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ABOSORBING IDEALS IN COMMUTATIVE RINGS: AN APPLICATION IN
TOPOLOGICAL GROUP ACTION THEORY

BRUNO MOREIRA FERNANDES

ABSTRACT. In this paper we present a certain theoretical construction with the so-called absorbing
ideals in commutative rings, which were systematically defined and studied in [1] by D. F. Anderson and
A. Badawi in 2011. We present a construction using tolls of the Absorbing Ideal Theory in Commutative
Rings and an application in Topological Group Action Theory. More precisely, we are going to study
certain primitive group actions on collections of proper ideals of commutative rings. Furthermore, we
will classify geometrically all irreducible affine varieties for which the collection of radical ideals of its
coordinate ring is under a certain primitive group action.

1. Introduction

Throughout this paper, we write R to be commutative ring with identity, I (R) the set of all proper
ideals of R,

√
I (R) the set of proper radical ideals of R and Aut(R) the group of automorphisms of R.

We will show how we can apply such construction in the Topological Group Action Theory, as well
how to study the effects of this on algebraic varieties.

In what follows, we present the definitions and basic notions about the Absorbing Ideal Theory in
commutative rings, some basic results of this theory and also some theoretical constructions.

Next, we provide basic definitions of Topological Group Action Theory and we study the effects
of certain primitive group actions on collections of ideals of integral domains through the previously
obtained constructions with the absorbing ideals.

In the last part, we will show what are the effects of these primitive group actions in relation to the
irreducibility of algebraic varieties.

In order to facilitate the development of this work, we write N to denote the set of all non-negative
integers, Spec(R) to denote the set of all prime ideals of R, “⊂” and “⊆” to denote the strict inclusion
and not necessarily strict inclusion of sets. Definitions that are not presented or explained here can be
searched in [2], [3] and [5].

2. Basic definitions and some ring-theoretic constructions with absorbing ideals

Let R be a ring. We say that a proper ideal I of R is n-absorbing if, for all x1, . . . ,xn+1 ∈ R such that
x1, . . . ,xn+1 ∈ I, there are 1≤ i1 < · · ·< in ≤ n such that xi1 , . . . ,xin ∈ I. The most trivial example is a
proper ideal P⊂ R that is a 1-absorbing if and only if is prime.
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Let I be a proper ideal of R. We write ωR(I) for denote the smallest positive integer for which
I is an absorbing ideal. When ω(I) does not exist, we will write ω(I) = ∞; hence either I is n-
absorbing for all n ∈ N, or I is not n-absorbing for every n ∈ N. If ωR(I)< ∞, I is ωR(I)-absorbing,
but it is not k-absorbing which is 1 ≤ k < ωR(I). We can establish a well defined correspondence
ωR : I (R)−→ N∪{∞} that associates each ideal I ⊂ R to ωR(I).

Let I ⊆I (R) be a non-empty set. We define

Ω(R,I ) := {ωR(I); I ∈I }

Remark that Ω(R,I ) = ωR(I ). If I = I (R), we write Ω(R,I ) = Ω(R). Hence, we have
Ω(R,I )⊆Ω(R) always.

Let ∼I an equivalence relation on I . The equivalence class of an ideal I ∈I is write as [I].

Proposition 2.1. There exist an one-to-one correspondence between the elements of Ω(R,I ) and the
equivalence class in I

∼I
.

Proof. In fact, for each ωR(I) ∈ Ω(R,I ), consider the equivalence class [I] ∈ I
∼I

. Of course, if

ωR(J) ∈ Ω(R,I ) and ωR(J) 6= ωR(I), then [J] ∈ I
∼I

and [J] 6= [I]. Since every equivalence class in
I
∼I

is represented by some ideal I ∈I , we concludes that exist an one-to-one correspondence between

the elements of Ω(R,I ) and the equivalence class in I
∼I

, as desired. �

Let I,J ∈I . We define the relation ∼I in I by

I ∼I J⇐⇒ ωR(I) = ωR(J)

The relation ∼I on I is an equivalence relation, since the equality relation = it is also.

Theorem 2.1. (Theorem 4.2, [1]). Let f : R −→ T be a surjective ring homomorphism and I a
n-absorbing ideal of R containing ker( f ). Then f (I) is an n-absorbing ideal of T if and only if I
is an n-absorbing ideal of R. Moreover, ωR( f−1(J)) = ωT (J). In particular, this holds if f is an
isomorphism.

3. Topological group actions

For any non-empty set X , Sym(X) will denote the group of permutations on X . If G is a group acting
on X , we say that X is a G-set. For each g ∈ G and x ∈ X , let is denote by xg the image of the action of
g on x whenever we want to omit it or when there are no ambiguities about the action in question. We
say that G acts transitively on X if, for any x,x′ ∈ X , there exist g ∈ G such that x′ = xg.

Suppose that G acts transitively on X . A subset B⊆ X is called block of X when, for every g ∈ G,
Bg = B or Bg∩B = /0. Remark that X and all its singleton subsets are blocks of X , called trivial blocks.
Also Remark that if B⊆ X is a block, then Bg is also a block of X , for every g ∈ G. In this case, the
set S(B) := {Bg |g ∈ G} is called block system of X . Thus, S(X) = {X} and S({x}) = {{xg}|g ∈ G},
with x ∈ X , are the so-called trivial block systems of X . Remark that any block system S(B) of X is
a partition of X and, conversely, every partition of X is a block system of X . Hence, trivial blocks
systems are trivial partitions of X and vice versa.
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We say that G acts primitively on X if X admits only trivial blocks. According to this definition,
we see that G acts primitively on X if and only if X admits only trivial blocks systems. Remark that if
G acts primitively on X then G acts transitively on X . In fact, if G acts primitively on X then x = x′ or
x′ ∈ S({x}) for every pair of elements x,x′ ∈ X .

Let ≡ be an equivalence relation on X . We say that ≡ is a G-congruence if, for any x,x′ ∈ X and
g ∈ G,

x≡ x′⇔ xg ≡ x′g

It is not difficult to see that the trivial equivalence relations given by

x≡1 x′⇔ x,x′ ∈ X and x≡2 x′⇔ x = x′

are the G-trivial congruences. Here, it should be Remark that a block system S(B) of X is a partition
of X that is obtained from a G-congruence ≡, namely, x≡ x′⇔ x,x′ ∈ Bg, for someg ∈G. Conversely,
every partition of X obtained by a G-congruence ≡ is a block system of X , given by the collection of
equivalence classes. Thus, a block system of X is trivial if and only if it is the partition obtained from
one of the trivial G-congruences.

We say that the group G is a topological group if G is a topological space such that the maps
(g,g′) 7−→ gg′ and g 7−→ g−1 are continuous. We say that X is a G-space if G is a topological group
and X is a topological space and at the same time a G-set. Remark that if X is a G-set such that X and
G are equipped with the discreet topology, then X is a G-space.

A non empty subset Y of a topological space X is irreducible if it can not be expressed as the union
Y = Y1∪Y2 of two proper subsets, each one of which is closed in Y . The empty set is not considered
to be irreducible.

If X is a topological space, we define the dimension of X , and denote it by dim X , to be the
supremum of all integers n such that there exists a chain

X0 ⊂ X1 ⊂ ·· · ⊂ Xn

of distinct irreducible closed subsets of X .

Proposition 3.1. If X is a topological space and Y ⊆ X is a subspace, then dim Y ≤ dim X.

Proof. Let

Y0 ⊂ Y1 ⊂ ·· · ⊂ Ym

be a increasing chain of irreducible closed subsets of Y . Since each Yi is closed and irreducible in Y ,
then each Yi is closed and irreducible in X . Indeed, each Yi can be written as Yi =Yi∩X and each Yi can
not be written as the union of two proper closed subsets, since Yi is closed and irreducible in Y . Hence,

Y0 ⊂ Y1 ⊂ ·· · ⊂ Ym

be a increasing chain of irreducible closed subsets of X and, therefore, dim Y ≤ dim X . �
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4. Main results

Let I ⊆I (R) be a non-empty set and G(R) be a subgroup of Aut(R). For each σ ∈ G(R), define the
correspondence

σ̂ : I −→I

I 7−→ σ̂ := σ(I)

If such correspondence is well defined for each σ ∈ G(R), then we also define the set

GR := {σ̂ |σ ∈ G(R)}.

In this case, GR is a subgroup of Sym(I ).
Consider the function

Ψ : GR×I −→I

(σ̂ , I) 7−→Ψ(σ̂ , I) := σ̂(I)

Let σ̂ , τ̂ ∈ GR and I ∈I . Then

Ψ

(
idI , I

)
= îdR(I) = I and Ψ(σ̂ ◦ τ̂, I) = (σ̂ ◦ τ̂)(I) = σ̂(τ̂(I)) = Ψ(σ̂ ,Ψ(τ, I))

Therefore, Ψ is a left group action of GR on I . Considering I and GR equipped with the discreet
topology, we see that I is a GR-space.

Proposition 4.1. ∼I is a GR-congruence.

Proof. Now, Remark that, for all I,J ∈I , we have

I ∼I J⇔ ωR(I) = ωR(J)

Let I,J ∈I and σ̂ ∈ GR. By Theorem 2.1, since σ is an isomorphism, then

ωR(σ̂(I)) = ωR(σ(I)) = ωR(I) and ωR(σ̂(J)) = ωR(σ(J)) = ωR(J).

Then for all I,J ∈I and σ̂ ∈ GR, we have

I ∼I J⇔ ωR(σ̂(I)) = ωR(σ̂(J))⇔ Iσ̂ ∼I Jσ̂

Thus ∼I is a GR-congruence. �

Proposition 4.2. Let R be a ring and I ⊆I (R). If GR acts primitively on I , then either Ω(R,I ) =
{ωR(I)} for some absorbing ideal I ∈ I , or there exists an one-to-one correspondence between
Ω(R,I ) and I .

Proof. By Proposition 4.1,∼I is a GR-congruence. Hence, I
∼I

is a block system of I . Assuming that
GR acts primitively on I , then ∼I is a GR-trivial congruence, i.e, there exists only one equivalence
class in I

∼I
, or the equivalence classes in I

∼I
are singleton sets. In the first case, we concludes that all

ideals in I are in the same equivalence class; so Ω(R,I ) = {ωR(I)} for some absorbing ideal I ∈I .
In the second case, we see that there exist an one-to-one correspondence between I

∼I
and I ; so, by

Proposition 2.1, there exist an one-to-one correspondence between Ω(R,I ) and I . �
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Corollary 4.1. Let R be an integral domain and I ⊆I (R) such that 0 ∈I . If GR acts primitively
on I , then either all ideals in I are prime, or 0 is the only one prime ideal in I .

Proof. Suppose that GR acts primitively on I . By Proposition 4.2, either Ω(R,I ) = {ωR(I)} for
some absorbing ideal I ∈I , or there exist an one-to-one correspondence between Ω(R,I ) and I .
Since 0 ∈I , then either ωR(I) = ωR(0) = 1, or ωR is an injective map on I . Therefore, either all
ideals in I are prime, or 0 is the only one prime ideal in I , as desired. �

Corollary 4.2. Let R be an integral domain. Then GR acts primitively on I (R) if, and only if, R is a
field.

Proof. Suppose that GR acts primitively on I (R). Since 0 ∈I (R) so, by Corollary, all ideals of R
are prime or 0 is the only one prime ideal in R. In the first case, assume that all proper ideals of R
are prime and let any x ∈ R, x 6= 0. Since R is an integral domain, then x2 6= 0. Take the non-zero
ideal

〈
x2
〉
. Since

〈
x2
〉

is prime (by hypothesis) and x2 ∈
〈
x2
〉
, then x ∈

〈
x2
〉
. Hence, x = x2y, for some

y ∈ R. Thus, we have
x(xy−1) = 0

Since R is an integral domain and x 6= 0, we obtain xy = 1. Thus, x is invertible. Therefore, R is a field.
In the second case, assume that 0 is the only one prime ideal in R. Then 0 is the only one maximal
ideal in R and hence R is also a field.

Reciprocally, if R is a field, then 0 is the only one proper ideal of R. Hence, GR acts trivially and so
primitively on I (R). �

Recall that an automorphism σ ∈ Aut(R) is an involution if σ2 = idR, or equivalently, if σ = σ−1.
For example, R always admit the trivial involution idR : x 7−→ x and the involution sign change
σ : x 7−→ −x. For each involution σ ∈ Aut(R), consider the correspondence σ̂ :

√
I (R)−→

√
I (R)

given by σ̂(I) := σ(I) for every I ∈
√

I (R).

Proposition 4.3. For each involution σ ∈ Aut(R), σ̂ is well defined.

Proof. Let I ∈
√

I (R). Given x ∈
√

σ(I), we have xn ∈ σ(I) for some n > 0. Thus, we get xn = σ(i)
for some i ∈ I. Therefore, we have

(σ(x))n = σ(xn) = σ(σ(i)) = σ
2(i) = i ∈ I

and σ(x) ∈
√

I. Since I is a radical ideal, then σ(x) ∈ I. So, exists i′ ∈ I such that σ(x) = i′. Therefore,
we have

x = σ
−1(i′) = σ(i′) ∈ σ(I).

This shows that
√

σ(I)⊆ σ(I) and, then, σ(I) is a radical ideal. �

Hence, the set
GR = {σ̂ |σ ∈ Aut(R) is an involution}

is a subgroup of Sym(
√

I (R)) and
√

I (R) is a GR-space.

Proposition 4.4. Let R be an integral domain. If GR acts primitively on
√

I (R), then either every
radical ideal of R is prime (primary), or 0 is the only one prime (primary) radical ideal of R.
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Proof. Recall that a proper ideal of R is primary if and only if it is radical is prime. Since 0 =
√

0, so it
follows from the Corollary 4.1. �

5. Affine varieties and irreducibility

Let F an algebraically closed field, F [T1, . . . ,Tn] the ring of polynomials in n independent variables
and An

F := Fn the n-dimensional affine space. Let X⊆ An
F be an affine variety and I(X), i.e,

I(X) := {p ∈ F [T1, . . . ,Tn] | p(x) = 0, ∀x ∈ X}

the ideal generated by X.
Remember that there is an one-to-one correspondence between the closed sets in X and the radical

ideals of the ring of coordinates F [X] := F [T1,...,Tn]
I(X) (see in [4], Theorem 1.13), i.e, if

Z (X) := {Y⊆ X |Y is closed in the induced Zariski topology onX}

then there exist an one-to-one map IX : Z (X) 7−→
√

F [X] given by

IX(Y) := {p ∈ F [X] | p(y) = 0, ∀y ∈ Y}

Recall also that an affine variety X⊆An
F is irreducible if X cannot be written as the union of two proper

algebraic subsets. In this case, X is irreducible if, and only if, I(X) is a prime ideal of F [T1, . . . ,Tn]. A
closed subset Y⊆X with this same property is irreducible in X. Hence, Y irreducible in X if, and only
if, IX(Y) is a prime ideal of F [X]. We define the dimension of an affine variety to be its dimension as a
topological space.

Proposition 5.1. (Corollary 3.2.9, [5]). The dimension of An
F is n.

Corollary 5.1. Let X⊆ An
F an affine variety. Then dim X≤ n.

Proof. Follow from Propositions 3.1 and 5.1. �

Consider
√

F [X] as a GF [X]-space, were

GF [X] = {σ̂ |σ ∈ Aut(F [X]) is an involution}

Theorem 5.1. Let X⊂ An
F an irreducible affine variety. Then GF [X] acts primitively on

√
F [X] if, and

only if, X is a point.

Proof. Suppose that GF [X ] acts primitively on
√

F [X]. Then, by Proposition, either all radical ideals
of R are prime, or 0 is the only one prime radical ideal of R. Hence, either all closed subsets of X are
irreducible, or X does not have irreducible proper closed subsets. Remark that the second case occur if,
and only if, X is a point, since points in any non singleton algebraic set are trivial irreducible proper
closed subsets. In the first case, remark that if X it were infinite, then we could get an ascending chain
of strict inclusions of finite closed subsets that, by hypothesis, are irreducible. In fact, fix y0 ∈ X and
consider the singleton closed subset Y0 = {y0}, after y1 ∈X\Y0 and the closed subset Y1 = Y0∪{y1},
after y2 ∈ X\Y1 and the closed subset Y2 = Y1∪{y2} and so on, obtaining the ascending chain of
strict inclusions of irreducible finite closed subsets

Y0 ⊂ Y1 ⊂ Y2 ⊂ ·· · ⊂ Yn ⊂ Yn+1 ⊂ ·· · ⊂ X
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Well, this contradicts the Corollary 5.1. So, X is finite and, since is irreducible, X a point.
Reciprocally, if X is a point, then I(X) is a maximal ideal in F [T1, . . . ,Tn] and hence, F [X] is a field.

In particular, the only one proper radical ideal in F [X] is the zero ideal 0. Thus, GF [X] acts primitively
on
√

F [X] = {0} trivially. �
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