1.1) because

u′′1(t)+αu′1(t)+βu1(t) = c1
(
λ 2

1 +αλ1 +β
)

eλ1t + c2
(
λ 2

2 +αλ2 +β
)

eλ2t = 0

holds. Now we consider the function

u(t) := v0(t)+u1(t).
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 7

Then by the principle of superposition, we see that u(t) is a solution of (1.1). The above equalities
(3.6), (3.7) and (3.8) with λ1 ̸= λ2 show that

v(t)−u(t) = v(t)− v0(t)−u1(t) = p(t)ϕ(t)∗
(

eλ1t ∗ eλ2t
)
− c1eλ1t − c2eλ2t

= p(t)ϕ(t)∗ eλ1t − eλ2t

λ1 −λ2
− c1eλ1t − c2eλ2t

=
1

λ1 −λ2

∫ t

0
p(τ)ϕ(τ)

(
eλ1(t−τ)− eλ2(t−τ)

)
dτ − c1eλ1t − c2eλ2t

=− eλ1t

λ1 −λ2

∫ ∞

t
p(τ)ϕ(τ)e−λ1τdτ +

eλ2t

λ1 −λ2

∫ ∞

t
p(τ)ϕ(τ)e−λ2τdτ

=
1

λ1 −λ2

∫ ∞

t
p(τ)ϕ(τ)

(
e−λ2(τ−t)− e−λ1(τ−t)

)
dτ

=
1

λ1 −λ2

∫ ∞

0
p(t +σ)ϕ(t +σ)

(
e−λ2σ − e−λ1σ

)
dσ

for t ∈ R. Hence

|v(t)−u(t)| ≤ 1
|λ1 −λ2|

∣∣∣∣∫ ∞

0
p(t +σ)ϕ(t +σ)

(
e−λ2σ − e−λ1σ

)
dσ

∣∣∣∣
≤ 1

|λ1 −λ2|

∫ ∞

0
|p(t +σ)|ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

≤ ε
|λ1 −λ2|

∫ ∞

0
ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for t ∈ R.
Next, we consider the case λ1 = λ2. Define the function

u2(t) := d1teλ1t +d2eλ1t

on R, where

d1 :=
∫ ∞

0
p(τ)ϕ(τ)e−λ1τdτ and d2 :=−

∫ ∞

0
p(τ)ϕ(τ)τe−λ1τdτ.

Note that d1 and d2 are well-defined, because |p(t)| ≤ ε for all t ∈ R, and (3.3) holds. Actually, we
have ∣∣∣∣∫ t

0
p(τ)ϕ(τ)e−λ1τdτ

∣∣∣∣≤ ∫ t

0
|p(τ)|

∣∣∣ϕ(τ)e−λ1τ
∣∣∣dτ ≤ ε

∫ ∞

0

∣∣∣ϕ(τ)e−λ1τ
∣∣∣dτ < ∞

and ∣∣∣∣∫ t

0
p(τ)ϕ(τ)τe−λ1τdτ

∣∣∣∣≤ ε
∫ ∞

0

∣∣∣ϕ(τ)τe−λ1τ
∣∣∣dτ < ∞

for t ≥ 0. We can easily verify that u2(t) is a solution of (1.1). Now we consider the function

w(t) := v0(t)+u2(t).
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 8

Then by the principle of superposition, we see that w(t) is a solution of (1.1). The above equalities
(3.6), (3.7) and (3.8) with λ1 = λ2 show that

v(t)−w(t) = v(t)− v0(t)−u2(t) = p(t)ϕ(t)∗
(

eλ1t ∗ eλ2t
)
−d1teλ1t −d2eλ1t

= p(t)ϕ(t)∗ teλ1t −d1teλ1t −d2eλ1t

=
∫ t

0
p(τ)ϕ(τ)(t − τ)eλ1(t−τ)dτ −d1teλ1t −d2eλ1t

= teλ1t
∫ t

0
p(τ)ϕ(τ)e−λ1τdτ − eλ1t

∫ t

0
p(τ)ϕ(τ)τe−λ1τdτ

−d1teλ1t −d2eλ1t

=−teλ1t
∫ ∞

t
p(τ)ϕ(τ)e−λ1τdτ + eλ1t

∫ ∞

t
p(τ)ϕ(τ)τe−λ1τdτ

=
∫ ∞

t
p(τ)ϕ(τ)(τ − t)e−λ1(τ−t)dτ

=
∫ ∞

0
p(t +σ)ϕ(t +σ)σe−λ1σ dσ

for t ∈ R. Hence

|v(t)−w(t)| ≤
∣∣∣∣∫ ∞

0
p(t +σ)ϕ(t +σ)σe−λ1σ dσ

∣∣∣∣
≤

∫ ∞

0
|p(t +σ)|ϕ(t +σ)σ

∣∣∣e−λ1σ
∣∣∣dσ

≤ ε
∫ ∞

0
ϕ(t +σ)σe−ℜ(λ1)σ dσ

for t ∈ R. □
Using the above theorem, we can also establish the following result for equation (1.2).

Theorem 3.2. Let ε > 0 and ϕ(t) be a positive function on R. Let λ1 and λ2 be the roots of s2+αs+
β = 0. Suppose that v(t) ∈C2(R) satisfies∣∣v′′(t)+αv′(t)+βv(t)−q(t)

∣∣≤ εϕ(t)

for t ∈ R. Then (i) and (ii) below hold:
(i) if λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for ℜ(s) ≥ min{ℜ(λ1),ℜ(λ2)}, then there

exists a solution u(t) ∈C2(R) of (1.2) such that

|v(t)−u(t)| ≤ ε
|λ1 −λ2|

∫ ∞

0
ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for t ∈ R;
(ii) if λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s)≥ ℜ(λ1), then there exists a solution

u(t) ∈C2(R) of (1.2) such that

|v(t)−u(t)| ≤ ε
∫ ∞

0
ϕ(t +σ)σe−ℜ(λ1)σ dσ

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 9

for t ∈ R.

Proof. Let ε > 0 and ϕ(t)> 0 for t ∈ R. Let λ1 and λ2 be the roots of s2 +αs+β = 0. Suppose that
v(t) ∈C2(R) satisfies ∣∣v′′(t)+αv′(t)+βv(t)−q(t)

∣∣≤ εϕ(t)

for all t ∈ R. Let u0(t) be a solution of (1.2) for t ∈ R. Then

εϕ(t)≥
∣∣v′′(t)+αv′(t)+βv(t)−q(t)

∣∣
=
∣∣v′′(t)+αv′(t)+βv(t)−

(
u′′0(t)+αu′0(t)+βu0(t)

)∣∣
=
∣∣(v(t)−u0(t))′′+α(v(t)−u0(t))′+β (v(t)−u0(t))

∣∣
for all t ∈ R.

First, we consider the case that λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for ℜ(s)≥min{ℜ(λ1),ℜ(λ2)}.
Using Theorem 3.1 (i), we see that there exists a solution w(t) of (1.1) such that

|(v(t)−u0(t))−w(t)| ≤ ε
|λ1 −λ2|

∫ ∞

0
ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for t ∈ R. Note that

|(v(t)−u0(t))−w(t)|= |v(t)− (u0(t)+w(t))|

and

(u0(t)+w(t))′′+α(u0(t)+w(t))′+β (u0(t)+w(t)) = q(t)

for t ∈ R. Hence u(t) := u0(t)+w(t) is a solution of (1.2) satisfying

|v(t)−u(t)| ≤ ε
|λ1 −λ2|

∫ ∞

0
ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for t ∈ R. This ends the proof of (i).
Next we consider the case that λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s) ≥ ℜ(λ1).

Using the same method as above, we can see that there exists a solution u(t) of (1.2) such that

|v(t)−u(t)| ≤ ε
∫ ∞

0
ϕ(t +σ)σe−ℜ(λ1)σ dσ

for t ∈ R. The proof is complete. □

4. Hyers-Ulam-Rassias stability

In this section, we will establish some stability results.

Theorem 4.1. Let ε > 0 and ϕ(t) be a non-increasing positive function on R. Let λ1 and λ2 be the
roots of s2 +αs+β = 0. Suppose that v(t) ∈C2(R) satisfies∣∣v′′(t)+αv′(t)+βv(t)−q(t)

∣∣≤ εϕ(t)

for t ∈ R. Then (i) and (ii) below hold:
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 10

(i) if λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for ℜ(s) ≥ min{ℜ(λ1),ℜ(λ2)}, then there
exists a solution u(t) ∈C2(R) of (1.2) such that

|v(t)−u(t)| ≤ εϕ(t)
|λ1 −λ2|

∫ ∞

0

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for t ∈ R;
(ii) if λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s)≥ ℜ(λ1), then there exists a solution

u(t) ∈C2(R) of (1.2) such that

|v(t)−u(t)| ≤ εϕ(t)
(ℜ(λ1))2

for t ∈ R.

Proof. The assumption of this theorem differs from that of Theorem 3.2 in that the function ϕ(t) is
assumed to be non-increasing. Hence we see that

|v(t)−u(t)| ≤ ε
|λ1 −λ2|

∫ ∞

0
ϕ(t +σ)

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

≤ εϕ(t)
|λ1 −λ2|

∫ ∞

0

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ

for the case (i). Moreover we have

|v(t)−u(t)| ≤ ε
∫ ∞

0
ϕ(t +σ)σe−ℜ(λ1)σ dσ

≤ εϕ(t)
∫ ∞

0
σe−ℜ(λ1)σ dσ =

εϕ(t)
(ℜ(λ1))2

for the case (ii). The proof is complete. □

This theorem can be rewritten as the following result.

Corollary 4.2. Let ϕ(t) be a non-increasing positive function on R. Let λ1 and λ2 be the roots of
s2 +αs+β = 0. Then (i) and (ii) below hold:

(i) if λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for ℜ(s)≥ min{ℜ(λ1),ℜ(λ2)}, then (1.2) has
Hyers-Ulam-Rassias stability with respect to ϕ(t) with Hyers-Ulam-Rassias constant

K =
1

|λ1 −λ2|

∫ ∞

0

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ ;

(ii) if λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s)≥ ℜ(λ1), then (1.2) has Hyers-Ulam-
Rassias stability with respect to ϕ(t) with Hyers-Ulam-Rassias constant

K =
1

(ℜ(λ1))2 .

If the signs of ℜ(λ1) and ℜ(λ2) are both positive, then we have following simple result.

Corollary 4.3. Let ϕ(t) be a non-increasing positive function on R. Let λ1 and λ2 be the roots of
s2 +αs+β = 0. Then (i) and (ii) below hold:
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(i) if λ1 ̸= λ2 and ℜ(λ1) > 0 and ℜ(λ2) > 0, then (1.2) has Hyers-Ulam-Rassias stability with
respect to ϕ(t) with Hyers-Ulam-Rassias constant

K =
1

|λ1 −λ2|

∫ ∞

0

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ ;

(ii) if λ1 = λ2 and ℜ(λ1) > 0, then (1.2) has Hyers-Ulam-Rassias stability with respect to ϕ(t)
with Hyers-Ulam-Rassias constant

K =
1

(ℜ(λ1))2 .

Proof. Suppose that ϕ(t) is a non-increasing positive function on R. First we will show case (i).
Suppose that λ1 ̸= λ2, ℜ(λ1)> 0 and ℜ(λ2)> 0. Then∫ ∞

0

∣∣ϕ(t)e−st∣∣dt ≤
∫ ∞

0
ϕ(t)e−min{ℜ(λ1),ℜ(λ2)}tdt

≤ ϕ(0)
∫ ∞

0
e−min{ℜ(λ1),ℜ(λ2)}tdt =

ϕ(0)
min{ℜ(λ1),ℜ(λ2)}

< ∞

for ℜ(s) ≥ min{ℜ(λ1),ℜ(λ2)}, and so that λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for ℜ(s) ≥
min{ℜ(λ1),ℜ(λ2)}. Hence all conditions of Corollary 4.2 (i) are satisfied.

Next we will show case (ii). Suppose that λ1 = λ2 and ℜ(λ1)> 0. Then∫ ∞

0

∣∣tϕ(t)e−st∣∣dt ≤
∫ ∞

0
tϕ(t)e−min{ℜ(λ1),ℜ(λ2)}tdt

≤ ϕ(0)
∫ ∞

0
te−min{ℜ(λ1),ℜ(λ2)}tdt =

ϕ(0)
(ℜ(λ1))2 < ∞

for ℜ(s)≥ ℜ(λ1), and so that λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s)≥ ℜ(λ1). Hence
all conditions of Corollary 4.2 (ii) are satisfied. Hence by Corollary 4.2, we have Corollary 4.3. □

If ℜ(λ1) is negative and ℜ(λ2)≥ ℜ(λ1), then we can choose ϕ(t) as e(ℜ(λ1)−δ )t for any δ > 0 and
get the following result.

Corollary 4.4. Let δ > 0. Let λ1 and λ2 be the roots of s2+αs+β = 0. Then (i) and (ii) below hold:

(i) if λ1 ̸= λ2, ℜ(λ1)< 0 and ℜ(λ2)≥ ℜ(λ1), then (1.2) has Hyers-Ulam-Rassias stability with
respect to ϕ(t) = e(ℜ(λ1)−δ )t with Hyers-Ulam-Rassias constant

K =
1

|λ1 −λ2|

∫ ∞

0

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ ;

(ii) if λ1 = λ2 and ℜ(λ1)< 0, then (1.2) has Hyers-Ulam-Rassias stability with respect to ϕ(t) =
e(ℜ(λ1)−δ )t with Hyers-Ulam-Rassias constant

K =
1

(ℜ(λ1))2 .
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GENERALIZED HYERS-ULAM STABILITY OF LINEAR DIFFERENTIAL EQUATIONS 12

Proof. Let δ > 0. Suppose that ℜ(λ1) is negative. Then ϕ(t) = e(ℜ(λ1)−δ )t is a non-increasing positive
function on R. First we will show case (i). Suppose that λ1 ̸= λ2 and ℜ(λ2)≥ ℜ(λ1). Then∫ ∞

0

∣∣ϕ(t)e−st∣∣dt ≤
∫ ∞

0
e(ℜ(λ1)−δ )te−ℜ(λ1)tdt =

∫ ∞

0
e−δ tdt < ∞

for ℜ(s)≥ ℜ(λ1) = min{ℜ(λ1),ℜ(λ2)}, and so that λ1 ̸= λ2 and L {ϕ(t)} converges absolutely for
ℜ(s)≥ min{ℜ(λ1),ℜ(λ2)}. Hence all conditions of Corollary 4.2 (i) are satisfied.

Next we will show case (ii). Suppose that λ1 = λ2. Then∫ ∞

0

∣∣tϕ(t)e−st∣∣dt ≤
∫ ∞

0
te(ℜ(λ1)−δ )te−ℜ(λ1)tdt =

∫ ∞

0
te−δ tdt < ∞

for ℜ(s)≥ ℜ(λ1), and so that λ1 = λ2 and L {tϕ(t)} converges absolutely for ℜ(s)≥ ℜ(λ1). Hence
all conditions of Corollary 4.2 (ii) are satisfied. Hence by Corollary 4.2, we have Corollary 4.4. □

In Corollary 4.3, if we choose ϕ(t)≡ 1, then we obtain the following Hyers-Ulam stability result.

Corollary 4.5. Let λ1 and λ2 be the roots of s2 +αs+β = 0. Then (i) and (ii) below hold:

(i) if λ1 ̸= λ2 and ℜ(λ1) > 0 and ℜ(λ2) > 0, then (1.2) has Hyers-Ulam stability with Hyers-
Ulam constant

K =
1

|λ1 −λ2|

∫ ∞

0

∣∣∣e−λ2σ − e−λ1σ
∣∣∣dσ ;

(ii) if λ1 = λ2 and ℜ(λ1)> 0, then (1.2) has Hyers-Ulam stability with Hyers-Ulam constant

K =
1

(ℜ(λ1))2 .

Remark 4.6. In 2020, Baias and Popa [5] studied the Hyers-Ulam stability and the minimum Hyers-
Ulam constant for equation (1.1). Note that using their results, given Hyers-Ulam constants in Corol-
lary 4.5 are the best Hyers-Ulam constants. This fact shows that our results are sharp.

5. Conclusions

This study explicitly evaluates the error between the approximate solution and exact solution of sec-
ond order differential equations using the Laplace transform method. In recent years, approaches
to the (generalized) Hyers-Ulam stability using the Laplace transform, Fourier transform, Mahgoub
transform, Aboodh transform, etc. have been studied. However, most of them are limited to analyzes
on finite intervals or the Ulam constant depends on the interval width. On the other hand, this study
realized stability analysis on unbounded intervals. In addition, this study gives sharp results on er-
ror. The decisive reason is that the minimum Hyers-Ulam constants can be derived in special cases.
That is, we derived the minimum error between the approximate solution and the true solution on R.
Investigating the error between the approximate and exact solutions can be expected to contribute to
computer science.
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