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Abstract

We characterize the isolated points of the surjective spectrum of a closed
linear relation acting on a complex Banach space by means of the local
spectral theory. The found results generalize some known characterizations
in the frame of bounded operators to include the cases of closed operators
and more generally closed linear relations.
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Introduction
Throughout this paper, (X.‖.‖) will denote a complex Banach space. The first
phase of our investigation consists in studying the local spectral theory of closed
linear relations. More precisely, we develop the basic properties of the local
and glocal spectral subspaces, the quasinilpotent part H0(T ) and the analytic
core K(T ) of a closed not necessary bounded linear relation T . This seem a
generalization of the later developments of this theory in both cases of closed and
bounded linear relations and bounded operators. As an application, we use the
found results to give some properties of isolated points of the surjective spectrum
of a closed linear relation. To describe these achievements, let’s start by recalling
some known results in the case of bounded operators. In 2008, González et al.
[5] have shown that if T is a bounded operator then

λ is an isolated point of the surjective spectrum of T if and only if
X = H0(T − λI) +K(T − λI).

Recently, the characterization of isolated points of the spectrum has been
extended in [6] to the case of linear relations. It was proved that for a closed
and bounded linear relation T such that 0 is a point of its spectrum, we have the
equivalence:

0 is an isolated in the spectrum of T if and only if H0(T ) and K(T ) are closed
and X = H0(T )⊕K(T ).
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All of the above motivated us to establish a necessary and sufficient condition for
which a point of the surjective spectrum of a closed linear relation be isolated.
This will be considered as a continuation of the study made in the case of linear
relations but also a generalization of the investigation carried out for the case
of operators since it covers the case of closed operators which are not necessary
bounded. More precisely, the purpose of this paper is to show that, under some
conditions, the results mentioned above remain valid in the general setting of
closed linear relations. The demonstrations provided are essentially based on the
local spectral theory that we have developed in the framework of closed linear
relations. We now describe this approach in greater detail.
Section 1: The first section is mainly dedicated to introduce the basic tools of
linear relations. Then, we study different types of invariance of a subspace of X
by a linear relation. Section 2: The first part of this section focuses on providing
several tools for studying the local spectral theory. Additionally, we give a further
look at Leiterer’s result [7, Theorem 3.2.1] which is needed later. Subsequently,
we deal with a localized version of the quasinilpotent part and the analytic core
of a closed linear relation. Section 3: In this section, we are interested in closed
linear relations that verify two further conditions. For these classes of linear
relations we derive more properties of the local and glocal spectral subspaces and
the quasinilpotent part H0(T ). These results are then applied to characterize the
isolated points of the surjective spectrum of a linear relation.

1. Preliminaries

In this first section, a brief introduction of the linear relation theory is given. We
essentially aim to recall some basic definitions and properties which are needed
in the rest of this work. A linear relation (or a multivalued linear operator) in
a Banach space X, T : X → X, is a mapping from a subspace D(T ) = {x ∈
X : Tx 6= ∅}, called the domain of T into the set of nonempty subsets of X
verifying T (α1x + α2y) = α1T (x) + α2T (y) for all non zero scalars α1, α2 and
vectors x and y ∈ D(T ). We denote by LR(X) the class of all linear relations in
X. A linear relation T ∈ LR(X) is completely determined by its graph defined
by G(T ) := {(x, y) ∈ X ×X : x ∈ D(T ), y ∈ Tx}. Let T ∈ LR(X). The inverse
of T is the relation T−1 given by G(T−1) := {(u, v) ∈ X × X : (v, u) ∈ G(T )}.
The closure T of a linear relation T is defined by G(T ) := G(T ). We say that T
is closed if its graph is a closed subspace of X ×X. The set of all closed linear
relations is denoted by CR(X). We say that T is continuous if the operator QTT

is continuous when QT is the quotient map from X onto
X

T (0)
. In such a case

the norm of T is defined by ‖T‖ := ‖QTT‖. We say that T is bounded if it
is continuous and everywhere defined. The set of all bounded and closed linear
relations acting between two Banach spaces X and Y is denoted by BCR(X, Y ).
If X = Y , we write BCR(X,X) := BCR(X). The subspaces ker(T ) := T−1(0)
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and Im(T ) := T (D(T )) are called respectively the null space and the range
space of T . We say that T is surjective if T (D(T )) = X and T is injective if
ker(T ) = {0}. Note that T is an operator if and only if T (0) = {0}. For linear
relations S,T ∈ LR(X), S+̂T is defined by

S+̂T := {(x+ u, y + v) : (x, y) ∈ G(S) and (u, v) ∈ G(T )}.

This last sum is direct when G(S) ∩ G(T ) = {(0, 0)}. In such case, we write
S ⊕ T . We denote by B(X, Y ) the Banach algebra of all bounded operators
on X and Y . If X = Y , we write B(X,X) := B(X). For r > 0 we denote
D(0, r) := {λ ∈ C; 0 ≤ |λ| < r} and D∗(0, r) := D(0, r)\{0}. Now, we aim to
define and study some basic tools of the spectral theory. Given a closed linear
relation T . For λ ∈ C, we denote by Rλ(T ) = (λI − T )−1 the resolvent of T at
λ. The resolvent set of T is the set defined by:

ρ(T ) = {λ ∈ C; (λI − T )−1 is everywhere defined and single valued}.

We say that T is invertible if 0 ∈ ρ(T ). The spectrum of T is the set σ(T ) =
C\ρ(T ). The extended spectrum of T is the subset σ̃(T ) of the extended complex
plane C̃ = C ∪ {∞} that is equal to

σ̃(T ) =

{
σ(T ), if T ∈ B(X)
σ(T ) ∪ {∞}, otherwise.

The surjective spectrum of T is defined by

σsu(T ) = {λ ∈ C : T − λI is not surjective}.

We give in the sequel different types of invariance by a linear relation.

Definition 1.1. Let T ∈ LR(X) and let Z be a subspace of X such that D(T )∩
Z 6= ∅. We say that Z is invariant by T if T (Z) ⊆ Z. The restriction T/Z is
defined in terms of its graph by

G(T/Z) := {(x, y) ∈ G(T ) such that x ∈ Z}.

Let Y be a closed subspace of X. We say that Y is weakly invariant by T if
Ty ∩ Y 6= ∅ for all y ∈ Y ∩D(T ). The restriction T |Z of T in Z is defined by

G(T |Z) := G(T ) ∩ (Z × Z).

Note that, by definition, D(T |Z) ⊆ Z and Im(T |Z) ⊆ Z. Assume that Y and
Z are two subspaces of X such that X = Y ⊕ Z. We say that T is completely
reduced by the pair of subspaces (Y, Z), denoted as (Y, Z) ∈ Red(T ), if it can be
decomposed as T = T |Y ⊕ T |Z.
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Definition 1.2. [3, Definition 2.6] A closed linear subspace Z of X is said to be
strongly invariant by a relation T ∈ LR(X) with non empty ρ(T ) if Z is invariant
by all operators Rλ(T ), λ ∈ ρ(T ). By the restriction of the relation T ∈ LR(X)
to the subspace Z we shall mean the relation TZ ∈ LR(Z) whose resolvent is the
restriction R0 : ρ(T ) → B(Z), R0(λ) = Rλ(T )/Z, λ ∈ ρ(T ), of the resolvent
R(., T ) : ρ(T )→ B(X) to Z.

Lemma 1.1. Let T ∈ CR(X) with ρ(T ) 6= ∅ and let Z be a closed subspace of
X. If Z is weakly invariant by T and strongly invariant by T , then we have

D(TZ) = D(T ) ∩ Z and G(TZ) = G(T ) ∩ (Z × Z).

2. Local spectral theory for closed linear
relations

In the following, we will introduce some elements of the local spectral theory for
closed relations. We note that this theory was first developed for the case of
bounded operators by [7, 1], then it was extended to the case of bounded and
closed linear relations by [10]. What we are going to do next is an extension of the
works cited above to include the cases of closed operators and closed relations.
Let T ∈ CR(X). We consider the graph norm ‖.‖T on D(T ) defined by

‖x‖T := ‖x‖+ ‖Tx‖.

In what follows XT denotes D(T ) endowed with the graph norm. Observe that
XT is a Banach space (since QTT is a closed operator). Consider the relation T̃
defined by

T̃ : XT → X, x 7→ Tx.

Evidently, T̃ is closed and D(T̃ ) = D(T ). Then, by virtue of [4, II.5.1] we get
that T̃ ∈ BCR(XT , X).

Lemma 2.1. Let T ∈ CR(X) and x ∈ X. Then,

R̃.(T )x : ρ(T )→ XT , µ 7→ R̃µ(T )x = Rµ(T )x := (µI − T )−1x is analytic.

Proof : Let λ ∈ ρ(T ). Then, by virtue of [4, Corollary VI.1.9], we get that if
|λ− µ| < ‖Rλ(T )‖−1 then,

Rµ(T ) =
∞∑
n=0

Rλ(T )n+1(µ− λ)n.

Which implies that R̃µ(T )x =
∞∑
n=0

R̃λ(T )n+1x(µ− λ)n. It was like proving that

∞∑
n=0

R̃λ(T )n+1x(µ− λ)n is convergent on XT . Observe that ‖R̃λ(T )n+1x‖T =
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‖R̃λ(T )n+1x‖+ ‖TR̃λ(T )n+1x‖. Moreover, we have

‖TR̃λ(T )n+1x‖ = ‖QTTR̃λ(T )n+1x‖
= ‖QT (T − λI + λI)R̃λ(T )n+1x‖
≤ ‖QTRλ(T )nx‖+ |λ|‖QTRλ(T )n+1x]‖
≤ ‖Rλ(T )nx‖+ |λ|‖Rλ(T )n+1x]‖.

Then, ‖R̃λ(T )n+1x‖T ≤ (1+|λ|)‖Rλ(T )n+1x‖+‖R̃λ(T )nx‖. Since
∑
n≥0

Rλ(T )n+1x(µ− λ)n

and
∑
n≥0

Rλ(T )nx(µ− λ)n are absolutely convergent inX, then
∑
n≥0

‖R̃λ(T )nx‖T |µ− λ|n

is convergent. Therefore,
∑
n≥0

R̃λ(T )n+1x(µ− λ)n is convergent on XT , as re-

quired. �

Definition 2.1. The local resolvent set of T ∈ CR(X) at the point x ∈ X,
denoted by ρT (x), is defined as the set of all λ ∈ C for which there exist an
open neighborhood Uλ and an analytic function fλ,x : Uλ → XT such that (µI −
T )fλ,x(µ) = x+ T (0) holds for all µ ∈ Uλ.
The local spectrum of T at the point x is the set σT (x) = C\ρT (x).

Remark 2.1. It is easy to see that

(i) ρT (x) :=
⋃

λ∈ρT (x)

Uλ is an open subset of C.

(ii) For all x ∈ X, ρ(T ) ⊆ ρT (x).

(iii) For all x ∈ T (0), ρT (x) = C.

Proposition 2.1. Let T ∈ CR(X). Then, σT (αx+ βy) ⊆ σT (x) ∪ σT (y), for all
x, y ∈ X and α, β ∈ C.

Proof : Show that for all x, y ∈ X and α, β ∈ C, ρT (x)∩ρT (y) ⊆ ρT (αx+βy).
In the trivial case where α = β = 0 there is nothing to prove. Otherwise, let
λ ∈ ρT (x) ∩ ρT (y). Then, there exist an open neighborhood Uλ and an analytic
function fλ,x : Uλ → XT such that (µI−T )fλ,x(µ) = x+T (0) holds for all µ ∈ Uλ
and there exist an open neighborhood Vλ and an analytic function gλ,x : Vλ → XT

such that (µI − T )gλ,x(µ) = y + T (0) holds for all µ ∈ Vλ. Put Oλ := Uλ ∩ Vλ
and h := αfλ,x + βgλ,x. Evidently, h : Oλ → XT is analytic and for all µ ∈ Oλ,
(µI − T )h(µ) = (αx+ βy) + T (0). Thus, λ ∈ ρT (αx+ βy), as required. �

Definition 2.2. For every subset F of C the local spectral subspace of T associated
to F is the set

XT (F ) := {x ∈ X, σT (x) ⊆ F}.
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Definition 2.3. Let F ⊆ C be a closed subset and let T ∈ CR(X). We define
the glocal spectral subspace χT (F ) as the set of all x ∈ X such that there exists
an analytic function f : C\F → XT checking :

(λI − T )f(λ) = x+ T (0) for all λ ∈ C\F.

Remark 2.2. We note that XT (F ) and χT (F ) are two subspaces of X and that
χT (F ) ⊆ XT (F ).

The following result generalizes Leiterer’s theorem [7, Theorem 3.2.1] to the
setting of closed linear relations.

Proposition 2.2. Let T ∈ CR(X) and λ ∈ C. Let Uλ be an open neighborhood
of λ such that µI − T is surjective for all µ ∈ Uλ. Then, for all analytic function
g : Uλ → X there exists an analytic function f : Uλ → XT such that

(µI − T )f(µ) = g(µ) + T (0) for all µ ∈ Uλ.

Proof : As T is closed then QTT is a closed operator from the Banach space

X to the Banach space
X

T (0)
. Note that QT T̃ : XT →

X

T (0)
is bounded. We

claim that for every µ ∈ Uλ the operator QT (µiT − T̃ ) is bounded and surjective

from XT to
X

T (0)
, where iT : XT → X, x 7→ x. Indeed, as (µiT − T̃ ) is surjective,

then it is clear that QT (µiT − T̃ ) is also surjective. On the other hand, we have
QT (µiT − T̃ ) = µQT iT − QT T̃ with QT T̃ is a bounded operator from XT to
X

T (0)
and for all x ∈ D(T ), ‖QT iTx‖ = d(x, T (0)) ≤ ‖x‖ ≤ ‖x‖T . Then, QT iT

considered as an operator from XT to
X

T (0)
is bounded. Hence, QT (µiT − T̃ ) is

bounded from XT to
X

T (0)
for all µ ∈ Uλ. Now, let us consider the function QTg

on Uλ. Since QT is a bounded operator, then QTg is an analytic function from

Uλ to
X

T (0)
. So, let’s recap, consider the operator function T̂ defined on Uλ by

T̂ :Uλ → B(XT ,
X

T (0)
)

µ→ T̂ (µ) := QT (µiT − T̃ ).

We have T̂ is analytic on Uλ for which the mapping T̂ (µ) is surjective for all

µ ∈ Uλ. On the other hand, QTg is an analytic function from Uλ to
X

T (0)
, then

from Leiterer’s theorem [7, Theorem 3.2.1] there exists an analytic function f
from Uλ to XT such that for all µ ∈ Uλ,

QT (µiT − T̃ )f(µ) = QTg(µ).

Hence, QT [(µiT−T̃ )f(µ)−g(µ)] = 0, for all µ ∈ Uλ. Thus, (µiT−T̃ )f(µ)−g(µ) ⊆
T (0). Which implies that (µiT − T̃ )f(µ) = g(µ) + T (0). �
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Remark 2.3. We note, by the proof of Proposition 2.2, that QT and QT T̃

considered from XT to
X

T (0)
are bounded operators.

Quasinilpotent part and analytic core of a closed linear relation

Now, let’s further extend the concept of quasinilpotent part and the analytic core
developed in [8, 9] to the case of closed not necessary bounded linear relations.

Definition 2.4. Let T ∈ CR(X).

(i) The quasinilpotent part of T , denoted by H0(T ), is the set of all x ∈ D(T )
for which there exists a sequence (xn)n ⊆ D(T ) satisfying

x0 = x, xn+1 ∈ Txn for all n ∈ N and ‖xn‖
1
n
T → 0.

(ii) The analytic core of T , denoted by K(T ), is defined as the set of all x ∈ X
for which there exist c > 0 and a sequence (xn)n∈N satisfying x0 = x and for
all n ≥ 0, xn+1 ∈ D(T ), xn ∈ Txn+1 and

d(xn, ker(T ) ∩ T (0)) ≤ cnd(x, ker(T ) ∩ T (0)).

It is easy to see that for each j ≥ 0, ker(T j) ⊆ H0(T ).

In the next lemma, we collect some elementary properties of K(T ).

Lemma 2.2. Let T ∈ CR(X). Then the following statements hold.

(i) T (D(T ) ∩K(T )) = K(T );

(ii) If F is a closed subspace of X such that T (D(T )∩F ) = F then F ⊆ K(T ).

(iii) If x ∈ K(T ), then there exist d > 0 and a sequence (xn)n satisfying x0 = x
and for all n ≥ 0, xn+1 ∈ D(T ), xn ∈ Txn+1 and for all n ≥ 1,

‖xn‖T ≤ dn‖x‖.

Proof : (i) The proof is similar to the proof of [6, Lemma 2.1].
(ii) First, we claim that F ∩D(T ) is closed in XT . Indeed, let (xn)n ⊆ F ∩D(T )

be such that xn
XT−−−→
n→∞

x. Trivially, x ∈ D(T ). On the other hand, we have
‖xn − x‖T −−−→

n→∞
0. As F is closed in X, then x ∈ F . Hence, F ∩ D(T ) is

closed in XT , as claimed. Recall that the relation T̃ is closed. Let us consider
T0 : D(T )∩F → F , the restriction of T̃ . We haveG(T0) = G(T )∩((D(T )∩F )×F )
is closed in XT ×X. Then, T0 is closed. We have, by hypothesis, ImT0 = F then,
by the open mapping theorem [4, Theorem III.4.2], we deduce that T0 is open.
Thus, there exists a constant γ > 0 such that for all x ∈ D(T0) = D(T ) ∩ F ,

dT (x, ker(T0)) ≤ γ‖T0x‖,
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where dT (x,G) := inf
α∈G
‖x− α‖T . As, for all x ∈ D(T0) and α ∈ kerT0, ‖x−α‖ ≤

‖x− α‖T then, d(x, kerT0) ≤ dT (x, kerT0). Hence,

d(x, kerT0) ≤ γ‖T0x‖. (2.1)

Now, consider ε > 0 and let u ∈ F . Then, there exists x ∈ D(T ) ∩ F such
that u ∈ Tx. By (2.1) there exists y ∈ ker(T0) ⊆ ker(T ) such that ‖x − y‖ ≤
(γ + ε)d(u, T (0)). Take u1 = x− y ∈ D(T ) ∩ F . We have u ∈ T (u1) and

d(u1, T (0) ∩ ker(T )) ≤ (γ + ε)d(u, T (0) ∩ ker(T )).

Continuing in the same manner, we build a sequence (un)n such that u0 = u, for
all n ≥ 0, un+1 ∈ D(T ) ∩ F , un ∈ Tun+1 and

d(un, T (0) ∩ ker(T )) ≤ (γ + ε)nd(u, T (0) ∩ ker(T )).

Hence, u ∈ K(T ). Thus, F ⊆ K(T ).
(iii) Let x ∈ K(T ). Then, there exist c > 0 and a sequence (yn)n such that

y0 = x,
for all n ≥ 0, yn+1 ∈ D(T ) and yn ∈ Tyn+1,
d(yn, ker(T ) ∩ T (0)) ≤ cnd(x, ker(T ) ∩ T (0)).

Let d > c. Then, for all n ≥ 1 there exists αn ∈ T (0)∩ ker(T ) ⊆ D(T ) such that
‖yn − αn‖ ≤ dn‖x‖. Let (xn)n be the sequence defined by xn+1 = yn+1 − αn+1

for all n ≥ 0 and x0 = x. Then, for all n ≥ 0, xn+1 ∈ D(T ), xn ∈ Txn+1

and ‖xn‖ ≤ dn‖x‖. On the other hand, we have ‖xn‖T = ‖xn‖ + ‖QTTxn‖ =
‖xn‖+ ‖QT (xn−1)‖. Then, ‖xn‖T = ‖xn‖+ d(xn−1, T (0)). Which implies that

‖xn‖T ≤ dn‖x‖+ ‖xn−1‖ ≤ (dn + dn−1)‖x‖.

Consequently, there exists δ > 0 such that ‖xn‖T ≤ δn‖x‖. �

The next lemma describes K(T ) and H0(T ) in terms of the local and glocal
spectral subspaces.

Lemma 2.3. Let T ∈ CR(X). Then, the following assertions hold.

(i) H0(T ) + T (0) ⊆ χT ({0}).

(ii) K(T ) = XT (C\{0}).

Proof : (i) Let x ∈ H0(T ). Then, there exists (xn)n ⊆ D(T ) such that
x0 = x, xn+1 ∈ Txn and lim

n→∞
‖xn‖

1
n
T = 0. Thus, the series f(λ) :=

∑
n≥1

λ−nxn−1

converges in XT uniformly on C\{0}. Therefore, f is analytic throughout C\{0}
with values in XT . Using Remark 2.3, we get for all λ 6= 0,

QTT (
∑
n≥1

λ−nxn−1) =
∑
n≥1

λ−nQTTxn−1 =
∑
n≥1

λ−nQTxn = QT (
∑
n≥1

λ−nxn).
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Whence, (λI − T )f(λ) =
∑
n≥0

λ−nxn −
∑
n≥1

λ−nxn + T (0) = x+ T (0). Therefore, x ∈

χT ({0}). Furthermore, we have χT ({0}) is a subspace of X and T (0) ⊆ χT ({0})
which provides the required inclusion.
(ii) Let x ∈ XT (C\{0}). Then, 0 ∈ ρT (x) which implies that there exist
an open disc D(0, ε) and an analytic function f : D(0, ε) → XT such that
(µI − T )f(µ) = x + T (0) holds for all µ ∈ D(0, ε). As f is an analytic func-
tion, then there exists a sequence (un)n≥1 ⊆ D(T ) such that

f(λ) = −
∑
n≥1

λn−1un, for all λ ∈ D(0, ε).

But, we have f(0) = −u1 then Tu1 = x+T (0). Therefore, x ∈ Tu1. Take u0 = x.
We can show by induction that un ∈ Tun+1 for all n ∈ N. It remains to prove
that there exists b > 0 such that d(un, T (0)∩ kerT ) ≤ bnd(x, T (0)∩ kerT ) for all
n ≥ 0. Trivially, if x ∈ T (0)∩ ker(T ), then there is nothing to prove. Otherwise,
as
∑
n≥1

λn−1un converges in XT , then |λ|n−1‖un‖T → 0 as n → ∞ for all |λ| < ε.

Particularly,
1

µn−1
‖un‖T −−−→

n→∞
0 for all µ > 1

ε
. Now, take µ0 >

1
ε
. Then, there

exists c > 0 such that for all n ≥ 1, ‖un‖T ≤ cµn−1
0 . Besides this, we have for all

n ≥ 1,

(
µ0

µ0 +
c

d(x, T (0) ∩ kerT )

)n−1 ≤ 1 +
d(x, T (0) ∩ kerT )µ0

c
.

Hence, for all n ≥ 1, we get

‖un‖T ≤ (µ0 +
c

d(x, T (0) ∩ kerT )
)nd(x, T (0) ∩ kerT ).

Consequently, for all n ≥ 1, we obtain

d(un, T (0) ∩ kerT ) ≤ ‖un‖ ≤ ‖un‖T ≤ bnd(x, T (0) ∩ kerT ),

with b = µ0 +
c

d(x, T (0) ∩ kerT )
. Observe that the last inequality holds for n = 0.

Thus, x ∈ K(T ) and hence, XT (C\{0}) ⊆ K(T ). Conversely, assume that
x ∈ K(T ). Then, there exist δ > 0 and a sequence (xn)n satisfying x0 = x and for
all n ≥ 0, xn+1 ∈ D(T ), xn ∈ Txn+1 and d(xn, ker(T ) ∩ T (0)) ≤ δnd(x, ker(T ) ∩
T (0)). Therefore, by Lemma 2.2 (iii) we get that there exist b > 0 and a sequence
(yn)n such that

y0 = x,
for all n ≥ 0, yn+1 ∈ D(T ) and yn ∈ Tyn+1,
for all n ≥ 1, ‖yn‖T ≤ bn‖x‖.

Let f be the analytic function f : B(0, 1
b
)→ XT defined by

f(λ) = −
∑
n≥1

λn−1yn.
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Using Remark 2.3, we get T (
∑
n≥1

λn−1yn)−
∑
n≥1

λn−1yn−1 ⊆ T (0), for all λ ∈ B(0, 1
b
).

Whence,

(λI − T )f(λ) =
∑
n≥1

λn−1yn−1 + T (0)− λ
∑
n≥1

λn−1yn = y0 + T (0) = x+ T (0).

Thus, 0 ∈ ρT (x) and so, x ∈ XT (C\{0}), then we have the required inclusion. �

Definition 2.5. Let S be a subset of X. We say that S is nowhere dense if the
interior of its closure is empty. A subset E ⊆ X is called of first category if it is
a countable union of nowhere dense subsets. If E fails to be of first category we
say that E is of second category. In addition, the union of any countable family
of first category is of first category.

In the next lemma, we gather some properties of local and glocal spectral
subspaces and the surjective spectrum of a closed linear relation.

Lemma 2.4. Let T ∈ CR(X) and F ⊆ C be a closed subset. Then,

(i) σsu(T ) =
⋃
x∈X

σT (x) and it is closed.

(ii) The set {x ∈ X such that σT (x) = σsu(T )} is of the second category in X.

(iii) χT (F ) = X if and only if σsu(T ) ⊆ F .

(iv) χT (F ∩ σ(T )) = χT (F ) and XT (F ∩ σ(T )) = XT (F ).

Proof : (i) We shall show that ρsu(T ) =
⋂
x∈X

ρT (x). To see this, let λ ∈
⋂
x∈X

ρT (x).

Then, λ ∈ ρT (x) for all x ∈ X. Let x ∈ X. Then there exists an open neighbor-
hood Uλ of λ and an analytic function fx : Uλ → XT such that

(µI − T )fx(µ) = x+ T (0) for all µ ∈ Uλ.

Which implies that x ∈ (λI − T )fx(λ) ⊆ Im(λI − T ) for all x ∈ X. Then,
(λI − T ) is surjective. Whence, λ ∈ ρsu(T ). Moving to the direct inclusion, let
λ ∈ ρsu(T ). Then, (λI − T ) is surjective. According to Lemma 2.2 (ii), we get
K(λI − T ) = X. In addition, it follows from Lemma 2.3 (ii) that 0 ∈ ρλI−T (x).
Therefore, there exist an open neighborhood U0 of 0 and an analytic function
f : U0 → XT such that ((µ − λ)I + T )f(µ) = x + T (0) for all µ ∈ U0.
Consequently, (γI − T )g(γ) = x + T (0) for all γ ∈ Uλ, where Uλ be the open
neighborhood of λ given by Uλ = λ − U0 and g be the analytic function defined
on Uλ by g(δ) = −f(λ− δ). Hence, λ ∈ ρT (x) for all x ∈ X.
(ii) Let E be a dense countable subset of σsu(T ). Then, for all λ ∈ E we have
Im(λI − T ) 6= X. We note that Im(λI − T ) is of the first category in X. In fact,
assume that Im(λI−T ) is of the second category in X. We start by proving that
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Im(λI − T ) = X, which is absurd. To do that, it suffices to prove that (λI − T )
is open. Let us suppose that U is the open ball in XT with center 0 and radius
r > 0. We show that (λiT − T̃ )(U) contains a neighborhood of 0 in X. Let us
define,

Un := {x ∈ D(T ), ‖x‖T < 2−nr} (n ∈ N).

Observe that U1 ⊇ U2 − U2. Then, (λiT − T̃ )U1 ⊇ (λiT − T̃ )U2 − (λiT − T̃ )U2.
Whence,

(λiT − T̃ )U1 ⊇ (λiT − T̃ )U2 − (λiT − T̃ )U2 ⊇ (λiT − T̃ )U2− (λiT − T̃ )U2. (2.2)

On the other hand, we have Im(λiT−T̃ ) =
⋃∞
k=1 k(λiT−T̃ )(U2). Since Im(λI−T )

is of second category, then at least one k(λiT − T̃ )U2 is of second category of X
and hence, (λiT − T̃ )U2 is of the second category. Thus, int((λiT − T̃ )U2) 6= ∅.
Hence, by (2.2), there exists a neighborhood W of 0 in X such that

W ⊆ (λiT − T̃ )U1.

We claim that (λiT − T̃ )(U1) ⊆ (λiT − T̃ )(U). Indeed, take y1 ∈ (λiT − T̃ )(U1).
As, what just proved for U1 holds true by proceeding with the same way for U2,
then (λiT − T̃ )(U2) contains a neighborhood of 0. Consequently,

(y1 − (λiT − T̃ )U2) ∩ (λiT − T̃ )(U1) 6= ∅.

Hence, there is some α1 ∈ (λiT − T̃ )x1 with x1 ∈ U1 such that y2 = y1 − α1 ∈
(λiT − T̃ )U2. We proceed by induction. Then, we may construct the sequences
(αn)n≥1, (xn)n≥1 ⊆ D(T ) and (yn)n≥1, such that for all n ≥ 1, xn ∈ Un, αn ∈
(λiT − T̃ )(xn) and yn+1 = yn − αn ∈ (λiT − T̃ )(Un+1). As, ‖xn‖T ≤ r

2n
, then∑

n≥1 xn converges in XT . Let x =
∞∑
n=1

xn. Then, ‖x‖T < r and hence, x ∈ U .

Moreover, we have by the construction of (αn)n≥1 and (yn)n≥1 that

m∑
n=1

QTαn =
m∑
n=1

QT (yn − yn+1) = QTy1 −QTym+1.

Then,

QT (λiT − T̃ )(
m∑
n=1

xn) = QTy1 −QTym+1.

Now, we note that QTym −−−→
m→∞

0. In fact, assume that α ∈ (λiT − T̃ )(Un). Then,

there is some β ∈ Un such that α ∈ (λiT − T̃ )(β). Thus, we get d(α, T̃ (0)) =
‖(λiT − T̃ )β‖ ≤ ‖(λiT − T̃ )‖B(XT ,X)‖β‖T . Hence, we obtain

(λiT − T̃ )(Un) ⊆ {α ∈ X, d(α, T (0)) ≤ ‖(λiT − T̃ )‖B(XT ,X)
r

2n
}.
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Observe that the map α→ d(α, T (0)) is continuous on X. Then,

{α ∈ X; d(α, T (0)) ≤ ‖(λiT − T̃ )‖B(XT ,X)
r

2n
} is closed

and we have

yn ∈ (λiT − T̃ )(Un) ⊆ {α ∈ X; d(α, T (0)) ≤ ‖(λiT − T̃ )‖B(XT ,X)
r

2n
}.

Whence, d(yn, T (0)) ≤ ‖(λiT − T̃ )‖B(XT ,X)
r

2n
. So, ‖QTyn‖ −−−→

n→∞
0. Therefore, as

QT (λiT − T̃ ) : XT →
X

T (0)
is a bounded operator, then we infer that QT (λiT −

T̃ )(x) = QT (y1) and so, y1 ∈ (λiT − T̃ )(x) = (λI − T )(x). Which implies that

W ⊆ (λI − T )U1 ⊆ (λI − T )(U).

Thus, (λI−T ) is an open mapping. Now, since (λI−T ) is open, then Im(λI−T ) is
closed. On the other hand, Im(λI−T ) is of second category then, int(Im(λI − T ))) 6=
∅. Whence, int(Im(λI − T )) 6= ∅. So, Im(λI − T ) = X which is absurd. There-
fore, Im(λI − T ) is of first category for all λ ∈ E. So, F =

⋃
λ∈E

Im(λI − T ) is

also of the first category. Thus, X\F is of second category. We note that for all
x ∈ X\F , σsu(T ) ⊆ σT (x). In fact, let x ∈ X\F . Then E ⊆ σT (x). Whence,

σsu(T ) = E ⊆ σT (x) = σT (x).

Therefore, σsu(T ) = σT (x). Hence, the set {x ∈ X such that σsu(T ) = σT (x)}
is of second category.
(iii) Suppose that σsu(T ) ⊆ F . Show that χT (F ) = X. Note that T − λI is
surjective for all λ ∈ C\σsu(T ). Let x ∈ X and let

g : C\σsu(T )→ X

λ 7→ x.

Then, using Proposition 2.2, there exists an analytic function f : C\σsu(T )→ XT

such that
(λI − T )f(µ) = x+ T (0) for all µ ∈ C\σsu(T ).

Thus, x ∈ χT (σsu(T )) and hence, χT (σsu(T )) = X. On the other hand, we have
σsu(T ) ⊆ F . Then, χT (σsu(T )) ⊆ χT (F ). It follows that χT (F ) = X. Conversely,
we suppose that χT (F ) = X. By (i) we have XT (F ) = X. Which implies that
for all x ∈ X, σT (x) ⊆ F . But, by (i), we have σsu(T ) =

⋃
x∈X

σT (x). Then,

σsu(T ) ⊆ F .
(iv) Let y ∈ χT (F ). Then, there exists an analytic function f : C\F → XT
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such that for all λ ∈ C\F , (λI − T )f(λ) = y + T (0). Set U := C\(F ∩ σ(T )) =
(C\F ) ∪ ρ(T ). We have for all λ ∈ ρ(T ) ∩ (C\F ), f(λ) = Rλ(T )y. Define

h(λ) =

{
f(λ), if λ ∈ C\F
Rλ(T )y, if λ ∈ ρ(T ).

According to Lemma 2.1 we get that h is an analytic function U → XT such that

(λI − T )h(λ) = y + T (0) for each λ ∈ C\(F ∩ σ(T )).

Hence, y ∈ χT (F ∩ σ(T )). Consequently, χT (F ) ⊆ χT (F ∩ σ(T )). The reversed
inclusion is straightforward. Thus,

χT (F ) = χT (F ∩ σ(T )).

Now, let x ∈ XT (F ). Then, σT (x) ⊆ F. On the other hand, as ρ(T ) ⊆ ρT (x), then
σT (x) ⊆ σ(T ). Consequently, x ∈ XT (F ∩σ(T )). Conversely, if x ∈ XT (F ∩σ(T ))
then, σT (x) ⊆ F ∩ σ(T ) ⊆ F , as required. �

3. On the isolated points of the surjective
spectrum

Before stating the main result of this section, we gathered some technical lemmas
which are crucial for the proof. Let’s consider now the following assumptions.

Assumption 3.1. T ∈ CR(X) be a relation with extended spectrum σ̃(T ) of the
form σ̃(T ) = σ(T ) ∪ {∞}, where σ(T ) is a compact subset of C.

Example 3.1. Let T ∈ B(X) be generalized Drazin invertible. Then, 0 is isolated
in σ(T ), where σ(T ) is a compact of C. Therefore, S := T−1 is a closed linear
relation and σ̃(S) = {∞} ∪ σ(S) with σ(S) is a compact subset of C. Hence, S
satisfies Assumption 3.1.

Assumption 3.2. T ∈ CR(X) be such that D(T ) is closed and D(T )⊕T (0) = X.

Example 3.2. Let P be a bounded projection operator and let T := P−1. Then,
T is a closed linear relation. Since σ(P ) = {0, 1}, then σ̃(T ) = {1,∞}. Thus, T
satisfies Assumption 3.1. Besides this, we have D(T ) = Im(P ) and it is closed.
As D(T )⊕ T (0) = Im(P )⊕Ker(P ) = X, then, Assumption 3.2 is fulfilled.

As a particular case of Baskakov’s Theorem 2.10 in [2], we infer to the following
remark.

Remark 3.1. Let T ∈ CR(X) satisfying Assumption 3.1 and let Γ be a closed
Jordan curve around σ(T ) lying in ρ(T ). Consider the Riesz projection

Pσ :=
1

2πi

∫
Γ

Rλ(T )dλ.

13
25 Jul 2021 14:49:52 PDT
210725-Mnif Version 1 - Submitted to Rocky Mountain J. Math.



It is well known by [2] that Pσ is a bounded projection and using [2, Theorem 2.10],
we get that kerPσ and ImPσ are strongly invariant by T and that T = T0 ⊕ T1

where T0 is a bounded operator defined by T0 = TImPσ and T1 is a closed linear
relation given by T1 = TkerPσ . Furthermore, we have

σ̃(T0) = σ(T ) and σ̃(T1) = {∞}.

Lemma 3.1. Let T ∈ CR(X), satisfying Assumption 3.1 and Assumption 3.2.
Let K be a compact of C, Γ be a contour in the complement U := C\K that
surrounds K and let x ∈ X. If there exists an analytic function f : U → XT such
that for each λ ∈ U , (λI − T )f(λ) = x+ T (0), then

Pσx =
1

2πi

∫
Γ

f(λ)dλ.

Proof : As f is analytic on U , it follows from Cauchy’s theorem that∫
Γ

f(λ)dλ =

∫
Υ

f(λ)dλ,

where Υ denotes a positively oriented boundary of a disc that is centered in the
origin and large enough to include both the contour Γ and the spectrum of T in
its interior. Now, for λ ∈ Υ we have λ ∈ ρ(T ) and f(λ) = R̃λ(T )x. Using Remark
3.1, we get for all x ∈ X,

Pσx =
1

2πi

∫
Υ

Rλ(T )xdλ.

As Rλ(T )x is analytic by Lemma 2.1 and that ‖.‖ and ‖.‖T are comparable norms
on D(T ) by Assumption 3.2, then we get

Pσx =
1

2πi

∫
Υ

R̃λ(T )xdλ =
1

2πi

∫
Γ

f(λ)dλ.

�

Lemma 3.2. If T ∈ CR(X) satisfies Assumption 3.1 and Assumption 3.2 then,
for all disjoint closed sets F1, F2 ⊆ C, such that F1 is compact and connected, we
have

χT (F1 ∪ F2) ⊆ χT (F1) ∩D(T ) +XT (F2) ∩D(T ) + kerPσ,

where Pσ is the Riesz projection defined in Remark 3.1.

Proof : Assume that x ∈ χT (F1∪F2). Then there exists f : C\(F1∪F2)→ XT

an analytic function such that

(µI − T )f(µ) = x+ T (0) for all µ ∈ C\(F1 ∪ F2).
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We may assume that F2 is compact since we have, by Lemma 2.4, for all sets
F ⊆ C, χT (F ) = χT (F ∩ σ(T )) and XT (F ) = XT (F ∩ σ(T )). Let G1, G2 be two
disjoints compact sets such that for i = 1, 2 the set Gi is a neighborhood of Fi
whose boundary Γi be a contour in the complement C\Fi that surrounds Fi and
that G1 is connected. By Lemma 3.1, we have

Pσx =
1

2πi

∫
Γ1∪Γ2

f(λ)dλ.

On the other hand, we have

Pσx =
1

2πi

∫
Γ1∪Γ2

f(λ)dλ =
1

2πi

∫
Γ1

f(λ)dλ+
1

2πi

∫
Γ2

f(λ)dλ. (3.1)

Put xi =
1

2πi

∫
Γi

f(λ)dλ ∈ D(T ) for i = 1, 2. Now, show that xi ∈ χT (Gi). Let

gi(λ) :=
1

2πi

∫
Γi

f(µ)

λ− µ
dµ for all λ ∈ C\Gi.

Note that gi considered as a function from C\Gi to XT is analytic. We have for

every λ ∈ C\Gi, the operator QT (λI−T ) is bounded from XT to
X

T (0)
. Whence,

for all λ ∈ C\Gi,

QT (λI − T )gi(λ) =
1

2πi

∫
Γi

QT (µI − µI + λI − T )
f(µ)

λ− µ
dµ

=
1

2πi

∫
Γi

QT (µI − T )
f(µ)

λ− µ
dµ+QT (

1

2πi

∫
Γi

f(µ)dµ)

= QT (
1

2πi

∫
Γi

x

µ− λ
dµ+ xi).

Using Cauchy’s theorem we get that∫
Γi

dµ

λ− µ
= 0, for all λ ∈ C\Gi.

Thus, for each λ ∈ C\Gi, (λI−T )gi(λ)−xi = T (0). Whence, xi ∈ χT (Gi) for any
neighborhood Gi of Fi described as above. Hence, it remains to prove that x1 ∈
χT (F1)∩D(T ) and x2 ∈ XT (F2)∩D(T ). First, we claim that x1 ∈ χT (F1)∩D(T ).
Indeed, as we have x1 ∈ D(T ) then we need only to prove that there exists an
analytic function f : C\F1 → XT such that (µI − T )f(µ) = x1 + T (0) for all
µ ∈ C\F1. We note that for every connected compact neighborhood G of F1,
whose boundary Γ in C\F1 that surrounds F1, there exists an analytic function
fG : C\G→ XT such that

(µI − T )fG(µ) = x1 + T (0), for all µ ∈ C\G.
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Let λ ∈ C\F1. Then, there exists an infinite choice of G, with the properties
mentioned above, such that λ ∈ C\G. Let G1 and G2 be any two of these
choices. We shall prove that fG1(λ) = fG2(λ). Indeed, we have for all µ ∈
(C\G1) ∩ (C\G2) = C\(G1 ∪G2),{

(µI − T )fG1(µ) = x1 + T (0)
(µI − T )fG2(µ) = x1 + T (0).

Observe that C\(G1 ∪G2) is an open connected set which intersects the open set
ρ(T ) and that on ρ(T )∩C\(G1∪G2) we have fG1(µ) = (µI−T )−1 and fG2(µ) =
(µI − T )−1. So, fG1 = fG2 on ρ(T ) ∩C\(G1 ∪G2). But, we have C\(G1 ∪G2) is
an open connected set and that ρ(T ) ∩ C\(G1 ∪G2) has an accumulation point,
then the identity theorem entails that fG1 = fG2 on C\(G1 ∪ G2) and hence,
fG1(λ) = gG2(λ). This allows us to define a function f on C\F1 as follows: For
all λ ∈ C\F1, f(λ) = fG(λ), where G is any connected compact neighborhood
of F1 such that λ ∈ C\G. Whence, the function f defined above is analytic on
C\F1 and for every µ ∈ C\F1, (µI − T )f(µ) = x1 + T (0). Hence,

x1 ∈ χT (F1) ∩D(T ). (3.2)

Second, let us prove that x2 ∈ XT (F2). We have x2 ∈ χT (G) ⊆ XT (G) for every
compact neighborhood G of F2 whose boundary Γ2 is a contour surrounding
F2. Then, σT (x2) ⊆ G for all G a compact neighborhood of F2 and therefore,
σT (x2) ⊆ F2. Consequently,

x2 ∈ XT (F2) ∩D(T ). (3.3)

Thus, (3.3), (3.2) and (3.1) ensure that

x = x1 + x2 − (Pσx− x) ∈ χT (F1) ∩D(T ) +XT (F2) ∩D(T ) + kerPσ.

This achieves the proof. �

Lemma 3.3. Let T ∈ CR(X) with ρ(T ) 6= ∅ and unbounded. Then, for all
λ ∈ ρ(T ),

(i) (λiT − T̃ )−1 ∈ B(X,XT ), where iT : XT → X, x 7→ x.

(ii) If T satisfies Assumption 3.2, then

lim
|λ|→∞

‖(λiT − T̃ )−1iT‖B(XT ) = 0.

(iii) If T satisfies Assumption 3.2 and σ(T ) is bounded, then

χT ({0}) ∩D(T ) ⊆ H0(T ) + T (0).
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Proof : (i) We start by proving that λiT−T̃ is injective. Let x ∈ ker(λiT−T̃ ).
Then, 0 ∈ (λiT− T̃ )x = λx−Tx = (λI−T )x. So, x ∈ ker(λI−T ) = {0}. Hence,
λiT − T̃ is injective. Show that λiT − T̃ is surjective. Let y ∈ X. Then, there
exists x ∈ D(T ) such that y ∈ (λI−T )x = λx−Tx = (λiT−T̃ )x. Thus, (λiT−T̃ )
is surjective. Therefore, (λiT − T̃ ) is invertible and (λiT − T̃ )−1 : X → XT is a
bounded operator.
(ii) As a preliminary to the proof we begin by showing that for λ, µ ∈ ρ(T ), we
have

(λiT − T̃ )−1 − (µiT − T̃ )−1 = (µ− λ)(λiT − T̃ )−1iT (µiT − T̃ )−1. (3.4)

We have, for all λ, µ ∈ ρ(T ) and x ∈ D(T ), (µ− λ)(λiT − T̃ )−1iT (µiT − T̃ )−1x =
(λiT − T̃ )−1(µ−λ)iT (µiT − T̃ )−1x = (λiT − T̃ )−1(µiT − T̃ + T̃ −λiT )(µiT − T̃ )−1x.
Therefore, (µ − λ)(λiT − T̃ )−1iT (µiT − T̃ )−1x = (λiT − T̃ )−1[(µiT − T̃ )(µiT −
T̃ )−1x − (λiT − T̃ )(µiT − T̃ )−1x]. Using (i) we get the desired equality (3.4).
Whence, for all λ, µ ∈ ρ(T ), we get [(λiT − T̃ )−1 − (µiT − T̃ )−1](µiT − T̃ ) =
(µ − λ)(λiT − T̃ )−1iT (µiT − T̃ )−1(µiT − T̃ ). Using again (i) we obtain (λiT −
T̃ )−1(µiT − T̃ ) − IXT = (µ − λ)(λiT − T̃ )−1iT IXT , where IXT is the identity on
XT . Therefore,

(λiT − T̃ )−1(µ− λ)iT = (λiT − T̃ )−1(µiT − T̃ )− IXT . (3.5)

On the other hand, by Assumption 3.2, there exists a projection P ∈ B(X) such
that ImP = D(T ) and kerP = T (0). We note that P considered as operator
from X to XT is bounded. Furthermore, by (3.5), we get

‖(µ− λ)(λiT − T̃ )−1iT‖B(XT ) = ‖(λiT − T̃ )−1(P + I − P )(µiT − T̃ )− IXT ‖B(XT )

= ‖(λiT − T̃ )−1iTP (µiT − T̃ ) + (λiT − T̃ )−1(I − P )(µiT − T̃ )− IXT ‖B(XT )

≤ ‖P (µiT − T̃ )‖B(XT )‖‖(λiT − T̃ )−1iT‖B(XT ) + 1.

Then, (|µ− λ| − ‖P (µiT − T̃ )‖B(XT ))‖(λiT − T̃ )−1iT‖B(XT ) ≤ 1 and so,

‖(λiT − T̃ )−1iT‖B(XT ) ≤
1

|µ− λ| − ‖P (µiT − T̃ )‖B(XT )

.

Thus, letting |λ| → ∞, we get the desired result.
(iii) Assume that x ∈ χT ({0}) ∩ D(T ). Then, there exists an analytic function
f : C\{0} → XT such that (λI − T )f(λ) = x + T (0) holds for every λ ∈ C\{0}.
By hypothesis, we have σ(T ) is bounded then V := C\{0} ∩ ρ(T ) is not empty
and open and the function f is analytic throughout V . We claim that

lim
|λ|→∞
λ∈V

‖f(λ)‖T = 0. (3.6)

Indeed, we have (λI−T )f(λ) = x+T (0), then, λiTf(λ)− T̃ f(λ) = x+T (0). So,

(λiT − T̃ )f(λ) = x+ T (0). (3.7)
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Using (i) we get, f(λ) = (λiT−T̃ )−1x+(λiT−T̃ )−1(λiT−T̃ )(0) = (λiT−T̃ )−1iTx.
Now, by virtue of (ii), the equality (3.6) holds. Which means that lim

|λ|→∞
λ∈V

f(λ) = 0

on XT . Let us consider the analytic function g defined by

g(µ) :=

{
f( 1

µ
) if µ 6= 0,

0 if µ = 0.

As g is analytic on C and g(0) = 0, then there exists a sequence (xn)n ⊆ D(T ) such
that x0 = 0 and g(µ) =

∑
n≥0

µnxn holds for all µ ∈ C. Whence, lim sup
n→∞

‖xn‖
1
n
T = 0.

Which implies that lim
n→∞

‖xn‖
1
n
T = 0. Furthermore, we have f(λ) = g( 1

λ
) =∑

n≥0

λ−nxn. It follows from Lemma 5.2 in [10], that for all n ∈ N, there exists

αn+1 ∈ T̃ xn such that for all λ 6= 0 we have

(λiT − T̃ )f(λ) =
∑
n≥0

λ−n+1xn −
∑
n≥0

λ−nαn+1 + T̃ (0)

=
∑
n≥0

λ−n(xn+1 − αn+1) + T (0).

This implies, by the use of (3.7), that QT (λiT − T̃ )f(λ) = QT (x + T (0)) =∑
n≥0

λ−nQT (xn+1 − αn+1). Hence,

{
QT (x1 − α1) = QT (x),
QT (xn+1 − αn+1) = 0, for every n ≥ 1.

Whence, xn+1 ∈ T̃ xn = Txn for all n ≥ 1 and there exists α ∈ T (0) such that
x = x1 + α. Thus, it remains to prove that x1 ∈ H0(T ). Let (yn)n be the
sequence defined by yn := xn+1 for all n ∈ N. Trivially, we have y0 = x1 and
yn+1 = xn+2 ∈ Txn+1 = Tyn. Moreover, we have lim

n→∞
‖yn‖

1
n
T = lim

n→∞
‖xn+1‖

1
n
T = 0.

Therefore, x1 ∈ H0(T ) and so, x = x1 + α ∈ H0(T ) + T (0). Hence, χT ({0}) ∩
D(T ) ⊆ H0(T ) + T (0). �
For bounded operators, González et al. [5] presented a characterization of the
isolated points of the surjective spectrum. Recently, the authors of [10] have
extended a part of this result for closed and bounded linear relations as follows:

Lemma 3.4. [10, Theorem 6.2] Let T ∈ BCR(X). If X = H0(λI−T )+K(λI−T )
then λ is isolated in σsu(T ).

In the following theorem, we intend to further generalize the result of González
et al. in [5] by moving from the case of bounded operators to the more general
setting of closed linear relations.
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Theorem 3.1. Let T ∈ CR(X) satisfying Assumption 3.1 and Assumption 3.2.
If 0 ∈ σsu(T ), then we have the equivalence:

0 is isolated in σsu(T ) if and only if X = H0(T ) +K(T ).

Proof : Suppose that 0 ∈ σsu(T ) and X = H0(T )+K(T ). Let x ∈ X. Then,
x = x1 + x2 with x1 ∈ H0(T ) and x2 ∈ K(T ). It follows from Lemma 2.3 (i) that
σT (x1) ⊆ {0}. Therefore, by virtue of Proposition 2.1, we get

σT (x) ⊆ σT (x1) ∪ σT (x2) ⊆ {0} ∪ σT (x2). (3.8)

Now, by Lemma 2.3 (ii) and since σT (x2) is closed we conclude that 0 is isolated
in σT (x) ∪ {0} for any x ∈ X. Using Lemma 2.4 (i) and (ii) we get that 0 is
isolated in σsu(T ) as desired. For the only if part, since 0 is an isolated point in
σsu(T ), then it follows from Lemma 3.2, that

χT (σsu(T )) ⊆ χT ({0}) ∩D(T ) +XT (σsu(T )\{0}) ∩D(T ) + kerPσ.

Observe that, by the use of Lemma 2.4 together with Lemma 2.3, we have
χT (σsu(T )) = X and XT (σsu(T )\{0}) ∩ D(T ) ⊆ XT (C\{0}) = K(T ). Whence,
by Lemma 3.3 (iii), we get

X ⊆ H0(T ) + T (0) +K(T ) + kerPσ. (3.9)

Adhering the notations of Remark 3.1 and according to Lemma 1.1, we get that
D(T1) = D(T ) ∩ kerPσ with T1 = TkerPσ . Thus, we obtain T1(kerPσ ∩D(T1)) =
T1(D(T1)). Furthermore, it follows from Remark 3.1 that 0 6∈ σ(T1). Then, T1

is surjective. Consequently, we obtain T1(kerPσ ∩D(T1)) = kerPσ. By virtue of
Lemma 2.2, we get that kerPσ ⊆ K(T1). Now, we claim that

K(T1) ⊆ K(T ).

Indeed, let x ∈ K(T1). Then, it follows from the proof of Lemma 2.2 (iii) that
there exist d > 0 and a sequence (xn)n such that x0 = x; for all n ≥ 0, xn ∈
T1xn+1 and xn+1 ∈ D(T ) ∩ X1 and ‖xn‖ ≤ dn‖x‖. Let x̃n = 0 ⊕ xn. We have
x̃0 = 0 + x0 = x. Since xn ∈ T1xn+1, then x̃n = 0 + xn ∈ T0(0) ⊕ T1xn+1 ∈
T (0 ⊕ xn+1) ∈ T (x̃n+1). Furthermore, we have ‖x̃n‖ = ‖xn‖ ≤ dn‖x‖. Now,
if x ∈ T (0) ∩ kerT then x ∈ K(T ). Otherwise, a short calculation reveals the
existence of some d′ > d(x, T (0) ∩ kerT ) such that

d(x̃n, T (0) ∩ kerT ) ≤ d′nd(x, T (0) ∩ kerT ).

Whence, x ∈ K(T ). Thus, kerPσ ⊆ K(T ). Consequently, it follows from (3.9)
that X ⊆ H0(T ) +K(T ). Hence, we get the desired result. �

Let us denote by acc(σT (x)) the set of all accumulation points of the local
spectrum of T ∈ CR(X) at the point x ∈ X.
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Corollary 3.1. Let T ∈ CR(X) satisfying Assumption 3.1 and Assumption 3.2.
Then we have the equivalence:

X = H0(T ) +K(T ) if and only if 0 6∈ acc(σT (x)) for every x ∈ X.

Proof : Suppose that X = H0(T ) + K(T ). Using (3.8), we get that 0 is
isolated in {0} ∪ σT (x) for all x ∈ X. Then, 0 6∈ acc(σT (x)) for every x ∈ X.
On the other hand, by Lemma 2.4 (ii), there exists x0 ∈ X such that σT (x0) =
σsu(T ). Hence, 0 6∈ acc(σsu(T )). Now, assume that 0 6∈ σsu(T ) then X = K(T ),
as desired. Otherwise, if 0 ∈ σsu(T ) then, from Theorem 3.1, we have X =
H0(T ) +K(T ). Which ends the proof. �

Data availability. All data generated or analysed during this study are
included in this published article.
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