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Abstract

We study the k(≥ 1)-connected stable rank and the k-homotopy stabilization
rank ([8]) and their rational homotopy variants of AF algebras. We prove that, for
each odd integer k, the rational k-connected stable rank (the rational k-homotopy
stabilization rank resp.) of an AF algebra is equal to the k-connected stable rank
(the k-homotopy stabilization rank resp.) and also characterize the condition that
the (rational) k-connected stable rank of an AF algebra A is at most m in terms of
the Bratteli diagram of A. These ranks of AF algebras for even integer k are also
studied. They are k-connected stable rank-counterparts of the (rational) K-stabilty
theorem for AF algebras due to Seth and Vaidyanathan [13]. Our proof applies the
proof scheme and the results of [13].

1 Introduction and Main theorem

The notion of the connected stable rank csr(A) of a C∗- algebra A was introduced by
Rieffel and was applied to compute the homotopy groups of the unitaries of noncommuta-
tive tori [11], [12]. Its higher dimensional analogue csrk(A), the k-connected stable rank,
and its variant hsrk(A), the k-homotopy stabilization rank, were introduced and studied
by Nica in [8], [9], and more recently by Vaidyanathan and Nirbhay-Vaidyanathan in [16]
and [10]. When A is unital, they are defined as follows. For an integer n ≥ 1, let

csrk(A) = min{m | Lgn(A) is k-connected for each n ≥ m},
hsrk(A) = min{m | the homomorphism πj(GLn(A)) → πj(GLn+1(A))

induced by the canonical inclusion is an isomorphism

for each j = 0, . . . , k and each n ≥ m},

where Lgn(A) denotes the subset of the n-fold prodcut An of A defined by
Lgn(A) := {(a1, . . . , an) ∈ An | there exists (b1, . . . , bn) ∈ An such that

∑n
i=1 biai = 1}.

In particular csr(A) = csr0(A). See the next section for the definition for a general (not
necessarily unital) C∗-algebra. A closely related notion is that of K-stability introduced
by Thomsen [15]: a C∗-algebra A is said to beK-stable if hsrk(A) = 1 for for each k ≥ 0, in
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other words (for unital A), for each n ≥ 1, the canonical inclusion GLn(A) ↪→ GLn+1(A)
induces an isomorphism between the k-th homomotopy groups of these groups. The
irrational rotation algebra, Cuntz algebras and infinite dimensional simple AF algebras
are such examples. For each such algebra we have csrk(A) ≤ 2 and the homotopy group
πk(GLn(A)) is isomorphic to the K-group Ki(A) with i+ k ≡ 1 (mod 2) for each n ≥ 1
and each k ≥ 0.

These notions have rational homotopy counterpart: the rational K-stability has been
introduced and studied in [2] and [13] and also the rational k-connected stable rank
csrQk (A) of a Banach algebra A was defined and studied for commutative C∗-algebras in
[4]. In view of the fact that the structure of the rational homotopy groups of unitary
groups is much simpler than that of their homotopy groups, the following theorem is
somewhat surprising:

Theorem 1.1. [13] Let A is an AF algebra. The following conditions are equivalent.

(1) A is K-stable.

(2) A is rationally K-stable.

(3) If B is a finite dimensional C∗-algebra, then every ∗-homomorphism A → B of A
to B is trivial.

The present paper proves a k-connected stable rank/k-homotopy stablization rank-
counterpart of the above theorem by applying the proof scheme and the results of the
paper [13].

In order to state main results, we first notice that every AF algebra has the connected
stable rank one: csr0(A) = 1 for each AF algebra A([9, Example 11.4]). The complex
matrix algebra of size ν is denoted by Mν(C). Every finite dimensional C∗-algebra F is
isomorphic to the direct sum of finitely many matrix algebras. Let N (F ) be the multiset
of the sizes of the matrix algebras that form the direct summands of F so that:

F ∼= ⊕ν∈N (F )Mν(C).

The first main result is on the above ranks for an odd integer k. It will be shown in
Theorem 2.15 that csrk(A) ≤ hsrk(A) + 1 ≤ dk+1

2 e + 1. The undefined notation is
explained in the next section.

Main Theorem 1. Let A be an AF algebra. For an odd integer k ≥ 1 and an integer
m with 1 ≤ m ≤ k+1

2 , the following conditions are equivalent.

(1) hsrk(A) ≤ m.

(1a) hsrQk (A) ≤ m.

(2) csrk(A) ≤ m+ 1.

(2a) csrQk (A) ≤ m+ 1.

(3) There exists an inductive sequence {Ap, ϕqp : Ap → Aq} of finite dimensional C∗-
algebras and injective ∗-homomorphisms with A = lim−→(Ap, ϕqp) such that ν ≥ k+1

2m
for each ν ∈ N (Ap) and each p ≥ 1.
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(4) For each integer ν ≥ 1 with ν < k+1
2m , every ∗-homomorphism A→Mν(C) is trivial.

The second main theorem deals with the k-homotopy stabilization rank for an even
integer k. It will be shown in Theorem 2.15 that csrQk (A) = csrQk−1(A) and csrQk (A) =

csrQk−1(A), hence the estimate of these rational ranks reduces to that of the ranks for an
odd integer. Also, by [8, Proposition 32], csrk(A) ≤ hsrk(A) + 1 and equality does not
hold for general AF algebra A (see Theorem 2.15 for k = 2). According to a table in [5,
p.254-255], π2n+j(U(n)) 6= 0 for each nonnegative integer j ≤ 9, where U(n) is the group
of unitaries of Mn(C). It follows from this that every even integer k with 4 ≤ k ≤ 12
satisfies the hypothesis (∗) of the next theorem.

Main Theorem 2. Let A be an AF algebra and let k ≥ 4 be an even integer and let m
be an integer such that 1 ≤ m ≤ k

2 + 1. Assume that

(∗) πk(U(n)) 6= 0 for each n with 2 ≤ n ≤ k

2
.

Then the following conditions are equivalent.

(1) hsrk(A) ≤ m.

(2)(2.1) πj(GLn(A)) = 0 for each n ≥ m and for each even integer j ≤ k, and

(2.2) the canonical inclusion induces an isomorphism πj(GLn(A)) → πj(GLn+1(A))
for each n ≥ m and for each odd integer j < k.

(3) There exists an inductive sequence (Ap, ϕqp) of finite dimensional C∗-algebras and
injective ∗-homomorphisms with A = lim−→(Ap, ϕqp) such that ν ≥ k+2

2m for each
ν ∈ N (Ap).

(4) For each integer ν ≥ 1 with ν < k+2
2m , every ∗-homomorphism A→Mν(C) is trivial.

2 Preliminaries and auxiliary results

This section recalls some definitions and proves some auxiliary results.

2.1 The k-connected stable rank and the k-homotopy stabiliza-
tion rank of a C∗-algebra

In order to deal with a (not necessarily unital) C∗-algebra A, we follow [15] and [6] to
introduce the spaces GL+

m(A), Lg+m(A) and Lcm(A). The unitization of A is denoted by
A+ with the unit 1A+ . The C∗-algebra of all m×m matrices with entries in A is denoted
by Mm(A)(∼= Mm(C) ⊗ A). When the algebra A has the unit, the identity matrix is
denoted by Em.

For two elements a = (a1, . . . , am) and b = (b1, . . . , bm) of the m-fold product Am of
A, let

〈a,b〉 =
m∑
i=1

aibi. (2.1)

The column vector t(0, . . . , 0, 1A+) ∈ (A+)m is denoted by em.
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Definition 2.1. Let A be a C∗-algebra and let m ≥ 1 be an integer. We make the
following definitions.

(1) Assume that A is unital.

(1.1) GLm(A) denotes the group of all invertible elements of Mm(A).

(1.2) Lgm(A) := {x ∈ Am | there exists b ∈ Am such that 〈b,x〉 = 1}.

(2) For a (not-necessarily unital) C∗-algebra A, let:.

(2.1) GL+
m(A) := {a ∈ GLm(A+) | a− Em ∈Mm(A)}

= (Em +Mm(A)) ∩GLm(A+),

(2.2) Lg+m(A) = {x ∈ Lgm(A+) | x− em ∈ Am}
= (em +Am) ∩ Lgm(A+).

(3) Lcm(A) = GL+
m(A) · em = {a · em | a ∈ GL+

m(A)}.

If A is unital, the isomorphism A+ ∼= A⊕C induces isomorphismsMn(A
+) ∼=Mn(A)⊕

Mn(C), (A+)n ∼= An ⊕ Cn, which imply an isomorphism and a homeomorphism

GL+
n (A)

∼= GLn(A), Lgn(A) ≈ Lg+n (A)

(see [6, Proposition 2.11]).

Remark 2.2. (1) Since every finite dimensional C∗-algebra F is unital, we have GL+
n (F )

∼=
GLn(F ), Lgn(F ) ≈ Lg+n (F ) by the above isomorphism/homeomorphism.

(2) Under the notation of [15, Definition 1.1], we have GL+
m(A) = Em + gl(Mm(A)).

(3) The canonical inclusion ιm : GL+
m(A) ↪→ GL+

m+1(A) is defined by:

ιm(x) = diag(x, 1A+), x ∈ GL+
m(A). (2.2)

(4) In the literature, Lg+m(A) is simply denoted by Lgm(A) ([6], [11], [15] etc.). Here
we use the above symbol to avoid confusion.

The following theorem plays the fundamental role.

Theorem 2.3. ([15, Corollary 3.5, Lemma 3.7], [6, Lemma 2..7, Theorem 2.8]) Let A
be a (not necessarily unital) C∗-algebra.

(1) Let pA : GL+
m(A) → Lcm(A) be the surjection defined by pA(a) = a · em, a ∈

GL+
m(A). Then pA is a locally trivial bundle with the fiber

TLm(A) =

{(
x 0
c 1A+

)
| x ∈ GL+

m−1(A), c ∈ Am−1

}
and TLm(A) is homotopy equivalent to GL+

m−1(A). Hence there exists an exact
sequence induced by the fibration

GL+
m(A) → GL+

m+1(A) → Lcm+1(A)

4

15 Mar 2023 20:02:19 PDT
211208-Kawamura Version 3 - Submitted to Rocky Mountain J. Math.



as follows:

· · · → πk(GL+
m(A)) → πk(GL+

m+1(A)) → πk(Lcm+1(A)) →
→ πk−1(GL+

m(A)) → πk−1(GL+
m+1(A)) → πk−1(Lcm+1(A)) → · · ·

→ π0(GL+
m(A)) → π0(GL+

m+1(A)) → π0(Lcm+1(A)) → 0
(2.3)

where GL+
m(A), GL+

m+1(A) and Lg+m+1(A) have the base points Em, Em+1 and
em+1 respectively.

(2) Let Lcm(A)0 and Lg+m(A)0 be the components of Lcm(A) and Lg+m(A) respectively
containing em, and also GL+

n (A)0 be the component of GL+
n (A) containing Em.

Then we have Lcm(A) ⊂ Lg+m(A) and Lcm(A)0 = Lg+m(A)0 = GL+
m(A)0 · em. In

particular, if Lg+m(A) is connected, then we have the equality Lg+m(A) = Lcm(A).

Every homomorphism ϕ : A → B between C∗-algebras A and B naturally extends
to a unital homomorphism of the unitizations that is also denoted by ϕ : A+ → B+ for
simplicity. Likewise, the induced homomorphism GL+

m(A) → GL+
m(B) and the induced

map Lg+m(A) → Lg+m(B) are denoted by the same symbol ϕ. For a continuous map
f : X → Y between topological spaces X and Y , f♯ : πj(X) → πj(Y ) denotes the
induced homomorphism between the j-th homotopy groups. A topological space Z is
said to be k-connected if πj(Z) = 0 for each j = 0, . . . , k, where π0(Z) = 0 means that Z
is path connected.

Definition 2.4. ([8], [9], [15]) Let A be a (not necessarily unital) C∗-algebra.

(1) For an integer k ≥ 0, the k-th connected stable rank csrk(A) is defined as follws:

csrk(A) = min{m | Lg+n (A) is k-connected for each n ≥ m}.

Also let csr(A) := csr0(A), called the connected stable rank of A.

(2) For an integer k ≥ 0, let ιn : GL+
n (A) ↪→ GL+

n+1(A) be the canonical inclusion given
by (2.2). Then the k-th homotopy stabilization rank hsrk(A) is defined as follows:

hsrk(A) = min{m | the inclusion ιn induces an isomorphism
(ιn)♯ : πj(GL+

n (A)) → πj(GL+
n+1(A)) for each n ≥ m and

for each j = 0, . . . , k}.

(3) The algebra A is said to be K-stable if hsrk(A) = 1 for each k ≥ 0, that is, the
canonical inclusion ιn : GL+

n (A) ↪→ GL+
n+1(A) induces an isomorphism πk(GL+

n (A)) →
πk(GL+

n+1(A)) for each n ≥ 1 and for each k ≥ 0.

In what follows, the tensor product πj(X)⊗Q of the j-th homotopy group of a space
X with the rational Q is denoted by πj(X)Q, where for j = 1, π1(X) is assumed to be
abelian. Recall that the fundamental group of every topological group, in particular, of
GL+

m(A), is abelian. The homomorphism πj(X)Q → πj(Y )Q induced by a continuous
map f : X → Y is denoted by f♯.

Definition 2.5. For a C∗-algebra A such that π1(Lg
+
n (A)) is abelian for each n ≥ 1, we

make the following definition.
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(1) For an integer k ≥ 1, let

csrQk (A) = min{m | Lg+n (A) is connected and πj(Lg
+
n (A))Q = 0

for each j = 0, . . . , k and for each n ≥ m}.

(2) For an integer k ≥ 0, let

hsrQk (A) = min{m | (ιn)♯ : πj(GL+
n (A))Q → πj(GL+

n+1(A))Q is an
isomorphism for each n ≥ m and j = 0, . . . , k}.

(3) A is said to be rationally K-stable if hsrQk (A) = 1 for each k ≥ 0, that is, the canon-
ical inclusion ιn : GL+

n (A) ↪→ GL+
n+1(A) induces an isomorphism πk(GL+

n (A))Q →
πk(GL+

n+1(A))Q for each n ≥ 1 and for each k ≥ 0.

Applying the exact sequence (2.3) of Theorem 2.3, we see

Corollary 2.6. Let A be a C∗-algebra such that Lg+n (A) is connected for each n ≥ 1.
Then A is K-stable if and only if csrk(A) ≤ 2 for each k ≥ 1. Assume further that
π1(Lgn(A)) is abelian for each n ≥ 1. Then A is rationally K-stable if and only if
csrQk (A) ≤ 2 for each k ≥ 1.

2.2 Finite dimensional algebras and AF algebras

For an inductive sequence (Ap, ϕp : Ap → Ap+1) of C
∗-algebras and ∗-homomorphisms,

let lim−→(Ap, ϕp) be the C∗-algebra inductive limit of the sequence. The canonical homo-
morphism Ap → lim−→(Ap, ϕp) is denoted by ϕ∞p : Ap → lim−→(Ap, ϕp). For q ≥ p + 1,
ϕqp : Ap → Aq denotes the composition

ϕqp = ϕq−1 ◦ · · · ◦ ϕp : Ap → Ap+1 → · · · → Aq−1 → Aq.

An AF-algebra A is the limit A = lim−→(Ap, ϕp : Ap → Ap+1) of an inductive sequence of
finite dimensional C∗-algebras Ap. Each Ap is isomorphic to the direct sum of finitely
many matrix algebras Ap

∼= ⊕νMν(C). Since {ϕ∞p(Ap) | p ≥ 1} forms an increasing
sequence of finite dimensional subalgebras of A with ∪∞

p=1ϕ∞p(Ap) being dense in A,
we may assume without loss of generality that each ϕp is injective. The next theorem
provides basic information on ∗-homomorphisms of matrix algebras.

Theorem 2.7. ([1, Chap.III, Corollary 1.2]) Let ϕ :Mm(C) →Mn(C) be a ∗-homomorphism.

(1) If m > n, then ϕ = 0.

(2) If m ≤ n, then there exists a r ≥ 0 with rm ≤ n such that ϕ is unitarily equivalent
to the homomorphism ρr :Mm(C) →Mn(C) defined by

ρr(x) = diag(x, . . . , x︸ ︷︷ ︸
r

, 0, . . . , 0). (2.4)
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For an inductive sequence (Ap, ϕp : Ap → Ap+1) of finite dimensional C∗-algebras
and ∗-homomorphism, let D((Ap, ϕp)) be the Bratteli diagram ([1, Chap.III]): the set of
nodes is the pairs

{(p, ν) | ν ∈ N (Ap), p ≥ 1}.
For two nodes (p, µ) and (p + 1, ν), there exist r arrows from (p, µ) to (p + 1, ν) if and
only if the homomorphism

ϕνµ
p := projν ◦ ϕ ◦ inclµ :Mµ(C) ↪→ Ap → Ap+1 →Mν(C) (2.5)

(inclµ and projν denote the canonical inclusion and the canonical projection respectively)
is unitarily equivalent to ρr given in (2.4). If there is at least one arrow from (p, µ) to
(p+ 1, ν), then we write (p, µ) ↘ (p+ 1, ν).

Definition 2.8. [13, Definition 3.5] Let (Ap, ϕp : Ap → Ap+1) be an inductive sequence
of finite dimensional C∗-algebras with the Bratteli diagram D((Ap, ϕp)). For an integer
M ∈ Z≥1 and N ∈ Z≥1 ∪ {∞} with M ≤ N and an integer µ ≥ 1, a sequence Λ =
(p, νp)M≤p≤N is called a µ-chain if

(1) νp ∈ N (Ap) for each p with M ≤ p ≤ N .

(2) (p, νp) ↘ (p+ 1, νp+1) in D((Ap, ϕp)) for each p with M ≤ p ≤ N − 1.

(3) If (p, ν) ↘ (p+ 1, νp+1) in D((Ap, ϕp)), then ν = νp.

(4) For each p with M ≤ p ≤ N , we have νp = µ.

When N = ∞, we call Λ an infinite µ-chain.

Proposition 2.9. ([13, Lemma 3.6]) Assume that the Bratteli diagram D((Ap, ϕp)) as-
sociated with an AF algebra A = lim−→(Ap, ϕp) contains an infinite µ-chain. Then there
exists a non-trivial homomorphism ϕ : A→Mµ(C).

Next we recall a couple of information on the homotopy groups of GLn(Mν(C)). First
notice that GLn(C) is connected for each n ≥ 1 and observe an isomorphism

GLn(Mν(C)) ∼= GLnν(C)

for each n, ν ≥ 1.

Theorem 2.10. ([7, Chap.II, Corollary 3.17], [13, Example 1.6, Lemma 2.1, Lemma
2.2, Lemma 2.3]) Let k ≥ 1 and n ≥ 1. Let ιn : GLn(Mν(C)) → GLn+1(Mν(C)) be the
canonical inclusion given in (2.2).

(1) For each k with k ≤ 2nν − 1, we have an isomorphism

πk(GLn(Mν(C))) ∼=
{

Z if k is odd,
0 if k is even.

(2) We have an isomorphism

πk(GLn(Mν(C)))Q ∼=
{

Q if k is odd and k ≤ 2nν − 1,
0 otherwise
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(3) If k ≤ 2nν − 1, then the induced homomorphism (ιn)♯ : πk(GLn(Mν(C))) →
πk(GLn+1(Mν(C))) is an isomorphism. The same holds for the homomorphism
(ιn)♯ : πk(GLn(Mν(C)))Q → πk(GLn+1(Mν(C)))Q.

(4) Let k be an odd integer such that k ≤ 2m − 1. Let ϕ : Mm(C) → Mn(C) be a ∗-
homomorphism which is unitarily equivalent to the homomorphism ρr : Mm(C) →
Mn(C) given in (2.4) for some r ≥ 0. Then ϕ induces the homomorphism ϕ♯ :
πk(GLm(C))Q → πk(GLn(C))Q given by

πk(ϕ)(α) = rα, α ∈ πk(Mm(C))Q ∼= Q.

2.3 Some auxiliary results

The next result follows from [3] and [15], and is mentioned in [13, Proposition 1.4].

Theorem 2.11. [13, Proposition 1.4]. Let A = lim−→(Ap, ϕp : Ap → Ap+1) be the limit
of an inductive sequence (Ap, ϕp) of C∗-algebras and ∗-homomorphisms. Then for each
j ≥ 0 and n ≥ 1, the homomorphism ϕ∞p : Ap → A induces isomorphisms:

lim−→p
(ϕ∞p)♯ : lim−→p

πj(GL+
n (Ap)) → πj(GL+

n (A)),

lim−→p
(ϕ∞p)♯ : lim−→p

πj(GL+
n (Ap))Q → πj(GL+

n (A))Q.

We have the following analogue of the above for the space Lg+n (A).

Theorem 2.12. Let A = lim−→(Ap, ϕp : Ap → Ap+1) be the limit of an inductive sequence
(Ap, ϕp) of C

∗-algebras and injective ∗-homomorphisms. Then for each j ≥ 0 and n ≥ 1,
we have isomorphisms induced by the homomorphism ϕ∞p : Ap → A:

lim−→p
(ϕ∞p)♯ : lim−→p

πj(Lg
+
n (Ap)) → πj(Lg

+
n (A)),

lim−→p
(ϕ∞p)♯ : lim−→p

πj(Lg
+
n (Ap))Q → πj(Lg

+
n (A))Q.

Since the homomorphisms ϕp : Ap → Ap+1 and ϕ∞p : Ap → A naturally extends
to unital homomorphisms A+

p → A+
p+1 and A+

p → A+, we may assume without loss of
generality that ϕp and ϕ∞p are unital. Our proof of the above theorem applies the next
lemma.

Lemma 2.13. Let (K,L) be a pair of compact polyhedra such that L is a subcomplex of
K, and let p ≥ 1 be an integer. Also let (f : K → A, g : L→ Ap) be a pair of continuous
maps such that f |L = ϕ∞p ◦ g. Then for each ε > 0, there exist an index q ≥ p and a
continuous map fq : K → Aq such that ‖f − ϕ∞q ◦ fq‖∞ < ε and fq|L = ϕqp ◦ g.

Proof. Let d = dimK and take a sufficiently fine triangulation of K such that L is a
subcomplex with respect to the triangulation, and for each simplex σ of K, we have

diamf(σ) := sup{‖f(x)− f(y)‖ | x, y ∈ σ} < ε

32d+1
. (2.6)

For i = 0, . . . , d, let K(i) be the union of L with all simplices of K of dimension at most
i.
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For each vertex v of K, there exist an index qv ≥ p and a point γ(v) ∈ Aqv such that

‖ϕ∞qv (γ(v)) − f(v)‖ < ε

32d+1
. We further make a choice that qv = p and γ(v) = g(v)

whenever v ∈ L. Let q = max{qv | v is a vertex of K} and let f (0)(v) = ϕqqv (γ(v)). The
map f (0) naturally extends to a map on K(0) by defining f (0)|L = g. Then we see

‖ϕ∞q ◦ f (0) − f |K(0)‖ < ε

32d+1
. (2.7)

For each simplex σ and for two vertices v, w of σ, we see from (2.6) and (2.7) that

‖ϕ∞qf
(0)(v)− ϕ∞qf

(0)(w)‖ ≤ ‖ϕ∞qf
(0)(v)− f(v)‖+ ‖f(v)− f(w)‖+

+‖f(w)− ϕ∞qf
(0)(w)‖

<
ε

32d

and hence
diam(ϕ∞qf

(0)(σ ∩K(0))) <
ε

32d

for each simplex σ of K.
Starting with the above f (0) : K(0) → Aq, we inductively define a sequence of maps

{f (i) : K(i) → Aq | i = 0, . . . , d} such that

(i) ‖f |K(i) − ϕ∞q ◦ f (i)‖∞ < ε
32(d−i) and diam(ϕ∞qf(σ ∩ K(i))) < ε

32(d−i) for each
simplex σ of K,

(ii) f (i)|L = ϕqp ◦ g, and

(iii) f (i+1)|K(i) = f (i).

Then fq := f (d) is the required map.
Assume that f (i) has been defined and take an (i+ 1)-simplex σ of K not in L. The

map f (i)|∂σ : ∂σ → Aq satisfies diam(ϕ∞qf
(i)(∂σ)) < 3ε

32(d−i) . Using the convexity of

the Banach space Aq, we obtain an extension ḡσ : σ → conv(f (i)(∂σ)) of f (i)|∂σ, where
conv(f (i)(∂σ)) denotes the convex hull of f (i)(∂σ). Then we have

diam(ϕ∞q ḡσ(σ)) ≤ diam(conv(ϕ∞qf
(i)(∂σ))) = diam(ϕ∞qf

(i)(∂σ)))

≤ diam(f (i)(∂σ)) <
3ε

32(d−i)
.

Also we see

‖f |σ − ϕ∞q ◦ ḡσ‖∞ ≤ diamf(σ) + ‖f |∂σ − ϕ∞q ◦ ḡσ|∂σ‖∞ + diam(ϕ∞q ḡσ(σ))

≤ (
1

32d
+

1

32(d−i)
+

3

32(d−i)
)ε <

ε

32(d−i−1)
.

Repeating the above process to each (i+1)-simplex of K not in L and then extending the
resulting map to K(i+1) by defining ϕqp ◦g on L, we obtain the map f (i+1) : K(i+1) → Aq

that is an extension of f (i).
This completes the inductive step and completes the proof.
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Proof. (of Proposition 2.12) Fix j = 0, . . . , k and n ≥ 1, and let α : Sj → Lg+n (A) be a
continuous map. There exists a continuous map β : Sj → (A+)n such that 〈β, α〉 ≡ 1.
Recall that Lg+n (A) is an open set of An. This together with the compactness of α(Sj)
allows us to take a small ε > 0 such that

(i) if a map f : Sj → Lg+n (A) satisfies ‖f − α‖∞ < ε, then f and α are homotopic in
Lg+n (A), and

(ii) if two maps α′, β′ : Sj → (A+)n satisfy ‖α′ − α‖∞ < ε and ‖β′ − β‖∞ < ε, then
‖〈β′, α′〉 − 1A+‖∞ < 1.

Apply Lemma 2.13 to α− en : Sj → An and β in order to find continuous maps αp, βp :
Sj → (A+

p )
n such that

(iii) αp(x)− en ∈ (Ap)
n for each x ∈ Sj , and

(iv) ‖α− ϕ∞p ◦ αp‖∞ < ε and ‖β − ϕ∞p ◦ βp‖∞ < ε.

Since ϕ∞q is injective and unital, we see from (ii), (iii) and (iv),

‖〈βp(x), αp(x)〉 − 1A+
p
‖ = ‖〈ϕ∞p(βp(x)), ϕ∞p(αp(x))〉 − 1A+‖ < 1 for each x ∈ Sj .

Thus 〈βp(x), αp(x)〉 is invertible in (Ap)
+ for each x ∈ Sj . Define γp : Sj → (A+

p )
n by

γp(x) = 〈βp(x), αp(x)〉−1βp(x), x ∈ Sj .

We see 〈γp, αp〉 ≡ 1 and hence obtain αp(S
j) ⊂ Lg+n (Ap). Also by (i) ϕ∞p ◦ αp is

homotopic to α. This proves that the homomorphism lim−→p
(ϕ∞p)♯ : lim−→p

πj(Lg
+
n (Ap)) →

πj(Lg
+
n (A)) is surjective.

To prove that lim−→p
(ϕ∞p)♯ is injective, take a continuous map αp : Sj → Lg+n (Ap) and

assume that ϕ∞p ◦ αp admits a continuous extension ᾱ : Dj+1 → Lg+n (A). There exists
a continuous map β : Dj+1 → (A+)n such that 〈β, ᾱ〉 ≡ 1. Apply Lemma 2.13 to obtain
an index q ≥ p and continuous maps α̂q : Dj+1 → (A+

q )
n and βq : Dj+1 → (A+

q )
n such

that ‖α − ϕ∞q ◦ α̂q‖∞ < ε, ‖β − ϕ∞q ◦ β̂q‖∞ < ε, and α̂q|Sj = ϕqp ◦ αp. Since ϕ∞q is
injective, we see from (ii)

‖〈βq, α̂q〉 − 1A+
q
‖∞ = ‖〈ϕ∞q ◦ βq, ϕ∞q ◦ α̂q〉 − 1A+‖∞ < 1

and hence 〈βq(x), α̂q(x)〉 is invertible in A+
q for each x ∈ Dj+1. By the same argument as

in the previous paragraph, we see that α̂q(D
j+1) ⊂ Lg+n (Aq). Thus α̂q is an extension of

ϕqp ◦αp : Sj → Lg+n (Aq) to D
j+1 → Lg+n (Aq). This proves the injectivity of lim−→p

(ϕ∞p)♯.

Theorem 2.15 gives basic information on csrk(A) and hsrk(A) for an AF algebra A.
The proof applies the next lemma. Recall from Remark 2.2 (1) that Lg+n (F ) ≈ Lgn(F )
for each finite dimensional C∗-algebra F .

Lemma 2.14. (1) For each integer ν ≥ 1, we have the following:
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(1-1) For each odd integer k, we have

πk(Lcn(Mν(C)))Q ∼=
{
πk(GLn(Mν(C)))Q ∼= Q if 2(n− 1)ν − 1 < k ≤ 2nν − 1,
0 if k ≤ 2(n− 1)ν − 1 or k > 2nν − 1.

(1-2) For each even integer k, we have πk(Lcn(Mν(C)))Q = 0.

(2) Let A be an AF algebra.

(2-1) We have the equality Lg+n (A) = Lcn(A) for each n ≥ 1.

(2-2) The fundamental group π1(Lg
+
n (A)) is abelian for each n ≥ 1.

(2-3) For each even integer k and for each integer n ≥ 1, we have πk(GL+
n (A))Q =

πk(Lg
+
n (A))Q = 0.

Proof. (1). For an odd integer k, we consider the exact sequence (2.3) for Mν(C), being
rationalized:

πk+1(GLn(Mν(C)))Q → πk+1(Lcn(Mν(C)))Q →
→ πk(GLn−1(Mν(C)))Q → πk(GLn(Mν(C)))Q → πk(Lcn(Mν(C)))Q →
→ πk−1(GLn−1(Mν(C)))Q

By Theorem 2.10 (2), we have πk+1(GLn(Mν(C)))Q = πk−1(GL+
n (Mν(C)))Q = 0. Since

the homomorphism πj(GLn−1(Mν(C)))Q → πj(GLn(Mν(C)))Q is injective for each j, we
see that πk+1(Lcn(Mν(C))Q = 0. This proves (1-2) and also reduces the above sequence
to

0 → πk(GLn−1(Mν(C)))Q → πk(GLn(Mν(C)))Q → πk(Lcn(Mν(C)))Q → 0,

from which (1-1) follows with the help of Theorem 2.10 (2).
(2). (2-1) follows from [9, Example 11.4] and Theorem 2.3 (2). For the proof of (2-2),

we note that, by the exact sequence (2.3)

π1(GLn(Mν(C)))
p♯ // π1(Lcn(Mν(C))) // π0(GLn(Mν(C)))

and the connectedness of GLn(Mν(C)), p♯ is surjective. Hence π1(Lcn(Mν(C))) is abelian.
Hence for each finite dimensional algebra F ∼= ⊕νMν(C), we see that π1(Lgn(F ))

∼=
⊕νπ1(Lgn(Mν(C))) = ⊕νπ1(Lcn(Mν(C))) is an abelian group. By Theorem 2.12, we see
that π1(Lg

+
n (A)) is abelian.

For (2-3), first we observe that, for each finite dimensional C∗-algebra F , πk(GLn(F ))Q =
0 and also πk(Lg

+
n (F ))Q = πk(Lcn(F ))Q = 0 by Theorem 2.10 (2). By Thereom 2.12 and

Theorem 2.12, we obtain πk(GL+
n (A))Q = lim−→p

πk(GL+
n (Ap))Q = 0 and πk(Lg

+
n (A))Q =

lim−→p
πk(Lg

+
n (Ap))Q = 0.

Theorem 2.15. Let A be an AF algebra and let k(≥ 0) be an integer.

(1) csrk(A) ≤ hsrk(A) + 1 ≤ csrk+1(A).

(2) hsrk(A) ≤ dk+1
2 e.
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(3) For each odd integer k, we have csrQk (A) = hsrQk (A) + 1.

(4) For each even integer k ≥ 2, we have csrQk (A) = csrQk−1(A) and hsrQk (A) = hsrQk−1(A).

(5) hsr1(A) = hsr2(A) = 1 and csr1(A) = csr2(A) ≤ 2.

Proof. (1) is a consequence of [9, Proposition 32] and csr(A) = 1 ([9, Example 11.4]).
For (2), let k be an odd integer, m = k+1

2 and take an arbitrary n ≥ m. For
A = lim−→Ap with Ap

∼= ⊕ν∈N (Ap)Mν(C), we see the canonical inclusion ιn : GLn(Ap) →
GLn+1(Ap) induces an isomorphism (ιn)♯ : πj(GLn(Ap)) → πj(GLn+1(Ap)) for each
j = 0, . . . , k, because k = 2m− 1 ≤ 2nν − 1 for each ν ∈ N (Ap). By Theorem 2.11 and
the commutativity of the diagram:

GLn(Ap)
φ∞p //

ιn

��

GL+
n (A)

ι∞n
��

GLn+1(Ap) φ∞p

// GL+
n+1(A)

we see that the homomorphism (ι∞n )♯ : πj(GLn(A)) → πj(GLn+1(A)) is an isomorphism
for each j = 0, . . . , k. This proves the inequality hsrk(A) ≤ k+1

2 . For an even integer k,

we repeat the above for m = k
2 + 1 to obtain the inequality.

(3) For an odd integer k, we use the exact sequence (2.3), being rationalized. For
each odd integer j with 1 ≤ j ≤ k, and for n ≥ 1, the sequence reduces to:

0 // πj(GL+
n (A))Q // πj(GL+

n+1(A))Q
// πj(Lcn+1(A))Q // 0

due to Lemma 2.14. Hence πj(GL+
n (A))Q → πj(GL+

n+1(A))Q is an isomorphism if and

only if πj(Lcn+1(A))Q = 0. Also, since csr(A) = csr0(A) = 1, that is, Lg+n (A) is connected
for each n ≥ 1, we obtain from Theorem 2.3 (2) that Lcn(A) = Lg+n (A). From these, we
have the desired equality.

(4) For an even integer k, we have πk(GL+
n (A))Q = πk(Lg

+
n (A))Q = 0 for each n ≥ 1

by Lemma 2.14. These directly imply the desired equalities.
(5) Let A = lim−→(Ap, ϕp : Ap → Ap+1), where each Ap is a finite dimensional

C∗-algebra and ϕp is an injective ∗- homomorphism. For each n, ν ≥ 1, we have
π2(GLn(Mν(C))) = 0 and the canonical inclusion (2.2) induces an isomorphism
π1(GLn(Mν(C))) → π1(GLn+1(Mν(C))). This implies

π1(Lcm(Mν(C))) = 0 i = 1, 2

for each m ≥ 2. Also π2(Lc1(Mν(C))) ∼= π2(S
2ν−1) = 0 for each ν ≥ 1.

Thus we have π1(Lcn(Ap)) = 0 for each n ≥ 2 and π2(Lcn(Ap)) = 0 for each n ≥ 1.
By Theorem 2.12 and the connectedness of Lg+n (A) together with Theorem 2.3, we have
π1(Lg

+
n (A)) = 0 for each n ≥ 2 and π2(Lg

+
n (A)) = 0 for each n ≥ 1. Thus we have

csr1(A) = csr2(A) ≤ 2.
The same argument with the help of Theorem 2.11 is carried out to conclude hsr1(A) =

hsr2(A) = 1.
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3 Proof of Main Theorems

3.1 Proof of Main Theorem 1

Given an odd integer k ≥ 1 and an integer m with 1 ≤ m ≤ k+1
2 , let j0 = k+1

2 −m. We
define subsets N0, N1, . . . , N j0 of Z≥1 as follows:

N0 = {ν ∈ Z≥1 | k ≤ 2mν − 1},
N1 = {ν ∈ Z≥1 | 2mν − 1 < k ≤ 2(m+ 1)ν − 1},

· · ·
N i = {ν ∈ Z≥1 | 2(m+ i− 1)ν − 1 < k ≤ 2(m+ i)ν − 1},

· · ·
N j0 = {ν ∈ Z≥1 | 2(m+ j0 − 1)ν − 1 = (k − 1)ν − 1 < k ≤

≤ 2(m+ j0)ν − 1 = (k + 1)ν − 1}.

It is straightforward to verify that ∪j0
i=0N

i = Z≥1. For a finite dimensional algebra F , let
E(F ) = N (F ) ∩N0 and for each i = 1, . . . , j0, let Zi(F ) = N (F ) ∩N i and also Z(F ) =
∪j0
i=1Zi(F ). Further we define E(F ) = ⊕ν∈E(F )Mν(C) and Z(F ) = ⊕ν∈Z(F )Mν(C) so

that F ∼= E(F )⊕ Z(F ).
For the proof of Main Theorem 1, it is convenient to introduce an auxiliary statement

that will turn out to be equivalent to all other statements of the theorem:

(5) Let A = lim−→(Ap, ϕqp : Ap → Aq), where each Ap is a finite dimensional C∗-algebra
and ϕqp is an injective ∗-homomorphism. For each p, there exists q ≥ p such that
ϕqp(Ap) ⊂ ⊕µ∈N (Aq), 2mµ−1≥kMµ(C).

Proof. The following is our scheme of the proof.

(i) (1) ⇒ (1a), (2) ⇒ (2a) and (1a) ⇔ (2a).

(ii) (2a) ⇒ (5) ⇒ (3) ⇒ (4) ⇒ (5).

(iii) (3) ⇒ (2) and (3) ⇒ (1)

(i): The implications (1)⇒ (1a) and (2)⇒ (2a) are straightforward and the equivalence
(1a)⇔(2a) is a direct consequence of Proposition 2.15 (3).

(ii) (2a) ⇒ (5). Let A = lim−→(Ap, ϕp : Ap → Ap+1), where each Ap is a finite di-
mensional algebra and ϕp is an injective ∗-homomorphism. In what follows, the matrix
algebra Mν(C) is simply denoted by Mν .

Step.1. By Lemma 2.14 (1) and the definition of Z1(Ap), we have

πk(Lcm+1(Ap))Q ∼= ⊕ν∈Z1(Ap)πk(GLm+1(Mν))Q. (3.1)

By Theorem 2.12 and the assumption (2a), we have lim−→p
πk(Lgm+1(Ap))Q ∼= πk(Lg

+
m+1(A))Q =

0. Fix p ≥ 1. Since πk(Lg
+
m+1(Ap))Q is a finite dimensional Q-vector space, there exists

q1 ≥ p such that
(ϕq1 p)♯(πk(Lgm+1(Ap))Q) = 0. (3.2)
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Step.2. We examine the restriction ϕq1 p| ⊕ν∈Z1(Ap) Mν . Take an arbitrary ν ∈ Z1(Ap).

First observe from Theorem 2.7 (1) that

ϕq1 p(Mν) ⊂ ⊕µ∈N (Aq1
), µ≥νMµ.

For µ ∈ Z1(Aqν ) with µ ≥ ν, let ϕµν
q1 p :Mν →Mµ be the homomorphism defined by

ϕµν
q1 p = projµ ◦ ϕq1 p ◦ inclν :Mν ↪→ Ap → Aq1 →Mµ

where inclν denotes the canonical inclusion and projµ denotes the canonical projection.
Noticing that Lgm+1(Mν) = Lcm+1(Mν), we have the following commutative diagram:

πk(GLm(Mµ))Q

��
πk(GLm+1(Mν))Q

(φµν
q1p)♯//

��

πk(GLm+1(Mµ))Q

p♯

��
πk(Lgm+1(Mν))Q

0 // πk(Lgm+1(Mµ))Q

��
0

where the vertial sequences are parts of the exact sequence (2.3), being rationalized. The
homomorphism in the third row is trivial because of (3.2). Since µ ∈ Z1(Ap), we have
2mµ − 1 < k, which implies πk(GLm(Mµ))Q = 0 and thus the homomorphism p♯ is an
isomorphism. Thus we see that

(ϕµν
q1 p)♯ = 0. (3.3)

Suppose that there exists µ ∈ Z1(Aq1) with µ ≥ ν such that ϕµν
q1 p is non-trivial. Then

the homomorphism ϕµν
q1 p is unitarily equivalent to ρr of (2.4) with r ≥ 1. Since k ≤

2(m+1)ν−1 ≤ 2(m+1)µ−1, we conclude from Theorem 2.10 (3) that the homomorphism

(ϕµν
q1 p)♯ : πk(GLm+1(Mν))Q → πk(GLm+1(Mµ))Q

is an isomorphism on the nonzero group πk(GLm+1(Mν))Q, a contradiction to (3.3).
Hence we conclude ϕµν

q1 p = 0 for each such µ and obtain the inclusion

ϕq1 p(Z
1(Ap)) ⊂ E(Aq1).

Step 3. We repeat the argument of Step 2 by replacing πk(GLm+1(Mν))Q with πk(GLm+2(Mν))Q,
and πk(Lcm+1(Mν))Q with πk(Lcm+2(Mν))Q respectively. Then we find q02 ≥ q1 such that

ϕq02 q1(Z
2(Ap)) ⊂ E(Aq02

)⊕ Z1(Aq02
).

Another application of Step 2 yields q2 ≥ q02 such that ϕq2 q02
(Z1(Aq02

)) ⊂ E(Aq2), which
results in:

ϕq2 p(Z
1(Ap)⊕ Z2(Ap)) ⊂ E(Aq2).

14

15 Mar 2023 20:02:19 PDT
211208-Kawamura Version 3 - Submitted to Rocky Mountain J. Math.



We inductively repeat the above process to find q := qj0 such that

ϕq p(Z(Ap)) = ϕq p(⊕j0
i=1Z

i(Ap)) ⊂ E(Aq).

Since ϕq p(E(Ap)) ⊂ E(Aq), we obtain the desired inclusion ϕq p(Ap) ⊂ E(Aq). This
proves the implication (2a)⇒ (5).

(5)⇒ (3). We follow the last part of the proof of [13, Lemma 3.7]. Take an inductive
sequence (Ap, ϕp : Ap → Ap+1) with A = lim−→(Ap, ϕp) and each ϕp is an injective ∗-
homomorophism of finite dimensional C∗-algebras. By the assumption (5), and by taking
a subsequence if necessary, we may assume that

ϕp(Z(Ap)) ⊂ E(Ap+1). (3.4)

Define ψp : E(Ap+1) → E(Ap+2) by

ψp = projE(Ap+2) ◦ ϕp+1 ◦ ιE(Ap+1) : E(Ap+1) ↪→ Ap+1 → Ap+2 → E(Ap+2),

where inclE(Ap+1) and projE(Ap+2) denote the canonical inclusion and the canonical pro-
jection respectively. We see from (3.4) that

ϕp = ιE(Ap+1) ◦ (projE(Ap+1) ◦ ϕp). (3.5)

Let ξp := projE(Ap+1) ◦ ϕp : Ap → E(Ap+1). As in [13, Lemma 3.7], (3.5) shows that the
induced limit homomorphism lim−→ ξp : A → lim−→(E(Ap+1), ψp) is an isomorphism. Since
ϕp+1 is injective and ϕp+1(E(Ap+1)) ⊂ E(Ap+2), we see directly that ψp is injective.
Therefore (E(Ap+1), ψp) is the sequence required in (3).

(3) ⇒ (4). Let A = lim−→(Ap, ϕp : Ap → Ap+1) with Ap = E(Ap). Let B = Mν(C)
with 2mν − 1 < k. Given a ∗-homomorphism ϕ : A → B, fix an index p and take a
direct summand Mµ of Ap. Since 2mν − 1 < k ≤ 2mµ− 1, we see that ν < µ and hence
ϕ◦ϕ∞p = 0 by Theorem 2.7 (1). Since ∪pϕ∞p(Ap) is dense in A, we have the conclusion
(4).

(4)⇒ (5). Here we follow the proofs of [13, Lemma 3.6, Lemma 3.7]. Assume that
A = lim−→(Ap, ϕp : Ap → Ap+1), where Ap is finite dimensional and ϕp is injective. Suppose

that there exists an infinite sequence (pi) such that ϕpi+1 pi
(Z(Api

)) ⊈ E(Api
) for each

i = 1, 2, . . .. Without loss of generality we may assume that p1 = 1. Since ϕ(E(A)) ⊂
E(B) for each ∗-homomorphism ϕ : A → B of finite dimensional C∗-algebras A and B,
we see ϕqp(Z(Ap)) ⊈ E(Aq) for each p, q with q ≥ p. This implies that the Bratteli
diagram D((Ap, ϕp)) associated with (Ap, ϕp) contains an infinite sequence

(1, ν1) ↘ (2, ν2) ↘ · · · ↘ (p, νp) ↘ (p+ 1, νp+1) ↘ · · · (3.6)

where νp ∈ Z(Ap) for each p. Since νp ≤ k
2m for each p, there exists an index ν ≤ k

2m
such that νp = ν for infinitely many p. By taking a subsequence, we may assume that
νp = ν for each p ≥ 1.
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Fix an arbitrary p ≥ 2 and suppose that there exists a node (p− 1, µ) 6= (p− 1, νp−1)
such that (p − 1, µ) ↘ (p, νp) in D((Ap, ϕp)). This means that there exists a nontrivial
∗-homomorphism ψ :Mµ ⊕Mν →Mν . By Proposition 2.7, ψ is unitarily equivalent to a
homomorphism given by

(xµ, xν) 7→ diag(xµ, . . . , xµ︸ ︷︷ ︸
rµ

, xν , . . . , xν︸ ︷︷ ︸
rν

, 0, . . . , 0), (xµ, xν) ∈Mµ ⊕Mν

where rµ, rν ≥ 1. However this is impossible from the dimensional reason and we conclude
that there are no such (p− 1, µ).

This proves that the above sequence is an infinite ν-chain (Definition 2.8). By Pro-
postion 2.9 there exists a non-trivial homomorphism A→Mν , a contradition to (4).

(iii) (3)⇒ (2) and (3) ⇒ (1). Let A = lim−→(Ap, ϕp : Ap → Ap+1) so that Ap = E(Ap),
and hence k ≤ 2mν− 1 for each ν ∈ N (Ap) and for each p ≥ 1. Take an arbitrary n ≥ m
and consider a part of the exact sequence (2.3):

πk(GL+
n (Mν)) → πk(GL+

n+1(Mν)) → πk(Lcn+1(Mν)) →
→ πk−1(GL+

n (Mν)).

Since k−1 < k ≤ 2mν−1 ≤ 2nν−1, the homomorphism πk(GL+
n (Mν)) → πk(GL+

n+1(Mν))

is an isomorphism and πk−1(GL+
n (Mν)) = 0. Thus we have πk(Lcn+1(Mν)) = 0 and

hence πk(Lcn+1(Ap)) = ⊕νπk(Lcn+1(Mν)) = 0. By Theorem 2.11 and Lg+n+1(A) =
Lcn+1(A)(Theorem 2.3 (2)), we obtain csrk(A) ≤ m + 1 as required in (2). The same
argument yields the implication (3) ⇒ (1).

This completes the proof of Main Theorem 1.

3.2 Proof of Main Theorem 2

The structure of the proof is the same as that of Main Theorem 1. Again it is convenient to
introduce an auxiliary statement that will turn out to be equivalent to all other statements
of the theorem.

(5) Let A = lim−→(Ap, ϕqp : Ap → Aq), where each Ap is a finite dimensional C∗-algebra
and ϕqp is an injective ∗-homomorphism. For each p, there exists q ≥ p such that
ϕqp(Ap) ⊂ ⊕µ∈N (Aq), 2mµ−2≥kMµ(C).

Proof. Let k ≥ 4 be an even integer satisfying (∗) and let m be an integer with 1 ≤ m ≤
k
2 + 1. As before, the matrix algebra Mν(C) is simply denoted by Mν . We prove the
following implications.

(i) (1)⇒ (5).

(ii) (5) ⇒ (3) ⇒ (4) ⇒ (5).

(iii) (3) ⇒ (2) ⇒ (1).
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The implications in (ii) are proved in exactly the same way as those in Main Theorem 1
by simply replacing “2mν − 1” with “2mν − 2.”

(iii): (3) ⇒ (2). Let A = lim−→(Ap, ϕp : Ap → Ap+1) such that 2mν − 2 ≥ k for each
ν ∈ N (Ap) and each p ≥ 1. For each even integer j with j ≤ k and each integer n ≥ m,
we have 2nν − 2 ≥ 2mν − 2 ≥ k ≥ j and hence

πj(GLn(Ap)) = ⊕ν∈N (Ap)πj(GLn(Mν)) = 0.

Hence by Theorem 2.11, we have πj(GLn(A)) = 0. By the same way with the help of The-
orem 2.11, we can prove that the induced homomorphism πj(GLn(A)) → πj(GLn+1(A))
is an isomorphism for each odd integer j < k. This proves (2).

(2) ⇒ (1) follows directly from the definition.

Thus it remains to prove the implication (1)⇒ (5). The proof has the same structure
as that of the the proof (2a)⇒ (5) of Main Theorem 1. Let A = lim−→(Ap, ϕp : Ap → Ap+1),
where each Ap is a finite dimensional C∗-algebra and ϕp is an injective ∗-homomorphism.
Given an even integer k ≥ 1 and an integer m with 1 ≤ m ≤ k

2 +1, we let j0 = k
2 +1−m.

This time we define subsets N̄0, N̄1, . . . , N̄ j0 of Z≥1 as follows:

N̄0 = {ν ∈ Z≥1 | k ≤ 2mν − 2},
N̄1 = {ν ∈ Z≥1 | 2mν − 2 < k ≤ 2(m+ 1)ν − 2},

· · ·
N̄ i = {ν ∈ Z≥1 | 2(m+ i− 1)ν − 2 < k ≤ 2(m+ i)ν − 2},

· · ·
N̄ j0 = {ν ∈ Z≥1 | 2(m+ j0 − 1)ν − 2 = kν − 2 < k ≤

≤ 2(m+ j0)ν − 2 = (k + 2)ν − 2}.

We have ∪j0
i=0N̄

i = Z≥1. Also for a finite dimensional C∗-algeba F , let Ē(F ) = N (F )∩N̄0

and for i = 1, . . . , j0, let Z̄i(F ) = N (F ) ∩ N̄ i and also Z̄(F ) = ∪j0
i=1Z̄i(F ). Further we

define Ē(F ) = ⊕ν∈Ē(F )Mν(C) and Z̄(F ) = ⊕ν∈Z̄(F )Mν(C) so that F = Ē(F )⊕ Z̄(F ).

Step.1. Fix an index ν ∈ Z̄1(Ap) and consider the following diagram:

GLm(Mν)

��

inclν // GLm(Ap)

��

φ∞p //

��

GLm(A)

ιm

��
GLm+1(Mν) // GLm+1(Ap) // GLm+1(A)

where inclν denotes the homomorphism induced by the inclusion Mν → Ap. The above
diagram induces a commutative diagram in the k-th homotopy groups. Since m ≥ 2,
2mν − 2 < k and k is even, we have 2 ≤ mν ≤ k/2. By the hypothesis (∗) we see that
πk(GLm(Mν)) ∼= πk(U(mν)) 6= 0. On the other hand, since k ≤ 2(m+ 1)ν − 2, we have
πk(GLm+1(Mν)) = 0. By the assumption (1), the homomorphism (ιm)♯ : πk(GLm(A)) →
πk(GLm+1(A)) is an isomorphism. Thus we see (ϕ∞p)♯ ◦ (inclν)♯ = 0 : πk(GLm(Mν)) →
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πk(GLm(A)). Since πk(GLm(Mν)) is finitely generated, we can apply Theorem 2.11 to
find q ≥ p such that

(ϕq p)♯ ◦ (inclν)♯ = 0. (3.7)

Step.2. For an index µ ∈ N (Aq), consider

ϕµν
q p := inclν ◦ ϕqν p ◦ projµ :Mν →Mµ.

By Theorem 2.7, µ ≥ ν whenever ϕµν
q p is non-trivial.

Assume that ν ∈ N (Aq) and suppose that ϕµν
qp is non-trivial. Then it is unitarily

equivalent to idMν
and hence the induced homomorphism

(ϕµν
q p)♯ = id : πk(GLm(Mν)) → πk(GLm(Mν))

is an isomorphism. However, since πk(GLm(Mν)) 6= 0, this contradicts (3.7) and we
conclude that ϕµν

q p = 0 and in particular we have

ϕq p(Mν) ⊂ ⊕µ∈N (Aq), µ≥ν+1Mµ. (3.8)

If there exists µ ∈ Z̄1(Aq) with µ ≥ ν + 1 such that ϕµν
q p is non-trivial, then enumerate

all such µ’s as µ1, . . . , µℓ. Since πk(GLm(Mµt)) 6= 0, we can repeat the above process to
each µt, with (3.7), to find q1, . . . , qℓ such that

ϕqt q(Mµt) ⊂ ⊕λ∈N (Aqt ),λ≥µt+1Mλ

and let q(1) = max{q1, . . . , qt}. Then we see

ϕq(1) p(Mν) ⊂ ⊕µ∈N (Aq(1)),µ≥ν+2Mµ.

This process can be repeated until we find qν ≥ q(1) such that

ϕqν p(Mν) ⊂ ⊕µ∈Ē(Aqν )
Mµ = Ē(Aqν ).

We repeat the above to each ν ∈ Z̄1(Ap) and let q1 = max{qν | ν ∈ Z̄1(Ap)}. Then
we have

ϕq1 p(Z̄
1(Ap)) ⊂ Ē(Aq1).

Step 3. Now we follow Step 3 of the proof of (2a)⇒ (5) in Main Theorem 1: we take
ν ∈ Z2(Ap) and repeat Step 2 above by replacing πk(GLm(Mν)) and πk(GLm+1(Mν))
with πk(GLm+1(Mν)) and πk(GLm+2(Mν)) respectively. Then we find q02 ≥ q1 such that

ϕq02 q1(Z̄
2(Ap)) ⊂ Ē(Aq02

)⊕ Z̄1(Aq02
).

Another application of the previous step yields q2 ≥ q02 such that ϕq2 q02
(Z̄1(Aq02

)) ⊂
Ē(Aq2), which results in:

ϕq2 p(Z̄
1(Ap)⊕ Z̄2(Ap)) ⊂ Ē(Aq2).

We inductively proceed to find q := qj0 such that

ϕq p(Z̄(Ap)) = ϕq p(⊕j0
i=1Z̄

i(Ap)) ⊂ Ē(Aq)

as desired. This proves the conclusion (5).
This completes the proof of Main Theorem 2.
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The author is grateful to the referee for pointing out that [14, Theorem 5.7] is relevant
to the statement (1) below.

Example 3.1. Let A be an AF algebra with a Bratteli diagram D = {(p, ν) | ν ∈
N (Ap), p ≥ 1}, where the nodes at the level p is the set {(p, ν) | ν ∈ N (Ap)}.

(1) (cf. [13, Theorem 3.8]) Let mp = minν∈N (Ap) ν. Then limp→∞mp = ∞ if and only
if hsrk(A) = csrk(A) = 1 for each k ≥ 1.

(2) If D contains an infinite ν-chain (Definition 2.8), then

hsrk(A) ≥
{

dk+1
2ν e if k is odd.

dk+2
2ν e if k is even and satisfies the condition (∗).

Proof. (1): If limp→∞mp = ∞, then the equalities hsrk(A) = csrk(A) = 1, for each
k ≥ 1, are verified straightforwardly. The converse implication follows from the proof of
[14, Theorem 5.7].

For (2) assume that k is odd and suppose that m := hsrk(A) <
k+1
2ν . There exists

a non-trivial homomorphism A → Mν(C) by Proposition 2.9. By Main Theorem 1, we
have 2mν − 1 ≥ k, a contradiction. The same argument works for an even k satisfying
the condition (∗).

For example the Bratteli diagram of the GICAR-algebra A ([1, Example III.5.5])
contains an infinite 1-chain. By the above and Proposition 2.15, we see that hsrk(A) =
k+1
2 for each odd integer k and hsrk(A) =

k
2 + 1 for each even integer k ≥ 4 satisfying

(∗).

Acknowledgement. The author is grateful to the referee for helpful suggestios that
improved the exposition of the paper.
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