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Abstract

A strong edge-coloring of a graph G is a proper edge coloring such that every path of length 3 uses
three different colors. The strong chromatic index of G, denoted by x5 (G), is the least possible number
of colors in a strong edge coloring of G. Choi, Kim, Kostochka and Raspaud (2018) proved that if
A(G) > 9 and maximum average degree is less than 3§, then x4 (G) < 3A(G) — 3; and if A(G) > 7,
maximum average degree is less than 3 and there is no 3-regular subgraphs, then x%(G) < 3A(G). In
this paper, we prove that if G is a graph with A(G) = 4 and maximum average degree is less than
% (resp.%2), then x4(G) < 10(resp.11).
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1 Introduction

A proper edge coloring is an assignment of colors to the edges such that adjacent edges receive distinct
colors. The chromatic index x/(G) is the minimum number of colors in a proper edge coloring of G.
We denote the minimum and maximum degrees of vertices in G by 6(G) and A(G) (for short ¢ and A),
respectively.

A strong edge-colouring (called also distance 2 edge-coloring) of a graph G is a proper edge coloring of
G, such that the edges of any path of length 3 use three different colors. We denote by x.(G) the strong
chromatic indexr of G which is the smallest integer k such that G can be strongly edge-colored with k
colors. Strong edge-coloring was introduced by Fouquet and Jolivet in [7,8]. Strong edge-coloring can be
used to model the conflict-free channel assignment in radio networks [16,17].

In 1985, Erdds and Nesetsil gave the following conjecture, which is still open, and provided an example
to show that it would be sharp, if true.

Conjecture 1.1 ( [6]) For every graph G,

5 A2 if Ais even
/ < 4 ) ’
Xs(G) < { 1(5A2 —2A 4+ 1), if Ais odd.

The conjecture was verified for graphs having A < 3 [1,13]. When A > 3, the only case on which
some progress was made is when A = 4 and the best upper bound stated is x,(G) < 21 [10]. When A is
sufficiently large, Molloy and Reed in [15] proved that x/(G) < 1.998A2, using probabilistic techniques.
This bound is improved to 1.93A2 by Bruhn and Joos [3], and very recently, is further improved to
1.835A2 by Bonamy, Perrett, and Postle [2].
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The maximum average degree mad(G) of a graph G is the largest average degree of its subgraphs,

that is,
2|E(H)|

V(H)|

Hocquard et al. [11,12] studied the strong chromatic index of subcubic graphs in terms of maximum

average degree and proved that for any graph G with A = 3, if mad(G) < % (resp. g, %, 2—70), then

X=(G) <6 (resp. 7, 8,9). Lv et al. [14] consider graphs with maximum degree 4 and bounded maximum

mad(G) = max{ H C G}.

average degree and proved that

Theorem 1.2 For every graph G with A = 4, if mad(G) < % (resp. T, 18, f

50 % 51) then x.(G) < 16
(resp. 17, 18, 19, 20).

713

Recently, Choi, Kim, Kostochka and Raspaud [4] obtained the following results.

Theorem 1.3 ( [4]) (1) For every graph G with mazimum degree A > 9 and mad(G) < %, X4(G) <
3A — 3.

(2) For every graph G with mazimum degree A > 7, mad(G) < 3 and no 3-regular subgraphs, x.(G) <
3A.

Observe that the maximum average degree is more than 3 in Theorem 1.2 and A > 7 in Theorem 1.3.
One naturally find a gap if the maximum average degree decreases to less than 3 in Theorem 1.2 and if
A decreases to 4 in Theorem 1.3. Motivated by this, we prove the following results in this paper.

Theorem 1.4 For every graph G with A = 4, we have:

(1) If mad(G) < then X5 (G) < 10.

(2) If mad(G) < =, then x,(G) < 11.

From Theorem 1.4, one can derive the following result.
Corollary 1.5 Let G be a planar graph with A =4 and girth g :

(1) If g > 8, then X,(G) < 10,
(2) If g > 7, then ¥,(G) < 11.

G

Figure 1: G with mad(G) = 2 and x4(G) = 9.

G G,
Figure 2: Gy with mad(G1) = 2 and x/,(G1) = 11, G3 with mad(G2) = 3 and x,(G>2) = 12.
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It is easy to see that the graph G of Figure 1 is x4(G) = 9 and mad(G) = 2, the graph G; of Figure
2 is x4(G) = 11 and mad(G) = %, the graph G2 of Figure 2 is x4(G) = 12 and mad(G) = 3. Therefore,
the bounds on the maximum average degree are close to optimal.

We first introduce notations of graphs. Two edges are at distance 1 if they share one of their ends
and they are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them.
Let dg(v) (or d(v) if it is clear from the context) denote the degree of a vertex v in a graph G. A vertex
is a k-vertex if it is of degree k. Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k.
A 3-vertex is a 3i-vertex if it is adjacent to exactly k 2-vertices. A 4-vertex is a 4y -vertez if it is adjacent
to exactly k 2-vertices. We define a partial coloring to be a strong edge-coloring except that some edges
may be uncolored.

In the proof of the Theorem 1.4, we applied the well-known result of Hall [9] in terms of systems of
distinct representatives.

Theorem 1.6 ( [9]) Let Ay,..., A, be n subsets of a set U. A system of distinct representatives of
{Ay,..., An} emists if and only if for all k,1 < k < n and every choice of subcollection of size k,
{Ai,,..., A, }, we have |A;, U...UA;, | > k.

2 Proof of Theorem 1.4

Let H be a minimum counterexample to Theorem 1.4 with |V(H)| 4+ |E(H)| minimized. Thus, for some

(m, k) € {(%,10), (%4,11)}

we have mad(H) < m and x,(H) > k.
By the minimality of H, x.(H —e) < k for each e € E(H), and we may assume that H is connected.
Let H* be the graph obtained from H by deleting all vertices of degree 1. Since H* is the subgraph of
H, mad(H*) < mad(H). It is sufficient to show that such H* does not exist. Denote by N(v) and Ny (uv)
the neighborhood of the vertex v and the set of edges at distance at most 2 from the edge uv, respectively.
Denote by SC(N2(uv)) the set of colors used by edges in Na(uv). Denote by L = {1,2,...,k} the set of
colors and let L'(e) = L'\ SC(Nz(e)). We first establish some properties of H*.

Lemma 2.1 If k > 10, then each of the following holds.
(1) There is no 1-vertex in H*.
(2) If dg~(v) = 2, then dy(v) = 2.
(8) If a 3-vertex v is adjacent to two 2-vertices in H*, then dg(v) = dy~(v) = 3.
(4) No 3q-vertex is adjacent to any 39-vertex in H*.

Proof. (1) Suppose that H* contains a 1-vertex v such that w is its neighbor. Thus, there is at least
one l-vertex v; adjacent to v in H. By the minimality of H, H' = H \ {v;} has a strong edge coloring
with k colors. Observe that |L'(vvy)| > 4 since A = 4 . Thus, we can color vv; and obtain the strong
edge-coloring of H, a contradiction.

(2) Suppose that dg(v) > 2. Thus, there is at least one 1-vertex v; adjacent to v in H. By the
minimality of H, H' = H \ {v1} has a strong edge coloring ¢ with k colors. Observe that |L'(vvy)| > 1.
Thus, we can color vvy, a contradiction.

(3) Suppose that a 3-vertex v is adjacent to two 2-vertices vy, vy in H* and dg(v) > dp-(v) = 3.
Then v is adjacent to one 1-vertex v’ in H. By (2), dg(vi) = dg+(v1) = 2, dg(ve) = dg-(v2) = 2.
By the minimality of H, H' = H \ {v'} has a strong edge-coloring with at most k colors. Observe that
|L'(vv")| > 2. Thus, we can color vv’, a contradiction.

(4) Suppose otherwise that a 3s-vertex v is adjacent to 3a-vertex u. Let vq and vy be two 2-neighbors of
v, and let u; and ug be two 2-neighbors of u. By (2) and (3), di(v1) = du~(v1) = 2, dg(ve) = dg~(v2) =
2, dH(’U,l) = dH*(’U,l) = 2, dH(’U,g) = dH*(UQ) = 27 dH(U) = dH*(’U) = 3, and dH(u) = dH*(u) = 3.
By the minimality of H, H' = H \ {v} has a strong edge-coloring with at most k& colors. Observe that
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|L'(vvy)] > 3, |L'(vvg)] > 3, and |L'(vu)| > 4. Thus, we can color vvy, vvg, and vu, and obtain a desired
strong edge-coloring with k colors, a contradiction.

Lemma 2.2 If k > 10, then each of the following holds.
(1) No 2-vertex adjacent to a 2-vertez is adjacent to a 3-vertex in H*.
(2) No 4-vertex is adjacent to three 2-vertices in H*, one of which is adjacent to a 2-vertez.
(8) No 3-vertex is adjacent to three 2-vertices in H*.

Proof. (1) Suppose otherwise that a 2-vertex v is adjacent to a 2-vertex u and a 3-vertex w in H*. By
Lemma 2.1(2), dy(v) = dg«(v) = 2, and dy(u) = dy~(u) = 2. If dg(w) = dy«(w) = 3, then by the
minimality of H, H' = H \ {v} has a strong edge-coloring with at most k colors. It is easy to verify that
|L'(uv)| > 4, |L'(vw)| > 1. Thus, we can color vw, vu in turn, a contradiction.

If dgy(w) = 4, then w is adjacent to one 1-vertex wy in H. Let N(u) = {u1,v}. By the minimality of
H, H = H \ {uv} has a strong edge-coloring ¢ with at most k colors. We can switch the colors on vw
and ww; if necessary such that c(uju) # c(vw). It is easy to verify that |L'(uv)| > 2. Thus, we can color
uv, a contradiction.

(2) Suppose otherwise that a 4-vertex v is adjacent to three 2-vertices vy, vo and vs where v; is adjacent
to a 2-vertex. Let v] be a 2-neighbor of v; other than v. By Lemma 2.1(2), dg(v1) = dg-(v1) = 2,
dp(ve) = dg+(v2) = 2, dg(vs) = dp~(vs) = 2, and dg(v]) = dg-(v]) = 2. By the minimality of H,
H' = H\{v;} has a strong edge-coloring with at most k colors. Observe that |L'(vvy)| > 1, | L/ (vyv])] > 3.
Thus, we color vvy, v1v] in turn, a contradiction.

(3) Suppose otherwise that a 3-vertex v is adjacent to three 2-vertices v, v and vz in H*. By
Lemma 2.1(2)(3), dg(v1) = dg~(v1) = 2, dg(v2) = dg~(v2) = 2, dg(vs) = dg~(v3) = 2, and dy(v) =
dp+(v) = 3. By the minimality of H, H' = H \ {v} has a strong edge-coloring with at most k colors.
Observe that | L' (vvy)| > 4, |L'(vve)| > 4, and |L'(vvs)| > 4. Thus, we can color vvy, vvy and vvs in turn,
a contradiction. Hll

By Lemma 2.2(1) and (2), we classify 2-vertices as follows. A 2-vertex is very poor if it is adjacent to
a 2-vertex, poor if it is adjacent to a 3o-vertex, and rich otherwise.

7 8 J 6
V. % 7
v, 2 Vi vy

Figure 3: 2-vertex v is adjacent to a 3;-vertex vy and a 3o-vertex vy in H*, which vy is adjacent to one
l-vertex v{ in H.

Lemma 2.3 If k > 10, then no 2-vertex is adjacent to a 31-verter and a 3z-vertex in H*. Moreover, no
2-vertex is adjacent to two 3q-vertices in H*.

Proof. Suppose otherwise that a 2-vertex v is adjacent to a 3;-vertex v; and a 3s-vertex vo in H*. Let vi
be a 2-neighbor of v3 other than v. By Lemma 2.1(2) and (3), dg (v) = dg+(v) = 2, dg(v3) = dg-(v3) = 2,
and dg (ve) = dg~(v2) = 3.

Assume first that dg(vi) # dg-(v1). The vertex vy is adjacent to one 1-vertex v1 We shall use the
notations in Figure 3. We claim that v} is not adjacent to v1. Suppose otherwise. Then vi = v;. By
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the minimality of H, H' = H \ {v{} has a strong edge-coloring ¢ with at most k colors. Observe that
|L'(v19?)| > 2, and we can color v;v9, a contradiction. Similarly, v, is not adjacent to v;.

By the minimality of H, H' = H \ {v,v{} has a strong edge-coloring with at most k colors. We erase
the color of edge vav3. Observe that |L'(vvy)| > 1, |L/(vvg)| > 3, |L'(vi09)| > 2, and |L’(v2v§)\ > 2. We
first color edge vvi. At this time, H has a partial coloring ¢ and uncolored edges are vvs, vl v, and vavi.
|L (vvg)| > 2, L' (v109)] > 1, and |L' (vovd)| > 1. If L' (v10Y) N L (vavi) # 0, we color v1v) and vevd with
a € L'(v1v)) N L' (vvd), and color vvy, and obtain a desired strong edge-coloring with k colors, a contra-
diction. If L' (v1v?) N L' (vavd) = 0. We claim that |L'(v19?)| = 1. Suppose otherwise that |L’(vv?)| > 2.
We can color vav, vvy and v1v? in this order, and obtain a desired strong edge-coloring with k colors, a
contradiction. Similarly, |L’(vov3)| = 1. If we can not assign three distinct colors to three uncolored edges,
by Theorem 1.6, L' (vovs) C L' (vv2), L' (v10Y) C L'(vvg), and |L'(vve)| = 2(k = 10). We assume, without
loss of generality, that L'(vovd) = {1}, L'(v1v?) = {2}, and L'(vve) = {1,2}. Since L'(vovi) = {1}

and L'(vv2) = {1,2}, c(v203), c(v3v3), c(vivy), c(v3v3), c(v3vg), c(vivi), c(v3v3), c(vivy) and c(vvr)

are distinct, 2 ¢ {c(viv3), c(v2v3), c(v3vd), c(v3v8), c(v3vd), c(vvr)}. Otherwise, |L/(vovd)| > 2, a contra-
diction. Thus, we may assume, without loss of generality, that c(vivd) = 3, c(vivs) = 2, c(v3v]) = 4,
c(v3vs) = 5, c(vav?) = 6, c(v3v) =7, c(v3v]) = 8, c(v3v)) = 9, and c(vv;) = 10. Since L'(vvy) = {1,2},
{e(wrod), e(vr0?)} = {4,5}. Since L' (vy2) = {2}, {e(v}o?), c(vlod), c(vlod), c(v30l), c(v3e]), c(viv?)} =
{1,3,6,7,8,9}. We recolor vv; with 2 and color vovi and v199 with same color 10, vvy with 1. So, we
obtain a desired strong edge-coloring with k colors, a contradiction.

Thus, assume that dg(v1) = dg-(v1) = 3. By the minimality of H, H' = H \ {v} has a strong edge-
coloring with at most & colors. We erase the color of edge vavs. Observe that |L'(voy)] > 1, | L/ (vvg)| > 3,
and |L'(vavd)| > 2. We can color vvy, vovs, and vvy in turn, a contradiction. Hl

Let the initial charge of x € V(H*) be w(z) = d(z) — m. It follows from the hypothesis that
erv( HY) w(z) < 0. Then we define discharging rules to redistribute weights and once the discharging
is finished, a new weight function w* will be produced. During the discharging process the total sum of
weights is kept fixed. Nevertheless, we can show that w*(z) > 0 for all z € V(H*). This leads to the

following contradiction:
0< Z Z w(z) < 0.
zeV (H*) z€V(H*)

Therefore, such a counterexample cannot exist.

2.1 Case (§,10)

Figure 4: 2-vertex v is adjacent to a 3;-vertex v; and 44-vertex vo in H*, which v; is adjacent to one
l-vertex v{ in H.

Lemma 2.4 No 2-vertex is adjacent to a 31-vertex and 44-vertex in H*.

Proof. Suppose otherwise that a 2-vertex v is adjacent to a 3;-vertex v; and a 44-vertex vy in H*.
Let v, v3 and vi be three 2-neighbors of vy other than v. By Lemma 2.1(2), dy(v) = dp-(v) = 2,
dp(v3) = dp-(v3) = 2, dg (v3) = dy- (v3) = 2, and dy (v3) = dp-(v3) = 2.
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Assume first that dg(v1) # dg-(v1). Then vy is adjacent to one 1-vertex v{ in H (see Figure 4). We
claim that v is not adjacent to v;. Suppose otherwise. By the minimality of H, H' = H\{v?} has a strong
edge-coloring ¢ with at most k colors. Observe that |L'(v;v9)| > 2, and we can color v;v¢, and obtain a
desired strong edge-coloring with & colors, a contradiction. By the minimality of H, H' = H \ {v,v?,v3}
has a strong edge-coloring with at most k colors. Observe that |L'(vv1)| > 2, | L' (vvg)| > 5, |L' (v109)| > 2,
|L/ (vovd)| > 4, |L/(v9v3)| > 4, and |L/(vov3)| > 4. Note that vy is a 44-vertex and vy is not a 2-vertex,
thus vs is not adjacent to vi. Recall that v% is not adjacent to vy;. Therefore, vlv? and vgv% have
distance greater than 2. If L'(v109) N L' (vav3) # 0, we color v1v) and vavl with o € L' (v109) N L' (vgv3),
and color vvy, vov3, vovs, and vvy in turn, and obtain a desired strong edge-coloring with k colors, a
contradiction. If L'(v1v9) N L' (vgvd) = 0, then let T = {vvy, vv2, v2vd, v203, v2v3, v10)}. For any S C T,
we have |(J,cg L'(e)| > |S|. By Theorem 1.6, we can assign six distinct colors to six uncolored edges,
and we obtain a desired strong edge-coloring with & colors, a contradiction.

Suppose that dg(v1) = dg~(v1) = 3. By the minimality of H, H' = H \ {v,v2} has a strong edge-
coloring with at most k colors. Observe that |L'(vvy)| > 2, |L/(vvg)| > 5, |L'(vavd)| > 4, |L'(vv3)] > 4,
and |L' (vav3)| > 4. We can color vvy, v, v2v3, vov3, and vvy in turn, a contradiction. Hl

Lemma 2.5 No 4-vertez is adjacent to three poor 2-vertices in H*.

Proof. Suppose otherwise that H* contain a 4-vertex v adjacent to three poor 2-vertices u, w and
t. Let up be 3z-neighbor of u, let wy be 32-neighbor of w, and let ¢y be 32-neighbor of ¢. Let u; be
2-neighbor of ug other than u, let w; be 2-neighbor of wg other than w, and let ¢; be 2-neighbor of ¢
other than ¢. By Lemma 2.1(2) and (3), di(u) = dg+(u) = 2, dg(w) = dg-(w) = 2, dg(t) = dg-(t) = 2,
dH(ul) = dH*(ul) = 2, dH(’w1) = dH*(wl) = 2, dH(tl) = dH*(tl) = 2, dH(UO) = dH*(UO) = 3,
dp(wo) = dp~(wo) = 3, and dy(tg) = dy~(tp) = 3. We shall use the notations in Figure 5. We claim
that ug # tg. Suppose otherwise. By the minimality of H, H' = H \ {u,t} has a strong edge-coloring
with at most k colors. Observe that |L'(uv)| > 3, |L'(vt)| > 3, |L'(uug)| > 4, and |L/(ttg)| > 4. Thus,
we can color uv, vt, uug and tty in this order, and obtain a desired strong edge-coloring with k& colors, a
contradiction. Similarly, ug # wg, wg # to. Lemma 2.1(4), ug is not adjacent to tg, uo is not adjacent to
wp, wo 1s not adjacent to tg.

-2\ P

u, Us Us vy vy Wa o wy W
Figure 5: 4-vertex v is adjacent to three poor 2-vertices u, w and ¢ in H*.

By the minimality of H, H' = H \ {u,w, t} has a strong edge-coloring with at most k colors. Observe
that | L' (uug)| > 3, | L' (wwo)| > 3, |L'(ttg)] > 3, |L' (wv)| > 4, |L'(vw)| > 4, and |L'(vt)| > 4.
Claim 1. L'(uug) N L' (ttg) = 0; L' (uug) N L' (wwp) = 0; L' (wwe) N L' (tto) = 0.
Proof of Claim 1. Recall that ug # ¢y and ug is not adjacent to tg, thus uwug and tty have distance
greater than 2. Suppose otherwise that L'(uug) N L'(ttg) # 0. We first color uug and ¢ty with same
color, and color wwy. In this case, H has a partial coloring ¢ and uncolored edges are uv, vw and vt,
where |L'(uwv)| > 2, |L'(vw)| > 2, and |L'(vt)| > 2. If we can not assign three distinct colors to three
uncolored edges, by Theorem 1.6, L' (uv) = L'(vw) = L'(vt) and |L'(uv)| = 2. We assume that without
loss of generality, that L'(uv) = L'(vw) = L'(vt) = {1,2}. Since L'(uwv) = {1,2} and c(uug) = c(tto),
c(uug), c(uguy), c(upusa), c(vvr), c(v1ve), c(v1vs), c(v1vy4), and c(wwy) are distinct. Thus, we may assume,
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without loss of generality, that c(uug) = c(ttg) = 3, c(upur) = 4, c(ugug) = 5, c(vvy) = 6, c(vive) = 7,
c(vivg) = 8, c(vivg) = 9, c(wwy) = 10. Since L'(wv) = {1,2}, {c(wows), c(wows)} = {4,5}. Since
L'(vt) = {1,2}, {c(tot1), c(tota) } = {4,5}.

We claim that {c(wiws), c(wawy), c(waws), c(wawg)} = {3,7,8,9}. Suppose otherwise. We assume,
without loss of generality, that 3 ¢ {c(wiws), c(wawy), c(waws), c(wawe)}. In this case, we recolor wwy
with 3 and color vw with 10, uv with 1, vt with 2, and we obtain a desired strong edge-coloring with &
colors, a contradiction.

Now, we erase the color of edge uug, tto. In this case, |L'(uug)| > 3, |L'(tto)] > 3. Recall that
3 € L'(uug) N L'(ttg). We claim that L'(uug) N L'(ttg) = {3}. Suppose otherwise that there exist
a € L'(uug) NL' (tto) \ {3}. If o ¢ {1, 2}, we color uug and ttg with «, color wv with 3, vt with 1, vw with
2. So we obtain a desired strong edge-coloring with & colors, a contradiction. If o € {1, 2}, by symmetry,
assume that o = 1. In this case, we color uug and tty with 1, recolor wwy with 1, color uv with 3, vw
with 10, vt with 2. Thus, we obtain a desired strong edge-coloring with k colors, a contradiction.

We claim that [{1,2}NL' (uug)| < 1 and |{1,2}NL/(ttg)| < 1. Suppose otherwise that {1,2} C L' (uwuy).
Since L'(uug) N L'(ttg) = {3}, | L' (uug)| > 3 and |L/(ttg)| > 3, |L'(tto) \ L' (uug)| > 2. Thus, we can
choose € L'(ttg) such that 8 ¢ {1,2,3,10}. Thus, we color uug with 1, recolor wwy with 1, color ttg
with 5, uwv with 3, vt with 2, vw with 10, and so we obtain a desired strong edge-coloring with k& colors,
a contradiction. The proof is similar for the case that {1,2} C L/(tto).

Thus, we can get v1 € L' (uug), v2 € L' (ttg), and v1 ¢ {1,2,3}, 72 ¢ {1,2,3}. We can color uuy with
Y1, ttog with o, uv with 3, vt with 1, wv with 2, and we obtain a desired strong edge-coloring with &
colors, a contradiction.

We can similarly prove that L' (uug) N L' (wwp) = 0 and L' (wwg) N L' (ttg) = @. This proves our claim.

Let T = {uug, wwy, ttg, uv,vt,wv}. By Claim 1, for any S C T, we have | U.ecs L'(e)] > |S|. By
Theorem 1.6, we can assign six distinct colors to six uncolored edges and we obtain a desired strong
edge-coloring with % colors, a contradiction. Il

The discharging rules are defined as follows:

R1) 4-vertex sends % to the adjacent very poor 2-vertex.

R2) 4-vertex sends 5 to the adjacent poor 2-vertex.

Wl Nl Wl

to the adjacent rich 2-vertex.

R4) 3i-vertex sends

(R1)

(R2)

(R3) 4-vertex sends
(R4) to the adjacent 2-vertex.
(R5)

R5) 3s-vertex sends = to the adjacent poor 2-vertex.

1

3

1

6

Now we consider the new charge w*(v) for each vertex v € H*.
Let v € V(H*) be a k-vertex. By Lemma 2.1, k > 2.

(1) k= 2. If v is a very poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.2(1). By (R1),
w*(v) =2— % + % = 0. If v is a poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.3. By
(R2) and (R5), w*(v) =2— 3+ 1+ & = 0. If v is a rich 2-vertex, then v is adjacent to two 31 vertices
or one 3;-vertex and one 4-vertex, or two 4-vertices. By (R3) and (R4), w*(v) =2-3+ 1+ 1 =0.

(2) k =3. By Lemma 2. 2(3), v is adjacent to at most two 2-vertices. If v is not adjacent to 2-vertex,
then w*(v) =3 -5 =1 > 0. If v is a 3;-vertex, by (R4), w*(v) =3 —§ — £ = 0. If v is a 3y-vertex ,
by (R5), w*(v) =3—-%8 —2x 1 =0.

(3) k = 4. If v is a 44-vertex, then v is not adjacent to a very poor 2-vertex or a poor 2-vertex by
Lemma 2.2 (2) and 2.4. By (R3), w*(v) =4—35 —4x £ = 0. If v is a 43-vertex, then v is not adjacent
to a very poor 2-vertex by Lemma 2.2(2). By Lemma 2.5 v is not adjacent to three poor 2-vertices.
By (R2) and (R3), w*(v) >4 -5 —2x 1 -1 =0. If v is a 45-vertex, by (R1), (R2) and (R3),
w*(v) >4 -5 —2x 2 =0. If vis a 4;-vertex, by (R1), (R2) and (R3), w*(v) >4—5 -2 =2>0.
If v is a 4g-vertex, w*(v) > 4— 5 =2 > 0.
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2.2 Case (+,11)

Figure 6: special 3;-vertex u and semi-rich 2-vertex v

In this section, we give the definition of a special vertex as follows. A 3i-vertex is a special 31-vertex if it
is adjacent to one 43-vertex and one 3p-vertex adjacent to two 31-vertices. By Lemma 2.3, no 2-vertex is
adjacent to one 31-vertex and one 3s-vertex. A rich 2-vertex is a semi-rich 2-vertex if it is adjacent to a
special 31-vertex and a super-rich 2-vertex otherwise (see Figure 6).

Lemma 2.6 (1) If a 3-vertex v is adjacent to a 2-vertex in H*, then di(v) = dg-(v) = 3.
(2) No 3s-vertex v is adjacent to any 3-vertex in H*.
(8) No 35-vertex v is adjacent to a 4-vertex with at least two 2-neighbors in H*.

Proof. (1) Suppose otherwise that a 3-vertex v adjacent to a 2-vertex vy in H* and dg (v) > dg«(v) = 3.
Then v is adjacent to one 1-vertex v’ in H. By Lemma 2.1(2), dg(v1) = dg«(v1) = 2. By the minimality
of H, H = H \ {v'} has a strong edge-coloring with at most eleven colors. Observe that |L'(vv")| > 1.
Thus, we can color vv’ and obtain a desired strong edge-coloring with eleven colors, a contradiction.

(2) Suppose otherwise that a 39-vertex v is adjacent to a 3-vertex vy in H*. Let vy and vz be two
2-neighbors of v in H* other than v;. By Lemma 2.1(2) and (1) of this lemma, dy(vs) = dg+«(v2) = 2,
dy(vs) = dg+(v3) =2, and dy(v) = dy~(v) = 3. If dg(v1) > dg-(v1) = 3, vy is adjacent to one 1-vertex
v} in H. By the minimality of H, H' = H \ {v{, v} has a strong edge-coloring with at most eleven colors.
Observe that |L'(v1v])] > 3, |L'(vv1)| > 1, |L'(vve)| > 4, and |L'(vvs)| > 4. Thus, we can color vvy, v101,
vve and vvg in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.
If dpy(v1) = dp«(v1) = 3, by the minimality of H, H' = H \ {v} has a strong edge-coloring with at most
eleven colors. Observe that |L'(vvy)| > 1, |L'(vug)| > 4, and |L/(vvs)| > 4. Thus, we can color vvy, vvs,
and vvs in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

(3) Suppose otherwise that a 3o-vertex v is adjacent to a 4-vertex v; with at least two 2-neighbors in
H*. Let va, v3 be two 2-neighbors of v in H*, let v{, v? be two 2-neighbors of v; in H*. By Lemma 2.1(2),
di(v2) = dg«(v2) = 2, dy(v3) = dy-(v3) = 2, dg(vi) = dy+(v}) = 2, and dy(v?) = dy-(v?) = 2. By
the minimality of H, H' = H \ {v} has a strong edge-coloring with at most eleven colors. Observe that
|L' (vu1)| > 1, |L'(vva)| > 3, |L'(vvs)| > 3. Thus, we can color vy, vve, and vvs in this order, and obtain
a desired strong edge-coloring with eleven colors, a contradiction.

Lemma 2.7 (1) No 2-vertex v is adjacent to two 3-vertices w and w in H* such that one of u and w is
adjacent to a 3-vertez.

(2) No 2-vertex v is adjacent to two 3-vertices u and w in H* such that one of u and w is adjacent
to a 4z-vertex.

Proof. (1) Suppose otherwise that a 2-vertex v is adjacent to two 3-vertices u and w which is adjacent
to a 3-vertex s in H*. By Lemma 2.1 (2) and 2.6(1), dg(v) = dg-(v) = 2, dg(u) = dg+(u) = 3, and
dy(w) = dg+(w) = 3. We claim that dg(s) > dg«(s) = 3. Suppose otherwise that dg(s) = dg-(s) = 3.
By the minimality of H, H' = H \ {v} has a strong edge-coloring with at most eleven colors. Observe
that |L'(vu)| > 1, |L'(vw)| > 2. Thus, we can color vu and vw in this order, and obtain a desired strong
edge-coloring with eleven colors, a contradiction.
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Figure 7: 2-vertex v adjacent to two 3-vertices u and w with w adjacent to a 3-vertex s in H*.

Therefore, s is adjacent to one 1-vertex s; in H. We shall use the notations in Figure 7. Recall that
dp(u) = dg-(u) = 3 and dg(s) > dg-(s) = 3, then u # s. We claim that u is not adjacent to s. Suppose
otherwise that v is adjacent to s. By the minimality of H, H = H \ {s1} has a strong edge-coloring ¢
with at most eleven colors. Observe that |L'(ss1)| > 1. Thus, we can color ssj, and obtain a desired
strong edge-coloring with eleven colors, a contradiction. Therefore, vu and ss; have distance greater than
2. By the minimality of H, H' = H \ {v, s;} has a strong edge-coloring ¢ with at most eleven colors.
Observe that |L'(vu)| > 1, |L/(vw)| > 2, and |L'(ss1)| > 1. If L'(vu) N L' (ss1) # 0, we color vu and ss;
with the same color and then color vw, and obtain a desired strong edge-coloring with eleven colors, a
contradiction.

Thus, assume that L'(vu) N L'(ss1) = (. We claim that |L/(ss1)| = 1. Suppose otherwise. We can
color uv, vw and ss; in this order. Similarly, we can prove that |L'(vu)| = 1 and |L'(vw)| = 2. We claim
that L' (vu)UL'(ss1) = L' (vw). Suppose otherwise. By Theorem 1.6, we can assign three distinct colors to
uncolored edge uv, ss; and vw. Thus, we assume, without loss of generality, that L'(vu) = {1}, L'(ss1) =
{2}, and L'(vw) = {1,2}. Since L'(vu) = {1}, c(uuy), c(uug), c(uiul), c(uru?), clurul), clugui),
c(ugu3), c(ugul), c(ws) and c(wt) are distinct. Since L'(vw) = {1,2}, 2 ¢ {c(uuq), c(uug), c(ws), c(wt)}.
We may assume, without loss of generality, that c(uui) = 3, c(uuz) = 4, c(uwyul) = 2, c(ugu?) = 7,
c(uru3) = 8, clugul) =9, c(ugu3) = 10, c(ugu3) = 11, c(ws) = 5 and c(wt) = 6. Since L'(ss1) = {2} and
L'(vw) = {1,2}, 2 ¢ {c(tt1), c(tt2), c(tts), c(ss2), c(s83), c(s253), c(s253), c(s253), c(s383), c(s382), c(s353) }.
Thus, we can recolor ws with 2, color ss; with 5, wv with 5, vw with 1, and obtain a desired strong
edge-coloring with eleven colors, a contradiction.

(2) Suppose otherwise that a 2-vertex v is adjacent to two 3-vertices u and w such that u is adjacent to a
43-vertex s. Let s1, s2 and s3 be three 2-neighbors of s. By Lemma 2.1(2) and 2.6(1), di (v) = dp~(v) = 2,
di(s1) = du-(s1) = 2, dg(s2) = duy-(s2) = 2, du(s3) = dg-(s3) = 2, dg(u) = dy-(u) = 3, and
dy(w) = dg+«(w) = 3. We claim that s; is not adjacent to w. Suppose otherwise. By the minimality
of H, H = H \ {s} has a strong edge-coloring with at most eleven colors. Observe that |L'(us)| > 2,
|L'(ss1)] >4, |L'(ss2)| > 3, and |L/(ss3)| > 3, and color us, ssg, ss3, and ssp in this order, and obtain a
desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of H, H = H \ {v,s} has a strong edge-coloring with at most eleven colors.
Observe that |L'(vu)| > 5, |L'(vw)| > 2, |L'(us)| > 4, |L'(ss1)| > 4, |L'(ss2)| > 4, and |L'(ss3)| > 4. If
L'(vw) N L'(ss1) # (), we color edges vw and ss; with same color, and color sss, ss3, us, and uv in this
order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. If L' (vw)NL/(ss1) =
ces L'(e)| > |S]. By Theorem 1.6, we can
assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with eleven
colors, a contradiction.

0, let T = {uv,vw, us, ss1, $s2, ss3}, for any S C T', we have ||J

Lemma 2.8 (1) No 3y-vertex v is adjacent to one 31-vertex u and one 3-vertex w in H*.
(2) No 31-vertex v is adjacent to one 31-vertex u and one 4s-vertex w in H*.
(3) No 3;-vertex v is adjacent to two 4g-vertices w and t in H*.
(4) No 3-vertex v is adjacent to three 31-vertices u, w and t in H*.

Proof. (1) Suppose otherwise that a 31-vertex v is adjacent to one 3;-vertex u and one 3-vertex w in H*.
Let v; be 2-neighbor of v, u; be 2-neighbor of u. By Lemmas 2.1(2) and 2.6(1), dg(v1) = dg=(v1) = 2,
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d(ur) =dg«(u1) =2, dg(v) = dg+(v) = 3, and dg(u) = dg-(u) = 3.

Assume first dy(w) = dg~(w) = 3. By the minimality of H, H' = H \ {v} has a strong edge-coloring
with at most eleven colors. And we erase the color of edge uu;. Observe that |L'(vu)| > 3, |L'(vw)| > 1,
|L'(vvq)| > 4, and |L'(uuy)| > 3. We can color vw, vu, uuy, and vv; in this order, and obtain a desired
strong edge-coloring with eleven colors, a contradiction.

Thus, assume that dg(w) > dg«(w) = 3. Let w; be the 1-neighbor of w. By the minimality of
H, H = H\ {v,w;} has a strong edge-coloring with at most eleven colors. We erase the color of edge
uuy. We claim that w; is not adjacent to w. Suppose otherwise that u; is adjacent to w. In this case,
|L'(vu)| > 4, |L' (vw)| > 4, |L'(vvy)| > 4, |L'(uuq)| > 5, and |L'(ww;)| > 6. Thus, we can color vu, vv,
vw, uuy and ww; in turn and obtain a desired strong edge-coloring with eleven colors, a contradiction.
Similarly, we can prove that u is not adjacent to w. We now go back to H. Observe that |L'(vu)| > 3,
|L'(vw)| > 1, |L'(vv1)| > 4, |L'(uuy)| > 3, and |L'(wwy)| > 3. We now color vw and available colors
for vu,vv1,uuy, and ww; are changed as follows: |L'(vu)| > 2, |L'(vvr)| > 3, |L'(uu1)| > 2, and
|L (wwq)] > 2. If L'(uuy) N L (wwy) # @, we color edges uu; and ww; with the same color, and color
vu and vv; in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.
If L'(uuq) N L' (wwy) = 0, let T = {uuq, wwy,vu,vv1}. For any S C T, we have | Uges L'(€)| > |S]. By
Theorem 1.6, we can assign four distinct colors to four uncolored edges and we obtain a desired strong
edge-coloring with eleven colors, a contradiction.

(2) Suppose otherwise that a 31-vertex v is adjacent to one 3;-vertex u and one 43-vertex w. Let vy be
2-neighbor of v, u; be 2-neighbor of u. Let wy, wa, w3 be three 2-neighbors of w. By Lemmas 2.1(2) and
2.6(1), du(v1) = dp-(v1) = 2, du(u1) = dpu-(u1) = 2, dg(w1) = dy=(w1) = 2, dy(w2) = dy-(w2) = 2,
dp(ws) = dg~(ws) =2, dg(v) = dg~(v) = 3, and dg(u) = dg-(u) = 3. We claim that u; is not adjacent
to w. Suppose otherwise that u; = w; by symmetry. By the minimality of H, H' = H \ {v,w} has a
strong edge-coloring with at most eleven colors. Observe that |L'(vu)| > 5, |L/(vw)| > 6, |L'(vvy)| > 5,
|L'(wwy)| > 7, |L'(wws2)| > 5, and |L'(wws)| > 5, we color vu, wws, wws, vvi, vw, and ww; in this
order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

We now go back to H. By the minimality of H, H' = H \ {v,w} has a strong edge-coloring with
at most eleven colors. We now erase the color of edge uu;. Observe that |L'(vu)| > 5, |L'(vw)| > 6,
|L' (vuy)| > 6, |L'(uuy)| > 3, |L (ww)| > 5, |L' (wwsz)| > 5, and |L'(wws)| > 5. If L' (uuq) N L' (wwy) # 0,
we color edges uu; and ww; with same color, and color vu, wws, wws, vw and vv; in this order, and
obtain a desired strong edge-coloring with eleven colors, a contradiction. If L'(uuy) N L' (wwy) = 0, let
T = {uuy,vv1, vu, vw, wwy, wws, wws}. For any S C T, we have ||J,cq L'(e)| > |S|. By Theorem 1.6,
we can assign seven distinct colors to seven uncolored edges and we obtain a desired strong edge-coloring
with eleven colors, a contradiction.

Figure 8: 3;-vertex v is adjacent to two 43-vertices w and ¢t in H*.

(3) Suppose otherwise that a 3;-vertex v adjacent to two 43-vertices w and ¢. Let u be 2-neighbor of v,
let wq, wy, and w3 be 2-neighbors of w, and let t1, ta, and t3 be 2-neighbors of t. By Lemmas 2.1(2) and
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2.6(1), dH(u) = dg~ (u) = 2, dH(wl) = dg~ (wl) = 2, dH(wQ) = dy-~ (wg) = 2, dH(w3) = dg~ (w3) = 2,
dH(tl) =dpg-~ (tl) =2, dH(tQ) = dpy-~ (tg) =2, dH(tg) = dpy-= (tg) = 2, and dH(U) = dpy-~ (’U) = 3. We shall
use the notations in Figure 8. By the minimality of H, H' = H \ {v,w,t} has a strong edge-coloring
with at most eleven colors. Observe that |L'(vu)| > 7, |L'(vw)| > 7, |L'(vt)| > 7, |L'(ww;)| > 5,
|L'(wws)| > 5, |L'(wws)| > 5, |L'(tt1)| > 5, |L/(tt2)| > 5, and |L/(tts)| > 5.
Claim 2. L'(ww;) N L'(tt;) =0, for all i,j € {1,2,3}.
Proof of Claim 2. We only prove that L'(ww;) N L'(tt1) = . The proofs are similar for other cases.
Suppose otherwise that L'(ww;) N L' (tt1) # 0. We claim that wy # t;. Suppose otherwise that w; = t;.
In this case, |L'(vu)| > 7, |L'(vw)| > 8, |L'(vt)] > 8, |L'(wwy)| > 9, |L'(wws)| > 6, |L'(wws)| > 6,
|L'(tt1)] > 9, |L'(tt2)| > 6, and |L'(tt3)| > 6, we color wws, wws, tta, tts, vu, vw, vt, ww; and tt; in this
order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. We claim that w; is
not adjacent to t;. Suppose otherwise that w; is adjacent to ¢;. In this case, we erase the color of edge
wity. Now, we have |L'(vu)| > 7, |L' (vw)| > 8, |L'(vt)| > 8, |L' (ww1)| > 9, | L' (ww2)| > 6, |L' (wws)| > 6,
|L'(tt1)| > 9, |L'(tt2)| > 6, |L'(tt3)| > 6, and | L' (w1t1)| = 11, we color wws, wws, tta, tts, vu, vw, vt, Wws,
tt1 and wity in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.
Therefore, ww; and tt; have distance greater than 2. We first color ww; and tt; with same color, and color
wws, wws, tte, tt3. Now, we have a partial coloring ¢ and uncolored edges are vu, vw and vt, |L' (vu)| > 2,
|L' (vw)| > 2, |L'(vt)] > 2. If we cannot assign three distinct colors to these three uncolored edges. By
Theorem 1.6, L'(vu) = L'(vw) = L'(vt) and |L'(vw)| = 2. We assume, without loss of generality, that
L'(vu) = L' (vw) = L' (vt) = {1,2}. Since L'(vu) = {1,2} and c(ww1) = c(tt1), c(uuy), c(urul), c(uju?),

c(urud), c(ttz), c(tts), c(wws), c(wws), and c(ww;) are distinct. Thus, we may assume, without loss of
generality, that c(wwi) = c(tt;) = 3, c(uur) = 4, c(uul) = 5, c(wu?) = 6, c(uyu}) = 7, c(tta) = 8,
c(tts) = 9, c(wwy) = 10, and c(wwsz) = 11. Since L'(vw) = L'(vt) = {1,2}, {c(t1t?), c(t2t3), c(tst3)} =
{5,6,7}, {c(wiw?), c(waw), c(wzwd)} = {5,6,7}. We claim that {c(t9t3), c(t3t3), c(t9t3)} = {4,10,11}.
Suppose otherwise that 4 ¢ {c(t3t3),c(t3t3), c(t9t3)}. We recolor tts with 4 and color vt with 8, vu
with 1, vw with 2. So, we obtain a desired strong edge-coloring with eleven colors. This contradiction
proves that 4 € {c(t9t}), c(t3t3), c(t3t3)}. Similarly, we can prove that 10,11 € {c(t3td), c(t3t3), c(t3t3)}.
Similarly, {c(wSw3), c(wdw3), c(wIw3)} = {4,8,9}. Now, we recolor tty and wwy with the same color 1,
and color vt with 8, vw with 10, vu with 2, and obtain a desired strong edge-coloring with eleven colors,
a contradiction. This proves our claim.

Let T = {uv, vt, vw, tty, tto, tt3, wwi, wws, wws }. For any S C T, by Claim 2, | Uees L'(€)| > |S]. By

Theorem 1.6, we can assign nine distinct colors to nine uncolored edges and we obtain a desired strong
edge-coloring with eleven colors, a contradiction.

2
u;

Figure 9: 3-vertex v is adjacent to three 3;-vertices u, w and t in H*.

(4) Suppose otherwise that a 3-vertex v is adjacent to three 3;-vertices u, w and t. Let u; be 2-neighbor
of u, wy be 2-neighbor of w, t; be 2-neighbor of . By Lemmas 2.1(2) and 2.6(1), dg(u1) = dp~(u1) = 2,
dH(wl) = dH*(wl) = 2, dH(tl) = dH*(tl) = 2, dH(u) = dH*(u) = 3, dH(U}) = dH*(U)) = 3, and
dp(t) = dg+(t) = 3. We shall use the notations in Figure 9. We claim that dy(v) = dy-(v) = 3.
Suppose otherwise that v is adjacent to one 1-vertex vy in H. By the minimality of H, H' = H \ {v;}
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has a strong edge-coloring with at most eleven colors. Observe that |L'(vvy)| > 2. We can color vv; and
obtain a desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of H, H' = H \ {v} has a strong edge-coloring with at most eleven colors. We
now erase the color of edges wu;, ww; and tt;. Observe that |L'(vu)| > 4, |L'(vw)| > 4, |L'(vt)| > 4,
|L (uuyp)| > 3, |L'(wwy)| > 3, and |L/(tt1)] > 3.

Claim 3. L'(uuqy) N L' (tt1) = 0, L'(uur) N L' (wwq) = 0, and L' (wwq) N L' (tt1) = 0.

Proof of Claim 3. We only prove that L'(uui)NL'(tt1) = 0. The proofs for other cases are similar. Sup-
pose otherwise that L' (uuy)NL'(tt1) # 0. We claim that uy # t;. Suppose otherwise that u; = ;. In this
case, we have |L'(vu)| > 5, |L' (vw)| > 4, |L'(vt)| > 5, |L' (vuy)| > 6, |L'(ww;)| > 3, and |L'(tt1)| > 6. We
can color wwi, vw, vu, vt, uui, and tt; in this order, and obtain a desired strong edge-coloring with eleven
colors, a contradiction. Recall Lemma 2.2(1), no 2-vertex adjacent to a 2-vertex is adjacent to a 3-vertex
in H*, then u; is not adjacent to t;. We claim that u is not adjacent to t. Suppose otherwise that u is adja-
cent to t. In this case, we have |L'(vu)| > 8, |L'(vw)| > 5, |L'(vt)] > 8, | L' (uu1)| > 6, |L'(wwq)| > 3, and
|L'(tt1)| > 6. We can color wwy, vw, tt1, uuy, vu, and vt in this order, and obtain a desired strong edge-
coloring with eleven colors, a contradiction. Recall that u and ¢ are 3;-vertices, dy(u1) = dp=(u1) = 2,
and dg (t1) = dg«(t1) = 2, then t; # ug and to # uy. Therefore, uu; and tt; have distance greater than 2.
We first color uu; and tt; with the same color and then color ww;. We now have a partial coloring ¢ and
uncolored edges are vu, vw and vt, where |L'(vu)| > 2, |L'(vw)| > 2, and |L/(vt)| > 2. If we cannot as-
sign three distinct colors to these three uncolored edges, then by Theorem 1.6, L'(vu) = L' (vw) = L' (vt)
and |L'(vw)| = 2. We assume, without loss of generality, that L'(vu) = L'(vw) = L'(vt) = {1,2}.
Since L'(vu) = {1,2} and c(uuy) = c(tt1), c(uru?), cluuz), c(ugud), c(ugul), clugui), c(ttz), (wwl)
and c(wws) are distinct. Thus, we may assume, without loss of generality, that c(uuq) = c(tt;) =
c(uug) = 4, c(uuf) = 5, c(ugud) = 6, c(ugu3) = 7, c(uguld) = 8, c(tta) = 9, c(ww;) = 10, and
c(wwy) = 11. Since L'(vt) = {1,2}, {c(t1t)), c(tatd), c(tat3), c(tat3)} = {5,6,7,8}. Since L'(vw) = {1,2},
{c(wiw?), e(waws), c(waw3), c(wewd)} = {5,6,7,8}. We claim that {c(wlw}),c(ww?),c(ww)} =
{3,4,9}. Suppose otherwise. We assume that 3 ¢ {c(wlw}), c(wdw?), c(ww?)}. We recolor ww; with
3 and color wv with 1, vt with 2, vw with 10. So we obtain a desired strong edge-coloring with eleven
colors, a contradiction. Similarly, we can prove that 4,9 € {c(wdw?), c(wfw?), c(wiw?)}. Now we erase
the color of edge uuy, tt1. In this time, |L'(uuy)| > 3, |L/(tt1)| > 3. Recall that 3 € L'(uuy) N L' (tty).
We claim that L'(uuq) N L'(tt;) = {3}. Suppose otherwise that there exist o € L'(uuq) N L'(tt1) \ {3}.
If a ¢ {1,2}, we color wu; and tt; with the same color a, color wv with 3, vt with 1, vw with 2, and
we obtain a desired strong edge-coloring with eleven colors, a contradiction. If o € {1,2}, we assume,
without loss of generality, that o = 1. We color both wu; and tt; with 1, recolor ww; with 1, color uv
with 3, vw with 10, vt with 2, a contradiction.

We claim that {1,2} ¢ L'(uu;) and {1,2} ¢ L'(tt1). Suppose otherwise that {1,2} C L'(uuy). Since
L'(uuy) N L'(tt1) = {3} and |L'(uui)| > 3, |L'(tt1)| > 3 and |L'(tt1) \ L'(uuq)| > 2. We can choose
B e L'(tty) and B ¢ {1,2,3,10}. In this case, we color uu; with 1, recolor ww; with 1, color tt; with f,
wv with 3, vt with 2, vw with 10, a contradiction. The proof for the case that {1,2} C L’(tt1) is similar.

Thus, we can get 1 € L'(uuq), y2 € L'(tt1) and 1 ¢ {1,2,3}, 72 ¢ {1,2,3}. We can color uu; with
1, tt1 with vo, uv with 3, vt with 1, wv with 2, a contradiction. This proves our claim.

Let T = {uv, vt,vw, uuy, wws, tt1 }. For any S C T, by Claim 3, |J,cg L'(e)| > [S|. By Theorem 1.6,
we can assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with
eleven colors, a contradiction.

Lemma 2.9 (1) No 4-vertex is adjacent to two very poor 2-vertices in H*.

(2) No 4-vertez is adjacent to four 2-vertices in H*.

(8) No 4-vertex is adjacent to two poor 2-vertices in H*.

(4) No 4-vertex is adjacent to a very poor 2-vertex and a poor 2-vertex in H*.

(5) No 4-vertex is adjacent to a very poor 2-vertex, one rich 2-vertexr and one 3-vertex with at least
one 2-neighbor in H*.

(6) No 4-vertex is adjacent to a very poor 2-vertex, three 3-vertices with at least one 2-neighbor in
H*.
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(7) No 4-vertex is adjacent to a poor 2-vertex and two 2-vertices in H*.
(8) No 4-vertex is adjacent to a poor 2-vertex, one rich 2-vertex and one 3-vertex with at least one
2-neighbor in H*.

Proof. (1) Suppose otherwise that H* contain a 4-vertex v adjacent to two very poor 2-vertices u and w.
Let uy be the 2-neighbor of u, wy be the 2-neighbor of w in H*. By Lemma 2.1(2), dg(u) = dg-(u) = 2,
dy(w) = dg+«(w) = 2, dg(u1) = dg-(u1) = 2, and dg(wy) = dg+(w1) = 2. By the minimality of
H, H = H \ {u,w} has a strong edge-coloring with at most eleven colors. Observe that |L'(uv)| > 2,
|L'(vw)| > 2, |L'(uuy)| > 5, and |L'(wwq)| > 5. Thus, we can color uv, vw, wu;, and wwy in turn, a
contradiction.

(2) Suppose otherwise that H* contain a 4-vertex v adjacent to four 2-vertices vy, ve, v3 and vy. By
Lemma 2.1(2), dg(v1) = dg~(v1) = 2, dg(va) = dg+(v2) = 2, dg(vs) = dg=(v3) = 2, and dg(vq) =
dp+(vq) = 2. By the minimality of H, H = H \ {v} has a strong edge-coloring with at most eleven
colors. Observe that |L'(vv1)| > 4, |L/(vus)| > 4, |L'(vvs)| > 4, and |L'(vvs)| > 4. Thus, we can color
VU1, VU, VU3, and vvy in turn, a contradiction.

(3) Suppose otherwise that H* contain a 4-vertex v adjacent to two poor 2-vertices u and w. Let u; be
3o-neighbor of u in H*, w; be 35-neighbor of w in H*. Let ui be 2-neighbor of u; other than u, let wi be
2-neighbor of wy other than w. By Lemma 2.1(2) and 2.6(2), dy(u) = dg-(u) = 2, dg(w) = dg-(w) = 2,
dg(ul) = dp-(ul) = 2, dg(wl) = dy-(wi) =2, dg(u1) = dg-(uy) = 3, and dg (wy) = dg~(w1) = 3. We
claim that wy # u;. Suppose otherwise that w; = u;. By the minimality of H, H' = H \ {u,w} has a
strong edge-coloring with at most eleven colors. Observe that |L'(vu)| > 2, |L'(vw)| > 2, |L'(uuy)| > 5,
and |L'(wwy)| > 5. Thus, we can color vu, vw, uuy, and wwy, a contradiction. We also claim that u; is
not adjacent to w;. Suppose otherwise that u; is adjacent to wy. By the minimality of H, H' = H\ {u, w}
has a strong edge-coloring with at most eleven colors. Now, we erase the color of edge ujw;. It is easy
to verify that |L'(vu)| > 2, |L'(vw)| > 2, |L'(uuqy)| > 6, |L'(wwy)| > 6, and |L'(uqw;)| > 7. Thus, we can
color vu, vw, uui, wwi, and uyw; in turn, a contradiction.

By the minimality of H, H' = H \ {u,w} has a strong edge-coloring with at most eleven colors. We
erase the color of edge ujui. Observe that |L'(vu)| > 2, |L/(vw)| > 1, |L'(uu1)| > 4, |L'(ww1)| > 3, and
|L'(uiui)| > 3. Since uju} and wyw are at distance 3 and uju and wyw are at distance 3, we can color
vw, vu, ww, uiui, and uuy in turn, a contradiction.

(4) Suppose otherwise that H* contain a 4-vertex v adjacent to one very poor 2-vertex u and one
poor 2-vertex w. Let u; be 2-neighbors of u in H*, w; be 3g-neighbors of w in H*. Let wi be a 2-
neighbor of w; other than w. By Lemma 2.1(2) and 2.6(1), dy(u) = dg«(u) = 2, dg(w) = dg-(w) = 2,
dg(wi) = dg-(wi) = 2, dg(uy) = dg-(uy) = 2, and dg(w;) = dy-(wy) = 3. By the minimality of
H, H = H \ {u,w} has a strong edge-coloring with at most eleven colors. Observe that |L'(vu)| > 2,
|L (wuq)| > 5, |[L'(vw)| > 1, and |L'(wwq)| > 3. Thus, we can color vw, vu, ww;, and wuy in order, a
contradiction.

(5) Suppose otherwise that H* contain a 4-vertex v adjacent to one very poor 2-vertex u, one rich
2-vertex w and one 3-vertex s with at least one 2-neighbor. Let u; be 2-neighbors of v in H*. By
Lemma 2.1(2) and 2.6(1), dg(u) = dp«~(u) = 2, dg(w) = dg~(w) = 2, and dg(s) = dg«(s) = 3. By
the minimality of H, H' = H \ {u} has a strong edge-coloring with at most eleven colors. Observe that
|L'(vu)| > 1, |L'(uuqy)| > 4. Thus, we can color uv and uu; in order, a contradiction.

(6) Suppose otherwise that H* contain a 4-vertex v adjacent to one very poor 2-vertex u and three
3-vertices w, s, t with at least one 2-neighbor. Let u; be 2-neighbor of u. By Lemma 2.1(2) and 2.6(1),
dp(u) = dg~(u) = 2, dg(u1) = dg=~(v1) = 2, dg(w) = dg~(w) = 3, du(s) = dg-(s) = 3, and
dy(t) = dg+(t) = 3. By the minimality of H, H' = H \ {u} has a strong edge-coloring with at most
eleven colors. Observe that |L'(vu)| > 1, |L/(uuy)| > 4. Thus, we can color vu and wuy in order, a
contradiction.

(7) Suppose otherwise that H* contain a 4-vertex v adjacent to one poor 2-vertex u and two 2-vertices
w and t. Let u; be 3y-neighbor of u, let u} be 2-neighbor of u other than u in H*. By Lemma 2.1(2)
and 2.6(1), dg(u) = dg-(u) = 2, dg(w) = dg-(w) = 2, dg(t) = dg-(t) = 2, dg(u}) = dg-(ui) = 2,
and dg(u1) = dy~(u1) = 3. By the minimality of H, H' = H \ {u} has a strong edge-coloring with at
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most eleven colors. Observe that |L'(vu)| > 1, |L/(uuy)| > 2. Thus, we can color vu and wu; in order, a
contradiction.

(8) Suppose otherwise that H* contain 4-vertex v adjacent to a poor 2-vertex u, one rich 2-vertex
w and one 3-vertex s with at least one 2-neighbor. Let u; be 3z-neighbor of u, let u} be 2-neighbor
of u; other than w in H*. By Lemma 2.1(2) and 2.6(1), dg(u) = dg«(u) = 2, dg(w) = dg-(w) = 2,
dg(ul) = dy-(ul) = 2, dg(uy) = dy-(u1) = 3, and dy(s) = dy-(s) = 3. By the minimality of H,
H’ = H\ {u} has a strong edge-coloring with at most eleven colors. We now erase the color of edge ujuj.
Observe that |L'(vu)| > 1, |L'(uuy)| > 3, and |L'(uju})| > 3. Thus, we can color vu, uuy, and ujul in

order, a contradiction.

Lemma 2.10 No 4-vertex is adjacent to one semi-rich 2-vertex and two 2-vertices in H*. Moreover, no
4-vertex adjacent to one semi-rich 2-vertex, one 2-vertex and and one 3-vertex with at least one 2-neighbor
in H*.

Figure 10: 4-vertex w is adjacent to one semi-rich 2-vertex v, one 2-vertex we and one 3-vertex w; with
at least one 2-neighbor.

Proof. We only prove the latter case. The proof is similar for the former case. Suppose otherwise that
a 4-vertex w is adjacent to a semi-rich 2-vertex v, one 2-vertex ws and one 3-vertex w; with at least
one 2-neighbor (see Figure 10). Let u be special 3;-neighbor of v. Let u; be 43-neighbor of u, us be
3-neighbor of u where uy is adjacent to other 3;-vertex uz. Let ul, u?, u$ be three 2-neighbors of u;.
By Lemma 2.1(2) and 2.6(1), dy(v) = dg-(v) = 2, dg(ws) = dy-(w2) = 2, dg(u}) = dy-(u}) = 2,
dH(u%) = dH* (u%) = 27 dH(uzf) = dH* (ui’) = 2, dH(wl) = dH* (wl) = 3, and dH(U3) = dH* (ud) =3.

We claim that dg(uz) = dg(u2) = 3. Suppose otherwise that us is adjacent to one 1-vertex ud in H.
By the minimality of H, H' = H \ {u3} has a strong edge-coloring with at most eleven colors. Observe
that |L'(ugul)| > 1. Thus, we can color usui, a contradiction.

We claim that u} is not adjacent to w. Suppose otherwise. Let u} = w,. By the minimality
of H, H' = H \ {v,u,u1,ul} has a strong edge-coloring with at most eleven colors. Observe that
L/ (w)] = 4, (L ()| = 7, | D (wen)] > 7, L (wa)| > 4, |E )| = 7, |L )] > 6, [L(ured)] > 6,
and | L' (uiw)| > 4. We claim that w is not adjacent to uy. Suppose otherwise that w is adjacent to us. In
this case, we have |L/(wv)| > 6, |L'(uv)| > 8, |L'(uuy)| > 7, |L' (uuz)| > 6, |L'(uiul)| > 7, |L' (ugu?)| > 6,
|L'(uyu?)] > 6, and |L'(uiw)| > 3. We can color uiw, vw, uus, uju?, uiui, uuy, uyul and uv in this
order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, uus and
ulw have distance greater than 2. If L'(uug) N L'(uiw) # 0, we color edges uus and uiw with same
color, and color wv, uju?, uyu3, urui, uuy, and uv in order, a contradiction. If L'(uus) N L' (uiw) = 0,
wes ()] = IS,
Theorem 1.6, we can assign eight distinct colors to eight uncolored edges and we obtain a desired strong

let T = {uug, ulw,wv,uyu?, uyu3, uyul, vui,uv}. For any S C T, we have ||J

edge-coloring with eleven colors, a contradiction.

By the minimality of H, H' = H \ {v,u, u1} has a strong edge-coloring with at most eleven colors.
Observe that |L'(wv)| > 2, |L'(uv)| > 6, |L'(uui)| > 6, |L'(uug)| > 4, |L'(uul)| > 5, |[L/ (ugu?)| > 5,
and |L'(wyu3)| > 5. If L'(wv) N L'(ugul) # 0, we color edges wv and ujul with same color, and
color uug, uju?, uwiu3, wui, and wv in order, a contradiction. If L'(wv) N L'(uqui) = 0, let T =
{uug, wu, uyu?, urud, uiui, uuy, uv}. For any S C T, we have |Ueeg L'(e)] > |S|. By Theorem 1.6,
we can assign seven distinct colors to seven uncolored edges, a contradiction. Il
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Lemma 2.11 No 4-vertex is adjacent to one semi-rich 2-vertex and one very poor 2-vertex in H*.

Figure 11: 4-vertex w is adjacent to one semi-rich 2-vertex v and one very poor 2-vertex w; in H*.

Proof. Suppose otherwise that a 4-vertex w is adjacent to a semi-rich 2-vertex v, one very poor 2-vertex
wi (see Figure 11). Let u be special 3;-neighbor of v. Let w] be 2-neighbor of w;. Let u; be 43-neighbor of
u, ug be 3-neighbor of u where us is adjacent to other 3;-vertex ug. Let ul, u?, u3 be three 2-neighbors of
uy. By Lemma 2.1(2) and 2.6(2), dg(v) = dg-(v) = 2, dg(w1) = dg+(w1) = 2, dg(wi) = dy-(w}) = 2,
di(ui) = di-(u1) = 2, dg(u}) = dg-(u}) = 2, du(uf) = dg-(uf) = 2, dy(u) = dy-(u) = 3, and
dH(U3) = dH* (u3) = 3.

We claim that dg(uz) = dg+(u2) = 3. Suppose otherwise that us is adjacent to one 1-vertex ud in H.
By the minimality of H, H' = H \ {u3} has a strong edge-coloring with at most eleven colors. Observe
that |L'(ugul)| > 1. Thus, we can color usuid, a contradiction.

By the minimality of H, H = H \ {v,u,w;} has a strong edge-coloring with at most eleven colors.
Observe that |L'(wiwi)| > 5, |[L' (wwq)| > 2, |L'(wv)| > 3, | L' (vu)| > 4, | L' (uuy)| > 3, and |L' (uug)| >
1. We claim that w # uj. Suppose otherwise that w = w;. In this case, we have |L'(wjwi)| > 6,
|L' (ww1)| > 6, |L'(wv)| > 7, |L'(vu)] > 8, |L'(uu1)| > 5, and |L'(uuz)| > 3. We can color uuz, wiwi,
uuy, wwi, vu, and wv in this order, and obtain a desired strong edge-coloring with eleven colors, a
contradiction. Recall that us is a 3g-vertex, then w # wus. Therefore, w is not adjacent to u. We
claim that w is not adjacent to us. Suppose otherwise that w is adjacent to us. In this case, we
have |L'(wijwi)| > 5, |L'(wwy)| > 4, |L'(wv)| > 5, |L'(vu)| > 5, |L'(uuy)| > 3, and |L'(uug)| > 3.
Note that |Na(wiwi)| = 8 < 11. We can color wus, uui, wwy, wv, vu, and wiwi in this order, and
obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, uus and ww; have
distance greater than 2. If L'(uug) N L'(wwy) # 0, we color edges uus and ww; with the same color,
and color wup, wv, vu, and wijwi in order, a contradiction. Thus, L'(uug) N L'(ww;) = 0. Note that
uy is a 43-vertex, then w is not adjacent to u;. Recall that w is not adjacent to u. Therefore, uu; and
ww; have distance greater than 2. If L'(uuq) N L' (wwy) # B, we color edges uwu; and ww; with same
color a € L'(uuy) N L'(wwy). Obviously, a ¢ L'(uuy). Therefore, we color uug, wv, vu, and wiwi in
order, a contradiction. If L'(uuq) N L'(wwy) = 0, let T = {wwy, wv,vu, vuy,uus}. For any S C T,
| Uees L'(e)| > |S|. By Theorem 1.6, we can first assign five distinct colors to this five uncolored edges,

and last color the edge wyw} since |Ny(wiwl)| = 8 < 11, a contradiction. Hll

The discharging rules are defined as follows:
Every 4-vertex sends = to each very poor 2-vertex.
Every 4-vertex sends £ to each poor 2-vertex.

Every 4-vertex sends

alw  olw Ul

to each semi-rich 2-vertex, % to each super-rich 2-vertex.

Every 4-vertex which is not a 43-vertex sends % to the 3;-vertex adjacent to a 3;-vertex or a 43-
vertex; every 4-vertex which is not a 43-vertex sends % to the 3;-vertex not adjacent to a 31-vertex
nor a 4s-vertex.

(R5) Every 4-vertex sends 1 to each 3p-vertex.
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(R6) Every 3g-vertex adjacent to one 3;-vertex sends % to the 31-vertex; every 3p-vertex adjacent to two
31-vertices sends 15 o to each 3i-vertex.

(R7) Every special 3;-vertex % to the semi-rich 2-vertex. Every non-special 3;-vertex sends % to the
2-vertex.

(R8) Every 3s-vertex sends % to each 2-vertex.

Now we consider the new charge w*(v) for each vertex v € H*. Let v € V(H*) be a k-vertex. By
Lemma 2.1(1), k > 2.

(1) k = 2. If v is a very poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.2(1). By (R1),
w*(v) =2— 1—; + % =0. Ifv is a poor 2 vertex, then v is adjacent to one 4-vertex by Lemma 2.3. By
(R2) and (R8), w*(v) =2 — 4 + 2 + 1 = 0. Thus, assume that v is a rich 2-vertex. If v is adjacent
to two 3-vertices u and w, then U and w are 3p-vertices by Lemma 2.3. By Lemma 2.7(1), each of u
and w is not a special 3;-vertex. By (R7), w*(v) =2—- X +2x 2 =0.

Let v be adjacent to one 3-vertex u and one 4-vertex w. If visa seml—rich 2-vertex, then wu is a special
31-vertex, Thus, w*(v) =2 — & + 2 4+ 1 =0 by (R3) and (R7). If v is a super-rich 2-vertex, then u
is a 31-vertex but not special one or a 4-vertex. Thus, w*(v) =2— 4 +2x 2 =0 by (R3) and (R7).

If v is adjacent to two 4-vertices u and w, then w*(v) =2 — & + 2 x 2 =0 by (R3).

(2) k= 3. By Lemma 2.2(3), v is adjacent to at most two 2-vertices.

If v is a 33-vertex, then v is adjacent to one 4-vertex by Lemma 2.6(2). By (R5) and (R8), w*(v) =
_ U1 9xl_
5 T 5 5 :

Let v be a 3;-vertex. If v is adjacent to two 3-vertices v and w, then each of u and w is a 3p-vertex

by Lemma 2.8(1). By Lemma 2.8(4), u and w are adjacent to at most two 3;-vertices. By (R6) and
R7), w*(v) >3- 4+2x L -2=0.

Assume next that v is adjacent to one 3-vertex u and one 4-vertex w. If u is a 31-vertex, then w
is not a 43-vertex by Lemma 2.8(2). By (R4) and (R7), w*(v) =3 -2 +1 -2 =0 Ifuisa
3p-vertex and adjacent to the other 3;-vertex, and w is a 43-vertex, then v is a special 3;-vertex. By
(R7), w*(v) =3 - — L = 0. Thus, assume that w is a 43-vertex and w is adjacent to only one

5
3i-vertex v. By (R6) and (R7), w*(v) =3 -2 + 1 -2 =0; If wis a 4-vertex with at least two
2-neighbors, then by Lemma 2.8(4), w is adjacent to at most two 3;-vertices. By (R4) and (R6),
wiv) >3- +2x L —-2=0.
Finally, assume that v is adjacent to two 4-vertices u and w. By Lemma 2.8(3), one of v and w is
not 4z-vertex. By (R4) and (R7), w*(v) =3 -4 +1 -2 =0.

If v is a 3p-vertex, then by Lemma 2.8(4), v is adjacent to at most two 3;-vertex. By (R6), w*(v) >
3—U_Lo—.

(3) k=4. By Lemma 2.9(2), v is adjacent to at most three 2-vertices.

Let v be a 43-vertex. By Lemmas 2.2(2), 2.9(7) and 2.10, v is not adjacent to a very poor 2-vertex
nor a poor 2-vertex nor a semi-rich 2-vertex. By (R4), 43-vertex sends nothing to adjacent 31-vertex.
By Lemma 2.6(3), v is not adjacent to any 3s-vertex. Thus, w*(v) =4 — & —3 x £ =0 by (R3).

Let v be a 45-vertex. Let u and w be two 2-neighbors of v. By Lemma 2.9(1 ), (3) and (4), one, say w,
of u and w is a rich 2-vertex. If w is a very poor 2-vertex, by Lemma 2.11, w is a super-rich 2-vertex.
By Lemma 2.9(5), v is not adjacent to a 3-vertex with at least one 2-neighbor. By (R1) and (R3),
wi(v)>4—- 12 =0 Ifuisapoor 2-vertex, by Lemma 2 9(8) v is not adjacent to a 3-vertex
with at least one 2—ne1ghbor By (R2) and (R3), w*(v) >4 — 2 —2 x 2 = 0. Thus, assume that u
is a rich 2-vertex. If one of v and w is a semi-rich 2-vertex, by Lemma 2 10, v is not adjacent to a
3-vertex with at least one 2-neighbor. By (R3), w*(v) >4 - —2x 3 = O Thus, assume that both
u and w are super-rich 2-vertices. By (R3), (R4) and (R5), w ( ) > 4 —F —-2x2-2x3:=0.
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Let v be a 4;-vertex and u be a 2-neighbor of v. If u is a very poor 2-vertex, then v is not adjacent
to three 3-vertices with at least one 2-neighbor by Lemma 2.9(6). By (R1), (R4) and (R5), w*(v) >

4— 22— ¢ — 2 x % = 0. If u is not a very poor 2-vertex, then w*(v) >4 — = — 2 — 3x:=0hy

(R2), (R3), (R4) and (R5).

Let v be a 4g-vertex. By (R4) and (R5), w*(v) >4 - —4x 1 =2>0.
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