On isolated points of the surjective spectrum of a closed linear relation

Melik Lajnef ${ }^{(a)}$ and Maher Mnif ${ }^{(b)}$
Department of Mathematics
University of Sfax
Faculty of Sciences of Sfax
B.P. 1171, 3000, Sfax, Tunisia
${ }^{(a)}$ maliklajnaf@gmail.com,
${ }^{(b)}$ maher.mnif@gmail.com, Corresponding Author

Abstract

We characterize the isolated points of the surjective spectrum of a closed linear relation acting on a complex Banach space by means of the local spectral theory. The found results generalize some known characterizations in the frame of bounded operators to include the cases of closed operators and more generally closed linear relations.

Key words: Linear relation, local spectral theory, surjective spectrum.
Mathematics Subject Classification 47A06, 47A10

Introduction

Throughout this paper, $(X .\|\|$.$) will denote a complex Banach space. The first$ phase of our investigation consists in studying the local spectral theory of closed linear relations. More precisely, we develop the basic properties of the local and glocal spectral subspaces, the quasinilpotent part $H_{0}(T)$ and the analytic core $K(T)$ of a closed not necessary bounded linear relation T. This seem a generalization of the later developments of this theory in both cases of closed and bounded linear relations and bounded operators. As an application, we use the found results to give some properties of isolated points of the surjective spectrum of a closed linear relation. To describe these achievements, let's start by recalling some known results in the case of bounded operators. In 2008, González et al. [5] have shown that if T is a bounded operator then
λ is an isolated point of the surjective spectrum of T if and only if

$$
X=H_{0}(T-\lambda I)+K(T-\lambda I)
$$

Recently, the characterization of isolated points of the spectrum has been extended in [6] to the case of linear relations. It was proved that for a closed and bounded linear relation T such that 0 is a point of its spectrum, we have the equivalence:

0 is an isolated in the spectrum of T if and only if $H_{0}(T)$ and $K(T)$ are closed and $X=H_{0}(T) \oplus K(T)$.

All of the above motivated us to establish a necessary and sufficient condition for which a point of the surjective spectrum of a closed linear relation be isolated. This will be considered as a continuation of the study made in the case of linear relations but also a generalization of the investigation carried out for the case of operators since it covers the case of closed operators which are not necessary bounded. More precisely, the purpose of this paper is to show that, under some conditions, the results mentioned above remain valid in the general setting of closed linear relations. The demonstrations provided are essentially based on the local spectral theory that we have developed in the framework of closed linear relations. We now describe this approach in greater detail.
Section 1: The first section is mainly dedicated to introduce the basic tools of linear relations. Then, we study different types of invariance of a subspace of X by a linear relation. Section 2: The first part of this section focuses on providing several tools for studying the local spectral theory. Additionally, we give a further look at Leiterer's result [7, Theorem 3.2.1] which is needed later. Subsequently, we deal with a localized version of the quasinilpotent part and the analytic core of a closed linear relation. Section 3: In this section, we are interested in closed linear relations that verify two further conditions. For these classes of linear relations we derive more properties of the local and glocal spectral subspaces and the quasinilpotent part $H_{0}(T)$. These results are then applied to characterize the isolated points of the surjective spectrum of a linear relation.

1. Preliminaries

In this first section, a brief introduction of the linear relation theory is given. We essentially aim to recall some basic definitions and properties which are needed in the rest of this work. A linear relation (or a multivalued linear operator) in a Banach space $X, T: X \rightarrow X$, is a mapping from a subspace $D(T)=\{x \in$ $X: T x \neq \emptyset\}$, called the domain of T into the set of nonempty subsets of X verifying $T\left(\alpha_{1} x+\alpha_{2} y\right)=\alpha_{1} T(x)+\alpha_{2} T(y)$ for all non zero scalars α_{1}, α_{2} and vectors x and $y \in D(T)$. We denote by $\mathcal{L R}(X)$ the class of all linear relations in X. A linear relation $T \in \mathcal{L} \mathcal{R}(X)$ is completely determined by its graph defined by $G(T):=\{(x, y) \in X \times X: x \in D(T), y \in T x\}$. Let $T \in \mathcal{L R}(X)$. The inverse of T is the relation T^{-1} given by $G\left(T^{-1}\right):=\{(u, v) \in X \times X:(v, u) \in G(T)\}$. The closure \bar{T} of a linear relation T is defined by $G(\bar{T}):=\overline{G(T)}$. We say that T is closed if its graph is a closed subspace of $X \times X$. The set of all closed linear relations is denoted by $\mathcal{C} \mathcal{R}(X)$. We say that T is continuous if the operator $Q_{T} T$ is continuous when Q_{T} is the quotient map from X onto $\frac{X}{\overline{T(0)}}$. In such a case the norm of T is defined by $\|T\|:=\left\|Q_{T} T\right\|$. We say that T is bounded if it is continuous and everywhere defined. The set of all bounded and closed linear relations acting between two Banach spaces X and Y is denoted by $\mathcal{B C} \mathcal{R}(X, Y)$. If $X=Y$, we write $\mathcal{B C R}(X, X):=\mathcal{B C} \mathcal{R}(X)$. The subspaces $\operatorname{ker}(T):=T^{-1}(0)$
and $\operatorname{Im}(T):=T(D(T))$ are called respectively the null space and the range space of T. We say that T is surjective if $T(D(T))=X$ and T is injective if $\operatorname{ker}(T)=\{0\}$. Note that T is an operator if and only if $T(0)=\{0\}$. For linear relations $S, T \in \mathcal{L} \mathcal{R}(X), S \hat{+} T$ is defined by

$$
S \hat{+} T:=\{(x+u, y+v):(x, y) \in G(S) \text { and }(u, v) \in G(T)\}
$$

This last sum is direct when $G(S) \cap G(T)=\{(0,0)\}$. In such case, we write $S \oplus T$. We denote by $\mathcal{B}(X, Y)$ the Banach algebra of all bounded operators on X and Y. If $X=Y$, we write $\mathcal{B}(X, X):=\mathcal{B}(X)$. For $r>0$ we denote $D(0, r):=\{\lambda \in \mathbb{C} ; 0 \leq|\lambda|<r\}$ and $D^{*}(0, r):=D(0, r) \backslash\{0\}$. Now, we aim to define and study some basic tools of the spectral theory. Given a closed linear relation T. For $\lambda \in \mathbb{C}$, we denote by $R_{\lambda}(T)=(\lambda I-T)^{-1}$ the resolvent of T at λ. The resolvent set of T is the set defined by:

$$
\rho(T)=\left\{\lambda \in \mathbb{C} ;(\lambda I-T)^{-1} \text { is everywhere defined and single valued }\right\}
$$

We say that T is invertible if $0 \in \rho(T)$. The spectrum of T is the set $\sigma(T)=$ $\mathbb{C} \backslash \rho(T)$. The extended spectrum of T is the subset $\tilde{\sigma}(T)$ of the extended complex plane $\mathbb{C}=\mathbb{C} \cup\{\infty\}$ that is equal to

$$
\tilde{\sigma}(T)= \begin{cases}\sigma(T), & \text { if } T \in \mathcal{B}(X) \\ \sigma(T) \cup\{\infty\}, & \text { otherwise } .\end{cases}
$$

The surjective spectrum of T is defined by

$$
\sigma_{s u}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not surjective }\} .
$$

We give in the sequel different types of invariance by a linear relation.
Definition 1.1. Let $T \in \mathcal{L R}(X)$ and let Z be a subspace of X such that $D(T) \cap$ $Z \neq \emptyset$. We say that Z is invariant by T if $T(Z) \subseteq Z$. The restriction T / Z is defined in terms of its graph by

$$
G(T / Z):=\{(x, y) \in G(T) \text { such that } x \in Z\} .
$$

Let Y be a closed subspace of X. We say that Y is weakly invariant by T if $T y \cap Y \neq \emptyset$ for all $y \in Y \cap D(T)$. The restriction $T \mid Z$ of T in Z is defined by

$$
G(T \mid Z):=G(T) \cap(Z \times Z) .
$$

Note that, by definition, $D(T \mid Z) \subseteq Z$ and $\operatorname{Im}(T \mid Z) \subseteq Z$. Assume that Y and Z are two subspaces of X such that $X=Y \oplus Z$. We say that T is completely reduced by the pair of subspaces (Y, Z), denoted as $(Y, Z) \in \operatorname{Red}(T)$, if it can be decomposed as $T=T|Y \oplus T| Z$.

Definition 1.2. [3, Definition 2.6] A closed linear subspace Z of X is said to be strongly invariant by a relation $T \in \mathcal{L R}(X)$ with non empty $\rho(T)$ if Z is invariant by all operators $R_{\lambda}(T), \lambda \in \rho(T)$. By the restriction of the relation $T \in \mathcal{L} \mathcal{R}(X)$ to the subspace Z we shall mean the relation $T_{Z} \in \mathcal{L} \mathcal{R}(Z)$ whose resolvent is the restriction $R_{0}: \rho(T) \rightarrow \mathcal{B}(Z), R_{0}(\lambda)=R_{\lambda}(T) / Z, \lambda \in \rho(T)$, of the resolvent $R(., T): \rho(T) \rightarrow \mathcal{B}(X)$ to Z.

Lemma 1.1. Let $T \in \mathcal{C R}(X)$ with $\rho(T) \neq \emptyset$ and let Z be a closed subspace of X. If Z is weakly invariant by T and strongly invariant by T, then we have

$$
D\left(T_{Z}\right)=D(T) \cap Z \quad \text { and } \quad G\left(T_{Z}\right)=G(T) \cap(Z \times Z)
$$

2. Local spectral theory for closed linear relations

In the following, we will introduce some elements of the local spectral theory for closed relations. We note that this theory was first developed for the case of bounded operators by $[7,1]$, then it was extended to the case of bounded and closed linear relations by [10]. What we are going to do next is an extension of the works cited above to include the cases of closed operators and closed relations. Let $T \in \mathcal{C} \mathcal{R}(X)$. We consider the graph norm $\|.\|_{T}$ on $D(T)$ defined by

$$
\|x\|_{T}:=\|x\|+\|T x\| .
$$

In what follows X_{T} denotes $D(T)$ endowed with the graph norm. Observe that X_{T} is a Banach space (since $Q_{T} T$ is a closed operator). Consider the relation \tilde{T} defined by

$$
\tilde{T}: X_{T} \rightarrow X, x \mapsto T x
$$

Evidently, \widetilde{T} is closed and $D(\tilde{T})=D(T)$. Then, by virtue of [4, II.5.1] we get that $\tilde{T} \in \mathcal{B C} \mathcal{R}\left(X_{T}, X\right)$.

Lemma 2.1. Let $T \in \mathcal{C} \mathcal{R}(X)$ and $x \in X$. Then,

$$
\tilde{R} .(T) x: \rho(T) \rightarrow X_{T}, \mu \mapsto \tilde{R}_{\mu}(T) x=R_{\mu}(T) x:=(\mu I-T)^{-1} x \text { is analytic. }
$$

Proof : Let $\lambda \in \rho(T)$. Then, by virtue of [4, Corollary VI.1.9], we get that if $|\lambda-\mu|<\left\|R_{\lambda}(T)\right\|^{-1}$ then,

$$
R_{\mu}(T)=\sum_{n=0}^{\infty} R_{\lambda}(T)^{n+1}(\mu-\lambda)^{n}
$$

Which implies that $\tilde{R}_{\mu}(T) x=\sum_{n=0}^{\infty} \tilde{R}_{\lambda}(T)^{n+1} x(\mu-\lambda)^{n}$. It was like proving that $\sum_{n=0}^{\infty} \tilde{R}_{\lambda}(T)^{n+1} x(\mu-\lambda)^{n}$ is convergent on X_{T}. Observe that $\left\|\tilde{R}_{\lambda}(T)^{n+1} x\right\|_{T}=$
$\left\|\tilde{R}_{\lambda}(T)^{n+1} x\right\|+\left\|T \tilde{R}_{\lambda}(T)^{n+1} x\right\|$. Moreover, we have

$$
\begin{aligned}
\left\|T \tilde{R}_{\lambda}(T)^{n+1} x\right\| & =\left\|Q_{T} T \tilde{R}_{\lambda}(T)^{n+1} x\right\| \\
& =\left\|Q_{T}(T-\lambda I+\lambda I) \tilde{R}_{\lambda}(T)^{n+1} x\right\| \\
& \left.\leq\left\|Q_{T} R_{\lambda}(T)^{n} x\right\|+|\lambda| \| Q_{T} R_{\lambda}(T)^{n+1} x\right] \| \\
& \left.\leq\left\|R_{\lambda}(T)^{n} x\right\|+|\lambda| \| R_{\lambda}(T)^{n+1} x\right] \| .
\end{aligned}
$$

Then, $\left\|\tilde{R}_{\lambda}(T)^{n+1} x\right\|_{T} \leq(1+|\lambda|)\left\|R_{\lambda}(T)^{n+1} x\right\|+\left\|\tilde{R}_{\lambda}(T)^{n} x\right\|$. Since $\sum_{n \geq 0} R_{\lambda}(T)^{n+1} x(\mu-\lambda)^{n}$ and $\sum_{n \geq 0} R_{\lambda}(T)^{n} x(\mu-\lambda)^{n}$ are absolutely convergent in X, then $\sum_{n \geq 0}\left\|\tilde{R}_{\lambda}(T)^{n} x\right\|_{T}|\mu-\lambda|^{n}$ is convergent. Therefore, $\sum_{n \geq 0} \tilde{R}_{\lambda}(T)^{n+1} x(\mu-\lambda)^{n}$ is convergent on X_{T}, as required.

Definition 2.1. The local resolvent set of $T \in \mathcal{C} \mathcal{R}(X)$ at the point $x \in X$, denoted by $\rho_{T}(x)$, is defined as the set of all $\lambda \in \mathbb{C}$ for which there exist an open neighborhood U_{λ} and an analytic function $f_{\lambda, x}: U_{\lambda} \rightarrow X_{T}$ such that $(\mu I-$ T) $f_{\lambda, x}(\mu)=x+T(0)$ holds for all $\mu \in U_{\lambda}$.

The local spectrum of T at the point x is the set $\sigma_{T}(x)=\mathbb{C} \backslash \rho_{T}(x)$.
Remark 2.1. It is easy to see that
(i) $\rho_{T}(x):=\bigcup_{\lambda \in \rho_{T}(x)} U_{\lambda}$ is an open subset of \mathbb{C}.
(ii) For all $x \in X, \rho(T) \subseteq \rho_{T}(x)$.
(iii) For all $x \in T(0), \rho_{T}(x)=\mathbb{C}$.

Proposition 2.1. Let $T \in \mathcal{C} \mathcal{R}(X)$. Then, $\sigma_{T}(\alpha x+\beta y) \subseteq \sigma_{T}(x) \cup \sigma_{T}(y)$, for all $x, y \in X$ and $\alpha, \beta \in \mathbb{C}$.

Proof: Show that for all $x, y \in X$ and $\alpha, \beta \in \mathbb{C}, \rho_{T}(x) \cap \rho_{T}(y) \subseteq \rho_{T}(\alpha x+\beta y)$. In the trivial case where $\alpha=\beta=0$ there is nothing to prove. Otherwise, let $\lambda \in \rho_{T}(x) \cap \rho_{T}(y)$. Then, there exist an open neighborhood U_{λ} and an analytic function $f_{\lambda, x}: U_{\lambda} \rightarrow X_{T}$ such that $(\mu I-T) f_{\lambda, x}(\mu)=x+T(0)$ holds for all $\mu \in U_{\lambda}$ and there exist an open neighborhood V_{λ} and an analytic function $g_{\lambda, x}: V_{\lambda} \rightarrow X_{T}$ such that $(\mu I-T) g_{\lambda, x}(\mu)=y+T(0)$ holds for all $\mu \in V_{\lambda}$. Put $O_{\lambda}:=U_{\lambda} \cap V_{\lambda}$ and $h:=\alpha f_{\lambda, x}+\beta g_{\lambda, x}$. Evidently, $h: O_{\lambda} \rightarrow X_{T}$ is analytic and for all $\mu \in O_{\lambda}$, $(\mu I-T) h(\mu)=(\alpha x+\beta y)+T(0)$. Thus, $\lambda \in \rho_{T}(\alpha x+\beta y)$, as required.

Definition 2.2. For every subset F of \mathbb{C} the local spectral subspace of T associated to F is the set

$$
X_{T}(F):=\left\{x \in X, \sigma_{T}(x) \subseteq F\right\}
$$

Definition 2.3. Let $F \subseteq \mathbb{C}$ be a closed subset and let $T \in \mathcal{C} \mathcal{R}(X)$. We define the glocal spectral subspace $\chi_{T}(F)$ as the set of all $x \in X$ such that there exists an analytic function $f: \mathbb{C} \backslash F \rightarrow X_{T}$ checking :

$$
(\lambda I-T) f(\lambda)=x+T(0) \text { for all } \lambda \in \mathbb{C} \backslash F
$$

Remark 2.2. We note that $X_{T}(F)$ and $\chi_{T}(F)$ are two subspaces of X and that $\chi_{T}(F) \subseteq X_{T}(F)$.

The following result generalizes Leiterer's theorem [7, Theorem 3.2.1] to the setting of closed linear relations.

Proposition 2.2. Let $T \in \mathcal{C R}(X)$ and $\lambda \in \mathbb{C}$. Let U_{λ} be an open neighborhood of λ such that $\mu I-T$ is surjective for all $\mu \in U_{\lambda}$. Then, for all analytic function $g: U_{\lambda} \rightarrow X$ there exists an analytic function $f: U_{\lambda} \rightarrow X_{T}$ such that

$$
(\mu I-T) f(\mu)=g(\mu)+T(0) \text { for all } \mu \in U_{\lambda} .
$$

Proof : As T is closed then $Q_{T} T$ is a closed operator from the Banach space X to the Banach space $\frac{X}{T(0)}$. Note that $Q_{T} \tilde{T}: X_{T} \rightarrow \frac{X}{T(0)}$ is bounded. We claim that for every $\mu \in U_{\lambda}$ the operator $Q_{T}\left(\mu i_{T}-\tilde{T}\right)$ is bounded and surjective from X_{T} to $\frac{X}{T(0)}$, where $i_{T}: X_{T} \rightarrow X, x \mapsto x$. Indeed, as $\left(\mu i_{T}-\tilde{T}\right)$ is surjective, then it is clear that $Q_{T}\left(\mu i_{T}-\tilde{T}\right)$ is also surjective. On the other hand, we have $Q_{T}\left(\mu i_{T}-\tilde{T}\right)=\mu Q_{T} i_{T}-Q_{T} \tilde{T}$ with $Q_{T} \tilde{T}$ is a bounded operator from X_{T} to $\frac{X}{T(0)}$ and for all $x \in D(T),\left\|Q_{T} i_{T} x\right\|=d(x, T(0)) \leq\|x\| \leq\|x\|_{T}$. Then, $Q_{T} i_{T}$ considered as an operator from X_{T} to $\frac{X}{T(0)}$ is bounded. Hence, $Q_{T}\left(\mu i_{T}-\tilde{T}\right)$ is bounded from X_{T} to $\frac{X}{T(0)}$ for all $\mu \in U_{\lambda}$. Now, let us consider the function $Q_{T} g$ on U_{λ}. Since Q_{T} is a bounded operator, then $Q_{T} g$ is an analytic function from U_{λ} to $\frac{X}{T(0)}$. So, let's recap, consider the operator function \hat{T} defined on U_{λ} by

$$
\begin{aligned}
& \hat{T}: U_{\lambda} \rightarrow \mathcal{B}\left(X_{T}, \frac{X}{T(0)}\right) \\
& \mu \rightarrow \hat{T}(\mu):=Q_{T}\left(\mu i_{T}-\tilde{T}\right) .
\end{aligned}
$$

We have \hat{T} is analytic on U_{λ} for which the mapping $\hat{T}(\mu)$ is surjective for all $\mu \in U_{\lambda}$. On the other hand, $Q_{T} g$ is an analytic function from U_{λ} to $\frac{X}{T(0)}$, then from Leiterer's theorem [7, Theorem 3.2.1] there exists an analytic function f from U_{λ} to X_{T} such that for all $\mu \in U_{\lambda}$,

$$
Q_{T}\left(\mu i_{T}-\tilde{T}\right) f(\mu)=Q_{T} g(\mu)
$$

Hence, $Q_{T}\left[\left(\mu i_{T}-\tilde{T}\right) f(\mu)-g(\mu)\right]=0$, for all $\mu \in U_{\lambda}$. Thus, $\left(\mu i_{T}-\tilde{T}\right) f(\mu)-g(\mu) \subseteq$ $T(0)$. Which implies that $\left(\mu i_{T}-\tilde{T}\right) f(\mu)=g(\mu)+T(0)$.

Remark 2.3. We note, by the proof of Proposition 2.2, that Q_{T} and $Q_{T} \tilde{T}$ considered from X_{T} to $\frac{X}{T(0)}$ are bounded operators.

Quasinilpotent part and analytic core of a closed linear relation

Now, let's further extend the concept of quasinilpotent part and the analytic core developed in [8, 9] to the case of closed not necessary bounded linear relations.

Definition 2.4. Let $T \in \mathcal{C R}(X)$.
(i) The quasinilpotent part of T, denoted by $H_{0}(T)$, is the set of all $x \in D(T)$ for which there exists a sequence $\left(x_{n}\right)_{n} \subseteq D(T)$ satisfying

$$
x_{0}=x, \quad x_{n+1} \in T x_{n} \text { for all } n \in \mathbb{N} \text { and }\left\|x_{n}\right\|_{T}^{\frac{1}{n}} \rightarrow 0
$$

(ii) The analytic core of T, denoted by $K(T)$, is defined as the set of all $x \in X$ for which there exist $c>0$ and a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ satisfying $x_{0}=x$ and for all $n \geq 0, x_{n+1} \in D(T), x_{n} \in T x_{n+1}$ and

$$
d\left(x_{n}, \operatorname{ker}(T) \cap T(0)\right) \leq c^{n} d(x, \operatorname{ker}(T) \cap T(0))
$$

It is easy to see that for each $j \geq 0, \operatorname{ker}\left(T^{j}\right) \subseteq H_{0}(T)$.
In the next lemma, we collect some elementary properties of $K(T)$.
Lemma 2.2. Let $T \in \mathcal{C R}(X)$. Then the following statements hold.
(i) $T(D(T) \cap K(T))=K(T)$;
(ii) If F is a closed subspace of X such that $T(D(T) \cap F)=F$ then $F \subseteq K(T)$.
(iii) If $x \in K(T)$, then there exist $d>0$ and a sequence $\left(x_{n}\right)_{n}$ satisfying $x_{0}=x$ and for all $n \geq 0, x_{n+1} \in D(T), x_{n} \in T x_{n+1}$ and for all $n \geq 1$,

$$
\left\|x_{n}\right\|_{T} \leq d^{n}\|x\| .
$$

Proof : (i) The proof is similar to the proof of [6, Lemma 2.1].
(ii) First, we claim that $F \cap D(T)$ is closed in X_{T}. Indeed, let $\left(x_{n}\right)_{n} \subseteq F \cap D(T)$ be such that $x_{n} \xrightarrow[n \rightarrow \infty]{X_{T}} x$. Trivially, $x \in D(T)$. On the other hand, we have $\left\|x_{n}-x\right\|_{T} \xrightarrow[n \rightarrow \infty]{ } 0$. As F is closed in X, then $x \in F$. Hence, $F \cap D(T)$ is closed in X_{T}, as claimed. Recall that the relation \tilde{T} is closed. Let us consider $T_{0}: D(T) \cap F \rightarrow F$, the restriction of \tilde{T}. We have $G\left(T_{0}\right)=G(T) \cap((D(T) \cap F) \times F)$ is closed in $X_{T} \times X$. Then, T_{0} is closed. We have, by hypothesis, $\operatorname{Im} T_{0}=F$ then, by the open mapping theorem [4, Theorem III.4.2], we deduce that T_{0} is open. Thus, there exists a constant $\gamma>0$ such that for all $x \in D\left(T_{0}\right)=D(T) \cap F$,

$$
d_{T}\left(x, \operatorname{ker}\left(T_{0}\right)\right) \leq \gamma\left\|T_{0} x\right\|
$$

where $d_{T}(x, G):=\inf _{\alpha \in G}\|x-\alpha\|_{T}$. As, for all $x \in D\left(T_{0}\right)$ and $\alpha \in \operatorname{ker} T_{0},\|x-\alpha\| \leq$ $\|x-\alpha\|_{T}$ then, $d\left(x, \operatorname{ker} T_{0}\right) \leq d_{T}\left(x, \operatorname{ker} T_{0}\right)$. Hence,

$$
\begin{equation*}
d\left(x, \operatorname{ker} T_{0}\right) \leq \gamma\left\|T_{0} x\right\| \tag{2.1}
\end{equation*}
$$

Now, consider $\epsilon>0$ and let $u \in F$. Then, there exists $x \in D(T) \cap F$ such that $u \in T x$. By (2.1) there exists $y \in \operatorname{ker}\left(T_{0}\right) \subseteq \operatorname{ker}(T)$ such that $\|x-y\| \leq$ $(\gamma+\epsilon) d(u, T(0))$. Take $u_{1}=x-y \in D(T) \cap F$. We have $u \in T\left(u_{1}\right)$ and

$$
d\left(u_{1}, T(0) \cap \operatorname{ker}(T)\right) \leq(\gamma+\epsilon) d(u, T(0) \cap \operatorname{ker}(T))
$$

Continuing in the same manner, we build a sequence $\left(u_{n}\right)_{n}$ such that $u_{0}=u$, for all $n \geq 0, u_{n+1} \in D(T) \cap F, u_{n} \in T u_{n+1}$ and

$$
d\left(u_{n}, T(0) \cap \operatorname{ker}(T)\right) \leq(\gamma+\epsilon)^{n} d(u, T(0) \cap \operatorname{ker}(T))
$$

Hence, $u \in K(T)$. Thus, $F \subseteq K(T)$.
(iii) Let $x \in K(T)$. Then, there exist $c>0$ and a sequence $\left(y_{n}\right)_{n}$ such that

$$
\left\{\begin{array}{l}
y_{0}=x \\
\text { for all } n \geq 0, \quad y_{n+1} \in D(T) \text { and } y_{n} \in T y_{n+1} \\
d\left(y_{n}, \operatorname{ker}(T) \cap T(0)\right) \leq c^{n} d(x, \operatorname{ker}(T) \cap T(0))
\end{array}\right.
$$

Let $d>c$. Then, for all $n \geq 1$ there exists $\alpha_{n} \in T(0) \cap \operatorname{ker}(T) \subseteq D(T)$ such that $\left\|y_{n}-\alpha_{n}\right\| \leq d^{n}\|x\|$. Let $\left(x_{n}\right)_{n}$ be the sequence defined by $x_{n+1}=y_{n+1}-\alpha_{n+1}$ for all $n \geq 0$ and $x_{0}=x$. Then, for all $n \geq 0, \quad x_{n+1} \in D(T), \quad x_{n} \in T x_{n+1}$ and $\left\|x_{n}\right\| \leq d^{n}\|x\|$. On the other hand, we have $\left\|x_{n}\right\|_{T}=\left\|x_{n}\right\|+\left\|Q_{T} T x_{n}\right\|=$ $\left\|x_{n}\right\|+\left\|Q_{T}\left(x_{n-1}\right)\right\|$. Then, $\left\|x_{n}\right\|_{T}=\left\|x_{n}\right\|+d\left(x_{n-1}, T(0)\right)$. Which implies that

$$
\left\|x_{n}\right\|_{T} \leq d^{n}\|x\|+\left\|x_{n-1}\right\| \leq\left(d^{n}+d^{n-1}\right)\|x\|
$$

Consequently, there exists $\delta>0$ such that $\left\|x_{n}\right\|_{T} \leq \delta^{n}\|x\|$.
The next lemma describes $K(T)$ and $H_{0}(T)$ in terms of the local and glocal spectral subspaces.
Lemma 2.3. Let $T \in \mathcal{C} \mathcal{R}(X)$. Then, the following assertions hold.
(i) $H_{0}(T)+T(0) \subseteq \chi_{T}(\{0\})$.
(ii) $K(T)=X_{T}(\mathbb{C} \backslash\{0\})$.

Proof : (i) Let $x \in H_{0}(T)$. Then, there exists $\left(x_{n}\right)_{n} \subseteq D(T)$ such that $x_{0}=x, x_{n+1} \in T x_{n}$ and $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{T}^{\frac{1}{n}}=0$. Thus, the series $f(\lambda):=\sum_{n \geq 1} \lambda^{-n} x_{n-1}$ converges in X_{T} uniformly on $\mathbb{C} \backslash\{0\}$. Therefore, f is analytic throughout $\mathbb{C} \backslash\{0\}$ with values in X_{T}. Using Remark 2.3, we get for all $\lambda \neq 0$,

$$
Q_{T} T\left(\sum_{n \geq 1} \lambda^{-n} x_{n-1}\right)=\sum_{n \geq 1} \lambda^{-n} Q_{T} T x_{n-1}=\sum_{n \geq 1} \lambda^{-n} Q_{T} x_{n}=Q_{T}\left(\sum_{n \geq 1} \lambda^{-n} x_{n}\right) .
$$

Whence, $(\lambda I-T) f(\lambda)=\sum_{n \geq 0} \lambda^{-n} x_{n}-\sum_{n \geq 1} \lambda^{-n} x_{n}+T(0)=x+T(0)$. Therefore, $x \in$ $\chi_{T}(\{0\})$. Furthermore, we have $\chi_{T}(\{0\})$ is a subspace of X and $T(0) \subseteq \chi_{T}(\{0\})$ which provides the required inclusion.
(ii) Let $x \in X_{T}(\mathbb{C} \backslash\{0\})$. Then, $0 \in \rho_{T}(x)$ which implies that there exist an open disc $D(0, \epsilon)$ and an analytic function $f: D(0, \epsilon) \rightarrow X_{T}$ such that $(\mu I-T) f(\mu)=x+T(0)$ holds for all $\mu \in D(0, \epsilon)$. As f is an analytic function, then there exists a sequence $\left(u_{n}\right)_{n \geq 1} \subseteq D(T)$ such that

$$
f(\lambda)=-\sum_{n \geq 1} \lambda^{n-1} u_{n}, \quad \text { for all } \quad \lambda \in D(0, \epsilon) .
$$

But, we have $f(0)=-u_{1}$ then $T u_{1}=x+T(0)$. Therefore, $x \in T u_{1}$. Take $u_{0}=x$. We can show by induction that $u_{n} \in T u_{n+1}$ for all $n \in \mathbb{N}$. It remains to prove that there exists $b>0$ such that $d\left(u_{n}, T(0) \cap \operatorname{ker} T\right) \leq b^{n} d(x, T(0) \cap \operatorname{ker} T)$ for all $n \geq 0$. Trivially, if $x \in T(0) \cap \operatorname{ker}(T)$, then there is nothing to prove. Otherwise, as $\sum_{n \geq 1} \lambda^{n-1} u_{n}$ converges in X_{T}, then $|\lambda|^{n-1}\left\|u_{n}\right\|_{T} \rightarrow 0$ as $n \rightarrow \infty$ for all $|\lambda|<\epsilon$. Particularly, $\frac{1}{\mu^{n-1}}\left\|u_{n}\right\|_{T} \xrightarrow[n \rightarrow \infty]{ } 0$ for all $\mu>\frac{1}{\epsilon}$. Now, take $\mu_{0}>\frac{1}{\epsilon}$. Then, there exists $c>0$ such that for all $n \geq 1,\left\|u_{n}\right\|_{T} \leq c \mu_{0}^{n-1}$. Besides this, we have for all $n \geq 1$,

$$
\left(\frac{\mu_{0}}{\mu_{0}+\frac{c}{d(x, T(0) \cap k e r T)}}\right)^{n-1} \leq 1+\frac{d(x, T(0) \cap \operatorname{ker} T) \mu_{0}}{c} .
$$

Hence, for all $n \geq 1$, we get

$$
\left\|u_{n}\right\|_{T} \leq\left(\mu_{0}+\frac{c}{d(x, T(0) \cap \operatorname{ker} T)}\right)^{n} d(x, T(0) \cap \operatorname{ker} T)
$$

Consequently, for all $n \geq 1$, we obtain

$$
d\left(u_{n}, T(0) \cap \operatorname{ker} T\right) \leq\left\|u_{n}\right\| \leq\left\|u_{n}\right\|_{T} \leq b^{n} d(x, T(0) \cap \operatorname{ker} T),
$$

with $b=\mu_{0}+\frac{c}{d(x, T(0) \cap \operatorname{ker} T)}$. Observe that the last inequality holds for $n=0$. Thus, $x \in K(T)$ and hence, $X_{T}(\mathbb{C} \backslash\{0\}) \subseteq K(T)$. Conversely, assume that $x \in K(T)$. Then, there exist $\delta>0$ and a sequence $\left(x_{n}\right)_{n}$ satisfying $x_{0}=x$ and for all $n \geq 0, x_{n+1} \in D(T), x_{n} \in T x_{n+1}$ and $d\left(x_{n}, \operatorname{ker}(T) \cap T(0)\right) \leq \delta^{n} d(x, \operatorname{ker}(T) \cap$ $T(0))$. Therefore, by Lemma 2.2 (iii) we get that there exist $b>0$ and a sequence $\left(y_{n}\right)_{n}$ such that

$$
\left\{\begin{array}{l}
y_{0}=x \\
\text { for all } n \geq 0, \quad y_{n+1} \in D(T) \text { and } y_{n} \in T y_{n+1} \\
\text { for all } n \geq 1, \quad\left\|y_{n}\right\|_{T} \leq b^{n}\|x\|
\end{array}\right.
$$

Let f be the analytic function $f: B\left(0, \frac{1}{b}\right) \rightarrow X_{T}$ defined by

$$
f(\lambda)=-\sum_{n \geq 1} \lambda^{n-1} y_{n}
$$

Using Remark 2.3, we get $T\left(\sum_{n \geq 1} \lambda^{n-1} y_{n}\right)-\sum_{n \geq 1} \lambda^{n-1} y_{n-1} \subseteq T(0)$, for all $\lambda \in B\left(0, \frac{1}{b}\right)$. Whence,

$$
(\lambda I-T) f(\lambda)=\sum_{n \geq 1} \lambda^{n-1} y_{n-1}+T(0)-\lambda \sum_{n \geq 1} \lambda^{n-1} y_{n}=y_{0}+T(0)=x+T(0) .
$$

Thus, $0 \in \rho_{T}(x)$ and so, $x \in X_{T}(\mathbb{C} \backslash\{0\})$, then we have the required inclusion.
Definition 2.5. Let S be a subset of X. We say that S is nowhere dense if the interior of its closure is empty. A subset $E \subseteq X$ is called of first category if it is a countable union of nowhere dense subsets. If E fails to be of first category we say that E is of second category. In addition, the union of any countable family of first category is of first category.

In the next lemma, we gather some properties of local and glocal spectral subspaces and the surjective spectrum of a closed linear relation.

Lemma 2.4. Let $T \in \mathcal{C} \mathcal{R}(X)$ and $F \subseteq \mathbb{C}$ be a closed subset. Then,
(i) $\sigma_{s u}(T)=\bigcup_{x \in X} \sigma_{T}(x)$ and it is closed.
(ii) The set $\left\{x \in X\right.$ such that $\left.\sigma_{T}(x)=\sigma_{s u}(T)\right\}$ is of the second category in X.
(iii) $\chi_{T}(F)=X$ if and only if $\sigma_{s u}(T) \subseteq F$.
(iv) $\chi_{T}(F \cap \sigma(T))=\chi_{T}(F)$ and $X_{T}(F \cap \sigma(T))=X_{T}(F)$.

Proof: (i) We shall show that $\rho_{s u}(T)=\bigcap_{x \in X} \rho_{T}(x)$. To see this, let $\lambda \in \bigcap_{x \in X} \rho_{T}(x)$.
Then, $\lambda \in \rho_{T}(x)$ for all $x \in X$. Let $x \in X$. Then there exists an open neighborhood U_{λ} of λ and an analytic function $f_{x}: U_{\lambda} \rightarrow X_{T}$ such that

$$
(\mu I-T) f_{x}(\mu)=x+T(0) \text { for all } \mu \in U_{\lambda} .
$$

Which implies that $x \in(\lambda I-T) f_{x}(\lambda) \subseteq \operatorname{Im}(\lambda I-T)$ for all $x \in X$. Then, $(\lambda I-T)$ is surjective. Whence, $\lambda \in \rho_{s u}(T)$. Moving to the direct inclusion, let $\lambda \in \rho_{s u}(T)$. Then, $(\lambda I-T)$ is surjective. According to Lemma 2.2 (ii), we get $K(\lambda I-T)=X$. In addition, it follows from Lemma 2.3 (ii) that $0 \in \rho_{\lambda I-T}(x)$. Therefore, there exist an open neighborhood U_{0} of 0 and an analytic function $f: U_{0} \rightarrow X_{T}$ such that $((\mu-\lambda) I+T) f(\mu)=x+T(0)$ for all $\mu \in U_{0}$. Consequently, $(\gamma I-T) g(\gamma)=x+T(0)$ for all $\gamma \in U_{\lambda}$, where U_{λ} be the open neighborhood of λ given by $U_{\lambda}=\lambda-U_{0}$ and g be the analytic function defined on U_{λ} by $g(\delta)=-f(\lambda-\delta)$. Hence, $\lambda \in \rho_{T}(x)$ for all $x \in X$.
(ii) Let E be a dense countable subset of $\sigma_{s u}(T)$. Then, for all $\lambda \in E$ we have $\operatorname{Im}(\lambda I-T) \neq X$. We note that $\operatorname{Im}(\lambda I-T)$ is of the first category in X. In fact, assume that $\operatorname{Im}(\lambda I-T)$ is of the second category in X. We start by proving that
$\operatorname{Im}(\lambda I-T)=X$, which is absurd. To do that, it suffices to prove that $(\lambda I-T)$ is open. Let us suppose that U is the open ball in X_{T} with center 0 and radius $r>0$. We show that $\left(\lambda i_{T}-\tilde{T}\right)(U)$ contains a neighborhood of 0 in X. Let us define,

$$
U_{n}:=\left\{x \in D(T),\|x\|_{T}<2^{-n} r\right\} \quad(n \in \mathbb{N})
$$

Observe that $U_{1} \supseteq U_{2}-U_{2}$. Then, $\left(\lambda i_{T}-\tilde{T}\right) U_{1} \supseteq\left(\lambda i_{T}-\tilde{T}\right) U_{2}-\left(\lambda i_{T}-\tilde{T}\right) U_{2}$. Whence,

$$
\begin{equation*}
\overline{\left(\lambda i_{T}-\tilde{T}\right) U_{1}} \supseteq \overline{\left(\lambda i_{T}-\tilde{T}\right) U_{2}-\left(\lambda i_{T}-\tilde{T}\right) U_{2}} \supseteq \overline{\left(\lambda i_{T}-\tilde{T}\right) U_{2}}-\overline{\left(\lambda i_{T}-\tilde{T}\right) U_{2}} \tag{2.2}
\end{equation*}
$$

On the other hand, we have $\operatorname{Im}\left(\lambda i_{T}-\tilde{T}\right)=\bigcup_{k=1}^{\infty} k\left(\lambda i_{T}-\tilde{T}\right)\left(U_{2}\right)$. Since $\operatorname{Im}(\lambda I-T)$ is of second category, then at least one $k\left(\lambda i_{T}-\tilde{T}\right) U_{2}$ is of second category of X and hence, $\left(\lambda i_{T}-\tilde{T}\right) U_{2}$ is of the second category. Thus, $\operatorname{int}\left(\overline{\left(\lambda i_{T}-\tilde{T}\right) U_{2}}\right) \neq \emptyset$. Hence, by (2.2), there exists a neighborhood W of 0 in X such that

$$
W \subseteq \overline{\left(\lambda i_{T}-\tilde{T}\right) U_{1}}
$$

We claim that $\overline{\left(\lambda i_{T}-\tilde{T}\right)\left(U_{1}\right)} \subseteq\left(\lambda i_{T}-\tilde{T}\right)(U)$. Indeed, take $y_{1} \in \overline{\left(\lambda i_{T}-\tilde{T}\right)\left(U_{1}\right)}$. As, what just proved for U_{1} holds true by proceeding with the same way for U_{2}, then $\left(\lambda i_{T}-\tilde{T}\right)\left(U_{2}\right)$ contains a neighborhood of 0 . Consequently,

$$
\left(y_{1}-\overline{\left(\lambda i_{T}-\tilde{T}\right) U_{2}}\right) \cap\left(\lambda i_{T}-\tilde{T}\right)\left(U_{1}\right) \neq \emptyset
$$

Hence, there is some $\alpha_{1} \in\left(\lambda i_{T}-\tilde{T}\right) x_{1}$ with $x_{1} \in U_{1}$ such that $y_{2}=y_{1}-\alpha_{1} \in$ $\overline{\left(\lambda i_{T}-\tilde{T}\right) U_{2}}$. We proceed by induction. Then, we may construct the sequences $\left(\alpha_{n}\right)_{n \geq 1},\left(x_{n}\right)_{n \geq 1} \subseteq D(T)$ and $\left(y_{n}\right)_{n \geq 1}$, such that for all $n \geq 1, x_{n} \in U_{n}, \alpha_{n} \in$ $\left(\lambda i_{T}-\tilde{T}\right)\left(x_{n}\right)$ and $y_{n+1}=y_{n}-\alpha_{n} \in \overline{\left(\lambda i_{T}-\tilde{T}\right)\left(U_{n+1}\right)}$. As, $\left\|x_{n}\right\|_{T} \leq \frac{r}{2^{n}}$, then $\sum_{n \geq 1} x_{n}$ converges in X_{T}. Let $x=\sum_{n=1}^{\infty} x_{n}$. Then, $\|x\|_{T}<r$ and hence, $x \in U$. Moreover, we have by the construction of $\left(\alpha_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ that

$$
\sum_{n=1}^{m} Q_{T} \alpha_{n}=\sum_{n=1}^{m} Q_{T}\left(y_{n}-y_{n+1}\right)=Q_{T} y_{1}-Q_{T} y_{m+1}
$$

Then,

$$
Q_{T}\left(\lambda i_{T}-\tilde{T}\right)\left(\sum_{n=1}^{m} x_{n}\right)=Q_{T} y_{1}-Q_{T} y_{m+1}
$$

Now, we note that $Q_{T} y_{m} \xrightarrow[m \rightarrow \infty]{ } 0$. In fact, assume that $\alpha \in\left(\lambda i_{T}-\tilde{T}\right)\left(U_{n}\right)$. Then, there is some $\beta \in U_{n}$ such that $\alpha \in\left(\lambda i_{T}-\tilde{T}\right)(\beta)$. Thus, we get $d(\alpha, \tilde{T}(0))=$ $\left\|\left(\lambda i_{T}-\tilde{T}\right) \beta\right\| \leq\left\|\left(\lambda i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}, X\right)}\|\beta\|_{T}$. Hence, we obtain

$$
\left(\lambda i_{T}-\tilde{T}\right)\left(U_{n}\right) \subseteq\left\{\alpha \in X, d(\alpha, T(0)) \leq\left\|\left(\lambda i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}, X\right)} \frac{r}{2^{n}}\right\} .
$$

Observe that the map $\alpha \rightarrow d(\alpha, T(0))$ is continuous on X. Then,

$$
\left\{\alpha \in X ; d(\alpha, T(0)) \leq\left\|\left(\lambda i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}, X\right)} \frac{r}{2^{n}}\right\} \quad \text { is closed }
$$

and we have

$$
y_{n} \in \overline{\left(\lambda i_{T}-\tilde{T}\right)\left(U_{n}\right)} \subseteq\left\{\alpha \in X ; d(\alpha, T(0)) \leq\left\|\left(\lambda i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}, X\right)} \frac{r}{2^{n}}\right\}
$$

Whence, $d\left(y_{n}, T(0)\right) \leq\left\|\left(\lambda i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}, X\right)} \frac{r}{2^{n}}$. So, $\left\|Q_{T} y_{n}\right\| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$. Therefore, as $Q_{T}\left(\lambda i_{T}-\tilde{T}\right): X_{T} \rightarrow \frac{X}{T(0)}$ is a bounded operator, then we infer that $Q_{T}\left(\lambda i_{T}-\right.$ $\tilde{T})(x)=Q_{T}\left(y_{1}\right)$ and so, $y_{1} \in\left(\lambda i_{T}-\tilde{T}\right)(x)=(\lambda I-T)(x)$. Which implies that

$$
W \subseteq \overline{(\lambda I-T) U_{1}} \subseteq(\lambda I-T)(U)
$$

Thus, $(\lambda I-T)$ is an open mapping. Now, since $(\lambda I-T)$ is open, then $\operatorname{Im}(\lambda I-T)$ is closed. On the other hand, $\operatorname{Im}(\lambda I-T)$ is of second category then, $\operatorname{int}(\overline{\operatorname{Im}(\lambda I-T))}) \neq$ \emptyset. Whence, $\operatorname{int}(\operatorname{Im}(\lambda I-T)) \neq \emptyset$. So, $\operatorname{Im}(\lambda I-T)=X$ which is absurd. Therefore, $\operatorname{Im}(\lambda I-T)$ is of first category for all $\lambda \in E$. So, $F=\bigcup_{\lambda \in E} \operatorname{Im}(\lambda I-T)$ is also of the first category. Thus, $X \backslash F$ is of second category. We note that for all $x \in X \backslash F, \sigma_{s u}(T) \subseteq \sigma_{T}(x)$. In fact, let $x \in X \backslash F$. Then $E \subseteq \sigma_{T}(x)$. Whence,

$$
\sigma_{s u}(T)=\bar{E} \subseteq \overline{\sigma_{T}(x)}=\sigma_{T}(x)
$$

Therefore, $\sigma_{s u}(T)=\sigma_{T}(x)$. Hence, the set $\left\{x \in X\right.$ such that $\left.\sigma_{s u}(T)=\sigma_{T}(x)\right\}$ is of second category.
(iii) Suppose that $\sigma_{s u}(T) \subseteq F$. Show that $\chi_{T}(F)=X$. Note that $T-\lambda I$ is surjective for all $\lambda \in \mathbb{C} \backslash \sigma_{s u}(T)$. Let $x \in X$ and let

$$
\begin{aligned}
g: \mathbb{C} \backslash \sigma_{s u}(T) & \rightarrow X \\
\lambda & \mapsto x .
\end{aligned}
$$

Then, using Proposition 2.2, there exists an analytic function $f: \mathbb{C} \backslash \sigma_{s u}(T) \rightarrow X_{T}$ such that

$$
(\lambda I-T) f(\mu)=x+T(0) \quad \text { for all } \mu \in \mathbb{C} \backslash \sigma_{s u}(T)
$$

Thus, $x \in \chi_{T}\left(\sigma_{s u}(T)\right)$ and hence, $\chi_{T}\left(\sigma_{s u}(T)\right)=X$. On the other hand, we have $\sigma_{s u}(T) \subseteq F$. Then, $\chi_{T}\left(\sigma_{s u}(T)\right) \subseteq \chi_{T}(F)$. It follows that $\chi_{T}(F)=X$. Conversely, we suppose that $\chi_{T}(F)=X$. By (i) we have $X_{T}(F)=X$. Which implies that for all $x \in X, \sigma_{T}(x) \subseteq F$. But, by (i), we have $\sigma_{s u}(T)=\bigcup_{x \in X} \sigma_{T}(x)$. Then, $\sigma_{s u}(T) \subseteq F$.
(iv) Let $y \in \chi_{T}(F)$. Then, there exists an analytic function $f: \mathbb{C} \backslash F \rightarrow X_{T}$
such that for all $\lambda \in \mathbb{C} \backslash F,(\lambda I-T) f(\lambda)=y+T(0)$. Set $U:=\mathbb{C} \backslash(F \cap \sigma(T))=$ $(\mathbb{C} \backslash F) \cup \rho(T)$. We have for all $\lambda \in \rho(T) \cap(\mathbb{C} \backslash F), f(\lambda)=R_{\lambda}(T) y$. Define

$$
h(\lambda)= \begin{cases}f(\lambda), & \text { if } \lambda \in \mathbb{C} \backslash F \\ R_{\lambda}(T) y, & \text { if } \lambda \in \rho(T) .\end{cases}
$$

According to Lemma 2.1 we get that h is an analytic function $U \rightarrow X_{T}$ such that

$$
(\lambda I-T) h(\lambda)=y+T(0) \text { for each } \lambda \in \mathbb{C} \backslash(F \cap \sigma(T)) .
$$

Hence, $y \in \chi_{T}(F \cap \sigma(T))$. Consequently, $\chi_{T}(F) \subseteq \chi_{T}(F \cap \sigma(T))$. The reversed inclusion is straightforward. Thus,

$$
\chi_{T}(F)=\chi_{T}(F \cap \sigma(T)) .
$$

Now, let $x \in X_{T}(F)$. Then, $\sigma_{T}(x) \subseteq F$. On the other hand, as $\rho(T) \subseteq \rho_{T}(x)$, then $\sigma_{T}(x) \subseteq \sigma(T)$. Consequently, $x \in X_{T}(F \cap \sigma(T))$. Conversely, if $x \in X_{T}(F \cap \sigma(T))$ then, $\sigma_{T}(x) \subseteq F \cap \sigma(T) \subseteq F$, as required.

3. On the isolated points of the surjective spectrum

Before stating the main result of this section, we gathered some technical lemmas which are crucial for the proof. Let's consider now the following assumptions.

Assumption 3.1. $T \in \mathcal{C} \mathcal{R}(X)$ be a relation with extended spectrum $\tilde{\sigma}(T)$ of the form $\tilde{\sigma}(T)=\sigma(T) \cup\{\infty\}$, where $\sigma(T)$ is a compact subset of \mathbb{C}.

Example 3.1. Let $T \in \mathcal{B}(X)$ be generalized Drazin invertible. Then, 0 is isolated in $\sigma(T)$, where $\sigma(T)$ is a compact of \mathbb{C}. Therefore, $S:=T^{-1}$ is a closed linear relation and $\tilde{\sigma}(S)=\{\infty\} \cup \sigma(S)$ with $\sigma(S)$ is a compact subset of \mathbb{C}. Hence, S satisfies Assumption 3.1.

Assumption 3.2. $T \in \mathcal{C} \mathcal{R}(X)$ be such that $D(T)$ is closed and $D(T) \oplus T(0)=X$.
Example 3.2. Let P be a bounded projection operator and let $T:=P^{-1}$. Then, T is a closed linear relation. Since $\sigma(P)=\{0,1\}$, then $\tilde{\sigma}(T)=\{1, \infty\}$. Thus, T satisfies Assumption 3.1. Besides this, we have $D(T)=\operatorname{Im}(P)$ and it is closed. As $D(T) \oplus T(0)=\operatorname{Im}(P) \oplus \operatorname{Ker}(P)=X$, then, Assumption 3.2 is fulfilled.

As a particular case of Baskakov's Theorem 2.10 in [2], we infer to the following remark.

Remark 3.1. Let $T \in \mathcal{C} \mathcal{R}(X)$ satisfying Assumption 3.1 and let Γ be a closed Jordan curve around $\sigma(T)$ lying in $\rho(T)$. Consider the Riesz projection

$$
P_{\sigma}:=\frac{1}{2 \pi i} \int_{\Gamma} R_{\lambda}(T) d \lambda
$$

It is well known by [2] that P_{σ} is a bounded projection and using [2, Theorem 2.10], we get that ker P_{σ} and $\operatorname{ImP} P_{\sigma}$ are strongly invariant by T and that $T=T_{0} \oplus T_{1}$ where T_{0} is a bounded operator defined by $T_{0}=T_{I m P_{\sigma}}$ and T_{1} is a closed linear relation given by $T_{1}=T_{\text {kerP }_{\sigma}}$. Furthermore, we have

$$
\tilde{\sigma}\left(T_{0}\right)=\sigma(T) \text { and } \tilde{\sigma}\left(T_{1}\right)=\{\infty\} .
$$

Lemma 3.1. Let $T \in \mathcal{C} \mathcal{R}(X)$, satisfying Assumption 3.1 and Assumption 3.2. Let K be a compact of \mathbb{C}, Γ be a contour in the complement $U:=\mathbb{C} \backslash K$ that surrounds K and let $x \in X$. If there exists an analytic function $f: U \rightarrow X_{T}$ such that for each $\lambda \in U,(\lambda I-T) f(\lambda)=x+T(0)$, then

$$
P_{\sigma} x=\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) d \lambda
$$

Proof : As f is analytic on U, it follows from Cauchy's theorem that

$$
\int_{\Gamma} f(\lambda) d \lambda=\int_{\Upsilon} f(\lambda) d \lambda,
$$

where Υ denotes a positively oriented boundary of a disc that is centered in the origin and large enough to include both the contour Γ and the spectrum of T in its interior. Now, for $\lambda \in \Upsilon$ we have $\lambda \in \rho(T)$ and $f(\lambda)=\tilde{R}_{\lambda}(T) x$. Using Remark 3.1, we get for all $x \in X$,

$$
P_{\sigma} x=\frac{1}{2 \pi i} \int_{\Upsilon} R_{\lambda}(T) x d \lambda .
$$

As $R_{\lambda}(T) x$ is analytic by Lemma 2.1 and that $\|$.$\| and \|\cdot\|_{T}$ are comparable norms on $D(T)$ by Assumption 3.2, then we get

$$
P_{\sigma} x=\frac{1}{2 \pi i} \int_{\Upsilon} \tilde{R}_{\lambda}(T) x d \lambda=\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) d \lambda .
$$

Lemma 3.2. If $T \in \mathcal{C} \mathcal{R}(X)$ satisfies Assumption 3.1 and Assumption 3.2 then, for all disjoint closed sets $F_{1}, F_{2} \subseteq \mathbb{C}$, such that F_{1} is compact and connected, we have

$$
\chi_{T}\left(F_{1} \cup F_{2}\right) \subseteq \chi_{T}\left(F_{1}\right) \cap D(T)+X_{T}\left(F_{2}\right) \cap D(T)+\operatorname{ker} P_{\sigma},
$$

where P_{σ} is the Riesz projection defined in Remark 3.1.
Proof : Assume that $x \in \chi_{T}\left(F_{1} \cup F_{2}\right)$. Then there exists $f: \mathbb{C} \backslash\left(F_{1} \cup F_{2}\right) \rightarrow X_{T}$ an analytic function such that

$$
(\mu I-T) f(\mu)=x+T(0) \text { for all } \mu \in \mathbb{C} \backslash\left(F_{1} \cup F_{2}\right)
$$

We may assume that F_{2} is compact since we have, by Lemma 2.4, for all sets $F \subseteq \mathbb{C}, \chi_{T}(F)=\chi_{T}(F \cap \sigma(T))$ and $X_{T}(F)=X_{T}(F \cap \sigma(T))$. Let G_{1}, G_{2} be two disjoints compact sets such that for $i=1,2$ the set G_{i} is a neighborhood of F_{i} whose boundary Γ_{i} be a contour in the complement $\mathbb{C} \backslash F_{i}$ that surrounds F_{i} and that G_{1} is connected. By Lemma 3.1, we have

$$
P_{\sigma} x=\frac{1}{2 \pi i} \int_{\Gamma_{1} \cup \Gamma_{2}} f(\lambda) d \lambda .
$$

On the other hand, we have

$$
\begin{equation*}
P_{\sigma} x=\frac{1}{2 \pi i} \int_{\Gamma_{1} \cup \Gamma_{2}} f(\lambda) d \lambda=\frac{1}{2 \pi i} \int_{\Gamma_{1}} f(\lambda) d \lambda+\frac{1}{2 \pi i} \int_{\Gamma_{2}} f(\lambda) d \lambda . \tag{3.1}
\end{equation*}
$$

Put $x_{i}=\frac{1}{2 \pi i} \int_{\Gamma_{i}} f(\lambda) d \lambda \in D(T)$ for $i=1,2$. Now, show that $x_{i} \in \chi_{T}\left(G_{i}\right)$. Let

$$
g_{i}(\lambda):=\frac{1}{2 \pi i} \int_{\Gamma_{i}} \frac{f(\mu)}{\lambda-\mu} d \mu \text { for all } \lambda \in \mathbb{C} \backslash G_{i}
$$

Note that g_{i} considered as a function from $\mathbb{C} \backslash G_{i}$ to X_{T} is analytic. We have for every $\lambda \in \mathbb{C} \backslash G_{i}$, the operator $Q_{T}(\lambda I-T)$ is bounded from X_{T} to $\frac{X}{T(0)}$. Whence, for all $\lambda \in \mathbb{C} \backslash G_{i}$,

$$
\begin{aligned}
Q_{T}(\lambda I-T) g_{i}(\lambda) & =\frac{1}{2 \pi i} \int_{\Gamma_{i}} Q_{T}(\mu I-\mu I+\lambda I-T) \frac{f(\mu)}{\lambda-\mu} d \mu \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{i}} Q_{T}(\mu I-T) \frac{f(\mu)}{\lambda-\mu} d \mu+Q_{T}\left(\frac{1}{2 \pi i} \int_{\Gamma_{i}} f(\mu) d \mu\right) \\
& =Q_{T}\left(\frac{1}{2 \pi i} \int_{\Gamma_{i}} \frac{x}{\mu-\lambda} d \mu+x_{i}\right) .
\end{aligned}
$$

Using Cauchy's theorem we get that

$$
\int_{\Gamma_{i}} \frac{d \mu}{\lambda-\mu}=0, \text { for all } \lambda \in \mathbb{C} \backslash G_{i}
$$

Thus, for each $\lambda \in \mathbb{C} \backslash G_{i},(\lambda I-T) g_{i}(\lambda)-x_{i}=T(0)$. Whence, $x_{i} \in \chi_{T}\left(G_{i}\right)$ for any neighborhood G_{i} of F_{i} described as above. Hence, it remains to prove that $x_{1} \in$ $\chi_{T}\left(F_{1}\right) \cap D(T)$ and $x_{2} \in X_{T}\left(F_{2}\right) \cap D(T)$. First, we claim that $x_{1} \in \chi_{T}\left(F_{1}\right) \cap D(T)$. Indeed, as we have $x_{1} \in D(T)$ then we need only to prove that there exists an analytic function $f: \mathbb{C} \backslash F_{1} \rightarrow X_{T}$ such that $(\mu I-T) f(\mu)=x_{1}+T(0)$ for all $\mu \in \mathbb{C} \backslash F_{1}$. We note that for every connected compact neighborhood G of F_{1}, whose boundary Γ in $\mathbb{C} \backslash F_{1}$ that surrounds F_{1}, there exists an analytic function $f_{G}: \mathbb{C} \backslash G \rightarrow X_{T}$ such that

$$
(\mu I-T) f_{G}(\mu)=x_{1}+T(0), \text { for all } \mu \in \mathbb{C} \backslash G
$$

Let $\lambda \in \mathbb{C} \backslash F_{1}$. Then, there exists an infinite choice of G, with the properties mentioned above, such that $\lambda \in \mathbb{C} \backslash G$. Let G_{1} and G_{2} be any two of these choices. We shall prove that $f_{G_{1}}(\lambda)=f_{G_{2}}(\lambda)$. Indeed, we have for all $\mu \in$ $\left(\mathbb{C} \backslash G_{1}\right) \cap\left(\mathbb{C} \backslash G_{2}\right)=\mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$,

$$
\left\{\begin{aligned}
(\mu I-T) f_{G_{1}}(\mu) & =x_{1}+T(0) \\
(\mu I-T) f_{G_{2}}(\mu) & =x_{1}+T(0)
\end{aligned}\right.
$$

Observe that $\mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$ is an open connected set which intersects the open set $\rho(T)$ and that on $\rho(T) \cap \mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$ we have $f_{G_{1}}(\mu)=(\mu I-T)^{-1}$ and $f_{G_{2}}(\mu)=$ $(\mu I-T)^{-1}$. So, $f_{G_{1}}=f_{G_{2}}$ on $\rho(T) \cap \mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$. But, we have $\mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$ is an open connected set and that $\rho(T) \cap \mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$ has an accumulation point, then the identity theorem entails that $f_{G_{1}}=f_{G_{2}}$ on $\mathbb{C} \backslash\left(G_{1} \cup G_{2}\right)$ and hence, $f_{G_{1}}(\lambda)=g_{G_{2}}(\lambda)$. This allows us to define a function f on $\mathbb{C} \backslash F_{1}$ as follows: For all $\lambda \in \mathbb{C} \backslash F_{1}, f(\lambda)=f_{G}(\lambda)$, where G is any connected compact neighborhood of F_{1} such that $\lambda \in \mathbb{C} \backslash G$. Whence, the function f defined above is analytic on $\mathbb{C} \backslash F_{1}$ and for every $\mu \in \mathbb{C} \backslash F_{1},(\mu I-T) f(\mu)=x_{1}+T(0)$. Hence,

$$
\begin{equation*}
x_{1} \in \chi_{T}\left(F_{1}\right) \cap D(T) . \tag{3.2}
\end{equation*}
$$

Second, let us prove that $x_{2} \in X_{T}\left(F_{2}\right)$. We have $x_{2} \in \chi_{T}(G) \subseteq X_{T}(G)$ for every compact neighborhood G of F_{2} whose boundary Γ_{2} is a contour surrounding F_{2}. Then, $\sigma_{T}\left(x_{2}\right) \subseteq G$ for all G a compact neighborhood of F_{2} and therefore, $\sigma_{T}\left(x_{2}\right) \subseteq \overline{F_{2}}$. Consequently,

$$
\begin{equation*}
x_{2} \in X_{T}\left(F_{2}\right) \cap D(T) \tag{3.3}
\end{equation*}
$$

Thus, (3.3), (3.2) and (3.1) ensure that

$$
x=x_{1}+x_{2}-\left(P_{\sigma} x-x\right) \in \chi_{T}\left(F_{1}\right) \cap D(T)+X_{T}\left(F_{2}\right) \cap D(T)+\operatorname{ker} P_{\sigma} .
$$

This achieves the proof.

Lemma 3.3. Let $T \in \mathcal{C R}(X)$ with $\rho(T) \neq \emptyset$ and unbounded. Then, for all $\lambda \in \rho(T)$,
(i) $\left(\lambda i_{T}-\tilde{T}\right)^{-1} \in \mathcal{B}\left(X, X_{T}\right)$, where $i_{T}: X_{T} \rightarrow X, x \mapsto x$.
(ii) If T satisfies Assumption 3.2, then

$$
\lim _{|\lambda| \rightarrow \infty}\left\|\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\right\|_{\mathcal{B}\left(X_{T}\right)}=0
$$

(iii) If T satisfies Assumption 3.2 and $\sigma(T)$ is bounded, then

$$
\chi_{T}(\{0\}) \cap D(T) \subseteq H_{0}(T)+T(0)
$$

Proof: (i) We start by proving that $\lambda i_{T}-\tilde{T}$ is injective. Let $x \in \operatorname{ker}\left(\lambda i_{T}-\tilde{T}\right)$. Then, $0 \in\left(\lambda i_{T}-\tilde{T}\right) x=\lambda x-T x=(\lambda I-T) x$. So, $x \in \operatorname{ker}(\lambda I-T)=\{0\}$. Hence, $\lambda i_{T}-\tilde{T}$ is injective. Show that $\lambda i_{T}-\tilde{T}$ is surjective. Let $y \in X$. Then, there exists $x \in D(T)$ such that $y \in(\lambda I-T) x=\lambda x-T x=\left(\lambda i_{T}-\tilde{T}\right) x$. Thus, $\left(\lambda i_{T}-\tilde{T}\right)$ is surjective. Therefore, $\left(\lambda i_{T}-\tilde{T}\right)$ is invertible and $\left(\lambda i_{T}-\tilde{T}\right)^{-1}: X \rightarrow X_{T}$ is a bounded operator.
(ii) As a preliminary to the proof we begin by showing that for $\lambda, \mu \in \rho(T)$, we have

$$
\begin{equation*}
\left(\lambda i_{T}-\tilde{T}\right)^{-1}-\left(\mu i_{T}-\tilde{T}\right)^{-1}=(\mu-\lambda)\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\left(\mu i_{T}-\tilde{T}\right)^{-1} \tag{3.4}
\end{equation*}
$$

We have, for all $\lambda, \mu \in \rho(T)$ and $x \in D(T),(\mu-\lambda)\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\left(\mu i_{T}-\tilde{T}\right)_{\tilde{T}}^{-1} x=$ $\left(\lambda i_{T}-\tilde{T}\right)^{-1}(\mu-\lambda) i_{T}\left(\mu i_{T}-\tilde{T}\right)^{-1} x=\left(\lambda i_{T}-\tilde{T}\right)^{-1}\left(\mu i_{T}-\tilde{T}+\tilde{T}-\lambda i_{T}\right)\left(\mu i_{T}-\tilde{T}\right)^{-1} x$. Therefore, $(\mu-\lambda)\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\left(\mu i_{T}-\tilde{T}\right)^{-1} x=\left(\lambda i_{T}-\tilde{T}\right)^{-1}\left[\left(\mu i_{T}-\tilde{T}\right)\left(\mu i_{T}-\right.\right.$ $\left.\tilde{T})^{-1} x-\left(\lambda i_{T}-\tilde{T}\right)\left(\mu i_{T}-\tilde{T}\right)^{-1} x\right]$. Using (i) we get the desired equality (3.4). Whence, for all $\lambda, \mu \in \rho(T)$, we get $\left[\left(\lambda i_{T}-\tilde{T}\right)^{-1}-\left(\mu i_{T}-\tilde{T}\right)^{-1}\right]\left(\mu i_{T}-\tilde{T}\right)=$ $(\mu-\lambda)\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\left(\mu i_{T}-\tilde{T}\right)^{-1}\left(\mu i_{T}-\tilde{T}\right)$. Using again (i) we obtain $\left(\lambda i_{T}-\right.$ $\tilde{T})^{-1}\left(\mu i_{T}-\tilde{T}\right)-I_{X_{T}}=(\mu-\lambda)\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T} I_{X_{T}}$, where $I_{X_{T}}$ is the identity on X_{T}. Therefore,

$$
\begin{equation*}
\left(\lambda i_{T}-\tilde{T}\right)^{-1}(\mu-\lambda) i_{T}=\left(\lambda i_{T}-\tilde{T}\right)^{-1}\left(\mu i_{T}-\tilde{T}\right)-I_{X_{T}} \tag{3.5}
\end{equation*}
$$

On the other hand, by Assumption 3.2, there exists a projection $P \in \mathcal{B}(X)$ such that $\operatorname{Im} P=D(T)$ and $\operatorname{ker} P=T(0)$. We note that P considered as operator from X to X_{T} is bounded. Furthermore, by (3.5), we get

$$
\begin{aligned}
& \left\|(\mu-\lambda)\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\right\|_{\mathcal{B}\left(X_{T}\right)}=\left\|\left(\lambda i_{T}-\tilde{T}\right)^{-1}(P+I-P)\left(\mu i_{T}-\tilde{T}\right)-I_{X_{T}}\right\|_{\mathcal{B}\left(X_{T}\right)} \\
& \quad=\left\|\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T} P\left(\mu i_{T}-\tilde{T}\right)+\left(\lambda i_{T}-\tilde{T}\right)^{-1}(I-P)\left(\mu i_{T}-\tilde{T}\right)-I_{X_{T}}\right\|_{\mathcal{B}\left(X_{T}\right)} \\
& \leq\left\|P\left(\mu i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}\right)}\| \|\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T} \|_{\mathcal{B}\left(X_{T}\right)}+1 .
\end{aligned}
$$

Then, $\left(|\mu-\lambda|-\left\|P\left(\mu i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}\right)}\right)\left\|\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\right\|_{\mathcal{B}\left(X_{T}\right)} \leq 1$ and so,

$$
\left\|\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T}\right\|_{\mathcal{B}\left(X_{T}\right)} \leq \frac{1}{|\mu-\lambda|-\left\|P\left(\mu i_{T}-\tilde{T}\right)\right\|_{\mathcal{B}\left(X_{T}\right)}}
$$

Thus, letting $|\lambda| \rightarrow \infty$, we get the desired result.
(iii) Assume that $x \in \chi_{T}(\{0\}) \cap D(T)$. Then, there exists an analytic function $f: \mathbb{C} \backslash\{0\} \rightarrow X_{T}$ such that $(\lambda I-T) f(\lambda)=x+T(0)$ holds for every $\lambda \in \mathbb{C} \backslash\{0\}$. By hypothesis, we have $\sigma(T)$ is bounded then $V:=\mathbb{C} \backslash\{0\} \cap \rho(T)$ is not empty and open and the function f is analytic throughout V. We claim that

$$
\begin{equation*}
\lim _{\substack{|\lambda| \rightarrow \infty \\ \lambda \in V}}\|f(\lambda)\|_{T}=0 \tag{3.6}
\end{equation*}
$$

Indeed, we have $(\lambda I-T) f(\lambda)=x+T(0)$, then, $\lambda i_{T} f(\lambda)-\tilde{T} f(\lambda)=x+T(0)$. So,

$$
\begin{equation*}
\left(\lambda i_{T}-\tilde{T}\right) f(\lambda)=x+T(0) \tag{3.7}
\end{equation*}
$$

Using (i) we get, $f(\lambda)=\left(\lambda i_{T}-\tilde{T}\right)^{-1} x+\left(\lambda i_{T}-\tilde{T}\right)^{-1}\left(\lambda i_{T}-\tilde{T}\right)(0)=\left(\lambda i_{T}-\tilde{T}\right)^{-1} i_{T} x$. Now, by virtue of (ii), the equality (3.6) holds. Which means that $\lim _{\substack{|\lambda| \rightarrow \infty \\ \lambda \in V}} f(\lambda)=0$ on X_{T}. Let us consider the analytic function g defined by

$$
g(\mu):= \begin{cases}f\left(\frac{1}{\mu}\right) & \text { if } \mu \neq 0 \\ 0 & \text { if } \mu=0 .\end{cases}
$$

As g is analytic on \mathbb{C} and $g(0)=0$, then there exists a sequence $\left(x_{n}\right)_{n} \subseteq D(T)$ such that $x_{0}=0$ and $g(\mu)=\sum_{n \geq 0} \mu^{n} x_{n}$ holds for all $\mu \in \mathbb{C}$. Whence, $\limsup _{n \rightarrow \infty}\left\|x_{n}\right\|_{T}^{\frac{1}{n}}=0$. Which implies that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{T}^{\frac{1}{n}}=0$. Furthermore, we have $f(\lambda)=g\left(\frac{1}{\lambda}\right)=$ $\sum_{n \geq 0} \lambda^{-n} x_{n}$. It follows from Lemma 5.2 in [10], that for all $n \in \mathbb{N}$, there exists $\alpha_{n+1} \in \tilde{T} x_{n}$ such that for all $\lambda \neq 0$ we have

$$
\begin{aligned}
\left(\lambda i_{T}-\tilde{T}\right) f(\lambda) & =\sum_{n \geq 0} \lambda^{-n+1} x_{n}-\sum_{n \geq 0} \lambda^{-n} \alpha_{n+1}+\tilde{T}(0) \\
& =\sum_{n \geq 0} \lambda^{-n}\left(x_{n+1}-\alpha_{n+1}\right)+T(0)
\end{aligned}
$$

This implies, by the use of (3.7), that $Q_{T}\left(\lambda i_{T}-\tilde{T}\right) f(\lambda)=Q_{T}(x+T(0))=$ $\sum_{n \geq 0} \lambda^{-n} Q_{T}\left(x_{n+1}-\alpha_{n+1}\right)$. Hence,

$$
\left\{\begin{array}{l}
Q_{T}\left(x_{1}-\alpha_{1}\right)=Q_{T}(x) \\
Q_{T}\left(x_{n+1}-\alpha_{n+1}\right)=0, \text { for every } n \geq 1
\end{array}\right.
$$

Whence, $x_{n+1} \in \tilde{T} x_{n}=T x_{n}$ for all $n \geq 1$ and there exists $\alpha \in T(0)$ such that $x=x_{1}+\alpha$. Thus, it remains to prove that $x_{1} \in H_{0}(T)$. Let $\left(y_{n}\right)_{n}$ be the sequence defined by $y_{n}:=x_{n+1}$ for all $n \in \mathbb{N}$. Trivially, we have $y_{0}=x_{1}$ and $y_{n+1}=x_{n+2} \in T x_{n+1}=T y_{n}$. Moreover, we have $\lim _{n \rightarrow \infty}\left\|y_{n}\right\|_{T}^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|x_{n+1}\right\|_{T}^{\frac{1}{n}}=0$. Therefore, $x_{1} \in H_{0}(T)$ and so, $x=x_{1}+\alpha \in H_{0}(T)+T(0)$. Hence, $\chi_{T}(\{0\}) \cap$ $D(T) \subseteq H_{0}(T)+T(0)$.
For bounded operators, González et al. [5] presented a characterization of the isolated points of the surjective spectrum. Recently, the authors of [10] have extended a part of this result for closed and bounded linear relations as follows:

Lemma 3.4. [10, Theorem 6.2] Let $T \in \mathcal{B C R}(X)$. If $X=H_{0}(\lambda I-T)+K(\lambda I-T)$ then λ is isolated in $\sigma_{s u}(T)$.

In the following theorem, we intend to further generalize the result of González et al. in [5] by moving from the case of bounded operators to the more general setting of closed linear relations.

Theorem 3.1. Let $T \in \mathcal{C} \mathcal{R}(X)$ satisfying Assumption 3.1 and Assumption 3.2. If $0 \in \sigma_{s u}(T)$, then we have the equivalence:

0 is isolated in $\sigma_{s u}(T)$ if and only if $X=H_{0}(T)+K(T)$.
Proof : Suppose that $0 \in \sigma_{s u}(T)$ and $X=H_{0}(T)+K(T)$. Let $x \in X$. Then, $x=x_{1}+x_{2}$ with $x_{1} \in H_{0}(T)$ and $x_{2} \in K(T)$. It follows from Lemma $2.3(i)$ that $\sigma_{T}\left(x_{1}\right) \subseteq\{0\}$. Therefore, by virtue of Proposition 2.1, we get

$$
\begin{equation*}
\sigma_{T}(x) \subseteq \sigma_{T}\left(x_{1}\right) \cup \sigma_{T}\left(x_{2}\right) \subseteq\{0\} \cup \sigma_{T}\left(x_{2}\right) \tag{3.8}
\end{equation*}
$$

Now, by Lemma 2.3 (ii) and since $\sigma_{T}\left(x_{2}\right)$ is closed we conclude that 0 is isolated in $\sigma_{T}(x) \cup\{0\}$ for any $x \in X$. Using Lemma $2.4(i)$ and (ii) we get that 0 is isolated in $\sigma_{s u}(T)$ as desired. For the only if part, since 0 is an isolated point in $\sigma_{s u}(T)$, then it follows from Lemma 3.2, that

$$
\chi_{T}\left(\sigma_{s u}(T)\right) \subseteq \chi_{T}(\{0\}) \cap D(T)+X_{T}\left(\sigma_{s u}(T) \backslash\{0\}\right) \cap D(T)+\operatorname{ker} P_{\sigma} .
$$

Observe that, by the use of Lemma 2.4 together with Lemma 2.3, we have $\chi_{T}\left(\sigma_{s u}(T)\right)=X$ and $X_{T}\left(\sigma_{s u}(T) \backslash\{0\}\right) \cap D(T) \subseteq X_{T}(\mathbb{C} \backslash\{0\})=K(T)$. Whence, by Lemma 3.3 (iii), we get

$$
\begin{equation*}
X \subseteq H_{0}(T)+T(0)+K(T)+\operatorname{ker} P_{\sigma} \tag{3.9}
\end{equation*}
$$

Adhering the notations of Remark 3.1 and according to Lemma 1.1, we get that $D\left(T_{1}\right)=D(T) \cap \operatorname{ker} P_{\sigma}$ with $T_{1}=T_{\operatorname{ker} P_{\sigma}}$. Thus, we obtain $T_{1}\left(\operatorname{ker} P_{\sigma} \cap D\left(T_{1}\right)\right)=$ $T_{1}\left(D\left(T_{1}\right)\right)$. Furthermore, it follows from Remark 3.1 that $0 \notin \sigma\left(T_{1}\right)$. Then, T_{1} is surjective. Consequently, we obtain $T_{1}\left(\operatorname{ker} P_{\sigma} \cap D\left(T_{1}\right)\right)=k e r P_{\sigma}$. By virtue of Lemma 2.2, we get that $\operatorname{ker} P_{\sigma} \subseteq K\left(T_{1}\right)$. Now, we claim that

$$
K\left(T_{1}\right) \subseteq K(T)
$$

Indeed, let $x \in K\left(T_{1}\right)$. Then, it follows from the proof of Lemma 2.2 (iii) that there exist $d>0$ and a sequence $\left(x_{n}\right)_{n}$ such that $x_{0}=x$; for all $n \geq 0, x_{n} \in$ $T_{1} x_{n+1}$ and $x_{n+1} \in D(T) \cap X_{1}$ and $\left\|x_{n}\right\| \leq d^{n}\|x\|$. Let $\tilde{x}_{n}=0 \oplus x_{n}$. We have $\tilde{x}_{0}=0+x_{0}=x$. Since $x_{n} \in T_{1} x_{n+1}$, then $\tilde{x}_{n}=0+x_{n} \in T_{0}(0) \oplus T_{1} x_{n+1} \in$ $T\left(0 \oplus x_{n+1}\right) \in T\left(\tilde{x}_{n+1}\right)$. Furthermore, we have $\left\|\tilde{x}_{n}\right\|=\left\|x_{n}\right\| \leq d^{n}\|x\|$. Now, if $x \in T(0) \cap \operatorname{ker} T$ then $x \in K(T)$. Otherwise, a short calculation reveals the existence of some $d^{\prime}>d(x, T(0) \cap \operatorname{ker} T)$ such that

$$
d\left(\tilde{x_{n}}, T(0) \cap \operatorname{ker} T\right) \leq d^{\prime n} d(x, T(0) \cap \operatorname{ker} T)
$$

Whence, $x \in K(T)$. Thus, $\operatorname{ker} P_{\sigma} \subseteq K(T)$. Consequently, it follows from (3.9) that $X \subseteq H_{0}(T)+K(T)$. Hence, we get the desired result.

Let us denote by $\operatorname{acc}\left(\sigma_{T}(x)\right)$ the set of all accumulation points of the local spectrum of $T \in \mathcal{C} \mathcal{R}(X)$ at the point $x \in X$.

Corollary 3.1. Let $T \in \mathcal{C} \mathcal{R}(X)$ satisfying Assumption 3.1 and Assumption 3.2. Then we have the equivalence:

$$
X=H_{0}(T)+K(T) \text { if and only if } 0 \notin \operatorname{acc}\left(\sigma_{T}(x)\right) \text { for every } x \in X
$$

Proof : Suppose that $X=H_{0}(T)+K(T)$. Using (3.8), we get that 0 is isolated in $\{0\} \cup \sigma_{T}(x)$ for all $x \in X$. Then, $0 \notin \operatorname{acc}\left(\sigma_{T}(x)\right)$ for every $x \in X$. On the other hand, by Lemma 2.4 (ii), there exists $x_{0} \in X$ such that $\sigma_{T}\left(x_{0}\right)=$ $\sigma_{s u}(T)$. Hence, $0 \notin \operatorname{acc}\left(\sigma_{s u}(T)\right)$. Now, assume that $0 \notin \sigma_{s u}(T)$ then $X=K(T)$, as desired. Otherwise, if $0 \in \sigma_{s u}(T)$ then, from Theorem 3.1, we have $X=$ $H_{0}(T)+K(T)$. Which ends the proof.

Data availability. All data generated or analysed during this study are included in this published article.

References

[1] P. Aiena, Fredholm and local spectral theory, with applications to multipliers. Kluwer Academic Publishers, Dordrecht, (2004).
[2] A. G. Baskakov, I. A. Krishtal, On completeness of spectral subspaces of linear relations and ordered pairs of linear operators. J. Math. Anal. Appl. 407 (2013), no. 1, 157-178.
[3] A. G. Baskakov, A. S. Zagorskii, Spectral theory of linear relations on real Banach spaces. (Russian) ; translated from Mat. Zametki 81 (2007), no. 1, 17-31 Math. Notes 81 (2007), no. 1-2, 15-27.
[4] R. W. Cross, Multivalued linear operators, Pure and Applied Mathematics, Marcel Dekker, (1998).
[5] M. González, M. Mbekhta, M. Oudghiri, On the isolated points of the surjective spectrum of a bounded operator. Proc. Amer. Math. Soc. 136 (2008), no. 10, 3521-3528.
[6] M. Lajnef, M. Mnif, Isolated spectral points of a linear relation. Monatsh. Math. 191 (2020), pp. 595-614.
[7] K.B. Laursen and M.N. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford (2000).
[8] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), pp. 159-175.
[9] M. Mnif and A.A. Ouled-Hmed, Analytic core and quasi-nilpotent part of linear relations in Banach spaces, Filomat 32 (2018), no 7, 2499-2515.
[10] M. Mnif and A.A Ouled-Hmed, Local spectral theory and surjective spectrum of linear relations, to appear in Ukrainian Mathematical Journal (2021).

