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Abstract. This paper deals with a class of third-order dissipative differential

operator generated by the general third-order symmetric regular differential ex-

pression and a certain boundary condition. By using a kind of quasi-derivative
and some conditions we prove that this operator is dissipative, and in further

the eigenvalue property and the completeness of the eigenfunctions and asso-

ciated functions are given.
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1. Introduction

It is well known that the dissipative operators are important research topic
in mathematics and physics, for example in the study of the Cauchy problems
in partial differential equations such as the scattering theory and telegrapher’s
equation and in infinite dimensional dynamical systems [16,18].

Completeness of the root functions(eigenfunctions and generalized eigenfunc-
tions) of a self-adjoint or non-self-adjoint operator is essential to the spectral theory
of differential operators, especially for the expansion in root functions, Parseval e-
quality as well as corresponding inverse spectral problems. Gohberg, Krein [9] and
Keldysh [14] studied the spectrum and principal functions of non-self-adjoint dif-
ferential operators and showed the completeness of the principal functions in the
corresponding Hilbert function spaces of such problems.

Non-self-adjoint differential operators generated by symmetric differential ex-
pressions together with non-self-adjoint boundary conditions(BCs) have been in-
vestigated in many papers [2,3,11,17,20,24,25,28,30,31]. The determinant of
perturbation connected with the dissipative operator L generated in L2[a, b) by the
Sturm–Liouville differential expression in Weyl’s limit circle case has been studied
by Bairamov and Uğurlu in [3], they using the Livšic theorem, investigated the
problem of completeness of the system of eigenfunctions and associated functions
of L. They also studied the dissipative boundary value problems with transmission
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conditions and show the completeness of the root functions using Krein’s theo-
rem [4,5,26].

Even order dissipative operators such as dissipative Sturm–Liouville operators
and dissipative fourth-order differential operators have been investigated by many
authors, see [2–5, 11, 17, 20, 24–26, 28, 30, 31] and their references. Odd order
problems arise in physics and other areas of applied mathematics and have also
been studied, e.g. in [1,7,8,10,12,21,22,29]. Especially, third-order differential
equations often appear in many physical problems such as in modelling thin mem-
brane flow of viscous liquid and elastic beam vibrations and so on [6,10,19], hence
third-order differential equations have great significance in mathematical physic-
s. Beside the Sturm–Liouville dissipative operators and fourth-order dissipative
operators, there are few studies on third-order dissipative operators. Recently,
the third-order dissipative differential operators generated by a maximal boundary
conditions have been studied by Uğurlu [21]. The study of a special third-order
dissipative differential operator can be found in [27]. However, for more complex
BCs, there is no such results. This article will consider a third-order dissipative
differential operator generated by general symmetric differential expression and a
complex non-self-adjoint dissipative BC, and show the eigenvalue property and the
completeness of the root function of it by Krein’s theorem.

2. Third-Order Boundary Value Problems

Throughout the paper, we consider the following third-order differential expres-
sion

(2.1) l(u) =
1

w

{
−i
(
q0 (q0u

′)
′
)′
− (p0u

′)
′
+ i
[
q1u
′ + (q1u)

′]
+ p1u

}
,

on the interval [a, b], where −∞ < a < b <∞, q0, q1, p0, p1 and w are continuous,
real-valued functions on [a, b], q0 6= 0 and w > 0 on [a, b]. Since q0 is continuous
on [a, b] and different from zero at each point on the interval, we may consider that
q0 > 0 on [a, b].

The quasi-derivatives of u is defined as [13,22]

(2.2) u[0] = u, u[1] = −1 + i√
2
q0u
′, u[2] = iq0 (q0u

′)
′
+ p0u

′ − iq1u.

As usual, let L2
w[a, b] be the Hilbert space consisting of all functions u such that∫ b

a

|u|2wdx <∞

with the usual inner product

(u, v) =

∫ b

a

uvwdx.

Now we shall consider a subspace Ω of L2
w[a, b],

Ω =
{
u ∈ L2

w[a, b] : u, u[1], u[2] ∈ ACloc(a, b), l(u) ∈ L2
w[a, b]

}
.

For all u, v ∈ Ω, we set

(2.3) [u, v] := uv[2] − u[2]v + iu[1]v[1],

where the bar over a function denotes its complex conjugate.
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DISSIPATIVE OPERATORS 3

We consider the boundary value problem consisting of the differential equation

(2.4) −i
(
q0 (q0u

′)
′
)′
− (p0u

′)
′
+ i
[
q1u
′ + (q1u)

′]
+ p1u = λwu, x ∈ [a, b],

and the boundary conditions(BCs):

l1(u) = u(a) + γ1u
[1](a) + γ2u

[2](a) = 0,(2.5)

l2(u) = u[1](a)− iγ1u[2](a) + ire−2iθγ4u(b) + re−2iθu[1](b) = 0,(2.6)

l3(u) = γ3u(b) + γ4u
[1](b) + u[2](b) = 0,(2.7)

where λ is a complex parameter, r is a real number with |r| ≤ 1, θ ∈ (−π, π],
γj , j = 1, 2, 3, 4 are complex numbers with 2=γ2 ≥ −|γ1|2 and 2=γ3 ≥ |γ4|2.

In L2
w[a, b], define the operator L as Lu = l(u) on D(L), where the domain

D(L) of L is given by

D(L) = {u ∈ Ω : lj(u) = 0, j = 1, 2, 3}.

3. Dissipative Operators

The dissipative operators are defined as follows.

Definition 1. A linear operator L, acting in the Hilbert space L2
w[a, b] and

having domain D(L), is said to be dissipative if =(Lf, f) ≥ 0, ∀f ∈ D(L).

Theorem 1. The operator L is dissipative in L2
w[a, b].

Proof. For u ∈ D(L), we have

(3.1) 2i=(Lu, u) = (Lu, u)− (u, Lu) = [u, u](b)− [u, u](a),

then, applying (2.3), it follows that

(3.2)
2i=(Lu, u) =u(b)u[2](b)− u[2](b)u(b) + iu[1](b)u[1](b)

−
(
u(a)u[2](a)− u[2](a)u(a) + iu[1](a)u[1](a)

)
.

From (2.5)–(2.7), it has

u(a) = (−iγ1γ1 − γ2)u[2](a) + ire−2iθγ1γ4u(b) + re−2iθγ1u
[1](b),(3.3)

u[1](a) = iγ1u
[2](a)− ire−2iθγ4u(b)− re−2iθu[1](b),(3.4)

u[2](b) = −γ3u(b)− γ4u[1](b),(3.5)

substituting (3.3)–(3.5) into (3.2) one obtains

(3.6) 2i=(Lu, u) = (Lu, u)− (u, Lu) =
(
u[2](a), u(b), u[1](b)

)
 iγ1γ1 + γ2 − γ2 0 0

0 −ir2γ4γ4 + γ3 − γ3 γ4(1− r2)
0 γ4(r2 − 1) i(1− r2)

 u[2](a)
u(b)
u[1](b)

 ,

and hence

(3.7) 2=(Lu, u) =
(
u[2](a), u(b), u[1](b)

) s 0 0
0 c f

0 f d

 u[2](a)
u(b)
u[1](b)

 ,

where

s = 2=γ2 + |γ1|2, f = −iγ4(1− r2), c = 2=γ3 − r2|γ4|2, d = 1− r2.
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Note that the 3 by 3 matrix in (3.7) is Hermitian, its eigenvalues are

s,
c+ d±

√
(c− d)2 + 4|f |2

2

and they are all non-negative if and only if

s ≥ 0, c+ d ≥ 0, cd ≥ |f |2.

Since |r| ≤ 1, 2=γ2 ≥ −|γ1|2 and 2=γ3 ≥ |γ4|2, we have

=(Lu, u) ≥ 0, ∀u ∈ D(L).

Hence L is a dissipative operator in L2
w[a, b]. �

Theorem 2. If |r| < 1, 2=γ2 > −|γ1|2 and 2=γ3 > |γ4|2, then the operator L
has no real eigenvalue.

Proof. Suppose λ0 is a real eigenvalue of L. Let φ0(x) = φ(x, λ0) 6= 0 be a
corresponding eigenfunction. Since

=(Lφ0, φ0) = =(λ0‖φ0‖2) = 0,

from (3.7), it follows that

=(Lφ0, φ0) =
1

2

(
φ
[2]
0 (a), φ0(b), φ

[1]
0 (b)

) s 0 0
0 c f

0 f d


 φ

[2]
0 (a)
φ0(b)

φ
[1]
0 (b)

 = 0,

since |r| < 1, 2=γ2 > −|γ1|2 and 2=γ3 > |γ4|2, the matrix s 0 0
0 c f

0 f d


is positive definite. Hence φ

[2]
0 (a) = 0, φ0(b) = 0 and φ

[1]
0 (b) = 0, and by the

boundary conditions (2.5)–(2.7), we obtain that φ
[2]
0 (b) = 0, φ0(a) = 0 and φ

[1]
0 (a) =

0, consequently, φ0 ≡ 0, this is contradictory to the fact that φ0 is a eigenfunction
of λ0, hence the operator L has no real eigenvalue. �

4. Completeness Theorems

In this section we show the completeness theorems of the operator here.
Let ψj(x, λ), j = 1, 2, 3 represent a set of linearly independent solutions of the

equation l(u) = λu, where λ is a complex parameter, then by the well known theory
of ordinary differential equations, for any x ∈ [a, b], ψj(x, λ), j = 1, 2, 3 are entire
functions of λ. Set zj(x) = ψj(x, 0), j = 1, 2, 3, then the solutions zj(x), j = 1, 2, 3
are linearly independent solutions of the equation l(u) = 0.

Lemma 1. For all x ∈ [a, b], φjk = [ψk(·, λ), zj ](x), j, k = 1, 2, 3, are entire
functions of λ with growth order ≤ 1 and minimal type: for any j, k = 1, 2, 3 and
ε ≥ 0, there exists a positive constant Cj,k,ε such that

|φjk| ≤ Cj,k,εeε|λ|, λ ∈ C.

Proof. See [30] and [23]. �
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DISSIPATIVE OPERATORS 5

Set Φ = (φjk)3×3. Then, a complex number is an eigenvalue of L if and only if
it is a zero of the entire function
(4.1)

∆(λ) =

∣∣∣∣∣∣
l1(ψ1(·, λ)) l1(ψ2(·, λ)) l1(ψ3(·, λ))
l2(ψ1(·, λ)) l2(ψ2(·, λ)) l2(ψ3(·, λ))
l3(ψ1(·, λ)) l3(ψ2(·, λ)) l3(ψ3(·, λ))

∣∣∣∣∣∣ = det(AΦ(a, λ) +BΦ(b, λ)).

Corollary 1. The entire function ∆(λ) is also of growth order ≤ 1 and
minimal type: for any ε ≥ 0, there exists a positive constant Cε such that

(4.2) |∆(λ)| ≤ Cεeε|λ|, λ ∈ C,
and hence

(4.3) lim sup
|λ|→∞

ln |∆(λ)|
|λ|

≤ 0.

From Theorem 2 it follows that zero is not an eigenvalue of L, hence the operator
L−1 exists. Now we show an analytical representation of L−1.

Consider the non-homogeneous boundary value problem composed of the equa-
tion l(u) = f(x) and the BCs (2.5)–(2.7), where x ∈ I = [a, b], f(x) ∈ L2(I).

Let u(x) be the solution of the above non-homogeneous boundary value prob-
lem, then

u(x) = C1z1(x) + C2z2(x) + C3z3(x) + u∗(x),

where Cj , j = 1, 2, 3 are arbitrary constants and u∗(x) is a special solution.
It can be obtained by the method of constant variation

u∗(x) = C1(x)z1(x) + C2(x)z2(x) + C3(x)z3(x),

where Cj , j = 1, 2, 3 satisfies
C ′1(x)z1(x) + C ′2(x)z2(x) + C ′3(x)z3(x) = 0,
C ′1(x)z′1(x) + C ′2(x)z′2(x) + C ′3(x)z′3(x) = 0,
−iq20
w (C ′1(x)z′′1 (x) + C ′2(x)z′′2 (x) + C ′3(x)z′′3 (x)) = f(x).

Solve the equations above, one has

C ′1(x) =
iw(x)f(x)

q20(x)D(x)

∣∣∣∣ z2(x) z3(x)
z′2(x) z′3(x)

∣∣∣∣ , C ′2(x) =
−iw(x)f(x)

q20(x)D(x)

∣∣∣∣ z1(x) z3(x)
z′1(x) z′3(x)

∣∣∣∣ ,
C ′3(x) =

iw(x)f(x)

q20(x)D(x)

∣∣∣∣ z1(x) z2(x)
z′1(x) z′2(x)

∣∣∣∣ ,
where

D(x) =

∣∣∣∣∣∣
z1(x) z2(x) z3(x)
z′1(x) z′2(x) z′3(x)
z′′1 (x) z′′2 (x) z′′3 (x)

∣∣∣∣∣∣ .
By proper calculation, it can be obtained that

u∗(x) =

∫ b

a

K(x, ξ)f(ξ)dξ,

where

(4.4) K(x, ξ) =


iw(ξ)

q20(ξ)D(ξ)

∣∣∣∣∣∣
z1(ξ) z2(ξ) z3(ξ)

z
′

1(ξ) z
′

2(ξ) z
′

3(ξ)
z1(x) z2(x) z3(x)

∣∣∣∣∣∣ , a < ξ ≤ x < b,

0, a < x ≤ ξ < b.
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then

u(x) = C1z1(x) + C2z2(x) + C3z3(x) +

∫ b

a

K(x, ξ)f(ξ)dξ,

substituting u(x) into the BCs one obtains

Cj(x) =
1

∆(0)

∫ b

a

Fj(ξ)f(ξ)dξ, j = 1, 2, 3,

where

(4.5) F1(ξ) = −

∣∣∣∣∣∣
l1(K) l1(z2) l1(z3)
l2(K) l2(z2) l2(z3)
l3(K) l3(z2) l3(z3)

∣∣∣∣∣∣ ,

(4.6) F2(ξ) = −

∣∣∣∣∣∣
l1(z1) l1(K) l1(z3)
l2(z1) l2(K) l2(z3)
l3(z1) l3(K) l3(z3)

∣∣∣∣∣∣ ,

(4.7) F3(ξ) = −

∣∣∣∣∣∣
l1(z1) l1(z2) l1(K)
l2(z1) l2(z2) l2(K)
l3(z1) l3(z2) l3(K)

∣∣∣∣∣∣ ,
then

u(x) =

∫ b

a

1

∆(0)
[F1(ξ)z1(x) + F2(ξ)z2(x) + F3(ξ)z3(x) +K(x, ξ)∆(0)]f(ξ)dξ,

let

(4.8) G(x, ξ) = − 1

∆(0)

∣∣∣∣∣∣∣∣
z1(x) z2(x) z3(x) K(x, ξ)
l1(z1) l1(z2) l1(z3) l1(K)
l2(z1) l2(z2) l2(z3) l2(K)
l3(z1) l3(z2) l3(z3) l3(K)

∣∣∣∣∣∣∣∣ ,
then

u(x) =

∫ b

a

G(x, ξ)f(ξ)dξ.

Define the operator T as

(4.9) Tu =

∫ b

a

G(x, ξ)u(ξ)dξ, ∀u ∈ L2(I),

then T is an integral operator and T = L−1, this implies that the root vectors of
the operators T and L coincide, since zj(x) ∈ L2(I), j = 1, 2, 3, then

(4.10)

∫ b

a

∫ b

a

|G(x, ξ)|2dxdξ < +∞,

hence the integral operator T is a Hilbert–Schmidt operator.
The next theorem is known as Krein’s Theorem.

Theorem 3. Let S be a compact dissipative operator in L2(I) with nuclear
imaginary part =S. The system of all root vectors of S is complete in L2(I) so long
as at least one of the following two conditions is fulfilled:

(4.11) lim
m→∞

n+(m,<S)

m
= 0, lim

m→∞

n−(m,<S)

m
= 0,
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where n+(m,<S) and n−(m,<S) denote the number of characteristic values of the
real component <S of S in the intervals [0,m] and [−m, 0], respectively.

Proof. See [9]. �

Theorem 4. If an entire function h(µ) is of order ≤ 1 and minimal type, then

(4.12) lim
ρ→∞

n+(ρ, h)

ρ
= 0, lim

ρ→∞

n−(ρ, h)

ρ
= 0,

where n+(ρ, h) and n−(ρ, h) denote the number of the zeros of the function h(µ) in
the intervals [0, ρ] and [−ρ, 0], respectively.

Proof. See [15]. �

The operator T can be written as T = T1 + iT2, where T1 = <T and T2 = =T ,
T and T1 are Hilbert–Schmidt operators, T1 is a self-adjoint operator in L2(I), and
T2 is a nuclear operator (since it is a finite dimensional operator) [9]. It is easy to
verify that T1 is the inverse of the real part L1 of the operator L.

Since the operator L is dissipative, it follows that the operator −T is dissipative.
Consider the operator −T = −T1 − iT2, the root vectors of the operator −T1 and
L1 coincide. Since the characteristic function of L1 is an entire function, therefore
using Theorem 4 and Krein’s Theorem we arrive at the following results.

Theorem 5. The system of all root vectors of the operator −T (also of T ) is
complete in L2(I).

Theorem 6. The system of all eigenvectors and associated vectors of the dis-
sipative operator L is complete in L2(I).

Remark 1. In this paper, a third-order dissipative differential operator gener-
ated by general symmetric differential expression and a complex dissipative BC is
studied. However, what kind of BCs can cause the third-order differential operators
generated by symmetric differential expressions to be dissipative? Namely that what
about the analytical representation of the dissipative BCs of this problem? It is still
unknown. It is an interesting problem and we plan to study it in our future studies.
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