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CIRCLES WITH FOUR RATIONAL POINTS
IN GEOMETRIC PROGRESSION

AJAI CHOUDHRY

ABSTRACT. A set of rational points on a curve is said to be in geometric progression if either the
abscissae or the ordinates of the points are in geometric progression. Examples of three points in
geometric progression on a circle are already known. In this paper we obtain infinitely many examples of
four points in geometric progression on circles with rational radii.

1. Introduction

Let C be a plane curve defined by an equation f (x,y) = 0. A set of n rational points on the curve
C is said to be in arithmetic or geometric progression if the coordinates (xi,yi), i = 1,2, . . . ,n, of the
n points are such that either the abscissae xi, i = 1,2, . . . ,n, or the ordinates yi, i = 1,2, . . . ,n, are in
arithmetic or in geometric progression, respectively. Several authors have investigated the existence of
sequences of arithmetic or geometric progressions on conics, elliptic curves and hyperelliptic curves
([1], [2], [3], [5], [6], [7], [8], [11], [12], [13], [15], [16]).

This paper is concerned with geometric progressions on a circle. Çelik, Sadek and Soydan [4] have
proved that there exist infinitely many geometric progressions of length 3 on the unit circle x2 +y2 = 1.
In this paper we obtain infinitely many geometric progressions of length 4 on circles with rational radii.

2. Geometric progressions of length 4 on a circle

We will obtain geometric progressions, with a positive common ratio, of length 4 on a circle whose
centre is on the x-axis at (h,0) and whose radius is a, so that the equation of the circle may be written
as follows:

(2.1) (x−h)2 + y2 = a2.

If there exist four points Pi, i = 1, . . . ,4, with rational coordinates (xi,yi), i = 1, . . . ,4, respectively,
on the circle (2.1) such that their abscissae xi, i = 1, . . . ,4, are in geometric progression with common
positive ratio r, and k is a nonzero rational number, then there exists another circle (x−kh)2+y2 =(ka)2

on which there are four points (kxi,kyi), i = 1, . . . ,4, in geometric progression with the same common
ratio r. Thus, by appropriate scaling, we can find a second circle on which there are four points, with
integer coordinates, in geometric progression. Further, the abscissae of the four points Pi, i = 1, . . . ,4,
written in the reverse order, form a geometric progression with common ratio 1/r. There is, therefore,
no loss of generality in assuming that r > 1. Since r is positive, all the four abscissae xi must be of
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 2

the same sign. If these four abscissae are all negative, we note that there is a corresponding circle
(x+h)2 +y2 = a2 on which we have four points (−xi,yi), i = 1, . . . ,4, with positive abscissae and with
the same common ratio r. We may accordingly assume, without loss of generality, that the abscissae of
the four points Pi are all positive.

We take both h and a as rational so that the coordinates of an arbitrary rational point on the circle
(2.1) may be written as (h+ 2au/(u2 + 1),a(u2− 1)/(u2 + 1)) where u is some rational number.
Accordingly, we may take the coordinates of four rational points Pi, i = 1,2,3,4, on the circle (2.1) as
(xi,yi), i = 1,2,3,4, where

(2.2) xi = h+2aui/(u2
i +1), i = 1, . . . ,4.

If the abscissae xi of the four points Pi, i = 1, . . . ,4, are in geometric progression with common ratio
r, we must have xi+1 = rxi, i = 1,2,3, and we thus get the following three conditions, respectively:

(u2
1 +1)(u2

2 +1)(r−1)h+2a(ru1u2
2−u2

1u2 + ru1−u2) = 0,(2.3)

(u2
2 +1)(u2

3 +1)(r−1)h+2a(ru2u2
3−u2

2u3 + ru2−u3) = 0,(2.4)

(u2
3 +1)(u2

4 +1)(r−1)h+2a(ru3u2
4−u2

3u4 + ru3−u4) = 0.(2.5)

The three equations (2.3), (2.4) and (2.5) may be solved to obtain three values of h, namely h1,h2,h3
which may be written as follows:

(2.6)

h1 =−2a(ru1u2
2−u2

1u2 + ru1−u2)/((u2
1 +1)(u2

2 +1)(r−1)),

h2 =−2a(ru2u2
3−u2

2u3 + ru2−u3)/((u2
2 +1)(u2

3 +1)(r−1)),

h3 =−2a(ru3u2
4−u2

3u4 + ru3−u4)/((u2
3 +1)(u2

4 +1)(r−1)).

Naturally, if there exists a rational solution of the three simultaneous equations (2.3), (2.4) and (2.5),
the three values h1,h2,h3 must be identical, that is, we must have h1 = h2 as well as h2 = h3. The
condition h1 = h2 may be written as follows:

(2.7) (ru2u2
3−u2

2u3 +u2u2
3 + ru2 +u2−u3)u2

1− (u2
2 +1)(u2

3 +1)ru1

+ ru2u2
3−u2

2u3 +u2u2
3 + ru2 +u2−u3 = 0.

Eq. (2.7) is a quadratic equation in u1, it does not contain u4, and it will have a rational solution for u1
if the discriminant φ1(r,u2,u3) of Eq. (2.7) with respect to u1 is a perfect square, where

(2.8) φ1(r,u2,u3) = (ru2
2u2

3 +2ru2u2
3 + ru2

2 + ru2
3−2u2

2u3 +2u2u2
3 +2ru2 + r+2u2−2u3)

× (ru2
2u2

3−2ru2u2
3 + ru2

2 + ru2
3 +2u2

2u3−2u2u2
3−2ru2 + r−2u2 +2u3).

Similarly, the condition h2 = h3 yields a quadratic equation in u4 namely,

(2.9) (ru2
2u3− ru2u2

3 +u2
2u3− ru2 + ru3 +u3)u2

4− (u2
2 +1)(u2

3 +1)u4

+ ru2
2u3− ru2u2

3 +u2
2u3− ru2 + ru3 +u3 = 0.
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 3

Eq. (2.9) does not contain u1 and it will have a rational solution for u4 if its discriminant φ2(r,u2,u3)
with respect to u4 is a perfect square, where

(2.10) φ2(r,u2,u3) =−(2ru2
2u3−2ru2u2

3 +u2
2u2

3 +2u2
2u3−2ru2 +2ru3 +u2

2 +u2
3 +2u3 +1)

× (2ru2
2u3−2ru2u2

3−u2
2u2

3 +2u2
2u3−2ru2 +2ru3−u2

2−u2
3 +2u3−1).

We performed computer trials to find rational values of u2,u3 and a positive rational value of r such
that both the discriminants φ1(r,u2,u3) and φ2(r,u2,u3) are perfect squares. We took u2 = p1/p2,u3 =
q1/q2,r = r1/r2 where pi,qi,ri, i= 1,2, are integers such that r1 > r2 > 0, and performed trials over the
range |p1|+ |p2|+ |q1|+ |q2|+ r1+ r2 ≤ 100. This yielded 14 sets of numerical values of u2,u3,r such
that both φ1(r,u2,u3) and φ2(r,u2,u3) are perfect squares, and we thus obtained 14 rational solutions of
the simultaneous Eqs. (2.7) and (2.9) leading to 14 numerical examples of four points Pi, i = 1, . . . ,4,
in geometric progression on the circle (2.1) with a rational radius. In Table 1 we have listed 6 of these
numerical examples in which the abscissae of the points Pi, i = 1, . . . ,4, are all less than 104.

TABLE 1. Geometric progressions of length 4 on a circle

S. No. u2 u3 r h a Points P1,P2,P3,P4

1. 1/3 0 5/3 75 50 (27,14), (45,40), (75,50), (125,0)
2. 3/5 1/3 8/3 447 425 (27,65), (72,200), (192,340), (512,420)
3. 11/23 1/5 5/2 5075 4875 (512, 1716), (1280, 3060),

(3200, 4500), (8000, 3900)
4. 11/23 4/7 5/3 -2125 3250 (243, 2226), (405, 2040),

(675, 1650), (1125, 0)
5. 11/29 1/31 16/9 4825 3367 (1458, 0), (2592, 2520),

(4608, 3360), (8192, 0)
6. 3/5 21/67 3 2559 2465 (128, 408), (384, 1160),

(1152, 2024), (3456, 2296)

3. An infinitude of geometric progressions

We will now use the numerical results of Section 2 to obtain infinitely many circles with rational radii
and having four rational points in geometric progression.

3.1. Circles in which one or both points on the x-axis are included in the set of four points in
geometric progression. We observe from Table 1 that, in three of the geometric progressions listed at
S. No. 1, 4 and 5, the point P4 lies on the x-axis, and the coordinates of P4 may be written as (h+a,0).
On further investigation, we found that there are infinitely many such geometric progressions. While
we can find them by solving the simultaneous equations (2.7) and (2.9), we obtain them below by
starting ab initio since this is simpler.

If the point P1 on the circle (2.1) is defined as before, and P4 is taken as (h+a,0), and the common
ratio of the geometric progression is r, then x1r3 = h+a, that is, r3(h+2au1/(u2

1 +1)) = h+a, hence
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 4

we get,

(3.1) h = a(u2
1−2r3u1 +1)/((u2

1 +1)(r3−1)).

Since the points Pi, i = 1, . . . ,4, are in geometric progression, the abscissae of the points P2 and P3
must be x1r and x2r, respectively, hence we get,

(3.2) x2 = ar(u1−1)2/((u2
1 +1)(r3−1)), x3 = ar2(u1−1)2/((u2

1 +1)(r3−1)).

Since both P2 and P3 lie on the circle (2.1), we must have a2−(x2−h)2 = y2
2 and a2−(x3−h)2 = y2

3,
and on writing

(3.3) y2 = v(u1−1)a/((r2 + r+1)(u2
1 +1)), y3 = w(u1−1)ra/((r2 + r+1)(u2

1 +1)),

we get the following two conditions, respectively:

(u1 +1)2r4 +2(u1 +1)2r3 +(3u2
1 +2u1 +3)r2 +(2u2

1 +2)r = v2,(3.4)

(u1 +1)2r2 +(2u2
1 +2)r+2u2

1 +2 = w2,(3.5)

where v and w are some rational numbers.
In the next subsection we obtain solutions of the simultaneous diophantine equations (3.4) and (3.5)

that lead to geometric progressions containing both points of the circle (2.1) on the x-axis, while in the
following subsection, we obtain solutions that yield geometric progressions in which only one point of
the circle on the x-axis is included.

3.1.1. Geometric progressions containing both points (h−a,0) and (h+a,0). When the geometric
progression begins with the point P1 = (h−a,0), we have u1 =−1, and now the two conditions (3.4)
and (3.5) reduce to 4r(r+ 1) = v2 and 4(r+ 1) = w2, respectively. Thus, both r and r+ 1 must be
perfect squares, hence we take r = (t2− 1)2/(4t2), where t is an arbitrary rational parameter. This
leads to the circle (2.1) where

(3.6) h = (t8−8t6 +30t4−8t2 +1)(t2 +1)2, a = t12−6t10 +15t8−84t6 +15t4−6t2 +1,

with the following four points in geometric progression:

(3.7)
P1 = (128t6,0), P2 = (32(t2−1)2t4,8t2(t8−6t6 +6t2−1)),

P3 = (8(t2−1)4t2,4t(t10−7t8 +6t6 +6t4−7t2 +1), P4 = (2(t2−1)6,0).

Taking t = 3 yields, on appropriate scaling, the numerical example listed at S. No. 5 in Table I.

3.1.2. Geometric progressions with only one point on the x-axis. We will now solve the simultaneous
diophantine equations (3.4) and (3.5) to obtain geometric progressions that begin with a point on the
circle (2.1) that is not on the x-axis and end with the point (h+a,0) which lies on the x-axis.

We write

(3.8) u1 = (1+ t)/(1− t), v = 2p/(t−1), w = 2q/(t−1),

when Eqs. (3.4) and (3.5) may be written as

r(r+1)(r2 + t2 + r+1) = p2,(3.9)

(r+1)t2 + r2 + r+1 = q2,(3.10)
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 5

respectively.
On eliminating t between Eqs. (3.9) and (3.10) we get an equation that may be written as follows:

(3.11) (r2 + p+ r)(−r2 + p− r) = r(q− r)(q+ r).

Eq. (3.11) will be satisfied if there exists a rational number X such that

r2 + p+ r = X(q+ r),(3.12)

X(−r2 + p− r) = r(q− r).(3.13)

Eqs. (3.12) and (3.13) are two linear equations in p and q, and on solving them, we get

p = r(X2r+X2−2Xr+ r2 + r)/(X2− r),(3.14)

q =−r(X2−2Xr−2X + r)/(X2− r),(3.15)

Now on substituting the value of p given by (3.14) in Eq. (3.9), we get

(3.16) (r+1)(X2− r)2t2 +(r+1)X4 +4r2(r+1)X3−2r(2r3 +6r2 +3r+1)X2

+4r3(r+1)X + r2(r+1) = 0,

and, on writing t = Y/((r+1)(X2− r)), Eq. (3.16) may be written as follows:

(3.17)
Y 2 =−(r+1)2X4−4r2(r+1)2X3 +2r(r+1)(2r3 +6r2 +3r+1)X2

−4r3(r+1)2X− r2(r+1)2.

Eq. (3.17) is a quartic equation in X and Y and it may be considered as a quartic model of an elliptic
curve over the function field Q(r). If for any numerical rational value of r, the rank of the elliptic
curve (3.17) is positive, we can find infinitely many rational solutions of Eq. (3.17), and hence also of
the simultaneous diophantine equations (3.4) and (3.5), and thus obtain geometric progressions on the
circle (2.1) which end with the point (h+a,0).

We wrote r = r1/r2 and performed trials, taking r1 > r2 > 0, over the range r1 + r2 ≤ 20, and
obtained elliptic curves of positive rank when r = 5/3, 5/4 and 9/7. Each of these values of r will
yield infinitely many solutions of the simultaneous diophantine equations (3.4) and (3.5) and hence
we get infinitely many examples of geometric progressions on the circle (2.1) including the point
(h+a,0).

As a numerical example, when r = 5/3, Eq. (3.17) may be written as

(3.18) Y 2 =−64/9X4−6400/81X3 +68960/243X2−32000/243X−1600/81,

and the birational transformation defined by

(3.19)
X =−3(10x+ y−700)/(2(4x− y−980)),

Y = 98(x3−360x2 +14700x−1000y+1192000)/(9(4x− y−980)2),

and

(3.20)
x =−(208X2−960X−81Y +90)/(2X−3)2,

y =−18(528X3−920X2−36XY −1980X−135Y +1200)/(2X−3)3,
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 6

reduces Eq. (3.18) to the Weierstrass form of the elliptic curve given by

(3.21) y2 = x3−14700x+286000.

A reference to Cremona’s well-known database of elliptic curves [9] shows that the rank of the
curve (3.21) is 2 with the two generators of the Mordell-Weil group being R1 = (−40,900) and
R2 = (14,288). We can, therefore, find infinitely many rational points on the elliptic curve (3.21) using
the group law, and then find the corresponding point on the quartic curve (3.18) using the relations
(3.19) and thus obtain the four points Pi in geometric progression on the circle (2.1).

As a numerical example, the point R1 on the curve (3.21) yields the four points

(4563,29666),(7605,27560),(12675,22750),(21125,0),

which are in geometric progression with common ratio 5/3, on the circle

(3.22) (x+13725)2 + y2 = 348502.

Similarly, the point R2 on the curve (3.21) yields the four points

(88356987,171988866),(147261645,198917640),(245436075,201974850),(409060125,0)

which are in geometric progression, with the same common ratio 5/3, on the circle

(3.23) (x−202590875)2 + y2 = 2064692502.

Finally we note that there also exist circles (2.1) which have geometric progressions of four points
beginning with the point (h−a,0) which lies on the x-axis while the fourth point does not lie on the
x-axis. Such examples may be found by following a method similar to that used above for finding
geometric progressions ending with the point (h+a,0). Accordingly, we restrict ourselves to giving
only a numerical example. The circle

(3.24) (x−966123)2 + y2 = 9632352

has the two points (2888,0) and (1929358,0) on the x-axis, and it has the following four points in
geometric progression with common ratio 8, and beginning with the point (2888,0):

(2888,0),(23104,196308),(184832,563388),(1478656,815556).

3.2. Circles in which the points on the x-axis are not included in the geometric progression. We
will now obtain infinitely many examples of geometric progressions of points P1, . . ., P4, on the circle
(2.1) such that the points of intersection of the circle with the x-axis are not included in the geometric
progression.

3.2.1. Geometric progressions in which the points P1 and P4 are symmetrically situated on either side
of the diameter parallel to the y-axis. The existence of geometric progressions beginning with the
point (h−a,0) and ending with (h+a,0) suggests the possibility of geometric progressions in which
the two points P1 and P4 are symmetrically situated on either side of the vertical diameter of the circle.
Accordingly, we take the abscissae of the points P1 and P4 as h−2au/(u2 +1) and h+2au/(u2 +1).
Since the common ratio is r, we have (h−2au/(u2 +1))r3 = h+2au/(u2 +1), and hence we get

(3.25) h = 2au(r3 +1)/((u2 +1)(r3−1)).
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 7

Since the abscissae of the points Pi, i = 1, . . . ,4, are in geometric progression the abscissae of the
points P2 and P3 are given by

(3.26) x2 = (h−2au/(u2 +1))r, and x3 = (h−2au/(u2 +1))r2,

respectively.
Since P2 and P3 are rational points on the circle (2.1), the following two conditions must be satisfied:

(3.27) a2− (x2−h)2 = y2
2, a2− (x3−h)2 = y2

3,

where y2 and y3 are some rational numbers. Using the values of h,x2 and x3 given by (3.25), and (3.26),
respectively, and taking

(3.28) y2 = az2/((r2 + r+1)(u2 +1)), y3 = az3/((r2 + r+1)(u2 +1)),

the conditions (3.27) may be written as follows:

(u2−1)2r4 +2(u2−1)2r3 +(u2 +3)(3u2 +1)r2 +2(u4 +6u2 +1)r+(u2−1)2 = z2
2,(3.29)

(u2−1)2r4 +2(u4 +6u2 +1)r3 +(u2 +3)(3u2 +1)r2 +2(u2−1)2r+(u2−1)2 = z2
3,(3.30)

When u = 3 the discriminants, with respect to r, of each of the two equations (3.29) and (3.30)
vanish, and these two equations may now be written as follows:

16(r2 + r+4)(2r+1)2 = z2
2,(3.31)

16(4r2 + r+1)(r+2)2 = z2
3.(3.32)

By choosing r such that r2+r+4 becomes a perfect square, we readily obtain the following solution
of Eq. (3.31):

(3.33) r = (p2−4q2)/(q(2p+q)), z2 = 4(2p2 +2pq−7q2)(p2 + pq+4q2)/(q2(2p+q)2),

where p and q are arbitrary parameters.
Now, on using the value of r given by (3.33), and writing

(3.34) p = Xq, z3 = 4(X2 +4X−2)Y/(2X +1)2,

Eq. (3.32) may be written as follows:

(3.35) Y 2 = 4X4 +2X3−27X2−4X +61.

Eq. (3.35) represents the quartic model of an elliptic curve, and the birational transformation defined
by

(3.36)
X =−(x−2y−7)/(2(4x−73)),

Y = (8x3−219x2−4y2 +45y+24187)/(2(4x−73)2),

and

(3.37) x = 8X2 +2X +4Y −9, y = 32X3 +12X2 +16XY −108X +2Y −8,

reduces the quartic curve (3.35) to the Weierstrass form of the elliptic curve given by the cubic equation,

(3.38) y2 = x3−1227x+16346.
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 8

A reference to Cremona’s database of elliptic curves [9] shows that the curve (3.38) has rank 1
and the single generator of the Mordell-Weil group is the point R whose coordinates are given by
(x,y) = (25,36). We can accordingly find infinitely many rational points on the curve (3.38) and thus
find infinitely many rational solutions of the simultaneous equations (3.31) and (3.32). All of these
solutions do not yield the desired examples of geometric progressions on a circle. For instance, the
point R and 2R do not yield positive values of r. However, the point 3R with coordinates (385,7524)
yields an example of the circle,

(3.39) (x−15888)2 + y2 = 198252,

on which there are four points (3993,15860),(7623,18020),(14553,19780), (27783,15860) whose
abscissae are in geometric progression with the common ratio being 21/11.

Since the elliptic curve (3.38) has positive rank, it follows from a theorem of Poincaré and Hurwitz
[14, Satz 11, p. 78] that there are infinitely many rational points in the neighbourhood of the rational
point (385,7524) on the elliptic curve (3.38), and these rational points would yield infinitely many
examples of geometric progressions on a circle with common ratio > 1 with the first and fourth points
of the geometric progression being situated symmetrically on either side of the diameter of the circle
parallel to the y-axis.

3.2.2. More general examples. We will now obtain more general examples in which the first and last
terms of the geometric progression on the circle (2.1) are neither points of intersection of the circle
with the x-axis, nor are these points symmetrically situated as in the case of geometric progressions
obtained in Section 3.2.1. We will show how to obtain infinitely many such examples by finding
infinitely many solutions of the simultaneous diophantine equations (2.7) and (2.9) using the numerical
results given in Table 1.

The solution at S. No. 2 in Table 1 has u2 = 3/5,u3 = 1/3, and we substitute these values in the
two equations (2.7) and (2.9) which may now be written as follows:

(75u2
1−170u1 +75)r+24u2

1 +24 = 0,(3.40)

(24u2
4 +24)r−51u2

4 +170u4−51 = 0.(3.41)

We solve Eq. (3.40) for r when we get

(3.42) r =−24(u2
1 +1)/(5(15u2

1−34u1 +15)),

and now Eq. (3.41) reduces to

(3.43) (4401u2
1−8670u1 +4401)u2

4− (12750u2
1−28900u1 +12750)u4

+4401u2
1−8670u1 +4401 = 0.

Eq. (3.43) is a quadratic equation in u4 and it will have a rational solution if its discriminant is a
perfect square, that is, there must exist rational numbers u1 and v such that the following equation has
a rational solution:

(3.44) v2 = 1329489u4
1−6745260u3

1 +11011078u2
1−6745260u1 +1329489.
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 9

Now Eq. (3.44) represents the quartic model of an elliptic curve, and the birational transformation
defined by

(3.45)

u1 = (68677x−2616678847+294y)/(252y+10671x+1337348919),

v = (3148740x3−701722434420x2 +24429873322170120x

−53230085194000y+316866956396335870560)/(84y+3557x+445782973)2,

and

(3.46)

x =−(10439127u2
1−21636858u1−16065v+3865183)/(8(6u1−7)2),

y =−765(17040807u3
1 +49967001u2

1 +10671u1v−171887163u1

−68677v+80372691)/(16(6u1−7)3),

reduces Eq. (3.44) to the Weierstrass form of the elliptic curve given by

(3.47) y2 = x3 + x2−7758767360x+237867647099508.

The conductor of the elliptic curve (3.47) is 43368331440 and the curve is not included in the
databases of Cremona and of Stein on elliptic curves. Accordingly, we used the software APECS
(a package written in MAPLE) to determine that the rank of the elliptic curve (3.47) is 3, and three
independent rational points R1,R2,R3 on it are as follows:

R1 = (32760151/441,78279537050/9261), R2 = (64588,2486862), R3 = (5836,13884750).

We can now obtain infinitely many rational points on the elliptic curve (3.47) using the group law
and corresponding to each such rational point, we can obtain a rational solution of the simultaneous
equations (3.40) and (3.41). All such solutions will not yield the desired examples of geometric
progressions on a circle. For instance, while the point R1 yields the known example of a geometric
progression listed at S. No. 2 of Table 1, the point R2 leads to a negative value of r, and hence we do
not get a geometric progression with a positive common ratio. The point R3, however, yields a new
example of a geometric progression on the circle

(3.48) (x−14942502807)2 + y2 = 138134146852,

on which the four points,

(632132844180584652/554537833,303396613510115972/554537833),

(2754195732,6500430440), (6654453996,11050731748),

(1230048832913343556/76505437,1053225199474661304/76505437),

have their abscissae in geometric progression with common ratio 554537833/229516311.
While all rational points on the elliptic curve (3.47) do not yield examples of geometric progressions

with a positive common ratio, the aforementioned theorem of Poincaré and Hurwitz ensures the
existence of infinitely many rational points on the curve (3.47) in the neighbourhood of the points R1
and R3 and these rational points will yield infinitely many examples of geometric progressions on a
circle with a positive common ratio and such that the terms of the geometric progression do not contain
the points of intersection of the circle with the x-axis.
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 10

We can similarly use the other solutions listed in Table 1 to obtain further examples of geometric
progressions on a circle such that the terms of the geometric progression do not contain the points of
intersection of the circle with the x-axis.

3.2.3. Parametric solutions. We will now obtain parametric solutions of our problem by solving the
simultaneous diophantine equations (2.7) and (2.9). It follows from the discussion in Section 2 that
such solutions can be obtained by solving the simultaneous equations,

φ1(r,u2,u3) = v2,(3.49)

φ2(r,u2,u3) = w2,(3.50)

where φ1(r,u2,u3) and φ2(r,u2,u3) are defined by (2.8) and (2.10), respectively, while v and w are
arbitrary rational parameters.

It was pointed out by the referee that the simultaneous equations (3.49) and (3.50) represent the
intersection of two quadrics over the function field Q(u2,u3) and so define a curve of genus 1. There
are four rational points defined over Q(u2,u3) on the intersection given by

(3.51) (r,v,w) = (−1,±(u2
2 +1)(u2

3−1),±(u2
2−1)(u2

3 +1)),

and so the curve is elliptic. The referee transformed the elliptic curve to the cubic model of an elliptic
curve, and corresponding to one of the four points (3.51), found a rational point Q of infinite order on
the cubic model of the elliptic curve, and pulling back multiples of Q gives points on the intersection
of the quadrics (3.49) and (3.50) with r 6=−1, and in this manner it is possible to construct infinitely
many two-parameter quartets of rational points in geometric progression on a circle. The referee
actually computed the pullback of the point 2Q and thus obtained a monstrous parametrization of four
rational points in geometric progression, with the common ratio being given by a rational function of
two bivariate polynomials of degree 40, on the circle (2.1) in which the values of h and a are given by
bivariate polynomials of degrees exceeding 120!

As desired by the referee, we studied the simultaneous equations (3.49) and (3.50) more closely,
and we will now describe two methods of obtaining parametric solutions of these equations. We begin
by writing

(3.52) u2 = (1+ s)/(1− s), u3 = (1+ t)/(1− t),

and

(3.53) v = 8v1/((1− s)2(1− t)2), w = 8w1/((1− s)2(1− t)2),

when Eqs. (3.49) and (3.50) reduce to the following two equations, respectively:

(rs2t2 + rs2 + s2− t2)(rt2− s2 + t2 + r) = v2
1,(3.54)

(rs2− rt2 + s2 +1)(s2t2− rs2 + rt2 + t2) = w2
1.(3.55)

It is readily found that the left-hand side of Eq. (3.54) becomes a perfect square on taking

(3.56) r = (s− t)(s+ t)(m2 +1)/((m− s)(m+ s)(t2 +1)),
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 11

and, with r defined by (3.56), and taking w1 = w2/((m− s)(m+ s)(t2 +1)), Eq. (3.55) reduces to

(3.57) (s4− s2t2 + t4 + s2 + t2 +1)(s2t4− s4 +3s2t2 + t2)m4

− (s8t4 + s4t8 +4s6t4 +4s4t6 + s8−4s6t2 +18s4t4−4s2t6 + t8 +4s4t2 +4s2t4 + s4 + t4)m2

+(s4t2 +3s2t2− t4 + s2)(s4t4 + s4t2 + s2t4 + s4− s2t2 + t4) = w2
2.

We will now obtain two parametric solutions of Eq. (3.57) by using two different methods.
We first note that the coefficient of m4 in the polynomial on the left-hand side of Eq. (3.57) vanishes

if we take

(3.58) s =−(q4−1)/(4q2), t = (q2−1)2/(2q(q2 +1)),

and the left-hand side of Eq. (3.57) reduces to

(3.59) − (q2−1)4(q8 +14q4 +1)6(2mq+q2−1)(2mq−q2 +1)/(2048q11(q2 +1)4)2,

and it becomes a perfect square on taking

(3.60) m = (p2q2− p2−q2 +1)/(2q(p2 +1)),

where p is an arbitrary parameter.
Using the values of s, t given by (3.58) and the value of m given by (3.60), we get, from the relation

(3.56),

(3.61) r =− f (q, p)/ f (p,q),

where f (p,q) is a polynomial defined by

(3.62) f (p,q) = (p2(q−1)2 +(q+1)2)(p2(q+1)2 +(q−1)2).

We now have a two-parameter solution of the simultaneous equations (3.54) and (3.55) which yields
an example of four rational points in geometric progression on the circle (2.1) with

(3.63)

h = (q12−4q10−q8−24q6−q4−4q2 +1)p4 +4(q8−8q6−34q4−8q2 +1)p2q2

+q12−4q10−q8−24q6−q4−4q2 +1,

a = (p4q4 + p4 +12p2q2 +q4 +1)(q8 +14q4 +1),

where p and q are arbitrary parameters. The four rational points Pi, i= 1, . . . ,4, in geometric progression,
may be written as

(3.64)

P1 = (4q2(q2−1)2 f 2(p,q)/ f (q, p)),4q(q2−1)(q8 +14q4 +1)(p4−1)g(p,q)/ f (q, p)),

P2 =−4q2(q2−1)2 f (p,q),8q2(q4−1)g(p,q)),

P3 = 4q2(q2−1)2 f (q, p),4q(q2 +1)(q2−1)2g(p,q)),

P4 =−4q2(q2−1)2 f 2(q, p)/ f (p,q),8pq(q2−1)(q8 +14q4 +1)(p2 +1)g(p,q)/ f (p,q),

where g(p,q) = p4q4 + p4 +12p2q2 +q4 +1 while the common ratio r of the geometric progression
is given by (3.61). We note that r is necessarily negative.

To obtain a second parametric solution, we note that Eq. (3.57), considered as a quartic equation
in m and w2, has a solution (m,w2) = (t,s(s2− t2)(t2 +1)2). Thus, we may consider Eq. (3.57) as a
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CIRCLES WITH FOUR RATIONAL POINTS IN GEOMETRIC PROGRESSION 12

quartic model of an elliptic curve defined over the function field Q(s, t), reduce the curve to the cubic
model, and find a point of infinite order on it, and following an argument similar to the one used by
the referee, show the existence of infinitely many parametric solutions of the simultaneous equations
(3.54) and (3.55). The resulting parametrizations are, however, too cumbersome to write.

A simpler way of obtaining a solution of Eq. (3.57) is to apply a method, described by Fermat
(as quoted by Dickson [10, p. 639]), of making a quartic function a perfect square using the known
solution with m = t. This gives the following value of m which makes the left-hand side of Eq. (3.57)
a perfect square:

(3.65) m = t(s10t4−3s8t6− s6t8− s4t10−12s6t6−4s4t8−2s8t2−10s6t4−10s4t6−2s2t8−12s6t2

+4s4t4−8s2t6−3s6 + s4t2− s2t4− t6)/(s10t4 + s8t6− s6t8 +3s4t10 +8s8t4−4s6t6

+12s4t8 +2s8t2 +10s6t4 +10s4t6 +2s2t8 +4s6t2 +12s4t4 + s6 + s4t2 +3s2t4− t6).

This yields a two-parameter solution of four rational points on the circle (2.1) with the values of h
and a being given by bivariate polynomials of degree 32, while the common ratio of the geometric
progression is given by a rational function of two bivariate polynomials of degree 28. While this
solution is relatively much simpler, it is still too cumbersome to write, so we do not give it explicitly.

We found a couple of other two-parameter solutions of four rational points in geometric progression
on a circle but we could not find a single instance in which numerical values of the parameters yield
a geometric progression with a positive common ratio. This detracts from the aesthetic appeal of
such solutions. We, however, cannot rule out the existence of two-parameter solutions that may yield
examples of four rational points on a circle in geometric progression with a positive common ratio.

Acknowledgment. I am grateful to the referee for his/ her comments which have led to improvements
in the paper.
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