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ABSTRACT. In this paper we investigate the solutions of second-order
fuzzy initial value problem using the fuzzy Laplace transform with Heaviside
function under the generalized differentiabilty. The related theorems and
properties are given in detail and the method is illustrated by solving an
example about electric circuit.

1. Introduction. Fuzzy differential equations (FDEs) are utilized for the purpose
of the modelling problems in science and engineering. Most of the problems have
uncertain structural parameters. Instead, many researches have modelled these
uncertain structural parameters as fuzzy numbers in this area ( [3], [9], [13]).

The concept of the fuzzy derivative was first introduced by [26]; it was followed
up by [8] who used the extension principle in their approach. The properties of
differentiable fuzzy set-valued functions by means of the concept of H-differentiability
due to Puri and Ralescu [14] were discussed by Kaleva [13]. Seikkala [16], defined the
fuzzy derivative which is the generalization of Hukuhara derivative, and showed that
fuzzy initial value problem has a unique solution. Strongly generalized differentiability
was introduced in Bede and Gal [7] and studied in Bede et al. [1]. The strongly
generalized derivative is defined for a larger class of fuzzy-valued function than the
H-derivative. So in this paper we use this differentiability method.

Fuzzy initial value problems (FIVPs) are one of the simplest FDEs which may
appear in many applications. The FDEs and FIVPs (Cauchy problem) were rigorously
improved by [13], [16], [2], [24]. The numerical methods for solving fuzzy differential
equations are introduced in [20], [19].

The Laplace transform technique becomes truly useful when solving IVPs with
discontinuous or impulsive in homogeneous terms, these terms commonly modeled
using Heaviside function. This special function that often arise when the method
of Laplace transforms is applied to physical problems such as electric circuits with
on/off switches. Without Laplace transforms it would be much more difficult to
solve differential equations that involve this function. The Heaviside step function,
or the unit step function is a step function the value of which is zero for negative
arguments and one for positive arguments. The function was originally developed
in operational calculus for the solution of differential equations, where it represents
a signal that switches on at a specified time and stays switched on indefinitely.
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Oliver Heaviside, who developed the operational calculus as a tool in the analysis
of telegraphic communications [5].

Fuzzy Laplace transform is useful to solve FIVPs with Heaviside function. Allahvi-
ranloo and Barkhordari Ahmadi first introduced fuzzy Laplace transform [17]. Later,
Salahshour and Allahviranloo point out that under what conditions the fuzzy-valued
functions can possess the fuzzy Laplace transform and they consider the important
properties and related theorems for solving FIVPs [23]. Çitil examined a solution of
FIVP with fuzzy coefficient by fuzzy Laplace transform [10]. The use of the fuzzy
Laplace transform with the notion of strongly generalized differentiability is very im-
portant for the solutions of FIVPs. Salgado et al. solve a fuzzy harmonic oscillator
equation using this transform method with linearly correlated fuzzy numbers [22].

The aim of this article is to investigate the fuzzy solutions of the FIVPs with
Heaviside function which is applied to physical problems such as electric circuits. For
this purpose, we use of the fuzzy Laplace transform with the notion of generalized
differentiability. Then we give comparison results of the found solutions.

2. Notation and Preliminaries. We now recall the basic definitions and the
theorems utilized in this study.

Definition 1. ( [9]) Let E be a universal set. A fuzzy subset Â of E is given by its
membership function µÂ : E → [0, 1], where µÂ (t) represents the degree to which

t ∈ E belongs to Â. We denote the class of the fuzzy subsets of E by the sembol
F (E) .

Definition 2. ( [29]) The α− cut of a fuzzy set Â ⊆ E, denoted by
[
Â
]α

, is

defined as
[
Â
]α

=
{
x ∈ E : Â (t) ≥ α

}
, ∀α ∈ (0, 1]. If E is also topological

space, then the 0− cut is defined as the closure of the support of Â ,that is,[
Â
]0

=
{
x ∈ E : Â (t) > 0

}
. The 1− cut of a fuzzy subset Â is also called as core of

Â and denoted by
[
Â
]1

= core
(
Â
)

Definition 3. ( [13]) A fuzzy subset û on R is called a fuzzy real number (fuzzy
interval), whose α− cut set is denoted by [û]

α
, i.e., [û]

α
= {x : û (t) ≥ 0}, if it satisfies

two axioms:

i) There exists r ∈ R such that û (r) = 1 ,
ii) For all 0 < α ≤ 1 , there exist real numbers −∞ < u−

α ≤ u+
α < +∞ such that

[û]
α
is equal to the closed interval [u−

α , u
+
α ].

The set of all fuzzy real numbers (fuzzy intervals) is denoted by RF . FK (R) , the
family of fuzzy sets of R whose α− cuts are nonempty compact convex subsets of R.
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Definition 4. ( [6]) A fuzzy number Â is said to be triangular if the parametric
representation of its α− cut is of the form for a1 < a2 < a3 which a1, a2, a3 ∈ R,[
Â
]α

= [(a2 − a1)α+ a1, a3 − (a3 − a2)α], for all α ∈ [0, 1].

Theorem 1. ( [16] ) Let [u−
α , u

+
α ] , 0 < α ≤ 1 be a given family of non-emty intervals.

If

i) [u−
α , u

+
α ] ⊃

[
u−
β , u

+
β

]
for 0 < α ≤ β and

ii)

[
lim
k→∞

u−
αk

, lim
k→∞

u+
αk

]
= [u−

α , u
+
α ] ,

whenever (αk) is a non-decreasing sequence converging to α ∈]0, 1], then the family
[u−

α , u
+
α ] , 0 < α ≤ 1, represents the α−cut sets of a fuzzy number û ∈ RF . Conversely,

if [u−
α , u

+
α ] , 0 < α ≤ 1, are the α − cut sets of a fuzzy number û ∈ RF then the

conditions (i) and (ii) hold true.

The Zadeh’s extension principle is a mathematical method to extend classical
functions to deal with fuzzy sets as input arguments [27]. For multiple fuzzy variables
as arguments, the Zadeh’s extension principle is defined as follows.

Definition 5. ( [28], [27]) Let f : X1 × X2 → Z a classical function and let

Âi ∈ F (Xi), for i = 1, 2. The Zadeh’s extension f̂ of f , applied to (Â1, Â2), is

the fuzzy set f̂ (Â1, Â2) of Z, whose membership function is defined by

f̂(Â1, Â2)(z) =

 sup
(x1,x2)∈f−1(z)

min{Â1(x1), Â2(x2)}, if f−1(z) ̸= ∅,

0 , if f−1(z) = ∅

where f−1(z) = {(x1, x2) ∈ X1 ×X2 : f(x1, x2) = z}.

We can apply the Zadeh’s extension principle to define the standard arithmetic
operations for fuzzy numbers [27]. Let [û]α = [u−

α , u
+
α ] and [v̂]α = [v−α , v

+
α ]. For all

α ∈ [0, 1] and λ ∈ R , we have

[û⊕ v̂]α = [û]α + [v̂]α = [u−
α + v−α , u

+
α + v+α ]

[û− v̂]α = [û]α − [v̂]α = [u−
α − v+α , u

+
α + v−α ]

[λ⊙ û]α = λ⊙ [û]α =

{
[λu−

α , λu
+
α ] , if λ ≥ 0,

[λu+
α , λu

−
α ] , if λ < 0.

The diameter of û ∈ RF is defined d ([û]α) = u+
α − u−

α , where α ∈ [0, 1].

The notion of interactivity among fuzzy numbers arises from a given joint possi-
bility distribution.
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Definition 6. ( [25]) Let Â1, ..., Ân ∈ RF and let J a fuzzy subset of Rn. The fuzzy

subset J is called a joint possibility distribution of Â1, ..., Ân if

Âi(xi) = sup
xj∈R,j ̸=i

J (x1, ..., xn) ,

for all xi ∈ R and for all i = 1, ..., n .

Definition 7. ( [25]) Let Â1, ..., Ân ∈ RF and f : Rn → R. Given a joint possibility

distribution J of Â1, ..., Ân , the sup − J extension of f at (Â1, ..., Ân) is the fuzzy

set f̂(J) := fJ(A1, ..., An) of R whose membership function is given by

f̂(J) (z) = sup
f(x1,...,xn)=z

J (x1, ..., xn) ,∀z ∈ R

for all z ∈ R, where f−1(z) = {(x1, ..., xn) : f((x1, ..., xn)) = z}.

We can use the sup-J extension principle to generate an arithmetic on interactive
fuzzy numbers. Here we focus on the special type of interactivity called linearly
correlation.

Definition 8. ( [18]) Two fuzzy numbers A and B are linearly correlated if there
exists q, r ∈ R, q ̸= 0, such that [B]α = q[A]α + r for each α ∈ [0, 1] In this case, we
may simply write B = qA+ r.

Remark 1. ( [18]) If A and B are linearly correlated fuzzy numbers where [B]α =
q[A]α+ r, with q, r ∈ R, q ̸= 0, [A]α = [a−α , a

−
α ] and [B]α = [b−α , b

+
α ], then the addition

(+L) subtraction (−L) are given as follows

[B +L A]
α
= (q + 1) [A]α + r =

 [b−α + a−α , b
+
α + a+α ] if q > 0,

[b+α + a−α , b
−
α + a+α ] if − 1 ≤ q < 0,

[b−α + a+α , b
+
α + a−α ] if q < −1,

[B −L A]
α
= (q − 1) [A]α + r =

 [b−α − a−α , b
+
α − a+α ] if q ≥ 1,

[b+α − a+α , b
−
α − a−α ] if 0 ≤ q < 1,

[b−α − a+α , b
+
α − a−α ] if q < 0,

for all α ∈ [0; 1].

Remark 2. ( [22]) Let A ∈ RF \R. Note that B +L A = 0 if and only if q = −1 and
r = 0.

Define D : RF × RF → R+ ∪ {0} by the equation

D(û, v̂) = sup
0<α≤1

{max[|u −
α − v −

α |, |u +
α − v +

α |]}

where [û]α = [u −
α , u +

α ], [v̂]α = [v −
α , v +

α ]. Then it is easy to show that D is a metric
in RF . [14]
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Definition 9. ( [14]) Let û, v̂ ∈ RF . If there exist ŵ ∈ RF such that û = v̂⊕ ŵ, then
w is called the Hukuhara difference of û and v̂ and it is denoted by û⊖h v̂. If û⊖h v̂
exists, its α− cuts are given by

[û⊖h v̂]
α
=

[
u −
α − v −

α , u +
α − v +

α

]
for all α ∈ [0, 1] .

In the present work, the sign ”⊖h” always stands for Hukuhara difference (H-

difference) and a function f̂ : [a, b] ⊆ R → RF is called fuzzy-valued function. The

α − cut representation of fuzzy-valued function f̂ given by [f̂ (t)]α = [f−
α (t) , f+

α (t)],
∀t ∈ [a, b],∀α ∈ [0, 1].

Definition 10. ( [12]) Let f̂ : (a, b) → RF and t0 ∈ [a, b]. If there existsf̂ ′(t0) ∈ RF

such that for all h > 0 sufficiently small, ∃f̂(t0 + h)⊖h f̂(t0), f̂(t0)⊖h f̂(t0 − h) and
the limits hold

lim
h→0

f̂(t0 + h)⊖h f̂(t0)

h
= lim

h→0

f̂(t0)⊖h f̂(t0 − h)

h
= f̂ ′ (t0)

f̂ is Hukuhara differentiable at t0.

Definition 11. ( [12]) Let f̂ : (a, b) → RF and t0 ∈ [a, b]. If there exists f̂ ′(t0) ∈ RF

such that for all h > 0 sufficiently small, ∃f̂(t0 + h)⊖h f̂(t0), f̂(t0)⊖h f̂(t0 − h) and
the limits hold when f is (i)− differentiable at t0

lim
h→0

f̂(t0 + h)⊖h f̂(t0)

h
= lim

h→0

f̂(t0)⊖h f̂(t0 − h)

h
= f̂ ′ (t0) ,

If there exists f ′(t0) ∈ RF such that for all h > 0 sufficiently small, ∃f̂(t0)⊖h f̂(t0+h),

f̂(t0 − h)⊖h f̂(t0) and the limits hold when f is (ii)− differentiable at x0

lim
h→0

f̂(t0)⊖h f̂(t0 + h)

−h
= lim

h→0

f̂(t0 − h)⊖h f̂(t0)

−h
= f̂ ′ (t0) .

Theorem 2. ( [11]) Let f̂ : [a, b] → RF be fuzzy function and for all α ∈ [0, 1] We
say that

- if f̂ is (i)−differentiable ,

(i)
[
f̂ ′ (t)

]α
=

[{
(f−

α )
′
(t) , (f+

α )
′
(t)

}]
,

- If f̂ is (ii)−differentiable

(ii)
[
f̂ ′ (t)

]α
=

[{
(f+

α )
′
(t) , (f−

α )
′
(t)

}]
.

Theorem 3. ( [11]) Let f̂ ′ : [a, b] → RF be fuzzy function and for all α ∈ [0, 1]. f̂

and f̂ ′ are (i) or (ii) differentiable. We say that
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- if f̂ and f̂ ′ are (i)−differentiable

(i)
[
f̂ ′′ (t)

]α
=

[{
(f−

α )
′′
(t) , (f+

α )
′′
(t)

}]
,

- If f̂ is (i)−differentiable and f ′ is (ii)−differentiable

(ii)
[
f̂ ′′ (t)

]α
=

[{
(f+

α )
′′
(t) , (f−

α )
′′
(t)

}]
,

- If f̂ is (ii)−differentiable and f̂ ′ is (i)−differentiable

(iii)
[
f̂ ′′ (t)

]α
=

[{
(f+

α )
′′
(t) , (f−

α )
′′
(t)

}]
,

- if f̂ and f̂ ′ are (ii)−differentiable

(iv)
[
f̂ ′′ (t)

]α
=

[{
(f−

α )
′′
(t) , (f+

α )
′′
(t)

}]
.

Definition 12. ( [23]) Let f̂(t) be a fuzzy-valued function on [a,∞) represented

by
[
f̂ (t)

]α
= [(f−

α (t)) , (f+
α (t))] and α ∈ [0, 1]. If f−

α (t) and f+
α (t) are Riemann-

integrable on [a,∞[ for each α ∈ [0, 1], then the improper fuzzy Riemann integral is
the fuzzy number given by∫ ∞

a

f̂(t)dt =

(∫ ∞

a

f−
α (t)dt,

∫ ∞

a

f+
α (t)dt

)

Theorem 4. ( [24]) Let f̂(t) be a fuzzy-valued function on [a,∞[ represented by
((f−

α (t)) , (f+
α (t))). For any fixed α ∈ [0, 1] ,assume f−

α (t) and f+
α (t) are Riemann-

integrable on [a, b] for every b ≥ a, and assume there are two positive functions

M−
α and M+

α such that
∫ b

a
|f−

α (t)| dt ≤ M−
α and

∫ b

a
|f+

α (t)| dt ≤ M+
α for every b ≥ a.

Then f̂(t) is improper fuzzy Riemann-integrable on [a,∞[

Definition 13. ( [17]) Let f̂ : [a,∞[ → RF be a continuous function with
[
f̂ (t)

]α
=

[(f−
α (t)) , (f+

α (t))] for all t ∈ [0,∞[ and α ∈ [0, 1]. If for every s > 0 the function

f̂(t)⊙ e−st is improper fuzzy Riemann integrable on [0,∞[, then

L
(
f̂ (t)

)
=

∫ ∞

0

f̂ (t)⊙ e−stdt

is called fuzzy Laplace transform of the fuzzy function f .

Under the conditions of the Definition (Üst), we can show that ref yap[
L
(
f̂ (t)

)]α
=

[
L
(
f−
α (t)

)
, L

(
f+
α (t)

)]
where L denotes the usual Laplace transform, that is, if g : [0,∞[→ R, then

L (g (t)) =

∫ ∞

0

g (t) e−stdt.
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Theorem 5. ( [17]) Let f̂ , ĝ : [a,∞[ → RF be continuous functions such that their

fuzzy Laplace transform exist and let c1, c2 ∈ R. We have that L
(
c1 ⊙ f̂ (t) + c2 ⊙ ĝ (t)

)
=

c1 ⊙ L
(
f̂ (t)

)
+ c2 ⊙ L (ĝ (t)) .

Definition 14. ( [17]) If f̂ , f̂ ′ : [a,∞[ → RF are continuous functions nad their
fuzzy Laplace transform exist, then

L
(
f̂ ′ (t)

)
= s⊙ L

(
f̂ (t)

)
⊖h f̂ (0) ,

if f̂ is (i)−differentiable,

L
(
f̂ ′ (t)

)
=

(
−f̂ (0)

)
⊖h

(
−s⊙ L

(
f̂ (t)

))
,

if f̂ is (ii)−differentiable.

Theorem 6. ( [23] ) If f̂ , f̂ ′′ : [a,∞[ → RF are continuous functions and⊙ their
fuzzy Laplace transform exist, then

(1) L
(
f̂ ′′ (t)

)
= s2 ⊙ L

(
f̂ (t)

)
⊖h s⊙ f̂ (0)⊖h f̂ ′ (0) ,

if f̂ and f̂ ′ are (i)−differentiable,

(2) L
(
f̂ ′′ (t)

)
= (−1)⊙ f̂ ′ (0)⊖h

(
−s2

)
⊙ L

(
f̂ (t)

)
⊕ (−s)⊙ f̂ (0) ,

if f̂ is (i)−differentiable and f ′ is (ii)−differentiable,

(3) L
(
f̂ ′′ (t)

)
= (−s)⊙ f̂ (0)⊖h

(
−s2

)
⊙ L

(
f̂ (t)

)
⊖ f̂ ′ (0) ,

if f̂ is (ii)−differentiable and f̂ ′ is (i)−differentiable,

(4) L
(
f̂ ′′ (t)

)
= s2 ⊙ L

(
f̂ (t)

)
⊖h s⊙ f̂ (0)⊕ (−1)⊙ f̂ ′ (0) ,

if f̂ and f̂ ′ are (ii)−differentiable.

Now, we present two useful results for determining the fuzzy Laplace transforms.
An important function occurring in electrical system is the (delayed) unit step
function.

Definition 15. ( [4])The Heaviside or unit step function, denoted here by uc(t) , is
zero for t < c and is one for t ≥ c ; that is,

uc(t) =

{
0, t < c

1, t ≥ c
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The Heaviside function can be used to represent a translation of a function f(t) a
distance c in the positive t direction. We have

uc(t)f(t− c) =

{
0, t < c

f(t− c), t ≥ c

Theorem 7. ( [23]) (First translation theorem) If F̂ (s) = L
(
f̂ (t)

)
for b real s > b,

then

F̂ (s− b) = L
(
ebtf̂ (t)

)
.

Theorem 8. ( [23]) (Second translation theorem) If F̂ (s) = L
(
f̂ (t)

)
then

L
(
uc(t)f̂ (t− b)

)
= e−btF̂ (s) , b ≥ 0

2.1. Solution of FIVPs. In this section, we are going to researche the solution of
FIVPs with Heaviside function under generalized H-differentiability which has been
proposed in Salahshour and Allahviranloo ( [23]).

We consider a fuzzy inital value problem of the form

(5) û′′(t) + λû(t) = g(t), û(0) = û0, û′(0) = ẑ0,

where û, û′′ : [0,∞[ → RF , [û0]
α
= [u−

α , u
+
α ] and [ẑ0]

α
= [z−α , z+α ] for all α ∈ [0, 1] and

λ = k2, k ≥ 0 is a real number and g(t) is a real Heaviside function (discontinuous
function) such that its Laplace transform exists. Here for every t ∈ [0,∞[, û′′(t) and
λû(t) are fuzzy numbers whose the sum is a real number g(t). This assumption is not
restrictive, since the sum of two fuzzy numbers is a real number if, and only if, they
are linearly-correlated as we pointed out in Remark 2. So from Remark 2 ,this sum
make sense if û′′(t) and λû(t) are linearly correlated with q = −1 and r = g(t). In
other words, we have û′′(t)+L λû(t) = g(t) ⇔ û′′(t) = −λû(t)+ g(t) for all t ∈ [0,∞[.
From above comments, the FIVP (5) can be rewritten as follows:

(6) û′′(t) = −λû(t) + g(t), û(0) = û0, û′(0) = ẑ0

Thus, using the Theorem 6, we have the following alternatives:

case[1]

If û and û′ are (i)−differentiability, we have

(7)
(
s2 ⊙ L(û(t))

)
⊖h (s⊙ û(0))⊖h û′(0) = −k2 ⊙ L(û(t))⊕ L (g(t)) ,
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and we get the α−cut representation of Eq. (7) as following

L
{
u−
α (t)

}
=

s3

s4 − k4
u−
α +

s2

s4 − k4
z−α

− k2s

s4 − k4
u+
α − k2

s4 − k4
z+α +

1

(s2 + k2)
L (g (t)) ,

and

L
{
u+
α (t)

}
=

s3

s4 − k4
u+
α +

s2

s4 − k4
z+α

− k2s

s4 − k4
u−
α − k2

s4 − k4
z−α +

1

(s2 + k2)
L (g (t)) .

case[2]

If û is (i)−differentiability and û′ are (ii)−differentiability, we have

(8) (−1⊙ û′(0))⊖h

(
−s2 ⊙ L(û(t))

)
⊕ (−s⊙ û(0)) = −k2 ⊙ L(û(t))⊕ L (g(t))

and we get the α− cut representation of Eq. (8) as following

L
{
u−
α (t)

}
=

1

s2 + k2
z−α +

s

s2 + k2
u+
α +

L (g (t))

s2 + k2

and

L
{
u+
α (t)

}
=

1

s2 + k2
z+α +

s

s2 + k2
u−
α +

L (g (t))

s2 + k2

case[3]

If û is (ii)−differentiability and û′ are (i)−differentiability, we have

(9) (−s⊙ û(0))⊖h

(
−s2 ⊙ L(û(t))

)
⊖h û′(0) = −k2 ⊙ L(û(t))⊕ L (g(t))

and we get the α− cut representation of Eq. (9) as following

L
{
u−
α (t)

}
=

1

s2 + k2
z−α +

s

s2 + k2
u−
α +

L (g (t))

s2 + k2

and

L
{
u+
α (t)

}
=

1

s2 + k2
z+α +

s

s2 + k2
u+
α +

L (g (t))

s2 + k2

case[4]

If û and û′ are (ii)−differentiability, we have

(10)
(
s2 ⊙ L(û(t))

)
⊖h (s⊙ û(0))⊕ (−1⊙ û′(0)) = −k2 ⊙ L(û(t))⊕ L (g(t))
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and we get the α− cut representation of Eq. (10) as following

L
{
u−
α (t)

}
=

s3

s4 − k4
u−
α +

s2

s4 − k4
z+α

− k2s

s4 − k4
u+
α − k2

s4 − k4
z−α +

1

(s2 + k2)
L (g (t)) ,

and

L
{
u+
α (t)

}
=

s3

s4 − k4
u+
α +

s2

s4 − k4
z−α

− k2s

s4 − k4
u−
α − k2

s4 − k4
z+α +

1

(s2 + k2)
L (g (t)) .

Then, the authors of [12] state that if we ensure that the solution [û (t)]α =
[u−

α (t) , u+
α (t)] of the problem (5) are valid cut sets of a fuzzy number valued function

and if [û (t)]α = [u−
α (t) , u+

α (t)] are valid cut sets of a fuzzy valued function, then by
the Theorem 1, it is possible to construct the solution of FIVP (5).

Now we give an example to solve second-order FIVP under generalized H-
differentiability.

Example 1. Consider the following FIVP: (Electric circuit)

(11) û′′(t) = −4û(t)⊕ g(t), û(0) = 0̂, û′(0) = 0̂

where 0̂ = (−0.5, 0, 0.5) is initial condition given by linearly correlated fuzzy numbers

whose α−cuts are given by
[
0̂
]α

= [0.5α− 0.5, 0.5− 0.5α] , g (t) = 1 − 2U (t− 1) +

U (t− 2) is a real Heaviside funcion. This problem is a fuzzy version of the electric
circuit problem which is given by Nagle et al. [21]. Now we consider this example by
using fuzzy laplace method in four cases (gh-differentiability) as following:

case[1]

Let us consider û(t) and û′(t) are (i)−differentiable; then by applying (1), we have(
s2 ⊙ L(û(t))

)
⊖h (s⊙ û(0))⊖h û′(0) = −22 ⊙ L(û(t))⊕ L (g(t)) ,

then we get the α−cut representation of solution as following

u−
α (t) = (0.5α− 0.5) /4 (2 (cosh(2t) + cos(2t)) + sinh(2t) + sin(2t))

− (0.5− 0.5α) /4 (2 (cosh(2t)− cos(2t)) + sinh(2t)− sin(2t))

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)(12)

+ (1/4− 1/4cos(2t− 4))U(t− 2)
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and

u+
α (t) = (0.5− 0.5α) /4 (2 (cosh(2t) + cos(2t)) + sinh(2t) + sin(2t))

− (0.5α− 0.5) /4 (2 (cosh(2t)− cos(2t)) + sinh(2t)− sin(2t))

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)(13)

+ (1/4− 1/4cos(2t− 4))U(t− 2)

The diameter of 0−cut is

dt = cosh(2t) + sinh(2t)/2

which is positive for all t ∈ [0,∞[. So the solution (12)-(13) yields a fuzzy function
û : [0,∞[ → RF . Note that the conditions (i) and (ii) of Theorem 1 are indeed
satisfied:

i) by analysing the signs of the terms of Eq. (12)-(13), one can verify that
u−
α (t) < u−

β (t) and u+
α (t) > u+

β (t) for all t > 0 and β > α.

ii) since 0̂ is a fuzzy number, we have that u−
αk

(t) → u−
α (t) and u+

αk
(t) → u+

α (t)
whenever (αk) is a non-decreasing sequence converging to α ∈]0, 1].

Hence, from Theorem 1, û : [0,∞[→ RF is a fuzzy function, that is, û(t) is a
fuzzy number for every t ≥ 0. Similarly, one can show that û′ : [0,∞[→ RF is well
defined and û, û′ are differentiable in the sense (i) (that is, û and û′ are Hukuhara
differentiable).

So the function û, given by (12)-(13), is a solution of the problem (5) and Figure
1 illustrates the geometric behavior of this solution.û(t) is a valid fuzzy function for
t ∈ (0,∞) in Figure 1.

case[2]

Let us consider û(t) is (i)−differentiable and û′(t) are (ii)−differentiable; then by
applying (2), we have

−û′(0;α)⊖h

(
−s2

)
L(û(t;α))− sû(0;α)⊕ 4 (Lû(t;α)) = L (tU(t− 3)) ,

then we get the α−cut representation of solution as following

u−
α (t) = (0.5α− 0.5) (cos(2t) + sin(2t))

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)(14)

+ (1/4− 1/4cos(2t− 4))U(t− 2)

and

u+
0 (t) = (0.5− 0.5α) (cos(2t) + sin(2t))

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)(15)

+ (1/4− 1/4cos(2t− 4))U(t− 2)
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The diameter of 0−cut is

dt = cos(2t) + sin(2t)

which is not positive for all t ∈ [0,∞[. Therefore, α−cut of û (14)-(15) is not a
solution of problem (11). This indicates that the condition of case (2) do not hold
true in the domain [0,∞[. But at some intervals conditions of fuzzy solution are
satisified such as t ∈ [0, 1]∪ [3, 4].

case[3]

Let us consider û(t) is (ii)−differentiable and û′(t) are (i)−differentiable; then by
applying (3), we have

−sû(0;α)⊖h

(
−s2

)
L(û(t;α))⊖h û′(0;α)⊕ 4 (Lû(t;α)) = L (tU(t− 3)) ,

then we get the α−cut representation of solution as following

u−
α (t) = (0.5α− 0.5) cos(2t) + (0.5− 0.5α) sin(2t)

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)(16)

+ (1/4− 1/4cos(2t− 4))U(t− 2)

and

u+
0 (t) = (0.5− 0.5α) cos(2t) + (0.5α− 0.5) sin(2t)

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)(17)

+ (1/4− 1/4cos(2t− 4))U(t− 2)

The diameter of 0−cut is

dt = cos(2t)− sin(2t)

which is not positive for all t ∈ [0,∞[. Therefore, α−cut of û (16)-(17) is not a
solution of problem (11). This indicates that the condition of case (3) do not hold
true in the domain [0,∞[. But at some intervals conditions of fuzzy solution are
satisified such as t ∈ [0, 0.3]∪ (2, 3.5) .

case[4]

Let us consider û(t) and û′(t) are (ii)−differentiable; then by applying (4), we have

s2L(û(t;α))⊖h sû(0;α)− û′(0;α)⊕ 4 (Lû(t;α)) = L (tU(t− 3)) ,

then we get the α−cut representation of solution as following

u−
α (t) = (0.5α− 0.5) /4 (2 (cosh(2t) + cos(2t))− (sinh(2t)− sin(2t)))

− (0.5− 0.5α) /4 (2 (cosh(2t)− cos(2t))− (sinh(2t) + sin(2t)))(18)

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)

+ (1/4− 1/4cos(2t− 4))U(t− 2)
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and

u+
α (t) = (0.5− 0.5α) /4 (2 (cosh(2t) + cos(2t))− (sinh(2t)− sin(2t)))

− (0.5α− 0.5) /4 (2 (cosh(2t)− cos(2t))− (sinh(2t) + sin(2t)))(19)

+ (1/4− 1/4cos(2t))− (1/2− 1/2cos(2t− 2))U(t− 1)

+ (1/4− 1/4cos(2t− 4))U(t− 2)

The diameter of 0−cut is

dt = cosh(2t)− sinh(2t)/2

which is not positive for all t ∈ [0,∞[. Therefore, α−cut of û (18)-(19) is not a
solution of problem (11). This indicates that the condition of case (4) do not hold
true in the domain [0,∞[.

Note that the crisp solution of the problem (11) is

u(t) = (
1

4
− 1

4
cos(2t))− (

1

2
− 1

2
cos(2(t− 1))U(t− 1)(20)

+(
1

4
− 1

4
cos(2(t− 2))U(t− 2).

So it is easy to see that if the initial conditions are real numbers, that is,
u−
α (0) = u+

α (0) = (u−
α )

′
(0) = (u+

α )
′
(0) = 0, for all α ∈ (0, 1], then Eq. (20) becomes

the classical solution of Electric circuit problem for all the four cases. But fuzzy
solution of the problem (11) is satisfied only case 1 for t ∈ (0,∞). In case 2, case 3
and case 4, the fuzzy solution is provided only at certain intervals. So there are no
fuzzy solutions in these cases for t ∈ (0,∞).

0 0.5 1 1.5 2 2.5 3

t

-50

-40

-30

-20

-10

0

10

20

30

40

50

[u
(t

)]
,

Figure 1. Fuzzy solution of FIVP (11) for Cases 1. For α =
0, 0.2, 0.4, 0.6, 0.8, 1, α−cut of û(t). the red and black dashed-line illustrate
the 0-cut of û(t) and green line illustrate the 1−cut for all t.
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0
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Figure 2. Fuzzy solution of FIVP (11) in the utα−space. the gray-scale lines varying
from black to white represent the α−cuts of û(t), with α varying from 0 to 1

3. Conclusion. In this study, the fuzzy Laplace transform method was used
to obtain the fuzzy solution for second order FIVP under strongly generalized
differentiability with the forcing function which is Heaviside function. Moreover, itt
was discussed how the sum of two fuzzy numbers is real. and gived some remark. To
illustrate the transform method, an example was solved by generalized differentiability
and four different solutions for the FIVP were obtained. But it is shown that just for
one case the valid fuzzy solution was found for each α-cut from Theorem 1.

As seen in this work, the uniqueness of the solution of a fuzzy initial value problem
is lost when the strongly generalized derivative concept was used. This situation
is looked on as a disadvantage, but actually it is not [1], because researchers can
choose the best solution which better reflects the behavior of the problem under
consideration, from multiple solutions. So a definite analysis of the physical system
is required to find the best solution which under study.
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