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Abstract

A strong edge-coloring of a graph G is a proper edge coloring such that every path of length 3 uses

three different colors. The strong chromatic index of G, denoted by χ′s(G), is the least possible number

of colors in a strong edge coloring of G. Choi, Kim, Kostochka and Raspaud (2018) proved that if

∆(G) ≥ 9 and maximum average degree is less than 8
3
, then χ′s(G) ≤ 3∆(G) − 3; and if ∆(G) ≥ 7,

maximum average degree is less than 3 and there is no 3-regular subgraphs, then χ′s(G) ≤ 3∆(G). In

this paper, we prove that if G is a graph with ∆(G) = 4 and maximum average degree is less than
8
3
(resp. 14

5
), then χ′s(G) ≤ 10(resp.11).
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1 Introduction

A proper edge coloring is an assignment of colors to the edges such that adjacent edges receive distinct

colors. The chromatic index χ′(G) is the minimum number of colors in a proper edge coloring of G.

We denote the minimum and maximum degrees of vertices in G by δ(G) and ∆(G) (for short δ and ∆),

respectively.

A strong edge-colouring (called also distance 2 edge-coloring) of a graph G is a proper edge coloring of

G, such that the edges of any path of length 3 use three different colors. We denote by χ′s(G) the strong

chromatic index of G which is the smallest integer k such that G can be strongly edge-colored with k

colors. Strong edge-coloring was introduced by Fouquet and Jolivet in [7,8]. Strong edge-coloring can be

used to model the conflict-free channel assignment in radio networks [16,17].

In 1985, Erdös and Nešetšil gave the following conjecture, which is still open, and provided an example

to show that it would be sharp, if true.

Conjecture 1.1 ( [6]) For every graph G,

χ′s(G) ≤
{

5
4∆2, if ∆ is even,
1
4 (5∆2 − 2∆ + 1), if ∆ is odd.

The conjecture was verified for graphs having ∆ ≤ 3 [1, 13]. When ∆ > 3, the only case on which

some progress was made is when ∆ = 4 and the best upper bound stated is χ′s(G) ≤ 21 [10]. When ∆ is

sufficiently large, Molloy and Reed in [15] proved that χ′s(G) ≤ 1.998∆2, using probabilistic techniques.

This bound is improved to 1.93∆2 by Bruhn and Joos [3], and very recently, is further improved to

1.835∆2 by Bonamy, Perrett, and Postle [2].
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The maximum average degree mad(G) of a graph G is the largest average degree of its subgraphs,

that is,

mad(G) = max{2|E(H)|
|V (H)|

, H ⊆ G}.

Hocquard et al. [11, 12] studied the strong chromatic index of subcubic graphs in terms of maximum

average degree and proved that for any graph G with ∆ = 3, if mad(G) < 7
3 (resp. 5

2 , 8
3 , 20

7 ), then

χ′s(G) ≤ 6 (resp. 7, 8, 9). Lv et al. [14] consider graphs with maximum degree 4 and bounded maximum

average degree and proved that

Theorem 1.2 For every graph G with ∆ = 4, if mad(G) < 61
18 (resp. 7

2 ,
18
5 , 15

4 , 51
13), then χ′s(G) ≤ 16

(resp. 17, 18, 19, 20).

Recently, Choi, Kim, Kostochka and Raspaud [4] obtained the following results.

Theorem 1.3 ( [4]) (1) For every graph G with maximum degree ∆ ≥ 9 and mad(G) < 8
3 , χ

′
s(G) ≤

3∆− 3.

(2) For every graph G with maximum degree ∆ ≥ 7, mad(G) ≤ 3 and no 3-regular subgraphs, χ′s(G) ≤
3∆.

Observe that the maximum average degree is more than 3 in Theorem 1.2 and ∆ ≥ 7 in Theorem 1.3.

One naturally find a gap if the maximum average degree decreases to less than 3 in Theorem 1.2 and if

∆ decreases to 4 in Theorem 1.3. Motivated by this, we prove the following results in this paper.

Theorem 1.4 For every graph G with ∆ = 4, we have:

(1) If mad(G) < 8
3 , then χ

′
s(G) ≤ 10.

(2) If mad(G) < 14
5 , then χ′s(G) ≤ 11.

From Theorem 1.4, one can derive the following result.

Corollary 1.5 Let G be a planar graph with ∆ = 4 and girth g :

(1) If g ≥ 8, then χ′s(G) ≤ 10.

(2) If g ≥ 7, then χ′s(G) ≤ 11.

G

Figure 1: G with mad(G) = 2 and χ′s(G) = 9.

1
G

2
G

Figure 2: G1 with mad(G1) = 20
7 and χ′s(G1) = 11, G2 with mad(G2) = 3 and χ′s(G2) = 12.
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It is easy to see that the graph G of Figure 1 is χ′s(G) = 9 and mad(G) = 2, the graph G1 of Figure

2 is χ′s(G) = 11 and mad(G) = 20
7 , the graph G2 of Figure 2 is χ′s(G) = 12 and mad(G) = 3. Therefore,

the bounds on the maximum average degree are close to optimal.

We first introduce notations of graphs. Two edges are at distance 1 if they share one of their ends

and they are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them.

Let dG(v) (or d(v) if it is clear from the context) denote the degree of a vertex v in a graph G. A vertex

is a k-vertex if it is of degree k. Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k.

A 3-vertex is a 3k-vertex if it is adjacent to exactly k 2-vertices. A 4-vertex is a 4k-vertex if it is adjacent

to exactly k 2-vertices. We define a partial coloring to be a strong edge-coloring except that some edges

may be uncolored.

In the proof of the Theorem 1.4, we applied the well-known result of Hall [9] in terms of systems of

distinct representatives.

Theorem 1.6 ( [9]) Let A1, . . . , An be n subsets of a set U . A system of distinct representatives of

{A1, . . . , An} exists if and only if for all k, 1 ≤ k ≤ n and every choice of subcollection of size k,

{Ai1 , . . . , Aik}, we have |Ai1 ∪ . . . ∪Aik | ≥ k.

2 Proof of Theorem 1.4

Let H be a minimum counterexample to Theorem 1.4 with |V (H)|+ |E(H)| minimized. Thus, for some

(m, k) ∈ {(8

3
, 10), (

14

5
, 11)}

we have mad(H) < m and χ′s(H) > k.

By the minimality of H, χ′s(H − e) ≤ k for each e ∈ E(H), and we may assume that H is connected.

Let H∗ be the graph obtained from H by deleting all vertices of degree 1. Since H∗ is the subgraph of

H, mad(H∗) ≤ mad(H). It is sufficient to show that such H∗ does not exist. Denote by N(v) and N2(uv)

the neighborhood of the vertex v and the set of edges at distance at most 2 from the edge uv, respectively.

Denote by SC(N2(uv)) the set of colors used by edges in N2(uv). Denote by L = {1, 2, . . . , k} the set of

colors and let L′(e) = L \ SC(N2(e)). We first establish some properties of H∗.

Lemma 2.1 If k ≥ 10, then each of the following holds.

(1) There is no 1-vertex in H∗.

(2) If dH∗(v) = 2, then dH(v) = 2.

(3) If a 3-vertex v is adjacent to two 2-vertices in H∗, then dH(v) = dH∗(v) = 3.

(4) No 32-vertex is adjacent to any 32-vertex in H∗.

Proof. (1) Suppose that H∗ contains a 1-vertex v such that u is its neighbor. Thus, there is at least

one 1-vertex v1 adjacent to v in H. By the minimality of H, H ′ = H \ {v1} has a strong edge coloring

with k colors. Observe that |L′(vv1)| ≥ 4 since ∆ = 4 . Thus, we can color vv1 and obtain the strong

edge-coloring of H, a contradiction.

(2) Suppose that dH(v) > 2. Thus, there is at least one 1-vertex v1 adjacent to v in H. By the

minimality of H, H ′ = H \ {v1} has a strong edge coloring c with k colors. Observe that |L′(vv1)| ≥ 1.

Thus, we can color vv1, a contradiction.

(3) Suppose that a 3-vertex v is adjacent to two 2-vertices v1, v2 in H∗ and dH(v) > dH∗(v) = 3.

Then v is adjacent to one 1-vertex v′ in H. By (2), dH(v1) = dH∗(v1) = 2, dH(v2) = dH∗(v2) = 2.

By the minimality of H, H ′ = H \ {v′} has a strong edge-coloring with at most k colors. Observe that

|L′(vv′)| ≥ 2. Thus, we can color vv′, a contradiction.

(4) Suppose otherwise that a 32-vertex v is adjacent to 32-vertex u. Let v1 and v2 be two 2-neighbors of

v, and let u1 and u2 be two 2-neighbors of u. By (2) and (3), dH(v1) = dH∗(v1) = 2, dH(v2) = dH∗(v2) =

2, dH(u1) = dH∗(u1) = 2, dH(u2) = dH∗(u2) = 2, dH(v) = dH∗(v) = 3, and dH(u) = dH∗(u) = 3.

By the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most k colors. Observe that
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|L′(vv1)| ≥ 3, |L′(vv2)| ≥ 3, and |L′(vu)| ≥ 4. Thus, we can color vv1, vv2, and vu, and obtain a desired

strong edge-coloring with k colors, a contradiction.

Lemma 2.2 If k ≥ 10, then each of the following holds.

(1) No 2-vertex adjacent to a 2-vertex is adjacent to a 3-vertex in H∗.

(2) No 4-vertex is adjacent to three 2-vertices in H∗, one of which is adjacent to a 2-vertex.

(3) No 3-vertex is adjacent to three 2-vertices in H∗.

Proof. (1) Suppose otherwise that a 2-vertex v is adjacent to a 2-vertex u and a 3-vertex w in H∗. By

Lemma 2.1(2), dH(v) = dH∗(v) = 2, and dH(u) = dH∗(u) = 2. If dH(w) = dH∗(w) = 3, then by the

minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most k colors. It is easy to verify that

|L′(uv)| ≥ 4, |L′(vw)| ≥ 1. Thus, we can color vw, vu in turn, a contradiction.

If dH(w) = 4, then w is adjacent to one 1-vertex w1 in H. Let N(u) = {u1, v}. By the minimality of

H, H ′ = H \ {uv} has a strong edge-coloring c with at most k colors. We can switch the colors on vw

and ww1 if necessary such that c(u1u) 6= c(vw). It is easy to verify that |L′(uv)| ≥ 2. Thus, we can color

uv, a contradiction.

(2) Suppose otherwise that a 4-vertex v is adjacent to three 2-vertices v1, v2 and v3 where v1 is adjacent

to a 2-vertex. Let v′1 be a 2-neighbor of v1 other than v. By Lemma 2.1(2), dH(v1) = dH∗(v1) = 2,

dH(v2) = dH∗(v2) = 2, dH(v3) = dH∗(v3) = 2, and dH(v′1) = dH∗(v′1) = 2. By the minimality of H,

H ′ = H\{v1} has a strong edge-coloring with at most k colors. Observe that |L′(vv1)| ≥ 1, |L′(v1v′1)| ≥ 3.

Thus, we color vv1, v1v
′
1 in turn, a contradiction.

(3) Suppose otherwise that a 3-vertex v is adjacent to three 2-vertices v1, v2 and v3 in H∗. By

Lemma 2.1(2)(3), dH(v1) = dH∗(v1) = 2, dH(v2) = dH∗(v2) = 2, dH(v3) = dH∗(v3) = 2, and dH(v) =

dH∗(v) = 3. By the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most k colors.

Observe that |L′(vv1)| ≥ 4, |L′(vv2)| ≥ 4, and |L′(vv3)| ≥ 4. Thus, we can color vv1, vv2 and vv3 in turn,

a contradiction.

By Lemma 2.2(1) and (2), we classify 2-vertices as follows. A 2-vertex is very poor if it is adjacent to

a 2-vertex, poor if it is adjacent to a 32-vertex, and rich otherwise.
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Figure 3: 2-vertex v is adjacent to a 31-vertex v1 and a 32-vertex v2 in H∗, which v1 is adjacent to one

1-vertex v01 in H.

Lemma 2.3 If k ≥ 10, then no 2-vertex is adjacent to a 31-vertex and a 32-vertex in H∗. Moreover, no

2-vertex is adjacent to two 32-vertices in H∗.

Proof. Suppose otherwise that a 2-vertex v is adjacent to a 31-vertex v1 and a 32-vertex v2 in H∗. Let v12
be a 2-neighbor of v2 other than v. By Lemma 2.1(2) and (3), dH(v) = dH∗(v) = 2, dH(v12) = dH∗(v12) = 2,

and dH(v2) = dH∗(v2) = 3.

Assume first that dH(v1) 6= dH∗(v1). The vertex v1 is adjacent to one 1-vertex v01 . We shall use the

notations in Figure 3. We claim that v12 is not adjacent to v1. Suppose otherwise. Then v32 = v1. By
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the minimality of H, H ′ = H \ {v01} has a strong edge-coloring c with at most k colors. Observe that

|L′(v1v01)| ≥ 2, and we can color v1v
0
1 , a contradiction. Similarly, v2 is not adjacent to v1.

By the minimality of H, H ′ = H \ {v, v01} has a strong edge-coloring with at most k colors. We erase

the color of edge v2v
1
2 . Observe that |L′(vv1)| ≥ 1, |L′(vv2)| ≥ 3, |L′(v1v01)| ≥ 2, and |L′(v2v12)| ≥ 2. We

first color edge vv1. At this time, H has a partial coloring c and uncolored edges are vv2, v1v
0
1 , and v2v

1
2 .

|L′(vv2)| ≥ 2, |L′(v1v01)| ≥ 1, and |L′(v2v12)| ≥ 1. If L′(v1v
0
1) ∩L′(v2v12) 6= ∅, we color v1v

0
1 and v2v

1
2 with

α ∈ L′(v1v01)∩L′(v2v12), and color vv2, and obtain a desired strong edge-coloring with k colors, a contra-

diction. If L′(v1v
0
1)∩L′(v2v12) = ∅. We claim that |L′(v1v01)| = 1. Suppose otherwise that |L′(v1v01)| ≥ 2.

We can color v2v
1
2 , vv2 and v1v

0
1 in this order, and obtain a desired strong edge-coloring with k colors, a

contradiction. Similarly, |L′(v2v12)| = 1. If we can not assign three distinct colors to three uncolored edges,

by Theorem 1.6, L′(v2v
1
2) ⊆ L′(vv2), L′(v1v

0
1) ⊆ L′(vv2), and |L′(vv2)| = 2(k = 10). We assume, without

loss of generality, that L′(v2v
1
2) = {1}, L′(v1v01) = {2}, and L′(vv2) = {1, 2}. Since L′(v2v

1
2) = {1}

and L′(vv2) = {1, 2}, c(v2v22), c(v12v
3
2), c(v32v

4
2), c(v32v

5
2), c(v32v

6
2), c(v22v

7
2), c(v22v

8
2), c(v22v

9
2) and c(vv1)

are distinct, 2 /∈ {c(v12v32), c(v2v
2
2), c(v22v

7
2), c(v22v

8
2), c(v22v

9
2), c(vv1)}. Otherwise, |L′(v2v12)| ≥ 2, a contra-

diction. Thus, we may assume, without loss of generality, that c(v12v
3
2) = 3, c(v32v

4
2) = 2, c(v32v

5
2) = 4,

c(v32v
6
2) = 5, c(v2v

2
2) = 6, c(v22v

7
2) = 7, c(v22v

8
2) = 8, c(v22v

9
2) = 9, and c(vv1) = 10. Since L′(vv2) = {1, 2},

{c(v1v11), c(v1v
2
1)} = {4, 5}. Since L′(v1v

0
1) = {2}, {c(v11v31), c(v11v

4
1), c(v11v

5
1), c(v21v

6
1), c(v21v

7
1), c(v21v

8
1)} =

{1, 3, 6, 7, 8, 9}. We recolor vv1 with 2 and color v2v
1
2 and v1v

0
1 with same color 10, vv2 with 1. So, we

obtain a desired strong edge-coloring with k colors, a contradiction.

Thus, assume that dH(v1) = dH∗(v1) = 3. By the minimality of H, H ′ = H \ {v} has a strong edge-

coloring with at most k colors. We erase the color of edge v2v
1
2 . Observe that |L′(vv1)| ≥ 1, |L′(vv2)| ≥ 3,

and |L′(v2v12)| ≥ 2. We can color vv1, v2v
1
2 , and vv2 in turn, a contradiction.

Let the initial charge of x ∈ V (H∗) be ω(x) = d(x) − m. It follows from the hypothesis that∑
x∈V (H∗) ω(x) < 0. Then we define discharging rules to redistribute weights and once the discharging

is finished, a new weight function ω∗ will be produced. During the discharging process the total sum of

weights is kept fixed. Nevertheless, we can show that ω∗(x) ≥ 0 for all x ∈ V (H∗). This leads to the

following contradiction:

0 ≤
∑

x∈V (H∗)

ω∗(x) =
∑

x∈V (H∗)

ω(x) < 0.

Therefore, such a counterexample cannot exist.

2.1 Case (8
3
, 10)
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1
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1
vv

1

2
v

3

2
v

Figure 4: 2-vertex v is adjacent to a 31-vertex v1 and 44-vertex v2 in H∗, which v1 is adjacent to one

1-vertex v01 in H.

Lemma 2.4 No 2-vertex is adjacent to a 31-vertex and 44-vertex in H∗.

Proof. Suppose otherwise that a 2-vertex v is adjacent to a 31-vertex v1 and a 44-vertex v2 in H∗.

Let v12 , v22 and v32 be three 2-neighbors of v2 other than v. By Lemma 2.1(2), dH(v) = dH∗(v) = 2,

dH(v12) = dH∗(v12) = 2, dH(v22) = dH∗(v22) = 2, and dH(v32) = dH∗(v32) = 2.
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Assume first that dH(v1) 6= dH∗(v1). Then v1 is adjacent to one 1-vertex v01 in H (see Figure 4). We

claim that v12 is not adjacent to v1. Suppose otherwise. By the minimality ofH, H ′ = H\{v01} has a strong

edge-coloring c with at most k colors. Observe that |L′(v1v01)| ≥ 2, and we can color v1v
0
1 , and obtain a

desired strong edge-coloring with k colors, a contradiction. By the minimality of H, H ′ = H \ {v, v01 , v2}
has a strong edge-coloring with at most k colors. Observe that |L′(vv1)| ≥ 2, |L′(vv2)| ≥ 5, |L′(v1v01)| ≥ 2,

|L′(v2v12)| ≥ 4, |L′(v2v22)| ≥ 4, and |L′(v2v32)| ≥ 4. Note that v2 is a 44-vertex and v1 is not a 2-vertex,

thus v2 is not adjacent to v1. Recall that v12 is not adjacent to v1. Therefore, v1v
0
1 and v2v

1
2 have

distance greater than 2. If L′(v1v
0
1)∩L′(v2v12) 6= ∅, we color v1v

0
1 and v2v

1
2 with α ∈ L′(v1v01)∩L′(v2v12),

and color vv1, v2v
2
2 , v2v

3
2 , and vv2 in turn, and obtain a desired strong edge-coloring with k colors, a

contradiction. If L′(v1v
0
1) ∩ L′(v2v12) = ∅, then let T = {vv1, vv2, v2v12 , v2v22 , v2v32 , v1v01}. For any S ⊆ T ,

we have |
⋃

e∈S L
′(e)| ≥ |S|. By Theorem 1.6, we can assign six distinct colors to six uncolored edges,

and we obtain a desired strong edge-coloring with k colors, a contradiction.

Suppose that dH(v1) = dH∗(v1) = 3. By the minimality of H, H ′ = H \ {v, v2} has a strong edge-

coloring with at most k colors. Observe that |L′(vv1)| ≥ 2, |L′(vv2)| ≥ 5, |L′(v2v12)| ≥ 4, |L′(v2v22)| ≥ 4,

and |L′(v2v32)| ≥ 4. We can color vv1, v2v
1
2 , v2v

2
2 , v2v

3
2 , and vv2 in turn, a contradiction.

Lemma 2.5 No 4-vertex is adjacent to three poor 2-vertices in H∗.

Proof. Suppose otherwise that H∗ contain a 4-vertex v adjacent to three poor 2-vertices u, w and

t. Let u0 be 32-neighbor of u, let w0 be 32-neighbor of w, and let t0 be 32-neighbor of t. Let u1 be

2-neighbor of u0 other than u, let w1 be 2-neighbor of w0 other than w, and let t1 be 2-neighbor of t0
other than t. By Lemma 2.1(2) and (3), dH(u) = dH∗(u) = 2, dH(w) = dH∗(w) = 2, dH(t) = dH∗(t) = 2,

dH(u1) = dH∗(u1) = 2, dH(w1) = dH∗(w1) = 2, dH(t1) = dH∗(t1) = 2, dH(u0) = dH∗(u0) = 3,

dH(w0) = dH∗(w0) = 3, and dH(t0) = dH∗(t0) = 3. We shall use the notations in Figure 5. We claim

that u0 6= t0. Suppose otherwise. By the minimality of H, H ′ = H \ {u, t} has a strong edge-coloring

with at most k colors. Observe that |L′(uv)| ≥ 3, |L′(vt)| ≥ 3, |L′(uu0)| ≥ 4, and |L′(tt0)| ≥ 4. Thus,

we can color uv, vt, uu0 and tt0 in this order, and obtain a desired strong edge-coloring with k colors, a

contradiction. Similarly, u0 6= w0, w0 6= t0. Lemma 2.1(4), u0 is not adjacent to t0, u0 is not adjacent to

w0, w0 is not adjacent to t0.
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Figure 5: 4-vertex v is adjacent to three poor 2-vertices u, w and t in H∗.

By the minimality of H, H ′ = H \ {u,w, t} has a strong edge-coloring with at most k colors. Observe

that |L′(uu0)| ≥ 3, |L′(ww0)| ≥ 3, |L′(tt0)| ≥ 3, |L′(uv)| ≥ 4, |L′(vw)| ≥ 4, and |L′(vt)| ≥ 4.

Claim 1. L′(uu0) ∩ L′(tt0) = ∅; L′(uu0) ∩ L′(ww0) = ∅; L′(ww0) ∩ L′(tt0) = ∅.
Proof of Claim 1. Recall that u0 6= t0 and u0 is not adjacent to t0, thus uu0 and tt0 have distance

greater than 2. Suppose otherwise that L′(uu0) ∩ L′(tt0) 6= ∅. We first color uu0 and tt0 with same

color, and color ww0. In this case, H has a partial coloring c and uncolored edges are uv, vw and vt,

where |L′(uv)| ≥ 2, |L′(vw)| ≥ 2, and |L′(vt)| ≥ 2. If we can not assign three distinct colors to three

uncolored edges, by Theorem 1.6, L′(uv) = L′(vw) = L′(vt) and |L′(uv)| = 2. We assume that without

loss of generality, that L′(uv) = L′(vw) = L′(vt) = {1, 2}. Since L′(uv) = {1, 2} and c(uu0) = c(tt0),

c(uu0), c(u0u1), c(u0u2), c(vv1), c(v1v2), c(v1v3), c(v1v4), and c(ww0) are distinct. Thus, we may assume,
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without loss of generality, that c(uu0) = c(tt0) = 3, c(u0u1) = 4, c(u0u2) = 5, c(vv1) = 6, c(v1v2) = 7,

c(v1v3) = 8, c(v1v4) = 9, c(ww0) = 10. Since L′(wv) = {1, 2}, {c(w0w1), c(w0w2)} = {4, 5}. Since

L′(vt) = {1, 2}, {c(t0t1), c(t0t2)} = {4, 5}.
We claim that {c(w1w3), c(w2w4), c(w2w5), c(w2w6)} = {3, 7, 8, 9}. Suppose otherwise. We assume,

without loss of generality, that 3 /∈ {c(w1w3), c(w2w4), c(w2w5), c(w2w6)}. In this case, we recolor ww0

with 3 and color vw with 10, uv with 1, vt with 2, and we obtain a desired strong edge-coloring with k

colors, a contradiction.

Now, we erase the color of edge uu0, tt0. In this case, |L′(uu0)| ≥ 3, |L′(tt0)| ≥ 3. Recall that

3 ∈ L′(uu0) ∩ L′(tt0). We claim that L′(uu0) ∩ L′(tt0) = {3}. Suppose otherwise that there exist

α ∈ L′(uu0)∩L′(tt0)\{3}. If α /∈ {1, 2}, we color uu0 and tt0 with α, color uv with 3, vt with 1, vw with

2. So we obtain a desired strong edge-coloring with k colors, a contradiction. If α ∈ {1, 2}, by symmetry,

assume that α = 1. In this case, we color uu0 and tt0 with 1, recolor ww0 with 1, color uv with 3, vw

with 10, vt with 2. Thus, we obtain a desired strong edge-coloring with k colors, a contradiction.

We claim that |{1, 2}∩L′(uu0)| ≤ 1 and |{1, 2}∩L′(tt0)| ≤ 1. Suppose otherwise that {1, 2} ⊂ L′(uu0).

Since L′(uu0) ∩ L′(tt0) = {3}, |L′(uu0)| ≥ 3 and |L′(tt0)| ≥ 3, |L′(tt0) \ L′(uu0)| ≥ 2. Thus, we can

choose β ∈ L′(tt0) such that β /∈ {1, 2, 3, 10}. Thus, we color uu0 with 1, recolor ww0 with 1, color tt0
with β, uv with 3, vt with 2, vw with 10, and so we obtain a desired strong edge-coloring with k colors,

a contradiction. The proof is similar for the case that {1, 2} ⊂ L′(tt0).

Thus, we can get γ1 ∈ L′(uu0), γ2 ∈ L′(tt0), and γ1 /∈ {1, 2, 3}, γ2 /∈ {1, 2, 3}. We can color uu0 with

γ1, tt0 with γ2, uv with 3, vt with 1, wv with 2, and we obtain a desired strong edge-coloring with k

colors, a contradiction.

We can similarly prove that L′(uu0)∩L′(ww0) = ∅ and L′(ww0)∩L′(tt0) = ∅. This proves our claim.

Let T = {uu0, ww0, tt0, uv, vt, wv}. By Claim 1, for any S ⊆ T , we have | ∪e∈S L′(e)| ≥ |S|. By

Theorem 1.6, we can assign six distinct colors to six uncolored edges and we obtain a desired strong

edge-coloring with k colors, a contradiction.

The discharging rules are defined as follows:

(R1) 4-vertex sends 2
3 to the adjacent very poor 2-vertex.

(R2) 4-vertex sends 1
2 to the adjacent poor 2-vertex.

(R3) 4-vertex sends 1
3 to the adjacent rich 2-vertex.

(R4) 31-vertex sends 1
3 to the adjacent 2-vertex.

(R5) 32-vertex sends 1
6 to the adjacent poor 2-vertex.

Now we consider the new charge ω∗(v) for each vertex v ∈ H∗.
Let v ∈ V (H∗) be a k-vertex. By Lemma 2.1, k ≥ 2.

(1) k = 2. If v is a very poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.2(1). By (R1),

ω∗(v) = 2− 8
3 + 2

3 = 0. If v is a poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.3. By

(R2) and (R5), ω∗(v) = 2− 8
3 + 1

2 + 1
6 = 0. If v is a rich 2-vertex, then v is adjacent to two 31-vertices

or one 31-vertex and one 4-vertex, or two 4-vertices. By (R3) and (R4), ω∗(v) = 2− 8
3 + 1

3 + 1
3 = 0.

(2) k = 3. By Lemma 2.2(3), v is adjacent to at most two 2-vertices. If v is not adjacent to 2-vertex,

then ω∗(v) = 3− 8
3 = 1

3 > 0. If v is a 31-vertex, by (R4), ω∗(v) = 3− 8
3 −

1
3 = 0. If v is a 32-vertex ,

by (R5), ω∗(v) = 3− 8
3 − 2× 1

6 = 0.

(3) k = 4. If v is a 44-vertex, then v is not adjacent to a very poor 2-vertex or a poor 2-vertex by

Lemma 2.2 (2) and 2.4. By (R3), ω∗(v) = 4− 8
3 −4× 1

3 = 0. If v is a 43-vertex, then v is not adjacent

to a very poor 2-vertex by Lemma 2.2(2). By Lemma 2.5 v is not adjacent to three poor 2-vertices.

By (R2) and (R3), ω∗(v) ≥ 4 − 8
3 − 2 × 1

2 −
1
3 = 0. If v is a 42-vertex, by (R1), (R2) and (R3),

ω∗(v) ≥ 4− 8
3 − 2× 2

3 = 0. If v is a 41-vertex, by (R1), (R2) and (R3), ω∗(v) ≥ 4− 8
3 −

2
3 = 2

3 > 0.

If v is a 40-vertex, ω∗(v) ≥ 4− 8
3 = 4

3 > 0.
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2.2 Case (14
5
, 11)

uv

Figure 6: special 31-vertex u and semi-rich 2-vertex v

In this section, we give the definition of a special vertex as follows. A 31-vertex is a special 31-vertex if it

is adjacent to one 43-vertex and one 30-vertex adjacent to two 31-vertices. By Lemma 2.3, no 2-vertex is

adjacent to one 31-vertex and one 32-vertex. A rich 2-vertex is a semi-rich 2-vertex if it is adjacent to a

special 31-vertex and a super-rich 2-vertex otherwise (see Figure 6).

Lemma 2.6 (1) If a 3-vertex v is adjacent to a 2-vertex in H∗, then dH(v) = dH∗(v) = 3.

(2) No 32-vertex v is adjacent to any 3-vertex in H∗.

(3) No 32-vertex v is adjacent to a 4-vertex with at least two 2-neighbors in H∗.

Proof. (1) Suppose otherwise that a 3-vertex v adjacent to a 2-vertex v1 in H∗ and dH(v) > dH∗(v) = 3.

Then v is adjacent to one 1-vertex v′ in H. By Lemma 2.1(2), dH(v1) = dH∗(v1) = 2. By the minimality

of H, H ′ = H \ {v′} has a strong edge-coloring with at most eleven colors. Observe that |L′(vv′)| ≥ 1.

Thus, we can color vv′ and obtain a desired strong edge-coloring with eleven colors, a contradiction.

(2) Suppose otherwise that a 32-vertex v is adjacent to a 3-vertex v1 in H∗. Let v2 and v3 be two

2-neighbors of v in H∗ other than v1. By Lemma 2.1(2) and (1) of this lemma, dH(v2) = dH∗(v2) = 2,

dH(v3) = dH∗(v3) = 2, and dH(v) = dH∗(v) = 3. If dH(v1) > dH∗(v1) = 3, v1 is adjacent to one 1-vertex

v′1 in H. By the minimality of H, H ′ = H \ {v′1, v} has a strong edge-coloring with at most eleven colors.

Observe that |L′(v1v′1)| ≥ 3, |L′(vv1)| ≥ 1, |L′(vv2)| ≥ 4, and |L′(vv3)| ≥ 4. Thus, we can color vv1, v1v
′
1,

vv2 and vv3 in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

If dH(v1) = dH∗(v1) = 3, by the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most

eleven colors. Observe that |L′(vv1)| ≥ 1, |L′(vv2)| ≥ 4, and |L′(vv3)| ≥ 4. Thus, we can color vv1, vv2,

and vv3 in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

(3) Suppose otherwise that a 32-vertex v is adjacent to a 4-vertex v1 with at least two 2-neighbors in

H∗. Let v2, v3 be two 2-neighbors of v in H∗, let v11 , v21 be two 2-neighbors of v1 in H∗. By Lemma 2.1(2),

dH(v2) = dH∗(v2) = 2, dH(v3) = dH∗(v3) = 2, dH(v11) = dH∗(v11) = 2, and dH(v21) = dH∗(v21) = 2. By

the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most eleven colors. Observe that

|L′(vv1)| ≥ 1, |L′(vv2)| ≥ 3, |L′(vv3)| ≥ 3. Thus, we can color vv1, vv2, and vv3 in this order, and obtain

a desired strong edge-coloring with eleven colors, a contradiction.

Lemma 2.7 (1) No 2-vertex v is adjacent to two 3-vertices u and w in H∗ such that one of u and w is

adjacent to a 3-vertex.

(2) No 2-vertex v is adjacent to two 3-vertices u and w in H∗ such that one of u and w is adjacent

to a 43-vertex.

Proof. (1) Suppose otherwise that a 2-vertex v is adjacent to two 3-vertices u and w which is adjacent

to a 3-vertex s in H∗. By Lemma 2.1 (2) and 2.6(1), dH(v) = dH∗(v) = 2, dH(u) = dH∗(u) = 3, and

dH(w) = dH∗(w) = 3. We claim that dH(s) > dH∗(s) = 3. Suppose otherwise that dH(s) = dH∗(s) = 3.

By the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most eleven colors. Observe

that |L′(vu)| ≥ 1, |L′(vw)| ≥ 2. Thus, we can color vu and vw in this order, and obtain a desired strong

edge-coloring with eleven colors, a contradiction.
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Figure 7: 2-vertex v adjacent to two 3-vertices u and w with w adjacent to a 3-vertex s in H∗.

Therefore, s is adjacent to one 1-vertex s1 in H. We shall use the notations in Figure 7. Recall that

dH(u) = dH∗(u) = 3 and dH(s) > dH∗(s) = 3, then u 6= s. We claim that u is not adjacent to s. Suppose

otherwise that u is adjacent to s. By the minimality of H, H ′ = H \ {s1} has a strong edge-coloring c

with at most eleven colors. Observe that |L′(ss1)| ≥ 1. Thus, we can color ss1, and obtain a desired

strong edge-coloring with eleven colors, a contradiction. Therefore, vu and ss1 have distance greater than

2. By the minimality of H, H ′ = H \ {v, s1} has a strong edge-coloring c with at most eleven colors.

Observe that |L′(vu)| ≥ 1, |L′(vw)| ≥ 2, and |L′(ss1)| ≥ 1. If L′(vu) ∩ L′(ss1) 6= ∅, we color vu and ss1
with the same color and then color vw, and obtain a desired strong edge-coloring with eleven colors, a

contradiction.

Thus, assume that L′(vu) ∩ L′(ss1) = ∅. We claim that |L′(ss1)| = 1. Suppose otherwise. We can

color uv, vw and ss1 in this order. Similarly, we can prove that |L′(vu)| = 1 and |L′(vw)| = 2. We claim

that L′(vu)∪L′(ss1) = L′(vw). Suppose otherwise. By Theorem 1.6, we can assign three distinct colors to

uncolored edge uv, ss1 and vw. Thus, we assume, without loss of generality, that L′(vu) = {1}, L′(ss1) =

{2}, and L′(vw) = {1, 2}. Since L′(vu) = {1}, c(uu1), c(uu2), c(u1u
1
1), c(u1u

2
1), c(u1u

3
1), c(u2u

1
2),

c(u2u
2
2), c(u2u

3
2), c(ws) and c(wt) are distinct. Since L′(vw) = {1, 2}, 2 /∈ {c(uu1), c(uu2), c(ws), c(wt)}.

We may assume, without loss of generality, that c(uu1) = 3, c(uu2) = 4, c(u1u
1
1) = 2, c(u1u

2
1) = 7,

c(u1u
3
1) = 8, c(u2u

1
2) = 9, c(u2u

2
2) = 10, c(u2u

3
2) = 11, c(ws) = 5 and c(wt) = 6. Since L′(ss1) = {2} and

L′(vw) = {1, 2}, 2 /∈ {c(tt1), c(tt2), c(tt3), c(ss2), c(ss3), c(s2s
1
2), c(s2s

2
2), c(s2s

3
2), c(s3s

1
3), c(s3s

2
3), c(s3s

3
3)}.

Thus, we can recolor ws with 2, color ss1 with 5, uv with 5, vw with 1, and obtain a desired strong

edge-coloring with eleven colors, a contradiction.

(2) Suppose otherwise that a 2-vertex v is adjacent to two 3-vertices u and w such that u is adjacent to a

43-vertex s. Let s1, s2 and s3 be three 2-neighbors of s. By Lemma 2.1(2) and 2.6(1), dH(v) = dH∗(v) = 2,

dH(s1) = dH∗(s1) = 2, dH(s2) = dH∗(s2) = 2, dH(s3) = dH∗(s3) = 2, dH(u) = dH∗(u) = 3, and

dH(w) = dH∗(w) = 3. We claim that s1 is not adjacent to w. Suppose otherwise. By the minimality

of H, H ′ = H \ {s} has a strong edge-coloring with at most eleven colors. Observe that |L′(us)| ≥ 2,

|L′(ss1)| ≥ 4, |L′(ss2)| ≥ 3, and |L′(ss3)| ≥ 3, and color us, ss2, ss3, and ss1 in this order, and obtain a

desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of H, H ′ = H \ {v, s} has a strong edge-coloring with at most eleven colors.

Observe that |L′(vu)| ≥ 5, |L′(vw)| ≥ 2, |L′(us)| ≥ 4, |L′(ss1)| ≥ 4, |L′(ss2)| ≥ 4, and |L′(ss3)| ≥ 4. If

L′(vw) ∩ L′(ss1) 6= ∅, we color edges vw and ss1 with same color, and color ss2, ss3, us, and uv in this

order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. If L′(vw)∩L′(ss1) =

∅, let T = {uv, vw, us, ss1, ss2, ss3}, for any S ⊆ T , we have |
⋃

e∈S L
′(e)| ≥ |S|. By Theorem 1.6, we can

assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with eleven

colors, a contradiction.

Lemma 2.8 (1) No 31-vertex v is adjacent to one 31-vertex u and one 3-vertex w in H∗.

(2) No 31-vertex v is adjacent to one 31-vertex u and one 43-vertex w in H∗.

(3) No 31-vertex v is adjacent to two 43-vertices w and t in H∗.

(4) No 3-vertex v is adjacent to three 31-vertices u, w and t in H∗.

Proof. (1) Suppose otherwise that a 31-vertex v is adjacent to one 31-vertex u and one 3-vertex w in H∗.

Let v1 be 2-neighbor of v, u1 be 2-neighbor of u. By Lemmas 2.1(2) and 2.6(1), dH(v1) = dH∗(v1) = 2,
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dH(u1) = dH∗(u1) = 2, dH(v) = dH∗(v) = 3, and dH(u) = dH∗(u) = 3.

Assume first dH(w) = dH∗(w) = 3. By the minimality of H, H ′ = H \ {v} has a strong edge-coloring

with at most eleven colors. And we erase the color of edge uu1. Observe that |L′(vu)| ≥ 3, |L′(vw)| ≥ 1,

|L′(vv1)| ≥ 4, and |L′(uu1)| ≥ 3. We can color vw, vu, uu1, and vv1 in this order, and obtain a desired

strong edge-coloring with eleven colors, a contradiction.

Thus, assume that dH(w) > dH∗(w) = 3. Let w1 be the 1-neighbor of w. By the minimality of

H, H ′ = H \ {v, w1} has a strong edge-coloring with at most eleven colors. We erase the color of edge

uu1. We claim that u1 is not adjacent to w. Suppose otherwise that u1 is adjacent to w. In this case,

|L′(vu)| ≥ 4, |L′(vw)| ≥ 4, |L′(vv1)| ≥ 4, |L′(uu1)| ≥ 5, and |L′(ww1)| ≥ 6. Thus, we can color vu, vv1,

vw, uu1 and ww1 in turn and obtain a desired strong edge-coloring with eleven colors, a contradiction.

Similarly, we can prove that u is not adjacent to w. We now go back to H. Observe that |L′(vu)| ≥ 3,

|L′(vw)| ≥ 1, |L′(vv1)| ≥ 4, |L′(uu1)| ≥ 3, and |L′(ww1)| ≥ 3. We now color vw and available colors

for vu, vv1, uu1, and ww1 are changed as follows: |L′(vu)| ≥ 2, |L′(vv1)| ≥ 3, |L′(uu1)| ≥ 2, and

|L′(ww1)| ≥ 2. If L′(uu1) ∩ L′(ww1) 6= ∅, we color edges uu1 and ww1 with the same color, and color

vu and vv1 in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

If L′(uu1) ∩ L′(ww1) = ∅, let T = {uu1, ww1, vu, vv1}. For any S ⊆ T , we have | ∪e∈S L′(e)| ≥ |S|. By

Theorem 1.6, we can assign four distinct colors to four uncolored edges and we obtain a desired strong

edge-coloring with eleven colors, a contradiction.

(2) Suppose otherwise that a 31-vertex v is adjacent to one 31-vertex u and one 43-vertex w. Let v1 be

2-neighbor of v, u1 be 2-neighbor of u. Let w1, w2, w3 be three 2-neighbors of w. By Lemmas 2.1(2) and

2.6(1), dH(v1) = dH∗(v1) = 2, dH(u1) = dH∗(u1) = 2, dH(w1) = dH∗(w1) = 2, dH(w2) = dH∗(w2) = 2,

dH(w3) = dH∗(w3) = 2, dH(v) = dH∗(v) = 3, and dH(u) = dH∗(u) = 3. We claim that u1 is not adjacent

to w. Suppose otherwise that u1 = w1 by symmetry. By the minimality of H, H ′ = H \ {v, w} has a

strong edge-coloring with at most eleven colors. Observe that |L′(vu)| ≥ 5, |L′(vw)| ≥ 6, |L′(vv1)| ≥ 5,

|L′(ww1)| ≥ 7, |L′(ww2)| ≥ 5, and |L′(ww3)| ≥ 5, we color vu, ww2, ww3, vv1, vw, and ww1 in this

order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

We now go back to H. By the minimality of H, H ′ = H \ {v, w} has a strong edge-coloring with

at most eleven colors. We now erase the color of edge uu1. Observe that |L′(vu)| ≥ 5, |L′(vw)| ≥ 6,

|L′(vv1)| ≥ 6, |L′(uu1)| ≥ 3, |L′(ww1)| ≥ 5, |L′(ww2)| ≥ 5, and |L′(ww3)| ≥ 5. If L′(uu1)∩L′(ww1) 6= ∅,
we color edges uu1 and ww1 with same color, and color vu, ww2, ww3, vw and vv1 in this order, and

obtain a desired strong edge-coloring with eleven colors, a contradiction. If L′(uu1) ∩ L′(ww1) = ∅, let

T = {uu1, vv1, vu, vw,ww1, ww2, ww3}. For any S ⊆ T , we have |
⋃

e∈S L
′(e)| ≥ |S|. By Theorem 1.6,

we can assign seven distinct colors to seven uncolored edges and we obtain a desired strong edge-coloring

with eleven colors, a contradiction.
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Figure 8: 31-vertex v is adjacent to two 43-vertices w and t in H∗.

(3) Suppose otherwise that a 31-vertex v adjacent to two 43-vertices w and t. Let u be 2-neighbor of v,

let w1, w2, and w3 be 2-neighbors of w, and let t1, t2, and t3 be 2-neighbors of t. By Lemmas 2.1(2) and
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2.6(1), dH(u) = dH∗(u) = 2, dH(w1) = dH∗(w1) = 2, dH(w2) = dH∗(w2) = 2, dH(w3) = dH∗(w3) = 2,

dH(t1) = dH∗(t1) = 2, dH(t2) = dH∗(t2) = 2, dH(t3) = dH∗(t3) = 2, and dH(v) = dH∗(v) = 3. We shall

use the notations in Figure 8. By the minimality of H, H ′ = H \ {v, w, t} has a strong edge-coloring

with at most eleven colors. Observe that |L′(vu)| ≥ 7, |L′(vw)| ≥ 7, |L′(vt)| ≥ 7, |L′(ww1)| ≥ 5,

|L′(ww2)| ≥ 5, |L′(ww3)| ≥ 5, |L′(tt1)| ≥ 5, |L′(tt2)| ≥ 5, and |L′(tt3)| ≥ 5.

Claim 2. L′(wwi) ∩ L′(ttj) = ∅, for all i, j ∈ {1, 2, 3}.
Proof of Claim 2. We only prove that L′(ww1) ∩ L′(tt1) = ∅. The proofs are similar for other cases.

Suppose otherwise that L′(ww1) ∩ L′(tt1) 6= ∅. We claim that w1 6= t1. Suppose otherwise that w1 = t1.

In this case, |L′(vu)| ≥ 7, |L′(vw)| ≥ 8, |L′(vt)| ≥ 8, |L′(ww1)| ≥ 9, |L′(ww2)| ≥ 6, |L′(ww3)| ≥ 6,

|L′(tt1)| ≥ 9, |L′(tt2)| ≥ 6, and |L′(tt3)| ≥ 6, we color ww2, ww3, tt2, tt3, vu, vw, vt, ww1 and tt1 in this

order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. We claim that w1 is

not adjacent to t1. Suppose otherwise that w1 is adjacent to t1. In this case, we erase the color of edge

w1t1. Now, we have |L′(vu)| ≥ 7, |L′(vw)| ≥ 8, |L′(vt)| ≥ 8, |L′(ww1)| ≥ 9, |L′(ww2)| ≥ 6, |L′(ww3)| ≥ 6,

|L′(tt1)| ≥ 9, |L′(tt2)| ≥ 6, |L′(tt3)| ≥ 6, and |L′(w1t1)| = 11, we color ww2, ww3, tt2, tt3, vu, vw, vt, ww1,

tt1 and w1t1 in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

Therefore, ww1 and tt1 have distance greater than 2. We first color ww1 and tt1 with same color, and color

ww2, ww3, tt2, tt3. Now, we have a partial coloring c and uncolored edges are vu, vw and vt, |L′(vu)| ≥ 2,

|L′(vw)| ≥ 2, |L′(vt)| ≥ 2. If we cannot assign three distinct colors to these three uncolored edges. By

Theorem 1.6, L′(vu) = L′(vw) = L′(vt) and |L′(vw)| = 2. We assume, without loss of generality, that

L′(vu) = L′(vw) = L′(vt) = {1, 2}. Since L′(vu) = {1, 2} and c(ww1) = c(tt1), c(uu1), c(u1u
1
1), c(u1u

2
1),

c(u1u
3
1), c(tt2), c(tt3), c(ww2), c(ww3), and c(ww1) are distinct. Thus, we may assume, without loss of

generality, that c(ww1) = c(tt1) = 3, c(uu1) = 4, c(u1u
1
1) = 5, c(u1u

2
1) = 6, c(u1u

3
1) = 7, c(tt2) = 8,

c(tt3) = 9, c(ww2) = 10, and c(ww3) = 11. Since L′(vw) = L′(vt) = {1, 2}, {c(t1t01), c(t2t
0
2), c(t3t

0
3)} =

{5, 6, 7}, {c(w1w
0
1), c(w2w

0
2), c(w3w

0
3)} = {5, 6, 7}. We claim that {c(t02t12), c(t02t

2
2), c(t02t

3
2)} = {4, 10, 11}.

Suppose otherwise that 4 /∈ {c(t02t12), c(t02t
2
2), c(t02t

3
2)}. We recolor tt2 with 4 and color vt with 8, vu

with 1, vw with 2. So, we obtain a desired strong edge-coloring with eleven colors. This contradiction

proves that 4 ∈ {c(t02t12), c(t02t
2
2), c(t02t

3
2)}. Similarly, we can prove that 10, 11 ∈ {c(t02t12), c(t02t

2
2), c(t02t

3
2)}.

Similarly, {c(w0
2w

1
2), c(w0

2w
2
2), c(w0

2w
3
2)} = {4, 8, 9}. Now, we recolor tt2 and ww2 with the same color 1,

and color vt with 8, vw with 10, vu with 2, and obtain a desired strong edge-coloring with eleven colors,

a contradiction. This proves our claim.

Let T = {uv, vt, vw, tt1, tt2, tt3, ww1, ww2, ww3}. For any S ⊆ T , by Claim 2, | ∪e∈S L′(e)| ≥ |S|. By

Theorem 1.6, we can assign nine distinct colors to nine uncolored edges and we obtain a desired strong

edge-coloring with eleven colors, a contradiction.
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w
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1
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1
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0

1
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Figure 9: 3-vertex v is adjacent to three 31-vertices u, w and t in H∗.

(4) Suppose otherwise that a 3-vertex v is adjacent to three 31-vertices u, w and t. Let u1 be 2-neighbor

of u, w1 be 2-neighbor of w, t1 be 2-neighbor of t. By Lemmas 2.1(2) and 2.6(1), dH(u1) = dH∗(u1) = 2,

dH(w1) = dH∗(w1) = 2, dH(t1) = dH∗(t1) = 2, dH(u) = dH∗(u) = 3, dH(w) = dH∗(w) = 3, and

dH(t) = dH∗(t) = 3. We shall use the notations in Figure 9. We claim that dH(v) = dH∗(v) = 3.

Suppose otherwise that v is adjacent to one 1-vertex v1 in H. By the minimality of H, H ′ = H \ {v1}
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has a strong edge-coloring with at most eleven colors. Observe that |L′(vv1)| ≥ 2. We can color vv1 and

obtain a desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most eleven colors. We

now erase the color of edges uu1, ww1 and tt1. Observe that |L′(vu)| ≥ 4, |L′(vw)| ≥ 4, |L′(vt)| ≥ 4,

|L′(uu1)| ≥ 3, |L′(ww1)| ≥ 3, and |L′(tt1)| ≥ 3.

Claim 3. L′(uu1) ∩ L′(tt1) = ∅, L′(uu1) ∩ L′(ww1) = ∅, and L′(ww1) ∩ L′(tt1) = ∅.
Proof of Claim 3. We only prove that L′(uu1)∩L′(tt1) = ∅. The proofs for other cases are similar. Sup-

pose otherwise that L′(uu1)∩L′(tt1) 6= ∅. We claim that u1 6= t1. Suppose otherwise that u1 = t1. In this

case, we have |L′(vu)| ≥ 5, |L′(vw)| ≥ 4, |L′(vt)| ≥ 5, |L′(uu1)| ≥ 6, |L′(ww1)| ≥ 3, and |L′(tt1)| ≥ 6. We

can color ww1, vw, vu, vt, uu1, and tt1 in this order, and obtain a desired strong edge-coloring with eleven

colors, a contradiction. Recall Lemma 2.2(1), no 2-vertex adjacent to a 2-vertex is adjacent to a 3-vertex

in H∗, then u1 is not adjacent to t1. We claim that u is not adjacent to t. Suppose otherwise that u is adja-

cent to t. In this case, we have |L′(vu)| ≥ 8, |L′(vw)| ≥ 5, |L′(vt)| ≥ 8, |L′(uu1)| ≥ 6, |L′(ww1)| ≥ 3, and

|L′(tt1)| ≥ 6. We can color ww1, vw, tt1, uu1, vu, and vt in this order, and obtain a desired strong edge-

coloring with eleven colors, a contradiction. Recall that u and t are 31-vertices, dH(u1) = dH∗(u1) = 2,

and dH(t1) = dH∗(t1) = 2, then t1 6= u2 and t2 6= u1. Therefore, uu1 and tt1 have distance greater than 2.

We first color uu1 and tt1 with the same color and then color ww1. We now have a partial coloring c and

uncolored edges are vu, vw and vt, where |L′(vu)| ≥ 2, |L′(vw)| ≥ 2, and |L′(vt)| ≥ 2. If we cannot as-

sign three distinct colors to these three uncolored edges, then by Theorem 1.6, L′(vu) = L′(vw) = L′(vt)

and |L′(vw)| = 2. We assume, without loss of generality, that L′(vu) = L′(vw) = L′(vt) = {1, 2}.
Since L′(vu) = {1, 2} and c(uu1) = c(tt1), c(u1u

0
1), c(uu2), c(u2u

1
2), c(u2u

2
2), c(u2u

3
2), c(tt2), c(ww1),

and c(ww2) are distinct. Thus, we may assume, without loss of generality, that c(uu1) = c(tt1) = 3,

c(uu2) = 4, c(u1u
0
1) = 5, c(u2u

1
2) = 6, c(u2u

2
2) = 7, c(u2u

3
2) = 8, c(tt2) = 9, c(ww1) = 10, and

c(ww2) = 11. Since L′(vt) = {1, 2}, {c(t1t01), c(t2t
1
2), c(t2t

2
2), c(t2t

3
2)} = {5, 6, 7, 8}. Since L′(vw) = {1, 2},

{c(w1w
0
1), c(w2w

1
2), c(w2w

2
2), c(w2w

3
2)} = {5, 6, 7, 8}. We claim that {c(w0

1w
1
1), c(w0

1w
2
1), c(w0

1w
3
1)} =

{3, 4, 9}. Suppose otherwise. We assume that 3 /∈ {c(w0
1w

1
1), c(w0

1w
2
1), c(w0

1w
3
1)}. We recolor ww1 with

3 and color uv with 1, vt with 2, vw with 10. So we obtain a desired strong edge-coloring with eleven

colors, a contradiction. Similarly, we can prove that 4, 9 ∈ {c(w0
1w

1
1), c(w0

1w
2
1), c(w0

1w
3
1)}. Now we erase

the color of edge uu1, tt1. In this time, |L′(uu1)| ≥ 3, |L′(tt1)| ≥ 3. Recall that 3 ∈ L′(uu1) ∩ L′(tt1).

We claim that L′(uu1) ∩ L′(tt1) = {3}. Suppose otherwise that there exist α ∈ L′(uu1) ∩ L′(tt1) \ {3}.
If α /∈ {1, 2}, we color uu1 and tt1 with the same color α, color uv with 3, vt with 1, vw with 2, and

we obtain a desired strong edge-coloring with eleven colors, a contradiction. If α ∈ {1, 2}, we assume,

without loss of generality, that α = 1. We color both uu1 and tt1 with 1, recolor ww1 with 1, color uv

with 3, vw with 10, vt with 2, a contradiction.

We claim that {1, 2} * L′(uu1) and {1, 2} * L′(tt1). Suppose otherwise that {1, 2} ⊂ L′(uu1). Since

L′(uu1) ∩ L′(tt1) = {3} and |L′(uu1)| ≥ 3, |L′(tt1)| ≥ 3 and |L′(tt1) \ L′(uu1)| ≥ 2. We can choose

β ∈ L′(tt1) and β /∈ {1, 2, 3, 10}. In this case, we color uu1 with 1, recolor ww1 with 1, color tt1 with β,

uv with 3, vt with 2, vw with 10, a contradiction. The proof for the case that {1, 2} ⊂ L′(tt1) is similar.

Thus, we can get γ1 ∈ L′(uu1), γ2 ∈ L′(tt1) and γ1 /∈ {1, 2, 3}, γ2 /∈ {1, 2, 3}. We can color uu1 with

γ1, tt1 with γ2, uv with 3, vt with 1, wv with 2, a contradiction. This proves our claim.

Let T = {uv, vt, vw, uu1, ww1, tt1}. For any S ⊆ T , by Claim 3, |
⋃

e∈S L
′(e)| ≥ |S|. By Theorem 1.6,

we can assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with

eleven colors, a contradiction.

Lemma 2.9 (1) No 4-vertex is adjacent to two very poor 2-vertices in H∗.

(2) No 4-vertex is adjacent to four 2-vertices in H∗.

(3) No 4-vertex is adjacent to two poor 2-vertices in H∗.

(4) No 4-vertex is adjacent to a very poor 2-vertex and a poor 2-vertex in H∗.

(5) No 4-vertex is adjacent to a very poor 2-vertex, one rich 2-vertex and one 3-vertex with at least

one 2-neighbor in H∗.

(6) No 4-vertex is adjacent to a very poor 2-vertex, three 3-vertices with at least one 2-neighbor in

H∗.
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(7) No 4-vertex is adjacent to a poor 2-vertex and two 2-vertices in H∗.

(8) No 4-vertex is adjacent to a poor 2-vertex, one rich 2-vertex and one 3-vertex with at least one

2-neighbor in H∗.

Proof. (1) Suppose otherwise that H∗ contain a 4-vertex v adjacent to two very poor 2-vertices u and w.

Let u1 be the 2-neighbor of u, w1 be the 2-neighbor of w in H∗. By Lemma 2.1(2), dH(u) = dH∗(u) = 2,

dH(w) = dH∗(w) = 2, dH(u1) = dH∗(u1) = 2, and dH(w1) = dH∗(w1) = 2. By the minimality of

H, H ′ = H \ {u,w} has a strong edge-coloring with at most eleven colors. Observe that |L′(uv)| ≥ 2,

|L′(vw)| ≥ 2, |L′(uu1)| ≥ 5, and |L′(ww1)| ≥ 5. Thus, we can color uv, vw, uu1, and ww1 in turn, a

contradiction.

(2) Suppose otherwise that H∗ contain a 4-vertex v adjacent to four 2-vertices v1, v2, v3 and v4. By

Lemma 2.1(2), dH(v1) = dH∗(v1) = 2, dH(v2) = dH∗(v2) = 2, dH(v3) = dH∗(v3) = 2, and dH(v4) =

dH∗(v4) = 2. By the minimality of H, H ′ = H \ {v} has a strong edge-coloring with at most eleven

colors. Observe that |L′(vv1)| ≥ 4, |L′(vv2)| ≥ 4, |L′(vv3)| ≥ 4, and |L′(vv4)| ≥ 4. Thus, we can color

vv1, vv2, vv3, and vv4 in turn, a contradiction.

(3) Suppose otherwise that H∗ contain a 4-vertex v adjacent to two poor 2-vertices u and w. Let u1 be

32-neighbor of u in H∗, w1 be 32-neighbor of w in H∗. Let u11 be 2-neighbor of u1 other than u, let w1
1 be

2-neighbor of w1 other than w. By Lemma 2.1(2) and 2.6(2), dH(u) = dH∗(u) = 2, dH(w) = dH∗(w) = 2,

dH(u11) = dH∗(u11) = 2, dH(w1
1) = dH∗(w1

1) = 2, dH(u1) = dH∗(u1) = 3, and dH(w1) = dH∗(w1) = 3. We

claim that w1 6= u1. Suppose otherwise that w1 = u1. By the minimality of H, H ′ = H \ {u,w} has a

strong edge-coloring with at most eleven colors. Observe that |L′(vu)| ≥ 2, |L′(vw)| ≥ 2, |L′(uu1)| ≥ 5,

and |L′(ww1)| ≥ 5. Thus, we can color vu, vw, uu1, and ww1, a contradiction. We also claim that u1 is

not adjacent to w1. Suppose otherwise that u1 is adjacent to w1. By the minimality of H, H ′ = H\{u,w}
has a strong edge-coloring with at most eleven colors. Now, we erase the color of edge u1w1. It is easy

to verify that |L′(vu)| ≥ 2, |L′(vw)| ≥ 2, |L′(uu1)| ≥ 6, |L′(ww1)| ≥ 6, and |L′(u1w1)| ≥ 7. Thus, we can

color vu, vw, uu1, ww1, and u1w1 in turn, a contradiction.

By the minimality of H, H ′ = H \ {u,w} has a strong edge-coloring with at most eleven colors. We

erase the color of edge u1u
1
1. Observe that |L′(vu)| ≥ 2, |L′(vw)| ≥ 1, |L′(uu1)| ≥ 4, |L′(ww1)| ≥ 3, and

|L′(u1u11)| ≥ 3. Since u1u
1
1 and w1w are at distance 3 and u1u and w1w are at distance 3, we can color

vw, vu, ww1, u1u
1
1, and uu1 in turn, a contradiction.

(4) Suppose otherwise that H∗ contain a 4-vertex v adjacent to one very poor 2-vertex u and one

poor 2-vertex w. Let u1 be 2-neighbors of u in H∗, w1 be 32-neighbors of w in H∗. Let w1
1 be a 2-

neighbor of w1 other than w. By Lemma 2.1(2) and 2.6(1), dH(u) = dH∗(u) = 2, dH(w) = dH∗(w) = 2,

dH(w1
1) = dH∗(w1

1) = 2, dH(u1) = dH∗(u1) = 2, and dH(w1) = dH∗(w1) = 3. By the minimality of

H, H ′ = H \ {u,w} has a strong edge-coloring with at most eleven colors. Observe that |L′(vu)| ≥ 2,

|L′(uu1)| ≥ 5, |L′(vw)| ≥ 1, and |L′(ww1)| ≥ 3. Thus, we can color vw, vu, ww1, and uu1 in order, a

contradiction.

(5) Suppose otherwise that H∗ contain a 4-vertex v adjacent to one very poor 2-vertex u, one rich

2-vertex w and one 3-vertex s with at least one 2-neighbor. Let u1 be 2-neighbors of u in H∗. By

Lemma 2.1(2) and 2.6(1), dH(u) = dH∗(u) = 2, dH(w) = dH∗(w) = 2, and dH(s) = dH∗(s) = 3. By

the minimality of H, H ′ = H \ {u} has a strong edge-coloring with at most eleven colors. Observe that

|L′(vu)| ≥ 1, |L′(uu1)| ≥ 4. Thus, we can color uv and uu1 in order, a contradiction.

(6) Suppose otherwise that H∗ contain a 4-vertex v adjacent to one very poor 2-vertex u and three

3-vertices w, s, t with at least one 2-neighbor. Let u1 be 2-neighbor of u. By Lemma 2.1(2) and 2.6(1),

dH(u) = dH∗(u) = 2, dH(u1) = dH∗(u1) = 2, dH(w) = dH∗(w) = 3, dH(s) = dH∗(s) = 3, and

dH(t) = dH∗(t) = 3. By the minimality of H, H ′ = H \ {u} has a strong edge-coloring with at most

eleven colors. Observe that |L′(vu)| ≥ 1, |L′(uu1)| ≥ 4. Thus, we can color vu and uu1 in order, a

contradiction.

(7) Suppose otherwise that H∗ contain a 4-vertex v adjacent to one poor 2-vertex u and two 2-vertices

w and t. Let u1 be 32-neighbor of u, let u11 be 2-neighbor of u other than u in H∗. By Lemma 2.1(2)

and 2.6(1), dH(u) = dH∗(u) = 2, dH(w) = dH∗(w) = 2, dH(t) = dH∗(t) = 2, dH(u11) = dH∗(u11) = 2,

and dH(u1) = dH∗(u1) = 3. By the minimality of H, H ′ = H \ {u} has a strong edge-coloring with at
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most eleven colors. Observe that |L′(vu)| ≥ 1, |L′(uu1)| ≥ 2. Thus, we can color vu and uu1 in order, a

contradiction.

(8) Suppose otherwise that H∗ contain 4-vertex v adjacent to a poor 2-vertex u, one rich 2-vertex

w and one 3-vertex s with at least one 2-neighbor. Let u1 be 32-neighbor of u, let u11 be 2-neighbor

of u1 other than u in H∗. By Lemma 2.1(2) and 2.6(1), dH(u) = dH∗(u) = 2, dH(w) = dH∗(w) = 2,

dH(u11) = dH∗(u11) = 2, dH(u1) = dH∗(u1) = 3, and dH(s) = dH∗(s) = 3. By the minimality of H,

H ′ = H \{u} has a strong edge-coloring with at most eleven colors. We now erase the color of edge u1u
1
1.

Observe that |L′(vu)| ≥ 1, |L′(uu1)| ≥ 3, and |L′(u1u11)| ≥ 3. Thus, we can color vu, uu1, and u1u
1
1 in

order, a contradiction.

Lemma 2.10 No 4-vertex is adjacent to one semi-rich 2-vertex and two 2-vertices in H∗. Moreover, no

4-vertex adjacent to one semi-rich 2-vertex, one 2-vertex and and one 3-vertex with at least one 2-neighbor

in H∗.

uv
1

w w
2

u 3
u

1
u

1

1
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1
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3

1
u

2
w

3
w

Figure 10: 4-vertex w is adjacent to one semi-rich 2-vertex v, one 2-vertex w2 and one 3-vertex w1 with

at least one 2-neighbor.

Proof. We only prove the latter case. The proof is similar for the former case. Suppose otherwise that

a 4-vertex w is adjacent to a semi-rich 2-vertex v, one 2-vertex w2 and one 3-vertex w1 with at least

one 2-neighbor (see Figure 10). Let u be special 31-neighbor of v. Let u1 be 43-neighbor of u, u2 be

3-neighbor of u where u2 is adjacent to other 31-vertex u3. Let u11, u21, u31 be three 2-neighbors of u1.

By Lemma 2.1(2) and 2.6(1), dH(v) = dH∗(v) = 2, dH(w2) = dH∗(w2) = 2, dH(u11) = dH∗(u11) = 2,

dH(u21) = dH∗(u21) = 2, dH(u31) = dH∗(u31) = 2, dH(w1) = dH∗(w1) = 3, and dH(u3) = dH∗(u3) = 3.

We claim that dH(u2) = dH∗(u2) = 3. Suppose otherwise that u2 is adjacent to one 1-vertex u12 in H.

By the minimality of H, H ′ = H \ {u12} has a strong edge-coloring with at most eleven colors. Observe

that |L′(u2u12)| ≥ 1. Thus, we can color u2u
1
2, a contradiction.

We claim that u11 is not adjacent to w. Suppose otherwise. Let u11 = w2. By the minimality

of H, H ′ = H \ {v, u, u1, u11} has a strong edge-coloring with at most eleven colors. Observe that

|L′(wv)| ≥ 4, |L′(uv)| ≥ 7, |L′(uu1)| ≥ 7, |L′(uu2)| ≥ 4, |L′(u1u11)| ≥ 7, |L′(u1u21)| ≥ 6, |L′(u1u31)| ≥ 6,

and |L′(u11w)| ≥ 4. We claim that w is not adjacent to u2. Suppose otherwise that w is adjacent to u2. In

this case, we have |L′(wv)| ≥ 6, |L′(uv)| ≥ 8, |L′(uu1)| ≥ 7, |L′(uu2)| ≥ 6, |L′(u1u11)| ≥ 7, |L′(u1u21)| ≥ 6,

|L′(u1u31)| ≥ 6, and |L′(u11w)| ≥ 3. We can color u11w, vw, uu2, u1u
2
1, u1u

3
1, uu1, u1u

1
1 and uv in this

order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, uu2 and

u11w have distance greater than 2. If L′(uu2) ∩ L′(u11w) 6= ∅, we color edges uu2 and u11w with same

color, and color wv, u1u
2
1, u1u

3
1, u1u

1
1, uu1, and uv in order, a contradiction. If L′(uu2) ∩ L′(u11w) = ∅,

let T = {uu2, u11w,wv, u1u21, u1u31, u1u11, uu1, uv}. For any S ⊆ T , we have |
⋃

e∈S L
′(e)| ≥ |S|. By

Theorem 1.6, we can assign eight distinct colors to eight uncolored edges and we obtain a desired strong

edge-coloring with eleven colors, a contradiction.

By the minimality of H, H ′ = H \ {v, u, u1} has a strong edge-coloring with at most eleven colors.

Observe that |L′(wv)| ≥ 2, |L′(uv)| ≥ 6, |L′(uu1)| ≥ 6, |L′(uu2)| ≥ 4, |L′(u1u11)| ≥ 5, |L′(u1u21)| ≥ 5,

and |L′(u1u31)| ≥ 5. If L′(wv) ∩ L′(u1u11) 6= ∅, we color edges wv and u1u
1
1 with same color, and

color uu2, u1u
2
1, u1u

3
1, uu1, and uv in order, a contradiction. If L′(wv) ∩ L′(u1u11) = ∅, let T =

{uu2, wv, u1u21, u1u31, u1u11, uu1, uv}. For any S ⊆ T , we have |
⋃

e∈S L
′(e)| ≥ |S|. By Theorem 1.6,

we can assign seven distinct colors to seven uncolored edges, a contradiction.

14
2 May 2023 22:55:00 PDT
220813-Jian Version 4 - Submitted to Rocky Mountain J. Math.



Lemma 2.11 No 4-vertex is adjacent to one semi-rich 2-vertex and one very poor 2-vertex in H∗.
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Figure 11: 4-vertex w is adjacent to one semi-rich 2-vertex v and one very poor 2-vertex w1 in H∗.

Proof. Suppose otherwise that a 4-vertex w is adjacent to a semi-rich 2-vertex v, one very poor 2-vertex

w1(see Figure 11). Let u be special 31-neighbor of v. Let w1
1 be 2-neighbor of w1. Let u1 be 43-neighbor of

u, u2 be 3-neighbor of u where u2 is adjacent to other 31-vertex u3. Let u11, u21, u31 be three 2-neighbors of

u1. By Lemma 2.1(2) and 2.6(2), dH(v) = dH∗(v) = 2, dH(w1) = dH∗(w1) = 2, dH(w1
1) = dH∗(w1

1) = 2,

dH(u11) = dH∗(u11) = 2, dH(u21) = dH∗(u21) = 2, dH(u31) = dH∗(u31) = 2, dH(u) = dH∗(u) = 3, and

dH(u3) = dH∗(u3) = 3.

We claim that dH(u2) = dH∗(u2) = 3. Suppose otherwise that u2 is adjacent to one 1-vertex u12 in H.

By the minimality of H, H ′ = H \ {u12} has a strong edge-coloring with at most eleven colors. Observe

that |L′(u2u12)| ≥ 1. Thus, we can color u2u
1
2, a contradiction.

By the minimality of H, H ′ = H \ {v, u, w1} has a strong edge-coloring with at most eleven colors.

Observe that |L′(w1w
1
1)| ≥ 5, |L′(ww1)| ≥ 2, |L′(wv)| ≥ 3, |L′(vu)| ≥ 4, |L′(uu1)| ≥ 3, and |L′(uu2)| ≥

1. We claim that w 6= u1. Suppose otherwise that w = u1. In this case, we have |L′(w1w
1
1)| ≥ 6,

|L′(ww1)| ≥ 6, |L′(wv)| ≥ 7, |L′(vu)| ≥ 8, |L′(uu1)| ≥ 5, and |L′(uu2)| ≥ 3. We can color uu2, w1w
1
1,

uu1, ww1, vu, and wv in this order, and obtain a desired strong edge-coloring with eleven colors, a

contradiction. Recall that u2 is a 30-vertex, then w 6= u2. Therefore, w is not adjacent to u. We

claim that w is not adjacent to u2. Suppose otherwise that w is adjacent to u2. In this case, we

have |L′(w1w
1
1)| ≥ 5, |L′(ww1)| ≥ 4, |L′(wv)| ≥ 5, |L′(vu)| ≥ 5, |L′(uu1)| ≥ 3, and |L′(uu2)| ≥ 3.

Note that |N2(w1w
1
1)| = 8 < 11. We can color uu2, uu1, ww1, wv, vu, and w1w

1
1 in this order, and

obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, uu2 and ww1 have

distance greater than 2. If L′(uu2) ∩ L′(ww1) 6= ∅, we color edges uu2 and ww1 with the same color,

and color uu1, wv, vu, and w1w
1
1 in order, a contradiction. Thus, L′(uu2) ∩ L′(ww1) = ∅. Note that

u1 is a 43-vertex, then w is not adjacent to u1. Recall that w is not adjacent to u. Therefore, uu1 and

ww1 have distance greater than 2. If L′(uu1) ∩ L′(ww1) 6= ∅, we color edges uu1 and ww1 with same

color α ∈ L′(uu1) ∩ L′(ww1). Obviously, α /∈ L′(uu2). Therefore, we color uu2, wv, vu, and w1w
1
1 in

order, a contradiction. If L′(uu1) ∩ L′(ww1) = ∅, let T = {ww1, wv, vu, uu1, uu2}. For any S ⊆ T ,

| ∪e∈S L′(e)| ≥ |S|. By Theorem 1.6, we can first assign five distinct colors to this five uncolored edges,

and last color the edge w1w
1
1 since |N2(w1w

1
1)| = 8 < 11, a contradiction.

The discharging rules are defined as follows:

(R1) Every 4-vertex sends 4
5 to each very poor 2-vertex.

(R2) Every 4-vertex sends 3
5 to each poor 2-vertex.

(R3) Every 4-vertex sends 3
5 to each semi-rich 2-vertex, 2

5 to each super-rich 2-vertex.

(R4) Every 4-vertex which is not a 43-vertex sends 1
5 to the 31-vertex adjacent to a 31-vertex or a 43-

vertex; every 4-vertex which is not a 43-vertex sends 1
10 to the 31-vertex not adjacent to a 31-vertex

nor a 43-vertex.

(R5) Every 4-vertex sends 1
5 to each 32-vertex.
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(R6) Every 30-vertex adjacent to one 31-vertex sends 1
5 to the 31-vertex; every 30-vertex adjacent to two

31-vertices sends 1
10 to each 31-vertex.

(R7) Every special 31-vertex 1
5 to the semi-rich 2-vertex. Every non-special 31-vertex sends 2

5 to the

2-vertex.

(R8) Every 32-vertex sends 1
5 to each 2-vertex.

Now we consider the new charge ω∗(v) for each vertex v ∈ H∗. Let v ∈ V (H∗) be a k-vertex. By

Lemma 2.1(1), k ≥ 2.

(1) k = 2. If v is a very poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.2(1). By (R1),

ω∗(v) = 2− 14
5 + 4

5 = 0. If v is a poor 2-vertex, then v is adjacent to one 4-vertex by Lemma 2.3. By

(R2) and (R8), ω∗(v) = 2− 14
5 + 3

5 + 1
5 = 0. Thus, assume that v is a rich 2-vertex. If v is adjacent

to two 3-vertices u and w, then u and w are 31-vertices by Lemma 2.3. By Lemma 2.7(1), each of u

and w is not a special 31-vertex. By (R7), ω∗(v) = 2− 14
5 + 2× 2

5 = 0.

Let v be adjacent to one 3-vertex u and one 4-vertex w. If v is a semi-rich 2-vertex, then u is a special

31-vertex, Thus, ω∗(v) = 2− 14
5 + 3

5 + 1
5 = 0 by (R3) and (R7). If v is a super-rich 2-vertex, then u

is a 31-vertex but not special one or a 4-vertex. Thus, ω∗(v) = 2− 14
5 + 2× 2

5 = 0 by (R3) and (R7).

If v is adjacent to two 4-vertices u and w, then ω∗(v) = 2− 14
5 + 2× 2

5 = 0 by (R3).

(2) k = 3. By Lemma 2.2(3), v is adjacent to at most two 2-vertices.

If v is a 32-vertex, then v is adjacent to one 4-vertex by Lemma 2.6(2). By (R5) and (R8), ω∗(v) =

3− 14
5 + 1

5 − 2× 1
5 = 0.

Let v be a 31-vertex. If v is adjacent to two 3-vertices u and w, then each of u and w is a 30-vertex

by Lemma 2.8(1). By Lemma 2.8(4), u and w are adjacent to at most two 31-vertices. By (R6) and

(R7), ω∗(v) ≥ 3− 14
5 + 2× 1

10 −
2
5 = 0.

Assume next that v is adjacent to one 3-vertex u and one 4-vertex w. If u is a 31-vertex, then w

is not a 43-vertex by Lemma 2.8(2). By (R4) and (R7), ω∗(v) = 3 − 14
5 + 1

5 −
2
5 = 0. If u is a

30-vertex and adjacent to the other 31-vertex, and w is a 43-vertex, then v is a special 31-vertex. By

(R7), ω∗(v) = 3 − 14
5 −

1
5 = 0. Thus, assume that w is a 43-vertex and u is adjacent to only one

31-vertex v. By (R6) and (R7), ω∗(v) = 3 − 14
5 + 1

5 −
2
5 = 0; If w is a 4-vertex with at least two

2-neighbors, then by Lemma 2.8(4), u is adjacent to at most two 31-vertices. By (R4) and (R6),

ω∗(v) ≥ 3− 14
5 + 2× 1

10 −
2
5 = 0.

Finally, assume that v is adjacent to two 4-vertices u and w. By Lemma 2.8(3), one of u and w is

not 43-vertex. By (R4) and (R7), ω∗(v) = 3− 14
5 + 1

5 −
2
5 = 0.

If v is a 30-vertex, then by Lemma 2.8(4), v is adjacent to at most two 31-vertex. By (R6), ω∗(v) ≥
3− 14

5 −
1
10 × 2 = 0.

(3) k = 4. By Lemma 2.9(2), v is adjacent to at most three 2-vertices.

Let v be a 43-vertex. By Lemmas 2.2(2), 2.9(7) and 2.10, v is not adjacent to a very poor 2-vertex

nor a poor 2-vertex nor a semi-rich 2-vertex. By (R4), 43-vertex sends nothing to adjacent 31-vertex.

By Lemma 2.6(3), v is not adjacent to any 32-vertex. Thus, ω∗(v) = 4− 14
5 − 3× 2

5 = 0 by (R3).

Let v be a 42-vertex. Let u and w be two 2-neighbors of v. By Lemma 2.9(1), (3) and (4), one, say w,

of u and w is a rich 2-vertex. If u is a very poor 2-vertex, by Lemma 2.11, w is a super-rich 2-vertex.

By Lemma 2.9(5), v is not adjacent to a 3-vertex with at least one 2-neighbor. By (R1) and (R3),

ω∗(v) ≥ 4− 14
5 −

4
5 −

2
5 = 0. If u is a poor 2-vertex, by Lemma 2.9(8), v is not adjacent to a 3-vertex

with at least one 2-neighbor. By (R2) and (R3), ω∗(v) ≥ 4 − 14
5 − 2 × 3

5 = 0. Thus, assume that u

is a rich 2-vertex. If one of u and w is a semi-rich 2-vertex, by Lemma 2.10, v is not adjacent to a

3-vertex with at least one 2-neighbor. By (R3), ω∗(v) ≥ 4− 14
5 − 2× 3

5 = 0. Thus, assume that both

u and w are super-rich 2-vertices. By (R3), (R4) and (R5), ω∗(v) ≥ 4− 14
5 − 2× 2

5 − 2× 1
5 = 0.
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Let v be a 41-vertex and u be a 2-neighbor of v. If u is a very poor 2-vertex, then v is not adjacent

to three 3-vertices with at least one 2-neighbor by Lemma 2.9(6). By (R1), (R4) and (R5), ω∗(v) ≥
4 − 14

5 −
4
5 − 2 × 1

5 = 0. If u is not a very poor 2-vertex, then ω∗(v) ≥ 4 − 14
5 −

3
5 − 3 × 1

5 = 0 by

(R2), (R3), (R4) and (R5).

Let v be a 40-vertex. By (R4) and (R5), ω∗(v) ≥ 4− 14
5 − 4× 1

5 = 2
5 > 0.
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