Strong chromatic index of sparse graphs with maximum degree 4*

Jian-Bo Lv ${ }^{a}$, Jiacong Fu ${ }^{a}$, Xiangwen Li ${ }{ }^{\dagger \dagger}$
${ }^{a}$ School of Mathematics and Statistics \& The Center for Applied Mathematics of Guangxi, Guangxi Normal University, Guilin, 541000, P.R. China.
${ }^{b}$ School of Mathematics \& Statistics, Central China Normal University, Wuhan, 430079, P.R. China.

Abstract

A strong edge-coloring of a graph G is a proper edge coloring such that every path of length 3 uses three different colors. The strong chromatic index of G, denoted by $\chi_{s}^{\prime}(G)$, is the least possible number of colors in a strong edge coloring of G. Choi, Kim, Kostochka and Raspaud (2018) proved that if $\Delta(G) \geq 9$ and maximum average degree is less than $\frac{8}{3}$, then $\chi_{s}^{\prime}(G) \leq 3 \Delta(G)-3$; and if $\Delta(G) \geq 7$, maximum average degree is less than 3 and there is no 3-regular subgraphs, then $\chi_{s}^{\prime}(G) \leq 3 \Delta(G)$. In this paper, we prove that if G is a graph with $\Delta(G)=4$ and maximum average degree is less than $\frac{8}{3}\left(\right.$ resp. $\left.\frac{14}{5}\right)$, then $\chi_{s}^{\prime}(G) \leq 10($ resp.11).

Keywords: Strong edge-coloring, strong chromatic index, maximum average degree, sparse graphs.
AMS classification: 05C15.

1 Introduction

A proper edge coloring is an assignment of colors to the edges such that adjacent edges receive distinct colors. The chromatic index $\chi^{\prime}(G)$ is the minimum number of colors in a proper edge coloring of G. We denote the minimum and maximum degrees of vertices in G by $\delta(G)$ and $\Delta(G)$ (for short δ and Δ), respectively.

A strong edge-colouring (called also distance 2 edge-coloring) of a graph G is a proper edge coloring of G, such that the edges of any path of length 3 use three different colors. We denote by $\chi_{s}^{\prime}(G)$ the strong chromatic index of G which is the smallest integer k such that G can be strongly edge-colored with k colors. Strong edge-coloring was introduced by Fouquet and Jolivet in [7,8]. Strong edge-coloring can be used to model the conflict-free channel assignment in radio networks $[16,17]$.

In 1985, Erdös and Nešetšil gave the following conjecture, which is still open, and provided an example to show that it would be sharp, if true.

Conjecture 1.1 ([6]) For every graph G,

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2}, & \text { if } \Delta \text { is even } \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right), & \text { if } \Delta \text { is odd }\end{cases}
$$

The conjecture was verified for graphs having $\Delta \leq 3[1,13]$. When $\Delta>3$, the only case on which some progress was made is when $\Delta=4$ and the best upper bound stated is $\chi_{s}^{\prime}(G) \leq 21[10]$. When Δ is sufficiently large, Molloy and Reed in [15] proved that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$, using probabilistic techniques. This bound is improved to $1.93 \Delta^{2}$ by Bruhn and Joos [3], and very recently, is further improved to $1.835 \Delta^{2}$ by Bonamy, Perrett, and Postle [2].

[^0]The maximum average degree $\operatorname{mad}(G)$ of a graph G is the largest average degree of its subgraphs, that is,

$$
\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}, H \subseteq G\right\}
$$

Hocquard et al. [11, 12] studied the strong chromatic index of subcubic graphs in terms of maximum average degree and proved that for any graph G with $\Delta=3$, if $\operatorname{mad}(G)<\frac{7}{3}\left(\right.$ resp. $\left.\frac{5}{2}, \frac{8}{3}, \frac{20}{7}\right)$, then $\chi_{s}^{\prime}(G) \leq 6$ (resp. $7,8,9$). Lv et al. [14] consider graphs with maximum degree 4 and bounded maximum average degree and proved that

Theorem 1.2 For every graph G with $\Delta=4$, if $\operatorname{mad}(G)<\frac{61}{18}\left(\right.$ resp. $\left.\frac{7}{2}, \frac{18}{5}, \frac{15}{4}, \frac{51}{13}\right)$, then $\chi_{s}^{\prime}(G) \leq 16$ (resp. 17, 18, 19, 20).

Recently, Choi, Kim, Kostochka and Raspaud [4] obtained the following results.
Theorem 1.3 ([4]) (1) For every graph G with maximum degree $\Delta \geq 9$ and $\operatorname{mad}(G)<\frac{8}{3}, \chi_{s}^{\prime}(G) \leq$ $3 \Delta-3$.
(2) For every graph G with maximum degree $\Delta \geq 7, \operatorname{mad}(G) \leq 3$ and no 3-regular subgraphs, $\chi_{s}^{\prime}(G) \leq$ 3Δ.

Observe that the maximum average degree is more than 3 in Theorem 1.2 and $\Delta \geq 7$ in Theorem 1.3. One naturally find a gap if the maximum average degree decreases to less than 3 in Theorem 1.2 and if Δ decreases to 4 in Theorem 1.3. Motivated by this, we prove the following results in this paper.

Theorem 1.4 For every graph G with $\Delta=4$, we have:
(1) If $\operatorname{mad}(G)<\frac{8}{3}$, then $\chi_{s}^{\prime}(G) \leq 10$.
(2) If $\operatorname{mad}(G)<\frac{14}{5}$, then $\chi_{s}^{\prime}(G) \leq 11$.

From Theorem 1.4, one can derive the following result.
Corollary 1.5 Let G be a planar graph with $\Delta=4$ and girth g :
(1) If $g \geq 8$, then $\chi_{s}^{\prime}(G) \leq 10$.
(2) If $g \geq 7$, then $\chi_{s}^{\prime}(G) \leq 11$.

Figure 1: G with $\operatorname{mad}(G)=2$ and $\chi_{s}^{\prime}(G)=9$.

G_{1}

G_{2}

Figure 2: G_{1} with $\operatorname{mad}\left(G_{1}\right)=\frac{20}{7}$ and $\chi_{s}^{\prime}\left(G_{1}\right)=11, G_{2}$ with $\operatorname{mad}\left(G_{2}\right)=3$ and $\chi_{s}^{\prime}\left(G_{2}\right)=12$.

It is easy to see that the graph G of Figure 1 is $\chi_{s}^{\prime}(G)=9$ and $\operatorname{mad}(G)=2$, the graph G_{1} of Figure 2 is $\chi_{s}^{\prime}(G)=11$ and $\operatorname{mad}(G)=\frac{20}{7}$, the graph G_{2} of Figure 2 is $\chi_{s}^{\prime}(G)=12$ and $\operatorname{mad}(G)=3$. Therefore, the bounds on the maximum average degree are close to optimal.

We first introduce notations of graphs. Two edges are at distance 1 if they share one of their ends and they are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them. Let $d_{G}(v)$ (or $d(v)$ if it is clear from the context) denote the degree of a vertex v in a graph G. A vertex is a k-vertex if it is of degree k. Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k. A 3 -vertex is a 3_{k}-vertex if it is adjacent to exactly $k 2$-vertices. A 4 -vertex is a 4_{k}-vertex if it is adjacent to exactly $k 2$-vertices. We define a partial coloring to be a strong edge-coloring except that some edges may be uncolored.

In the proof of the Theorem 1.4, we applied the well-known result of Hall [9] in terms of systems of distinct representatives.

Theorem 1.6 ([9]) Let A_{1}, \ldots, A_{n} be n subsets of a set U. A system of distinct representatives of $\left\{A_{1}, \ldots, A_{n}\right\}$ exists if and only if for all $k, 1 \leq k \leq n$ and every choice of subcollection of size k, $\left\{A_{i_{1}}, \ldots, A_{i_{k}}\right\}$, we have $\left|A_{i_{1}} \cup \ldots \cup A_{i_{k}}\right| \geq k$.

2 Proof of Theorem 1.4

Let H be a minimum counterexample to Theorem 1.4 with $|V(H)|+|E(H)|$ minimized. Thus, for some

$$
(m, k) \in\left\{\left(\frac{8}{3}, 10\right),\left(\frac{14}{5}, 11\right)\right\}
$$

we have $\operatorname{mad}(H)<m$ and $\chi_{s}^{\prime}(H)>k$.
By the minimality of $H, \chi_{s}^{\prime}(H-e) \leq k$ for each $e \in E(H)$, and we may assume that H is connected.
Let H^{*} be the graph obtained from H by deleting all vertices of degree 1 . Since H^{*} is the subgraph of $H, \operatorname{mad}\left(H^{*}\right) \leq \operatorname{mad}(H)$. It is sufficient to show that such H^{*} does not exist. Denote by $N(v)$ and $N_{2}(u v)$ the neighborhood of the vertex v and the set of edges at distance at most 2 from the edge $u v$, respectively. Denote by $S C\left(N_{2}(u v)\right)$ the set of colors used by edges in $N_{2}(u v)$. Denote by $L=\{1,2, \ldots, k\}$ the set of colors and let $L^{\prime}(e)=L \backslash S C\left(N_{2}(e)\right)$. We first establish some properties of H^{*}.

Lemma 2.1 If $k \geq 10$, then each of the following holds.
(1) There is no 1-vertex in H^{*}.
(2) If $d_{H^{*}}(v)=2$, then $d_{H}(v)=2$.
(3) If a 3-vertex v is adjacent to two 2-vertices in H^{*}, then $d_{H}(v)=d_{H^{*}}(v)=3$.
(4) No 3_{2}-vertex is adjacent to any 3_{2}-vertex in H^{*}.

Proof. (1) Suppose that H^{*} contains a 1-vertex v such that u is its neighbor. Thus, there is at least one 1-vertex v_{1} adjacent to v in H. By the minimality of $H, H^{\prime}=H \backslash\left\{v_{1}\right\}$ has a strong edge coloring with k colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 4$ since $\Delta=4$. Thus, we can color $v v_{1}$ and obtain the strong edge-coloring of H, a contradiction.
(2) Suppose that $d_{H}(v)>2$. Thus, there is at least one 1-vertex v_{1} adjacent to v in H. By the minimality of $H, H^{\prime}=H \backslash\left\{v_{1}\right\}$ has a strong edge coloring c with k colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1$. Thus, we can color $v v_{1}$, a contradiction.
(3) Suppose that a 3 -vertex v is adjacent to two 2 -vertices v_{1}, v_{2} in H^{*} and $d_{H}(v)>d_{H^{*}}(v)=3$. Then v is adjacent to one 1-vertex v^{\prime} in H. By $(2), d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2, d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=2$. By the minimality of $H, H^{\prime}=H \backslash\left\{v^{\prime}\right\}$ has a strong edge-coloring with at most k colors. Observe that $\left|L^{\prime}\left(v v^{\prime}\right)\right| \geq 2$. Thus, we can color $v v^{\prime}$, a contradiction.
(4) Suppose otherwise that a 3_{2}-vertex v is adjacent to 3_{2}-vertex u. Let v_{1} and v_{2} be two 2 -neighbors of v, and let u_{1} and u_{2} be two 2-neighbors of u. By (2) and (3), $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2, d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=$ $2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2, d_{H}\left(u_{2}\right)=d_{H^{*}}\left(u_{2}\right)=2, d_{H}(v)=d_{H^{*}}(v)=3$, and $d_{H}(u)=d_{H^{*}}(u)=3$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most k colors. Observe that
$\left|L^{\prime}\left(v v_{1}\right)\right| \geq 3,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 3$, and $\left|L^{\prime}(v u)\right| \geq 4$. Thus, we can color $v v_{1}, v v_{2}$, and $v u$, and obtain a desired strong edge-coloring with k colors, a contradiction.

Lemma 2.2 If $k \geq 10$, then each of the following holds.
(1) No 2-vertex adjacent to a 2-vertex is adjacent to a 3-vertex in H^{*}.
(2) No 4-vertex is adjacent to three 2-vertices in H^{*}, one of which is adjacent to a 2-vertex.
(3) No 3-vertex is adjacent to three 2-vertices in H^{*}.

Proof. (1) Suppose otherwise that a 2-vertex v is adjacent to a 2-vertex u and a 3 -vertex w in H^{*}. By Lemma $2.1(2), d_{H}(v)=d_{H^{*}}(v)=2$, and $d_{H}(u)=d_{H^{*}}(u)=2$. If $d_{H}(w)=d_{H^{*}}(w)=3$, then by the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most k colors. It is easy to verify that $\left|L^{\prime}(u v)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 1$. Thus, we can color $v w, v u$ in turn, a contradiction.

If $d_{H}(w)=4$, then w is adjacent to one 1 -vertex w_{1} in H. Let $N(u)=\left\{u_{1}, v\right\}$. By the minimality of $H, H^{\prime}=H \backslash\{u v\}$ has a strong edge-coloring c with at most k colors. We can switch the colors on $v w$ and $w w_{1}$ if necessary such that $c\left(u_{1} u\right) \neq c(v w)$. It is easy to verify that $\left|L^{\prime}(u v)\right| \geq 2$. Thus, we can color $u v$, a contradiction.
(2) Suppose otherwise that a 4 -vertex v is adjacent to three 2 -vertices v_{1}, v_{2} and v_{3} where v_{1} is adjacent to a 2 -vertex. Let v_{1}^{\prime} be a 2-neighbor of v_{1} other than v. By Lemma 2.1 2), $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2$, $d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=2, d_{H}\left(v_{3}\right)=d_{H^{*}}\left(v_{3}\right)=2$, and $d_{H}\left(v_{1}^{\prime}\right)=d_{H^{*}}\left(v_{1}^{\prime}\right)=2$. By the minimality of H, $H^{\prime}=H \backslash\left\{v_{1}\right\}$ has a strong edge-coloring with at most k colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1,\left|L^{\prime}\left(v_{1} v_{1}^{\prime}\right)\right| \geq 3$. Thus, we color $v v_{1}, v_{1} v_{1}^{\prime}$ in turn, a contradiction.
(3) Suppose otherwise that a 3 -vertex v is adjacent to three 2 -vertices v_{1}, v_{2} and v_{3} in H^{*}. By Lemma $2.1(2)(3), d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2, d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=2, d_{H}\left(v_{3}\right)=d_{H^{*}}\left(v_{3}\right)=2$, and $d_{H}(v)=$ $d_{H^{*}}(v)=3$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most k colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 4,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 4$, and $\left|L^{\prime}\left(v v_{3}\right)\right| \geq 4$. Thus, we can color $v v_{1}, v v_{2}$ and $v v_{3}$ in turn, a contradiction.

By Lemma 2.2(1) and (2), we classify 2-vertices as follows. A 2-vertex is very poor if it is adjacent to a 2 -vertex, poor if it is adjacent to a 3_{2}-vertex, and rich otherwise.

Figure 3: 2-vertex v is adjacent to a 3_{1}-vertex v_{1} and a 3_{2}-vertex v_{2} in H^{*}, which v_{1} is adjacent to one 1-vertex v_{1}^{0} in H.

Lemma 2.3 If $k \geq 10$, then no 2-vertex is adjacent to a 3_{1}-vertex and a 3_{2}-vertex in H^{*}. Moreover, no 2-vertex is adjacent to two 3_{2}-vertices in H^{*}.

Proof. Suppose otherwise that a 2 -vertex v is adjacent to a 3_{1}-vertex v_{1} and a 3_{2}-vertex v_{2} in H^{*}. Let v_{2}^{1} be a 2-neighbor of v_{2} other than v. By Lemma 2.1(2) and (3), $d_{H}(v)=d_{H^{*}}(v)=2, d_{H}\left(v_{2}^{1}\right)=d_{H^{*}}\left(v_{2}^{1}\right)=2$, and $d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=3$.

Assume first that $d_{H}\left(v_{1}\right) \neq d_{H^{*}}\left(v_{1}\right)$. The vertex v_{1} is adjacent to one 1 -vertex v_{1}^{0}. We shall use the notations in Figure 3. We claim that v_{2}^{1} is not adjacent to v_{1}. Suppose otherwise. Then $v_{2}^{3}=v_{1}$. By
the minimality of $H, H^{\prime}=H \backslash\left\{v_{1}^{0}\right\}$ has a strong edge-coloring c with at most k colors. Observe that $\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right| \geq 2$, and we can color $v_{1} v_{1}^{0}$, a contradiction. Similarly, v_{2} is not adjacent to v_{1}.

By the minimality of $H, H^{\prime}=H \backslash\left\{v, v_{1}^{0}\right\}$ has a strong edge-coloring with at most k colors. We erase the color of edge $v_{2} v_{2}^{1}$. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 3,\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right| \geq 2$, and $\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right| \geq 2$. We first color edge $v v_{1}$. At this time, H has a partial coloring c and uncolored edges are $v v_{2}, v_{1} v_{1}^{0}$, and $v_{2} v_{2}^{1}$. $\left|L^{\prime}\left(v v_{2}\right)\right| \geq 2,\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right| \geq 1$, and $\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right| \geq 1$. If $L^{\prime}\left(v_{1} v_{1}^{0}\right) \cap L^{\prime}\left(v_{2} v_{2}^{1}\right) \neq \emptyset$, we color $v_{1} v_{1}^{0}$ and $v_{2} v_{2}^{1}$ with $\alpha \in L^{\prime}\left(v_{1} v_{1}^{0}\right) \cap L^{\prime}\left(v_{2} v_{2}^{1}\right)$, and color $v v_{2}$, and obtain a desired strong edge-coloring with k colors, a contradiction. If $L^{\prime}\left(v_{1} v_{1}^{0}\right) \cap L^{\prime}\left(v_{2} v_{2}^{1}\right)=\emptyset$. We claim that $\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right|=1$. Suppose otherwise that $\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right| \geq 2$. We can color $v_{2} v_{2}^{1}, v v_{2}$ and $v_{1} v_{1}^{0}$ in this order, and obtain a desired strong edge-coloring with k colors, a contradiction. Similarly, $\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right|=1$. If we can not assign three distinct colors to three uncolored edges, by Theorem 1.6, $L^{\prime}\left(v_{2} v_{2}^{1}\right) \subseteq L^{\prime}\left(v v_{2}\right), L^{\prime}\left(v_{1} v_{1}^{0}\right) \subseteq L^{\prime}\left(v v_{2}\right)$, and $\left|L^{\prime}\left(v v_{2}\right)\right|=2(k=10)$. We assume, without loss of generality, that $L^{\prime}\left(v_{2} v_{2}^{1}\right)=\{1\}, L^{\prime}\left(v_{1} v_{1}^{0}\right)=\{2\}$, and $L^{\prime}\left(v v_{2}\right)=\{1,2\}$. Since $L^{\prime}\left(v_{2} v_{2}^{1}\right)=\{1\}$ and $L^{\prime}\left(v v_{2}\right)=\{1,2\}, c\left(v_{2} v_{2}^{2}\right), c\left(v_{2}^{1} v_{2}^{3}\right), c\left(v_{2}^{3} v_{2}^{4}\right), c\left(v_{2}^{3} v_{2}^{5}\right), c\left(v_{2}^{3} v_{2}^{6}\right), c\left(v_{2}^{2} v_{2}^{7}\right), c\left(v_{2}^{2} v_{2}^{8}\right), c\left(v_{2}^{2} v_{2}^{9}\right)$ and $c\left(v v_{1}\right)$ are distinct, $2 \notin\left\{c\left(v_{2}^{1} v_{2}^{3}\right), c\left(v_{2} v_{2}^{2}\right), c\left(v_{2}^{2} v_{2}^{7}\right), c\left(v_{2}^{2} v_{2}^{8}\right), c\left(v_{2}^{2} v_{2}^{9}\right), c\left(v v_{1}\right)\right\}$. Otherwise, $\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right| \geq 2$, a contradiction. Thus, we may assume, without loss of generality, that $c\left(v_{2}^{1} v_{2}^{3}\right)=3, c\left(v_{2}^{3} v_{2}^{4}\right)=2, c\left(v_{2}^{3} v_{2}^{5}\right)=4$, $c\left(v_{2}^{3} v_{2}^{6}\right)=5, c\left(v_{2} v_{2}^{2}\right)=6, c\left(v_{2}^{2} v_{2}^{7}\right)=7, c\left(v_{2}^{2} v_{2}^{8}\right)=8, c\left(v_{2}^{2} v_{2}^{9}\right)=9$, and $c\left(v v_{1}\right)=10$. Since $L^{\prime}\left(v v_{2}\right)=\{1,2\}$, $\left\{c\left(v_{1} v_{1}^{1}\right), c\left(v_{1} v_{1}^{2}\right)\right\}=\{4,5\}$. Since $L^{\prime}\left(v_{1} v_{1}^{0}\right)=\{2\},\left\{c\left(v_{1}^{1} v_{1}^{3}\right), c\left(v_{1}^{1} v_{1}^{4}\right), c\left(v_{1}^{1} v_{1}^{5}\right), c\left(v_{1}^{2} v_{1}^{6}\right), c\left(v_{1}^{2} v_{1}^{7}\right), c\left(v_{1}^{2} v_{1}^{8}\right)\right\}=$ $\{1,3,6,7,8,9\}$. We recolor $v v_{1}$ with 2 and color $v_{2} v_{2}^{1}$ and $v_{1} v_{1}^{0}$ with same color 10 , $v v_{2}$ with 1 . So, we obtain a desired strong edge-coloring with k colors, a contradiction.

Thus, assume that $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=3$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edgecoloring with at most k colors. We erase the color of edge $v_{2} v_{2}^{1}$. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 3$, and $\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right| \geq 2$. We can color $v v_{1}, v_{2} v_{2}^{1}$, and $v v_{2}$ in turn, a contradiction.

Let the initial charge of $x \in V\left(H^{*}\right)$ be $\omega(x)=d(x)-m$. It follows from the hypothesis that $\sum_{x \in V\left(H^{*}\right)} \omega(x)<0$. Then we define discharging rules to redistribute weights and once the discharging is finished, a new weight function ω^{*} will be produced. During the discharging process the total sum of weights is kept fixed. Nevertheless, we can show that $\omega^{*}(x) \geq 0$ for all $x \in V\left(H^{*}\right)$. This leads to the following contradiction:

$$
0 \leq \sum_{x \in V\left(H^{*}\right)} \omega^{*}(x)=\sum_{x \in V\left(H^{*}\right)} \omega(x)<0
$$

Therefore, such a counterexample cannot exist.

2.1 Case $\left(\frac{8}{3}, 10\right)$

Figure 4: 2-vertex v is adjacent to a 3_{1}-vertex v_{1} and 4_{4}-vertex v_{2} in H^{*}, which v_{1} is adjacent to one 1-vertex v_{1}^{0} in H.

Lemma 2.4 No 2-vertex is adjacent to a 3_{1}-vertex and 4_{4}-vertex in H^{*}.
Proof. Suppose otherwise that a 2-vertex v is adjacent to a 3_{1}-vertex v_{1} and a 4_{4}-vertex v_{2} in H^{*}. Let v_{2}^{1}, v_{2}^{2} and v_{2}^{3} be three 2-neighbors of v_{2} other than v. By Lemma 2.1 $(2), d_{H}(v)=d_{H^{*}}(v)=2$, $d_{H}\left(v_{2}^{1}\right)=d_{H^{*}}\left(v_{2}^{1}\right)=2, d_{H}\left(v_{2}^{2}\right)=d_{H^{*}}\left(v_{2}^{2}\right)=2$, and $d_{H}\left(v_{2}^{3}\right)=d_{H^{*}}\left(v_{2}^{3}\right)=2$.

Assume first that $d_{H}\left(v_{1}\right) \neq d_{H^{*}}\left(v_{1}\right)$. Then v_{1} is adjacent to one 1 -vertex v_{1}^{0} in H (see Figure 4). We claim that v_{2}^{1} is not adjacent to v_{1}. Suppose otherwise. By the minimality of $H, H^{\prime}=H \backslash\left\{v_{1}^{0}\right\}$ has a strong edge-coloring c with at most k colors. Observe that $\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right| \geq 2$, and we can color $v_{1} v_{1}^{0}$, and obtain a desired strong edge-coloring with k colors, a contradiction. By the minimality of $H, H^{\prime}=H \backslash\left\{v, v_{1}^{0}, v_{2}\right\}$ has a strong edge-coloring with at most k colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 2,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 5,\left|L^{\prime}\left(v_{1} v_{1}^{0}\right)\right| \geq 2$, $\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right| \geq 4,\left|L^{\prime}\left(v_{2} v_{2}^{2}\right)\right| \geq 4$, and $\left|L^{\prime}\left(v_{2} v_{2}^{3}\right)\right| \geq 4$. Note that v_{2} is a 4_{4}-vertex and v_{1} is not a 2 -vertex, thus v_{2} is not adjacent to v_{1}. Recall that v_{2}^{1} is not adjacent to v_{1}. Therefore, $v_{1} v_{1}^{0}$ and $v_{2} v_{2}^{1}$ have distance greater than 2. If $L^{\prime}\left(v_{1} v_{1}^{0}\right) \cap L^{\prime}\left(v_{2} v_{2}^{1}\right) \neq \emptyset$, we color $v_{1} v_{1}^{0}$ and $v_{2} v_{2}^{1}$ with $\alpha \in L^{\prime}\left(v_{1} v_{1}^{0}\right) \cap L^{\prime}\left(v_{2} v_{2}^{1}\right)$, and color $v v_{1}, v_{2} v_{2}^{2}, v_{2} v_{2}^{3}$, and $v v_{2}$ in turn, and obtain a desired strong edge-coloring with k colors, a contradiction. If $L^{\prime}\left(v_{1} v_{1}^{0}\right) \cap L^{\prime}\left(v_{2} v_{2}^{1}\right)=\emptyset$, then let $T=\left\{v v_{1}, v v_{2}, v_{2} v_{2}^{1}, v_{2} v_{2}^{2}, v_{2} v_{2}^{3}, v_{1} v_{1}^{0}\right\}$. For any $S \subseteq T$, we have $\left|\bigcup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign six distinct colors to six uncolored edges, and we obtain a desired strong edge-coloring with k colors, a contradiction.

Suppose that $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=3$. By the minimality of $H, H^{\prime}=H \backslash\left\{v, v_{2}\right\}$ has a strong edgecoloring with at most k colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 2,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 5,\left|L^{\prime}\left(v_{2} v_{2}^{1}\right)\right| \geq 4,\left|L^{\prime}\left(v_{2} v_{2}^{2}\right)\right| \geq 4$, and $\left|L^{\prime}\left(v_{2} v_{2}^{3}\right)\right| \geq 4$. We can color $v v_{1}, v_{2} v_{2}^{1}, v_{2} v_{2}^{2}, v_{2} v_{2}^{3}$, and $v v_{2}$ in turn, a contradiction.

Lemma 2.5 No 4-vertex is adjacent to three poor 2-vertices in H^{*}.
Proof. Suppose otherwise that H^{*} contain a 4 -vertex v adjacent to three poor 2 -vertices u, w and t. Let u_{0} be 3_{2}-neighbor of u, let w_{0} be 3_{2}-neighbor of w, and let t_{0} be 3_{2}-neighbor of t. Let u_{1} be 2-neighbor of u_{0} other than u, let w_{1} be 2-neighbor of w_{0} other than w, and let t_{1} be 2-neighbor of t_{0} other than t. By Lemma 2.1(2) and (3), $d_{H}(u)=d_{H^{*}}(u)=2, d_{H}(w)=d_{H^{*}}(w)=2, d_{H}(t)=d_{H^{*}}(t)=2$, $d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2, d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=2, d_{H}\left(t_{1}\right)=d_{H^{*}}\left(t_{1}\right)=2, d_{H}\left(u_{0}\right)=d_{H^{*}}\left(u_{0}\right)=3$, $d_{H}\left(w_{0}\right)=d_{H^{*}}\left(w_{0}\right)=3$, and $d_{H}\left(t_{0}\right)=d_{H^{*}}\left(t_{0}\right)=3$. We shall use the notations in Figure 5 . We claim that $u_{0} \neq t_{0}$. Suppose otherwise. By the minimality of $H, H^{\prime}=H \backslash\{u, t\}$ has a strong edge-coloring with at most k colors. Observe that $\left|L^{\prime}(u v)\right| \geq 3,\left|L^{\prime}(v t)\right| \geq 3,\left|L^{\prime}\left(u u_{0}\right)\right| \geq 4$, and $\left|L^{\prime}\left(t t_{0}\right)\right| \geq 4$. Thus, we can color $u v, v t, u u_{0}$ and $t t_{0}$ in this order, and obtain a desired strong edge-coloring with k colors, a contradiction. Similarly, $u_{0} \neq w_{0}, w_{0} \neq t_{0}$. Lemma 2.1(4), u_{0} is not adjacent to t_{0}, u_{0} is not adjacent to w_{0}, w_{0} is not adjacent to t_{0}.

Figure 5: 4-vertex v is adjacent to three poor 2-vertices u, w and t in H^{*}.

By the minimality of $H, H^{\prime}=H \backslash\{u, w, t\}$ has a strong edge-coloring with at most k colors. Observe that $\left|L^{\prime}\left(u u_{0}\right)\right| \geq 3,\left|L^{\prime}\left(w w_{0}\right)\right| \geq 3,\left|L^{\prime}\left(t t_{0}\right)\right| \geq 3,\left|L^{\prime}(u v)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 4$, and $\left|L^{\prime}(v t)\right| \geq 4$.
Claim 1. $L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(t t_{0}\right)=\emptyset ; L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(w w_{0}\right)=\emptyset ; L^{\prime}\left(w w_{0}\right) \cap L^{\prime}\left(t t_{0}\right)=\emptyset$.
Proof of Claim 1. Recall that $u_{0} \neq t_{0}$ and u_{0} is not adjacent to t_{0}, thus $u u_{0}$ and $t t_{0}$ have distance greater than 2. Suppose otherwise that $L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(t t_{0}\right) \neq \emptyset$. We first color $u u_{0}$ and $t t_{0}$ with same color, and color $w w_{0}$. In this case, H has a partial coloring c and uncolored edges are $u v, v w$ and $v t$, where $\left|L^{\prime}(u v)\right| \geq 2,\left|L^{\prime}(v w)\right| \geq 2$, and $\left|L^{\prime}(v t)\right| \geq 2$. If we can not assign three distinct colors to three uncolored edges, by Theorem 1.6, $L^{\prime}(u v)=L^{\prime}(v w)=L^{\prime}(v t)$ and $\left|L^{\prime}(u v)\right|=2$. We assume that without loss of generality, that $L^{\prime}(u v)=L^{\prime}(v w)=L^{\prime}(v t)=\{1,2\}$. Since $L^{\prime}(u v)=\{1,2\}$ and $c\left(u u_{0}\right)=c\left(t t_{0}\right)$, $c\left(u u_{0}\right), c\left(u_{0} u_{1}\right), c\left(u_{0} u_{2}\right), c\left(v v_{1}\right), c\left(v_{1} v_{2}\right), c\left(v_{1} v_{3}\right), c\left(v_{1} v_{4}\right)$, and $c\left(w w_{0}\right)$ are distinct. Thus, we may assume,
without loss of generality, that $c\left(u u_{0}\right)=c\left(t t_{0}\right)=3, c\left(u_{0} u_{1}\right)=4, c\left(u_{0} u_{2}\right)=5, c\left(v v_{1}\right)=6, c\left(v_{1} v_{2}\right)=7$, $c\left(v_{1} v_{3}\right)=8, c\left(v_{1} v_{4}\right)=9, c\left(w w_{0}\right)=10$. Since $L^{\prime}(w v)=\{1,2\},\left\{c\left(w_{0} w_{1}\right), c\left(w_{0} w_{2}\right)\right\}=\{4,5\}$. Since $L^{\prime}(v t)=\{1,2\},\left\{c\left(t_{0} t_{1}\right), c\left(t_{0} t_{2}\right)\right\}=\{4,5\}$.

We claim that $\left\{c\left(w_{1} w_{3}\right), c\left(w_{2} w_{4}\right), c\left(w_{2} w_{5}\right), c\left(w_{2} w_{6}\right)\right\}=\{3,7,8,9\}$. Suppose otherwise. We assume, without loss of generality, that $3 \notin\left\{c\left(w_{1} w_{3}\right), c\left(w_{2} w_{4}\right), c\left(w_{2} w_{5}\right), c\left(w_{2} w_{6}\right)\right\}$. In this case, we recolor $w w_{0}$ with 3 and color $v w$ with $10, u v$ with $1, v t$ with 2 , and we obtain a desired strong edge-coloring with k colors, a contradiction.

Now, we erase the color of edge $u u_{0}, t t_{0}$. In this case, $\left|L^{\prime}\left(u u_{0}\right)\right| \geq 3,\left|L^{\prime}\left(t t_{0}\right)\right| \geq 3$. Recall that $3 \in L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(t t_{0}\right)$. We claim that $L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(t t_{0}\right)=\{3\}$. Suppose otherwise that there exist $\alpha \in L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(t t_{0}\right) \backslash\{3\}$. If $\alpha \notin\{1,2\}$, we color $u u_{0}$ and $t t_{0}$ with α, color $u v$ with 3 , vt with $1, v w$ with 2. So we obtain a desired strong edge-coloring with k colors, a contradiction. If $\alpha \in\{1,2\}$, by symmetry, assume that $\alpha=1$. In this case, we color $u u_{0}$ and $t t_{0}$ with 1 , recolor $w w_{0}$ with 1 , color $u v$ with 3 , $v w$ with $10, v t$ with 2 . Thus, we obtain a desired strong edge-coloring with k colors, a contradiction.

We claim that $\left|\{1,2\} \cap L^{\prime}\left(u u_{0}\right)\right| \leq 1$ and $\left|\{1,2\} \cap L^{\prime}\left(t t_{0}\right)\right| \leq 1$. Suppose otherwise that $\{1,2\} \subset L^{\prime}\left(u u_{0}\right)$. Since $L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(t t_{0}\right)=\{3\},\left|L^{\prime}\left(u u_{0}\right)\right| \geq 3$ and $\left|L^{\prime}\left(t t_{0}\right)\right| \geq 3,\left|L^{\prime}\left(t t_{0}\right) \backslash L^{\prime}\left(u u_{0}\right)\right| \geq 2$. Thus, we can choose $\beta \in L^{\prime}\left(t t_{0}\right)$ such that $\beta \notin\{1,2,3,10\}$. Thus, we color $u u_{0}$ with 1 , recolor $w w_{0}$ with 1 , color $t t_{0}$ with β, $u v$ with 3 , $v t$ with 2 , $v w$ with 10 , and so we obtain a desired strong edge-coloring with k colors, a contradiction. The proof is similar for the case that $\{1,2\} \subset L^{\prime}\left(t t_{0}\right)$.

Thus, we can get $\gamma_{1} \in L^{\prime}\left(u u_{0}\right), \gamma_{2} \in L^{\prime}\left(t t_{0}\right)$, and $\gamma_{1} \notin\{1,2,3\}, \gamma_{2} \notin\{1,2,3\}$. We can color $u u_{0}$ with $\gamma_{1}, t t_{0}$ with $\gamma_{2}, u v$ with $3, v t$ with $1, w v$ with 2 , and we obtain a desired strong edge-coloring with k colors, a contradiction.

We can similarly prove that $L^{\prime}\left(u u_{0}\right) \cap L^{\prime}\left(w w_{0}\right)=\emptyset$ and $L^{\prime}\left(w w_{0}\right) \cap L^{\prime}\left(t t_{0}\right)=\emptyset$. This proves our claim.
Let $T=\left\{u u_{0}, w w_{0}, t t_{0}, u v, v t, w v\right\}$. By Claim 1, for any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with k colors, a contradiction.

The discharging rules are defined as follows:
(R1) 4 -vertex sends $\frac{2}{3}$ to the adjacent very poor 2 -vertex.
(R2) 4-vertex sends $\frac{1}{2}$ to the adjacent poor 2-vertex.
(R3) 4-vertex sends $\frac{1}{3}$ to the adjacent rich 2 -vertex.
(R4) 3_{1}-vertex sends $\frac{1}{3}$ to the adjacent 2 -vertex.
(R5) 3_{2}-vertex sends $\frac{1}{6}$ to the adjacent poor 2 -vertex.
Now we consider the new charge $\omega^{*}(v)$ for each vertex $v \in H^{*}$.
Let $v \in V\left(H^{*}\right)$ be a k-vertex. By Lemma $2.1, k \geq 2$.
(1) $k=2$. If v is a very poor 2 -vertex, then v is adjacent to one 4 -vertex by Lemma 2.2(1). By (R1), $\omega^{*}(v)=2-\frac{8}{3}+\frac{2}{3}=0$. If v is a poor 2 -vertex, then v is adjacent to one 4 -vertex by Lemma 2.3. By (R2) and (R5), $\omega^{*}(v)=2-\frac{8}{3}+\frac{1}{2}+\frac{1}{6}=0$. If v is a rich 2 -vertex, then v is adjacent to two 3_{1}-vertices or one 3_{1}-vertex and one 4 -vertex, or two 4 -vertices. By (R3) and (R4), $\omega^{*}(v)=2-\frac{8}{3}+\frac{1}{3}+\frac{1}{3}=0$.
(2) $k=3$. By Lemma $2.2(3), v$ is adjacent to at most two 2 -vertices. If v is not adjacent to 2 -vertex, then $\omega^{*}(v)=3-\frac{8}{3}=\frac{1}{3}>0$. If v is a 3_{1}-vertex, by $(\mathrm{R} 4), \omega^{*}(v)=3-\frac{8}{3}-\frac{1}{3}=0$. If v is a 3_{2}-vertex, by (R5), $\omega^{*}(v)=3-\frac{8}{3}-2 \times \frac{1}{6}=0$.
(3) $k=4$. If v is a 4_{4}-vertex, then v is not adjacent to a very poor 2 -vertex or a poor 2 -vertex by Lemma $2.2(2)$ and 2.4. By $(\mathrm{R} 3), \omega^{*}(v)=4-\frac{8}{3}-4 \times \frac{1}{3}=0$. If v is a 4_{3}-vertex, then v is not adjacent to a very poor 2-vertex by Lemma 2.2(2). By Lemma $2.5 v$ is not adjacent to three poor 2-vertices. By (R2) and (R3), $\omega^{*}(v) \geq 4-\frac{8}{3}-2 \times \frac{1}{2}-\frac{1}{3}=0$. If v is a 4_{2}-vertex, by (R1), (R2) and (R3), $\omega^{*}(v) \geq 4-\frac{8}{3}-2 \times \frac{2}{3}=0$. If v is a 4_{1}-vertex, by (R1), (R2) and (R3), $\omega^{*}(v) \geq 4-\frac{8}{3}-\frac{2}{3}=\frac{2}{3}>0$. If v is a 4_{0}-vertex, $\omega^{*}(v) \geq 4-\frac{8}{3}=\frac{4}{3}>0$.

2.2 Case $\left(\frac{14}{5}, 11\right)$

Figure 6: special 3_{1}-vertex u and semi-rich 2-vertex v
In this section, we give the definition of a special vertex as follows. A 3_{1}-vertex is a special 3_{1}-vertex if it is adjacent to one 4_{3}-vertex and one 3_{0}-vertex adjacent to two 3_{1}-vertices. By Lemma 2.3, no 2 -vertex is adjacent to one 3_{1}-vertex and one 3_{2}-vertex. A rich 2 -vertex is a semi-rich 2 -vertex if it is adjacent to a special 3_{1}-vertex and a super-rich 2 -vertex otherwise (see Figure 6).

Lemma 2.6 (1) If a 3-vertex v is adjacent to a 2-vertex in H^{*}, then $d_{H}(v)=d_{H^{*}}(v)=3$.
(2) No 3_{2}-vertex v is adjacent to any 3 -vertex in H^{*}.
(3) No 3_{2}-vertex v is adjacent to a 4-vertex with at least two 2 -neighbors in H^{*}.

Proof. (1) Suppose otherwise that a 3 -vertex v adjacent to a 2 -vertex v_{1} in H^{*} and $d_{H}(v)>d_{H^{*}}(v)=3$. Then v is adjacent to one 1 -vertex v^{\prime} in H. By Lemma 2.1(2), $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2$. By the minimality of $H, H^{\prime}=H \backslash\left\{v^{\prime}\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(v v^{\prime}\right)\right| \geq 1$. Thus, we can color $v v^{\prime}$ and obtain a desired strong edge-coloring with eleven colors, a contradiction.
(2) Suppose otherwise that a 3_{2}-vertex v is adjacent to a 3 -vertex v_{1} in H^{*}. Let v_{2} and v_{3} be two 2-neighbors of v in H^{*} other than v_{1}. By Lemma 2.1(2) and (1) of this lemma, $d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=2$, $d_{H}\left(v_{3}\right)=d_{H^{*}}\left(v_{3}\right)=2$, and $d_{H}(v)=d_{H^{*}}(v)=3$. If $d_{H}\left(v_{1}\right)>d_{H^{*}}\left(v_{1}\right)=3, v_{1}$ is adjacent to one 1 -vertex v_{1}^{\prime} in H. By the minimality of $H, H^{\prime}=H \backslash\left\{v_{1}^{\prime}, v\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(v_{1} v_{1}^{\prime}\right)\right| \geq 3,\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 4$, and $\left|L^{\prime}\left(v v_{3}\right)\right| \geq 4$. Thus, we can color $v v_{1}, v_{1} v_{1}^{\prime}$, $v v_{2}$ and $v v_{3}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. If $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=3$, by the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 4$, and $\left|L^{\prime}\left(v v_{3}\right)\right| \geq 4$. Thus, we can color $v v_{1}, v v_{2}$, and $v v_{3}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.
(3) Suppose otherwise that a 3_{2}-vertex v is adjacent to a 4 -vertex v_{1} with at least two 2 -neighbors in H^{*}. Let v_{2}, v_{3} be two 2 -neighbors of v in H^{*}, let v_{1}^{1}, v_{1}^{2} be two 2 -neighbors of v_{1} in H^{*}. By Lemma 2.1(2), $d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=2, d_{H}\left(v_{3}\right)=d_{H^{*}}\left(v_{3}\right)=2, d_{H}\left(v_{1}^{1}\right)=d_{H^{*}}\left(v_{1}^{1}\right)=2$, and $d_{H}\left(v_{1}^{2}\right)=d_{H^{*}}\left(v_{1}^{2}\right)=2$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 1,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 3,\left|L^{\prime}\left(v v_{3}\right)\right| \geq 3$. Thus, we can color $v v_{1}, v v_{2}$, and $v v_{3}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

Lemma 2.7 (1) No 2-vertex v is adjacent to two 3-vertices u and w in H^{*} such that one of u and w is adjacent to a 3 -vertex.
(2) No 2-vertex v is adjacent to two 3-vertices u and w in H^{*} such that one of u and w is adjacent to a 4_{3}-vertex.

Proof. (1) Suppose otherwise that a 2 -vertex v is adjacent to two 3 -vertices u and w which is adjacent to a 3 -vertex s in H^{*}. By Lemma $2.1(2)$ and $2.6(1), d_{H}(v)=d_{H^{*}}(v)=2, d_{H}(u)=d_{H^{*}}(u)=3$, and $d_{H}(w)=d_{H^{*}}(w)=3$. We claim that $d_{H}(s)>d_{H^{*}}(s)=3$. Suppose otherwise that $d_{H}(s)=d_{H^{*}}(s)=3$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 1,\left|L^{\prime}(v w)\right| \geq 2$. Thus, we can color $v u$ and $v w$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

Figure 7: 2-vertex v adjacent to two 3 -vertices u and w with w adjacent to a 3 -vertex s in H^{*}.
Therefore, s is adjacent to one 1-vertex s_{1} in H. We shall use the notations in Figure 7. Recall that $d_{H}(u)=d_{H^{*}}(u)=3$ and $d_{H}(s)>d_{H^{*}}(s)=3$, then $u \neq s$. We claim that u is not adjacent to s. Suppose otherwise that u is adjacent to s. By the minimality of $H, H^{\prime}=H \backslash\left\{s_{1}\right\}$ has a strong edge-coloring c with at most eleven colors. Observe that $\left|L^{\prime}\left(s s_{1}\right)\right| \geq 1$. Thus, we can color $s s_{1}$, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, $v u$ and $s s_{1}$ have distance greater than 2. By the minimality of $H, H^{\prime}=H \backslash\left\{v, s_{1}\right\}$ has a strong edge-coloring c with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 1,\left|L^{\prime}(v w)\right| \geq 2$, and $\left|L^{\prime}\left(s s_{1}\right)\right| \geq 1$. If $L^{\prime}(v u) \cap L^{\prime}\left(s s_{1}\right) \neq \emptyset$, we color $v u$ and $s s_{1}$ with the same color and then color $v w$, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

Thus, assume that $L^{\prime}(v u) \cap L^{\prime}\left(s s_{1}\right)=\emptyset$. We claim that $\left|L^{\prime}\left(s s_{1}\right)\right|=1$. Suppose otherwise. We can color $u v, v w$ and $s s_{1}$ in this order. Similarly, we can prove that $\left|L^{\prime}(v u)\right|=1$ and $\left|L^{\prime}(v w)\right|=2$. We claim that $L^{\prime}(v u) \cup L^{\prime}\left(s s_{1}\right)=L^{\prime}(v w)$. Suppose otherwise. By Theorem 1.6, we can assign three distinct colors to uncolored edge $u v, s s_{1}$ and $v w$. Thus, we assume, without loss of generality, that $L^{\prime}(v u)=\{1\}, L^{\prime}\left(s s_{1}\right)=$ $\{2\}$, and $L^{\prime}(v w)=\{1,2\}$. Since $L^{\prime}(v u)=\{1\}, c\left(u u_{1}\right), c\left(u u_{2}\right), c\left(u_{1} u_{1}^{1}\right), c\left(u_{1} u_{1}^{2}\right), c\left(u_{1} u_{1}^{3}\right), c\left(u_{2} u_{2}^{1}\right)$, $c\left(u_{2} u_{2}^{2}\right), c\left(u_{2} u_{2}^{3}\right), c(w s)$ and $c(w t)$ are distinct. Since $L^{\prime}(v w)=\{1,2\}, 2 \notin\left\{c\left(u u_{1}\right), c\left(u u_{2}\right), c(w s), c(w t)\right\}$. We may assume, without loss of generality, that $c\left(u u_{1}\right)=3, c\left(u u_{2}\right)=4, c\left(u_{1} u_{1}^{1}\right)=2, c\left(u_{1} u_{1}^{2}\right)=7$, $c\left(u_{1} u_{1}^{3}\right)=8, c\left(u_{2} u_{2}^{1}\right)=9, c\left(u_{2} u_{2}^{2}\right)=10, c\left(u_{2} u_{2}^{3}\right)=11, c(w s)=5$ and $c(w t)=6$. Since $L^{\prime}\left(s s_{1}\right)=\{2\}$ and $L^{\prime}(v w)=\{1,2\}, 2 \notin\left\{c\left(t t_{1}\right), c\left(t t_{2}\right), c\left(t t_{3}\right), c\left(s s_{2}\right), c\left(s s_{3}\right), c\left(s_{2} s_{2}^{1}\right), c\left(s_{2} s_{2}^{2}\right), c\left(s_{2} s_{2}^{3}\right), c\left(s_{3} s_{3}^{1}\right), c\left(s_{3} s_{3}^{2}\right), c\left(s_{3} s_{3}^{3}\right)\right\}$. Thus, we can recolor $w s$ with 2 , color $s s_{1}$ with 5 , $u v$ with 5 , $v w$ with 1 , and obtain a desired strong edge-coloring with eleven colors, a contradiction.
(2) Suppose otherwise that a 2-vertex v is adjacent to two 3 -vertices u and w such that u is adjacent to a 4_{3}-vertex s. Let s_{1}, s_{2} and s_{3} be three 2-neighbors of s. By Lemma 2.1(2) and 2.6(1), $d_{H}(v)=d_{H^{*}}(v)=2$, $d_{H}\left(s_{1}\right)=d_{H^{*}}\left(s_{1}\right)=2, d_{H}\left(s_{2}\right)=d_{H^{*}}\left(s_{2}\right)=2, d_{H}\left(s_{3}\right)=d_{H^{*}}\left(s_{3}\right)=2, d_{H}(u)=d_{H^{*}}(u)=3$, and $d_{H}(w)=d_{H^{*}}(w)=3$. We claim that s_{1} is not adjacent to w. Suppose otherwise. By the minimality of $H, H^{\prime}=H \backslash\{s\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(u s)\right| \geq 2$, $\left|L^{\prime}\left(s s_{1}\right)\right| \geq 4,\left|L^{\prime}\left(s s_{2}\right)\right| \geq 3$, and $\left|L^{\prime}\left(s s_{3}\right)\right| \geq 3$, and color $u s, s s_{2}, s s_{3}$, and $s s_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of $H, H^{\prime}=H \backslash\{v, s\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 2,\left|L^{\prime}(u s)\right| \geq 4,\left|L^{\prime}\left(s s_{1}\right)\right| \geq 4,\left|L^{\prime}\left(s s_{2}\right)\right| \geq 4$, and $\left|L^{\prime}\left(s s_{3}\right)\right| \geq 4$. If $L^{\prime}(v w) \cap L^{\prime}\left(s s_{1}\right) \neq \emptyset$, we color edges $v w$ and $s s_{1}$ with same color, and color $s s_{2}, s s_{3}, u s$, and $u v$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. If $L^{\prime}(v w) \cap L^{\prime}\left(s s_{1}\right)=$ \emptyset, let $T=\left\{u v, v w, u s, s s_{1}, s s_{2}, s s_{3}\right\}$, for any $S \subseteq T$, we have $\left|\bigcup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with eleven colors, a contradiction.

Lemma 2.8 (1) No 3_{1}-vertex v is adjacent to one 3_{1}-vertex u and one 3 -vertex w in H^{*}.
(2) No 3_{1}-vertex v is adjacent to one 3_{1}-vertex u and one 4_{3}-vertex w in H^{*}.
(3) No 3_{1}-vertex v is adjacent to two 4_{3}-vertices w and t in H^{*}.
(4) No 3-vertex v is adjacent to three 3_{1}-vertices u, w and t in H^{*}.

Proof. (1) Suppose otherwise that a 3_{1}-vertex v is adjacent to one 3_{1}-vertex u and one 3 -vertex w in H^{*}. Let v_{1} be 2-neighbor of v, u_{1} be 2-neighbor of u. By Lemmas 2.1(2) and 2.6(1), $d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2$,
$d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2, d_{H}(v)=d_{H^{*}}(v)=3$, and $d_{H}(u)=d_{H^{*}}(u)=3$.
Assume first $d_{H}(w)=d_{H^{*}}(w)=3$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most eleven colors. And we erase the color of edge $u u_{1}$. Observe that $\left|L^{\prime}(v u)\right| \geq 3,\left|L^{\prime}(v w)\right| \geq 1$, $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 4$, and $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3$. We can color $v w, v u$, $u u_{1}$, and $v v_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

Thus, assume that $d_{H}(w)>d_{H^{*}}(w)=3$. Let w_{1} be the 1-neighbor of w. By the minimality of $H, H^{\prime}=H \backslash\left\{v, w_{1}\right\}$ has a strong edge-coloring with at most eleven colors. We erase the color of edge $u u_{1}$. We claim that u_{1} is not adjacent to w. Suppose otherwise that u_{1} is adjacent to w. In this case, $\left|L^{\prime}(v u)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 4,\left|L^{\prime}\left(v v_{1}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 5$, and $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 6$. Thus, we can color $v u$, $v v_{1}$, $v w, u u_{1}$ and $w w_{1}$ in turn and obtain a desired strong edge-coloring with eleven colors, a contradiction. Similarly, we can prove that u is not adjacent to w. We now go back to H. Observe that $\left|L^{\prime}(v u)\right| \geq 3$, $\left|L^{\prime}(v w)\right| \geq 1,\left|L^{\prime}\left(v v_{1}\right)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 3$. We now color $v w$ and available colors for $v u, v v_{1}, u u_{1}$, and $w w_{1}$ are changed as follows: $\left|L^{\prime}(v u)\right| \geq 2,\left|L^{\prime}\left(v v_{1}\right)\right| \geq 3,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 2$, and $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 2$. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, we color edges $u u_{1}$ and $w w_{1}$ with the same color, and color $v u$ and $v v_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$, let $T=\left\{u u_{1}, w w_{1}, v u, v v_{1}\right\}$. For any $S \subseteq T$, we have $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign four distinct colors to four uncolored edges and we obtain a desired strong edge-coloring with eleven colors, a contradiction.
(2) Suppose otherwise that a 3_{1}-vertex v is adjacent to one 3_{1}-vertex u and one 4_{3}-vertex w. Let v_{1} be 2-neighbor of v, u_{1} be 2-neighbor of u. Let w_{1}, w_{2}, w_{3} be three 2-neighbors of w. By Lemmas 2.1(2) and $2.6(1), d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2, d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=2, d_{H}\left(w_{2}\right)=d_{H^{*}}\left(w_{2}\right)=2$, $d_{H}\left(w_{3}\right)=d_{H^{*}}\left(w_{3}\right)=2, d_{H}(v)=d_{H^{*}}(v)=3$, and $d_{H}(u)=d_{H^{*}}(u)=3$. We claim that u_{1} is not adjacent to w. Suppose otherwise that $u_{1}=w_{1}$ by symmetry. By the minimality of $H, H^{\prime}=H \backslash\{v, w\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 6,\left|L^{\prime}\left(v v_{1}\right)\right| \geq 5$, $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 7,\left|L^{\prime}\left(w w_{2}\right)\right| \geq 5$, and $\left|L^{\prime}\left(w w_{3}\right)\right| \geq 5$, we color $v u$, $w w_{2}, w w_{3}, v v_{1}, v w$, and $w w_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction.

We now go back to H. By the minimality of $H, H^{\prime}=H \backslash\{v, w\}$ has a strong edge-coloring with at most eleven colors. We now erase the color of edge $u u_{1}$. Observe that $\left|L^{\prime}(v u)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 6$, $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 6,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 5,\left|L^{\prime}\left(w w_{2}\right)\right| \geq 5$, and $\left|L^{\prime}\left(w w_{3}\right)\right| \geq 5$. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, we color edges $u u_{1}$ and $w w_{1}$ with same color, and color $v u$, $w w_{2}, w w_{3}, v w$ and $v v_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$, let $T=\left\{u u_{1}, v v_{1}, v u, v w, w w_{1}, w w_{2}, w w_{3}\right\}$. For any $S \subseteq T$, we have $\left|\bigcup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign seven distinct colors to seven uncolored edges and we obtain a desired strong edge-coloring with eleven colors, a contradiction.

Figure 8: 3_{1}-vertex v is adjacent to two 4_{3}-vertices w and t in H^{*}.
(3) Suppose otherwise that a 3_{1}-vertex v adjacent to two 4_{3}-vertices w and t. Let u be 2-neighbor of v, let w_{1}, w_{2}, and w_{3} be 2-neighbors of w, and let t_{1}, t_{2}, and t_{3} be 2-neighbors of t. By Lemmas 2.1(2) and
$2.6(1), d_{H}(u)=d_{H^{*}}(u)=2, d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=2, d_{H}\left(w_{2}\right)=d_{H^{*}}\left(w_{2}\right)=2, d_{H}\left(w_{3}\right)=d_{H^{*}}\left(w_{3}\right)=2$, $d_{H}\left(t_{1}\right)=d_{H^{*}}\left(t_{1}\right)=2, d_{H}\left(t_{2}\right)=d_{H^{*}}\left(t_{2}\right)=2, d_{H}\left(t_{3}\right)=d_{H^{*}}\left(t_{3}\right)=2$, and $d_{H}(v)=d_{H^{*}}(v)=3$. We shall use the notations in Figure 8. By the minimality of $H, H^{\prime}=H \backslash\{v, w, t\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 7,\left|L^{\prime}(v w)\right| \geq 7,\left|L^{\prime}(v t)\right| \geq 7,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 5$, $\left|L^{\prime}\left(w w_{2}\right)\right| \geq 5,\left|L^{\prime}\left(w w_{3}\right)\right| \geq 5,\left|L^{\prime}\left(t t_{1}\right)\right| \geq 5,\left|L^{\prime}\left(t t_{2}\right)\right| \geq 5$, and $\left|L^{\prime}\left(t t_{3}\right)\right| \geq 5$.
Claim 2. $L^{\prime}\left(w w_{i}\right) \cap L^{\prime}\left(t t_{j}\right)=\emptyset$, for all $i, j \in\{1,2,3\}$.
Proof of Claim 2. We only prove that $L^{\prime}\left(w w_{1}\right) \cap L^{\prime}\left(t t_{1}\right)=\emptyset$. The proofs are similar for other cases. Suppose otherwise that $L^{\prime}\left(w w_{1}\right) \cap L^{\prime}\left(t t_{1}\right) \neq \emptyset$. We claim that $w_{1} \neq t_{1}$. Suppose otherwise that $w_{1}=t_{1}$. In this case, $\left|L^{\prime}(v u)\right| \geq 7,\left|L^{\prime}(v w)\right| \geq 8,\left|L^{\prime}(v t)\right| \geq 8,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 9,\left|L^{\prime}\left(w w_{2}\right)\right| \geq 6,\left|L^{\prime}\left(w w_{3}\right)\right| \geq 6$, $\left|L^{\prime}\left(t t_{1}\right)\right| \geq 9,\left|L^{\prime}\left(t t_{2}\right)\right| \geq 6$, and $\left|L^{\prime}\left(t t_{3}\right)\right| \geq 6$, we color $w w_{2}$, $w w_{3}, t t_{2}, t t_{3}, v u$, vw, vt, ww w_{1} and $t t_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. We claim that w_{1} is not adjacent to t_{1}. Suppose otherwise that w_{1} is adjacent to t_{1}. In this case, we erase the color of edge $w_{1} t_{1}$. Now, we have $\left|L^{\prime}(v u)\right| \geq 7,\left|L^{\prime}(v w)\right| \geq 8,\left|L^{\prime}(v t)\right| \geq 8,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 9,\left|L^{\prime}\left(w w_{2}\right)\right| \geq 6,\left|L^{\prime}\left(w w_{3}\right)\right| \geq 6$, $\left|L^{\prime}\left(t t_{1}\right)\right| \geq 9,\left|L^{\prime}\left(t t_{2}\right)\right| \geq 6,\left|L^{\prime}\left(t t_{3}\right)\right| \geq 6$, and $\left|L^{\prime}\left(w_{1} t_{1}\right)\right|=11$, we color $w w_{2}, w w_{3}, t t_{2}, t t_{3}, v u, v w, v t, w w_{1}$, $t t_{1}$ and $w_{1} t_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, $w w_{1}$ and $t t_{1}$ have distance greater than 2 . We first color $w w_{1}$ and $t t_{1}$ with same color, and color $w w_{2}, w w_{3}, t t_{2}, t t_{3}$. Now, we have a partial coloring c and uncolored edges are $v u, v w$ and $v t,\left|L^{\prime}(v u)\right| \geq 2$, $\left|L^{\prime}(v w)\right| \geq 2,\left|L^{\prime}(v t)\right| \geq 2$. If we cannot assign three distinct colors to these three uncolored edges. By Theorem 1.6, $L^{\prime}(v u)=L^{\prime}(v w)=L^{\prime}(v t)$ and $\left|L^{\prime}(v w)\right|=2$. We assume, without loss of generality, that $L^{\prime}(v u)=L^{\prime}(v w)=L^{\prime}(v t)=\{1,2\}$. Since $L^{\prime}(v u)=\{1,2\}$ and $c\left(w w_{1}\right)=c\left(t t_{1}\right), c\left(u u_{1}\right), c\left(u_{1} u_{1}^{1}\right), c\left(u_{1} u_{1}^{2}\right)$, $c\left(u_{1} u_{1}^{3}\right), c\left(t t_{2}\right), c\left(t t_{3}\right), c\left(w w_{2}\right), c\left(w w_{3}\right)$, and $c\left(w w_{1}\right)$ are distinct. Thus, we may assume, without loss of generality, that $c\left(w w_{1}\right)=c\left(t t_{1}\right)=3, c\left(u u_{1}\right)=4, c\left(u_{1} u_{1}^{1}\right)=5, c\left(u_{1} u_{1}^{2}\right)=6, c\left(u_{1} u_{1}^{3}\right)=7, c\left(t t_{2}\right)=8$, $c\left(t t_{3}\right)=9, c\left(w w_{2}\right)=10$, and $c\left(w w_{3}\right)=11$. Since $L^{\prime}(v w)=L^{\prime}(v t)=\{1,2\},\left\{c\left(t_{1} t_{1}^{0}\right), c\left(t_{2} t_{2}^{0}\right), c\left(t_{3} t_{3}^{0}\right)\right\}=$ $\{5,6,7\},\left\{c\left(w_{1} w_{1}^{0}\right), c\left(w_{2} w_{2}^{0}\right), c\left(w_{3} w_{3}^{0}\right)\right\}=\{5,6,7\}$. We claim that $\left\{c\left(t_{2}^{0} t_{2}^{1}\right), c\left(t_{2}^{0} t_{2}^{2}\right), c\left(t_{2}^{0} t_{2}^{3}\right)\right\}=\{4,10,11\}$. Suppose otherwise that $4 \notin\left\{c\left(t_{2}^{0} t_{2}^{1}\right), c\left(t_{2}^{0} t_{2}^{2}\right), c\left(t_{2}^{0} t_{2}^{3}\right)\right\}$. We recolor $t t_{2}$ with 4 and color $v t$ with 8 , vu with 1 , vw with 2 . So, we obtain a desired strong edge-coloring with eleven colors. This contradiction proves that $4 \in\left\{c\left(t_{2}^{0} t_{2}^{1}\right), c\left(t_{2}^{0} t_{2}^{2}\right), c\left(t_{2}^{0} t_{2}^{3}\right)\right\}$. Similarly, we can prove that $10,11 \in\left\{c\left(t_{2}^{0} t_{2}^{1}\right), c\left(t_{2}^{0} t_{2}^{2}\right), c\left(t_{2}^{0} t_{2}^{3}\right)\right\}$. Similarly, $\left\{c\left(w_{2}^{0} w_{2}^{1}\right), c\left(w_{2}^{0} w_{2}^{2}\right), c\left(w_{2}^{0} w_{2}^{3}\right)\right\}=\{4,8,9\}$. Now, we recolor $t t_{2}$ and $w w_{2}$ with the same color 1 , and color $v t$ with $8, v w$ with $10, v u$ with 2 , and obtain a desired strong edge-coloring with eleven colors, a contradiction. This proves our claim.

Let $T=\left\{u v, v t, v w, t t_{1}, t t_{2}, t t_{3}, w w_{1}, w w_{2}, w w_{3}\right\}$. For any $S \subseteq T$, by Claim $2,\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign nine distinct colors to nine uncolored edges and we obtain a desired strong edge-coloring with eleven colors, a contradiction.

Figure 9: 3-vertex v is adjacent to three 3_{1}-vertices u, w and t in H^{*}.
(4) Suppose otherwise that a 3 -vertex v is adjacent to three 3_{1}-vertices u, w and t. Let u_{1} be 2 -neighbor of u, w_{1} be 2-neighbor of w, t_{1} be 2-neighbor of t. By Lemmas 2.1(2) and 2.6(1), $d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2$, $d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=2, d_{H}\left(t_{1}\right)=d_{H^{*}}\left(t_{1}\right)=2, d_{H}(u)=d_{H^{*}}(u)=3, d_{H}(w)=d_{H^{*}}(w)=3$, and $d_{H}(t)=d_{H^{*}}(t)=3$. We shall use the notations in Figure 9. We claim that $d_{H}(v)=d_{H^{*}}(v)=3$. Suppose otherwise that v is adjacent to one 1-vertex v_{1} in H. By the minimality of $H, H^{\prime}=H \backslash\left\{v_{1}\right\}$
has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 2$. We can color $v v_{1}$ and obtain a desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most eleven colors. We now erase the color of edges $u u_{1}, w w_{1}$ and $t t_{1}$. Observe that $\left|L^{\prime}(v u)\right| \geq 4,\left|L^{\prime}(v w)\right| \geq 4,\left|L^{\prime}(v t)\right| \geq 4$, $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(t t_{1}\right)\right| \geq 3$.
Claim 3. $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right)=\emptyset, L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$, and $L^{\prime}\left(w w_{1}\right) \cap L^{\prime}\left(t t_{1}\right)=\emptyset$.
Proof of Claim 3. We only prove that $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right)=\emptyset$. The proofs for other cases are similar. Suppose otherwise that $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right) \neq \emptyset$. We claim that $u_{1} \neq t_{1}$. Suppose otherwise that $u_{1}=t_{1}$. In this case, we have $\left|L^{\prime}(v u)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 4,\left|L^{\prime}(v t)\right| \geq 5,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 6,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(t t_{1}\right)\right| \geq 6$. We can color $w w_{1}, v w, v u, v t, u u_{1}$, and $t t_{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Recall Lemma 2.2(1), no 2-vertex adjacent to a 2 -vertex is adjacent to a 3 -vertex in H^{*}, then u_{1} is not adjacent to t_{1}. We claim that u is not adjacent to t. Suppose otherwise that u is adjacent to t. In this case, we have $\left|L^{\prime}(v u)\right| \geq 8,\left|L^{\prime}(v w)\right| \geq 5,\left|L^{\prime}(v t)\right| \geq 8,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 6,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(t t_{1}\right)\right| \geq 6$. We can color $w w_{1}, v w, t t_{1}, u u_{1}, v u$, and $v t$ in this order, and obtain a desired strong edgecoloring with eleven colors, a contradiction. Recall that u and t are 3_{1}-vertices, $d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2$, and $d_{H}\left(t_{1}\right)=d_{H^{*}}\left(t_{1}\right)=2$, then $t_{1} \neq u_{2}$ and $t_{2} \neq u_{1}$. Therefore, $u u_{1}$ and $t t_{1}$ have distance greater than 2 . We first color $u u_{1}$ and $t t_{1}$ with the same color and then color $w w_{1}$. We now have a partial coloring c and uncolored edges are $v u$, $v w$ and $v t$, where $\left|L^{\prime}(v u)\right| \geq 2,\left|L^{\prime}(v w)\right| \geq 2$, and $\left|L^{\prime}(v t)\right| \geq 2$. If we cannot assign three distinct colors to these three uncolored edges, then by Theorem $1.6, L^{\prime}(v u)=L^{\prime}(v w)=L^{\prime}(v t)$ and $\left|L^{\prime}(v w)\right|=2$. We assume, without loss of generality, that $L^{\prime}(v u)=L^{\prime}(v w)=L^{\prime}(v t)=\{1,2\}$. Since $L^{\prime}(v u)=\{1,2\}$ and $c\left(u u_{1}\right)=c\left(t t_{1}\right), c\left(u_{1} u_{1}^{0}\right), c\left(u u_{2}\right), c\left(u_{2} u_{2}^{1}\right), c\left(u_{2} u_{2}^{2}\right), c\left(u_{2} u_{2}^{3}\right), c\left(t t_{2}\right), c\left(w w_{1}\right)$, and $c\left(w w_{2}\right)$ are distinct. Thus, we may assume, without loss of generality, that $c\left(u u_{1}\right)=c\left(t t_{1}\right)=3$, $c\left(u u_{2}\right)=4, c\left(u_{1} u_{1}^{0}\right)=5, c\left(u_{2} u_{2}^{1}\right)=6, c\left(u_{2} u_{2}^{2}\right)=7, c\left(u_{2} u_{2}^{3}\right)=8, c\left(t t_{2}\right)=9, c\left(w w_{1}\right)=10$, and $c\left(w w_{2}\right)=11$. Since $L^{\prime}(v t)=\{1,2\},\left\{c\left(t_{1} t_{1}^{0}\right), c\left(t_{2} t_{2}^{1}\right), c\left(t_{2} t_{2}^{2}\right), c\left(t_{2} t_{2}^{3}\right)\right\}=\{5,6,7,8\}$. Since $L^{\prime}(v w)=\{1,2\}$, $\left\{c\left(w_{1} w_{1}^{0}\right), c\left(w_{2} w_{2}^{1}\right), c\left(w_{2} w_{2}^{2}\right), c\left(w_{2} w_{2}^{3}\right)\right\}=\{5,6,7,8\}$. We claim that $\left\{c\left(w_{1}^{0} w_{1}^{1}\right), c\left(w_{1}^{0} w_{1}^{2}\right), c\left(w_{1}^{0} w_{1}^{3}\right)\right\}=$ $\{3,4,9\}$. Suppose otherwise. We assume that $3 \notin\left\{c\left(w_{1}^{0} w_{1}^{1}\right), c\left(w_{1}^{0} w_{1}^{2}\right), c\left(w_{1}^{0} w_{1}^{3}\right)\right\}$. We recolor $w w_{1}$ with 3 and color $u v$ with 1 , $v t$ with 2 , $v w$ with 10 . So we obtain a desired strong edge-coloring with eleven colors, a contradiction. Similarly, we can prove that $4,9 \in\left\{c\left(w_{1}^{0} w_{1}^{1}\right), c\left(w_{1}^{0} w_{1}^{2}\right), c\left(w_{1}^{0} w_{1}^{3}\right)\right\}$. Now we erase the color of edge $u u_{1}, t t_{1}$. In this time, $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3,\left|L^{\prime}\left(t t_{1}\right)\right| \geq 3$. Recall that $3 \in L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right)$. We claim that $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right)=\{3\}$. Suppose otherwise that there exist $\alpha \in L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right) \backslash\{3\}$. If $\alpha \notin\{1,2\}$, we color $u u_{1}$ and $t t_{1}$ with the same color α, color $u v$ with $3, v t$ with $1, v w$ with 2 , and we obtain a desired strong edge-coloring with eleven colors, a contradiction. If $\alpha \in\{1,2\}$, we assume, without loss of generality, that $\alpha=1$. We color both $u u_{1}$ and $t t_{1}$ with 1 , recolor $w w_{1}$ with 1 , color $u v$ with 3 , $v w$ with 10 , vt with 2 , a contradiction.

We claim that $\{1,2\} \nsubseteq L^{\prime}\left(u u_{1}\right)$ and $\{1,2\} \nsubseteq L^{\prime}\left(t t_{1}\right)$. Suppose otherwise that $\{1,2\} \subset L^{\prime}\left(u u_{1}\right)$. Since $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(t t_{1}\right)=\{3\}$ and $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3,\left|L^{\prime}\left(t t_{1}\right)\right| \geq 3$ and $\left|L^{\prime}\left(t t_{1}\right) \backslash L^{\prime}\left(u u_{1}\right)\right| \geq 2$. We can choose $\beta \in L^{\prime}\left(t t_{1}\right)$ and $\beta \notin\{1,2,3,10\}$. In this case, we color $u u_{1}$ with 1 , recolor $w w_{1}$ with 1 , color $t t_{1}$ with β, $u v$ with $3, v t$ with $2, v w$ with 10 , a contradiction. The proof for the case that $\{1,2\} \subset L^{\prime}\left(t t_{1}\right)$ is similar.

Thus, we can get $\gamma_{1} \in L^{\prime}\left(u u_{1}\right), \gamma_{2} \in L^{\prime}\left(t t_{1}\right)$ and $\gamma_{1} \notin\{1,2,3\}, \gamma_{2} \notin\{1,2,3\}$. We can color $u u_{1}$ with $\gamma_{1}, t t_{1}$ with $\gamma_{2}, u v$ with $3, v t$ with 1 , $w v$ with 2 , a contradiction. This proves our claim.

Let $T=\left\{u v, v t, v w, u u_{1}, w w_{1}, t t_{1}\right\}$. For any $S \subseteq T$, by Claim 3, $\left|\bigcup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign six distinct colors to six uncolored edges and we obtain a desired strong edge-coloring with eleven colors, a contradiction.

Lemma 2.9 (1) No 4-vertex is adjacent to two very poor 2-vertices in H^{*}.
(2) No 4-vertex is adjacent to four 2-vertices in H^{*}.
(3) No 4-vertex is adjacent to two poor 2-vertices in H^{*}.
(4) No 4-vertex is adjacent to a very poor 2-vertex and a poor 2-vertex in H^{*}.
(5) No 4-vertex is adjacent to a very poor 2-vertex, one rich 2-vertex and one 3-vertex with at least one 2-neighbor in H^{*}.
(6) No 4-vertex is adjacent to a very poor 2-vertex, three 3-vertices with at least one 2-neighbor in H^{*}.
(7) No 4-vertex is adjacent to a poor 2-vertex and two 2-vertices in H^{*}.
(8) No 4-vertex is adjacent to a poor 2-vertex, one rich 2-vertex and one 3-vertex with at least one 2-neighbor in H^{*}.

Proof. (1) Suppose otherwise that H^{*} contain a 4-vertex v adjacent to two very poor 2 -vertices u and w. Let u_{1} be the 2-neighbor of u, w_{1} be the 2-neighbor of w in H^{*}. By Lemma 2.1(2), $d_{H}(u)=d_{H^{*}}(u)=2$, $d_{H}(w)=d_{H^{*}}(w)=2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2$, and $d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=2$. By the minimality of $H, H^{\prime}=H \backslash\{u, w\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(u v)\right| \geq 2$, $\left|L^{\prime}(v w)\right| \geq 2,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 5$, and $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 5$. Thus, we can color $u v, v w, u u_{1}$, and $w w_{1}$ in turn, a contradiction.
(2) Suppose otherwise that H^{*} contain a 4 -vertex v adjacent to four 2 -vertices v_{1}, v_{2}, v_{3} and v_{4}. By Lemma 2.1 $(2), d_{H}\left(v_{1}\right)=d_{H^{*}}\left(v_{1}\right)=2, d_{H}\left(v_{2}\right)=d_{H^{*}}\left(v_{2}\right)=2, d_{H}\left(v_{3}\right)=d_{H^{*}}\left(v_{3}\right)=2$, and $d_{H}\left(v_{4}\right)=$ $d_{H^{*}}\left(v_{4}\right)=2$. By the minimality of $H, H^{\prime}=H \backslash\{v\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(v v_{1}\right)\right| \geq 4,\left|L^{\prime}\left(v v_{2}\right)\right| \geq 4,\left|L^{\prime}\left(v v_{3}\right)\right| \geq 4$, and $\left|L^{\prime}\left(v v_{4}\right)\right| \geq 4$. Thus, we can color $v v_{1}, v v_{2}, v v_{3}$, and $v v_{4}$ in turn, a contradiction.
(3) Suppose otherwise that H^{*} contain a 4-vertex v adjacent to two poor 2-vertices u and w. Let u_{1} be 3_{2}-neighbor of u in H^{*}, w_{1} be 3_{2}-neighbor of w in H^{*}. Let u_{1}^{1} be 2-neighbor of u_{1} other than u, let w_{1}^{1} be 2-neighbor of w_{1} other than w. By Lemma 2.1(2) and 2.6(2), $d_{H}(u)=d_{H^{*}}(u)=2, d_{H}(w)=d_{H^{*}}(w)=2$, $d_{H}\left(u_{1}^{1}\right)=d_{H^{*}}\left(u_{1}^{1}\right)=2, d_{H}\left(w_{1}^{1}\right)=d_{H^{*}}\left(w_{1}^{1}\right)=2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=3$, and $d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=3$. We claim that $w_{1} \neq u_{1}$. Suppose otherwise that $w_{1}=u_{1}$. By the minimality of $H, H^{\prime}=H \backslash\{u, w\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 2,\left|L^{\prime}(v w)\right| \geq 2,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 5$, and $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 5$. Thus, we can color $v u, v w, u u_{1}$, and $w w_{1}$, a contradiction. We also claim that u_{1} is not adjacent to w_{1}. Suppose otherwise that u_{1} is adjacent to w_{1}. By the minimality of $H, H^{\prime}=H \backslash\{u, w\}$ has a strong edge-coloring with at most eleven colors. Now, we erase the color of edge $u_{1} w_{1}$. It is easy to verify that $\left|L^{\prime}(v u)\right| \geq 2,\left|L^{\prime}(v w)\right| \geq 2,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 6,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 6$, and $\left|L^{\prime}\left(u_{1} w_{1}\right)\right| \geq 7$. Thus, we can color $v u, v w, u u_{1}, w w_{1}$, and $u_{1} w_{1}$ in turn, a contradiction.

By the minimality of $H, H^{\prime}=H \backslash\{u, w\}$ has a strong edge-coloring with at most eleven colors. We erase the color of edge $u_{1} u_{1}^{1}$. Observe that $\left|L^{\prime}(v u)\right| \geq 2,\left|L^{\prime}(v w)\right| \geq 1,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 4,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(u_{1} u_{1}^{1}\right)\right| \geq 3$. Since $u_{1} u_{1}^{1}$ and $w_{1} w$ are at distance 3 and $u_{1} u$ and $w_{1} w$ are at distance 3, we can color $v w, v u$, $w w_{1}, u_{1} u_{1}^{1}$, and $u u_{1}$ in turn, a contradiction.
(4) Suppose otherwise that H^{*} contain a 4 -vertex v adjacent to one very poor 2 -vertex u and one poor 2-vertex w. Let u_{1} be 2-neighbors of u in H^{*}, w_{1} be 3_{2}-neighbors of w in H^{*}. Let w_{1}^{1} be a 2neighbor of w_{1} other than w. By Lemma 2.1(2) and 2.6(1), $d_{H}(u)=d_{H^{*}}(u)=2, d_{H}(w)=d_{H^{*}}(w)=2$, $d_{H}\left(w_{1}^{1}\right)=d_{H^{*}}\left(w_{1}^{1}\right)=2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2$, and $d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=3$. By the minimality of $H, H^{\prime}=H \backslash\{u, w\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 2$, $\left|L^{\prime}\left(u u_{1}\right)\right| \geq 5,\left|L^{\prime}(v w)\right| \geq 1$, and $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 3$. Thus, we can color $v w, v u, w w_{1}$, and $u u_{1}$ in order, a contradiction.
(5) Suppose otherwise that H^{*} contain a 4 -vertex v adjacent to one very poor 2 -vertex u, one rich 2 -vertex w and one 3 -vertex s with at least one 2-neighbor. Let u_{1} be 2-neighbors of u in H^{*}. By Lemma 2.1(2) and 2.6(1), $d_{H}(u)=d_{H^{*}}(u)=2, d_{H}(w)=d_{H^{*}}(w)=2$, and $d_{H}(s)=d_{H^{*}}(s)=3$. By the minimality of $H, H^{\prime}=H \backslash\{u\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 1,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 4$. Thus, we can color $u v$ and $u u_{1}$ in order, a contradiction.
(6) Suppose otherwise that H^{*} contain a 4 -vertex v adjacent to one very poor 2 -vertex u and three 3 -vertices w, s, t with at least one 2-neighbor. Let u_{1} be 2-neighbor of u. By Lemma 2.1(2) and 2.6(1), $d_{H}(u)=d_{H^{*}}(u)=2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=2, d_{H}(w)=d_{H^{*}}(w)=3, d_{H}(s)=d_{H^{*}}(s)=3$, and $d_{H}(t)=d_{H^{*}}(t)=3$. By the minimality of $H, H^{\prime}=H \backslash\{u\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 1,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 4$. Thus, we can color $v u$ and $u u_{1}$ in order, a contradiction.
(7) Suppose otherwise that H^{*} contain a 4 -vertex v adjacent to one poor 2-vertex u and two 2-vertices w and t. Let u_{1} be 3_{2}-neighbor of u, let u_{1}^{1} be 2-neighbor of u other than u in H^{*}. By Lemma 2.1(2) and $2.6(1), d_{H}(u)=d_{H^{*}}(u)=2, d_{H}(w)=d_{H^{*}}(w)=2, d_{H}(t)=d_{H^{*}}(t)=2, d_{H}\left(u_{1}^{1}\right)=d_{H^{*}}\left(u_{1}^{1}\right)=2$, and $d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=3$. By the minimality of $H, H^{\prime}=H \backslash\{u\}$ has a strong edge-coloring with at
most eleven colors. Observe that $\left|L^{\prime}(v u)\right| \geq 1,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 2$. Thus, we can color $v u$ and $u u_{1}$ in order, a contradiction.
(8) Suppose otherwise that H^{*} contain 4 -vertex v adjacent to a poor 2 -vertex u, one rich 2 -vertex w and one 3 -vertex s with at least one 2-neighbor. Let u_{1} be 3_{2}-neighbor of u, let u_{1}^{1} be 2-neighbor of u_{1} other than u in H^{*}. By Lemma 2.1(2) and 2.6(1), $d_{H}(u)=d_{H^{*}}(u)=2, d_{H}(w)=d_{H^{*}}(w)=2$, $d_{H}\left(u_{1}^{1}\right)=d_{H^{*}}\left(u_{1}^{1}\right)=2, d_{H}\left(u_{1}\right)=d_{H^{*}}\left(u_{1}\right)=3$, and $d_{H}(s)=d_{H^{*}}(s)=3$. By the minimality of H, $H^{\prime}=H \backslash\{u\}$ has a strong edge-coloring with at most eleven colors. We now erase the color of edge $u_{1} u_{1}^{1}$. Observe that $\left|L^{\prime}(v u)\right| \geq 1,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(u_{1} u_{1}^{1}\right)\right| \geq 3$. Thus, we can color $v u$, $u u_{1}$, and $u_{1} u_{1}^{1}$ in order, a contradiction.

Lemma 2.10 No 4-vertex is adjacent to one semi-rich 2-vertex and two 2-vertices in H^{*}. Moreover, no 4-vertex adjacent to one semi-rich 2-vertex, one 2-vertex and and one 3-vertex with at least one 2-neighbor in H^{*}.

Figure 10: 4-vertex w is adjacent to one semi-rich 2 -vertex v, one 2 -vertex w_{2} and one 3 -vertex w_{1} with at least one 2-neighbor.

Proof. We only prove the latter case. The proof is similar for the former case. Suppose otherwise that a 4-vertex w is adjacent to a semi-rich 2 -vertex v, one 2 -vertex w_{2} and one 3 -vertex w_{1} with at least one 2-neighbor (see Figure 10). Let u be special 3_{1}-neighbor of v. Let u_{1} be 4_{3}-neighbor of u, u_{2} be 3 -neighbor of u where u_{2} is adjacent to other 3_{1}-vertex u_{3}. Let $u_{1}^{1}, u_{1}^{2}, u_{1}^{3}$ be three 2 -neighbors of u_{1}. By Lemma 2.1(2) and 2.6(1), $d_{H}(v)=d_{H^{*}}(v)=2, d_{H}\left(w_{2}\right)=d_{H^{*}}\left(w_{2}\right)=2, d_{H}\left(u_{1}^{1}\right)=d_{H^{*}}\left(u_{1}^{1}\right)=2$, $d_{H}\left(u_{1}^{2}\right)=d_{H^{*}}\left(u_{1}^{2}\right)=2, d_{H}\left(u_{1}^{3}\right)=d_{H^{*}}\left(u_{1}^{3}\right)=2, d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=3$, and $d_{H}\left(u_{3}\right)=d_{H^{*}}\left(u_{3}\right)=3$.

We claim that $d_{H}\left(u_{2}\right)=d_{H^{*}}\left(u_{2}\right)=3$. Suppose otherwise that u_{2} is adjacent to one 1-vertex u_{2}^{1} in H. By the minimality of $H, H^{\prime}=H \backslash\left\{u_{2}^{1}\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(u_{2} u_{2}^{1}\right)\right| \geq 1$. Thus, we can color $u_{2} u_{2}^{1}$, a contradiction.

We claim that u_{1}^{1} is not adjacent to w. Suppose otherwise. Let $u_{1}^{1}=w_{2}$. By the minimality of $H, H^{\prime}=H \backslash\left\{v, u, u_{1}, u_{1}^{1}\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(w v)\right| \geq 4,\left|L^{\prime}(u v)\right| \geq 7,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 7,\left|L^{\prime}\left(u u_{2}\right)\right| \geq 4,\left|L^{\prime}\left(u_{1} u_{1}^{1}\right)\right| \geq 7,\left|L^{\prime}\left(u_{1} u_{1}^{2}\right)\right| \geq 6,\left|L^{\prime}\left(u_{1} u_{1}^{3}\right)\right| \geq 6$, and $\left|L^{\prime}\left(u_{1}^{1} w\right)\right| \geq 4$. We claim that w is not adjacent to u_{2}. Suppose otherwise that w is adjacent to u_{2}. In this case, we have $\left|L^{\prime}(w v)\right| \geq 6,\left|L^{\prime}(u v)\right| \geq 8,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 7,\left|L^{\prime}\left(u u_{2}\right)\right| \geq 6,\left|L^{\prime}\left(u_{1} u_{1}^{1}\right)\right| \geq 7,\left|L^{\prime}\left(u_{1} u_{1}^{2}\right)\right| \geq 6$, $\left|L^{\prime}\left(u_{1} u_{1}^{3}\right)\right| \geq 6$, and $\left|L^{\prime}\left(u_{1}^{1} w\right)\right| \geq 3$. We can color $u_{1}^{1} w, v w, u u_{2}, u_{1} u_{1}^{2}, u_{1} u_{1}^{3}, u u_{1}, u_{1} u_{1}^{1}$ and $u v$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, $u u_{2}$ and $u_{1}^{1} w$ have distance greater than 2. If $L^{\prime}\left(u u_{2}\right) \cap L^{\prime}\left(u_{1}^{1} w\right) \neq \emptyset$, we color edges $u u_{2}$ and $u_{1}^{1} w$ with same color, and color $w v, u_{1} u_{1}^{2}, u_{1} u_{1}^{3}, u_{1} u_{1}^{1}, u u_{1}$, and $u v$ in order, a contradiction. If $L^{\prime}\left(u u_{2}\right) \cap L^{\prime}\left(u_{1}^{1} w\right)=\emptyset$, let $T=\left\{u u_{2}, u_{1}^{1} w, w v, u_{1} u_{1}^{2}, u_{1} u_{1}^{3}, u_{1} u_{1}^{1}, u u_{1}, u v\right\}$. For any $S \subseteq T$, we have $\left|\bigcup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign eight distinct colors to eight uncolored edges and we obtain a desired strong edge-coloring with eleven colors, a contradiction.

By the minimality of $H, H^{\prime}=H \backslash\left\{v, u, u_{1}\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}(w v)\right| \geq 2,\left|L^{\prime}(u v)\right| \geq 6,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 6,\left|L^{\prime}\left(u u_{2}\right)\right| \geq 4,\left|L^{\prime}\left(u_{1} u_{1}^{1}\right)\right| \geq 5,\left|L^{\prime}\left(u_{1} u_{1}^{2}\right)\right| \geq 5$, and $\left|L^{\prime}\left(u_{1} u_{1}^{3}\right)\right| \geq 5$. If $L^{\prime}(w v) \cap L^{\prime}\left(u_{1} u_{1}^{1}\right) \neq \emptyset$, we color edges $w v$ and $u_{1} u_{1}^{1}$ with same color, and color $u u_{2}, u_{1} u_{1}^{2}, u_{1} u_{1}^{3}, u u_{1}$, and $u v$ in order, a contradiction. If $L^{\prime}(w v) \cap L^{\prime}\left(u_{1} u_{1}^{1}\right)=\emptyset$, let $T=$ $\left\{u u_{2}, w v, u_{1} u_{1}^{2}, u_{1} u_{1}^{3}, u_{1} u_{1}^{1}, u u_{1}, u v\right\}$. For any $S \subseteq T$, we have $\left|\bigcup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can assign seven distinct colors to seven uncolored edges, a contradiction.

Lemma 2.11 No 4-vertex is adjacent to one semi-rich 2-vertex and one very poor 2 -vertex in H^{*}.

Figure 11: 4-vertex w is adjacent to one semi-rich 2 -vertex v and one very poor 2 -vertex w_{1} in H^{*}.

Proof. Suppose otherwise that a 4 -vertex w is adjacent to a semi-rich 2 -vertex v, one very poor 2 -vertex w_{1} (see Figure 11). Let u be special 3_{1}-neighbor of v. Let w_{1}^{1} be 2 -neighbor of w_{1}. Let u_{1} be 4_{3}-neighbor of u, u_{2} be 3-neighbor of u where u_{2} is adjacent to other 3_{1}-vertex u_{3}. Let $u_{1}^{1}, u_{1}^{2}, u_{1}^{3}$ be three 2-neighbors of u_{1}. By Lemma 2.1(2) and 2.6(2), $d_{H}(v)=d_{H^{*}}(v)=2, d_{H}\left(w_{1}\right)=d_{H^{*}}\left(w_{1}\right)=2, d_{H}\left(w_{1}^{1}\right)=d_{H^{*}}\left(w_{1}^{1}\right)=2$, $d_{H}\left(u_{1}^{1}\right)=d_{H^{*}}\left(u_{1}^{1}\right)=2, d_{H}\left(u_{1}^{2}\right)=d_{H^{*}}\left(u_{1}^{2}\right)=2, d_{H}\left(u_{1}^{3}\right)=d_{H^{*}}\left(u_{1}^{3}\right)=2, d_{H}(u)=d_{H^{*}}(u)=3$, and $d_{H}\left(u_{3}\right)=d_{H^{*}}\left(u_{3}\right)=3$.

We claim that $d_{H}\left(u_{2}\right)=d_{H^{*}}\left(u_{2}\right)=3$. Suppose otherwise that u_{2} is adjacent to one 1-vertex u_{2}^{1} in H. By the minimality of $H, H^{\prime}=H \backslash\left\{u_{2}^{1}\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(u_{2} u_{2}^{1}\right)\right| \geq 1$. Thus, we can color $u_{2} u_{2}^{1}$, a contradiction.

By the minimality of $H, H^{\prime}=H \backslash\left\{v, u, w_{1}\right\}$ has a strong edge-coloring with at most eleven colors. Observe that $\left|L^{\prime}\left(w_{1} w_{1}^{1}\right)\right| \geq 5,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 2,\left|L^{\prime}(w v)\right| \geq 3,\left|L^{\prime}(v u)\right| \geq 4,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(u u_{2}\right)\right| \geq$ 1. We claim that $w \neq u_{1}$. Suppose otherwise that $w=u_{1}$. In this case, we have $\left|L^{\prime}\left(w_{1} w_{1}^{1}\right)\right| \geq 6$, $\left|L^{\prime}\left(w w_{1}\right)\right| \geq 6,\left|L^{\prime}(w v)\right| \geq 7,\left|L^{\prime}(v u)\right| \geq 8,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 5$, and $\left|L^{\prime}\left(u u_{2}\right)\right| \geq 3$. We can color $u u_{2}, w_{1} w_{1}^{1}$, $u u_{1}, w w_{1}, v u$, and $w v$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Recall that u_{2} is a 3_{0}-vertex, then $w \neq u_{2}$. Therefore, w is not adjacent to u. We claim that w is not adjacent to u_{2}. Suppose otherwise that w is adjacent to u_{2}. In this case, we have $\left|L^{\prime}\left(w_{1} w_{1}^{1}\right)\right| \geq 5,\left|L^{\prime}\left(w w_{1}\right)\right| \geq 4,\left|L^{\prime}(w v)\right| \geq 5,\left|L^{\prime}(v u)\right| \geq 5,\left|L^{\prime}\left(u u_{1}\right)\right| \geq 3$, and $\left|L^{\prime}\left(u u_{2}\right)\right| \geq 3$. Note that $\left|N_{2}\left(w_{1} w_{1}^{1}\right)\right|=8<11$. We can color $u u_{2}, u u_{1}, w w_{1}, w v, v u$, and $w_{1} w_{1}^{1}$ in this order, and obtain a desired strong edge-coloring with eleven colors, a contradiction. Therefore, $u u_{2}$ and $w w_{1}$ have distance greater than 2. If $L^{\prime}\left(u u_{2}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, we color edges $u u_{2}$ and $w w_{1}$ with the same color, and color $u u_{1}, w v, v u$, and $w_{1} w_{1}^{1}$ in order, a contradiction. Thus, $L^{\prime}\left(u u_{2}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$. Note that u_{1} is a 4_{3}-vertex, then w is not adjacent to u_{1}. Recall that w is not adjacent to u. Therefore, $u u_{1}$ and $w w_{1}$ have distance greater than 2. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right) \neq \emptyset$, we color edges $u u_{1}$ and $w w_{1}$ with same color $\alpha \in L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)$. Obviously, $\alpha \notin L^{\prime}\left(u u_{2}\right)$. Therefore, we color $u u_{2}, w v, v u$, and $w_{1} w_{1}^{1}$ in order, a contradiction. If $L^{\prime}\left(u u_{1}\right) \cap L^{\prime}\left(w w_{1}\right)=\emptyset$, let $T=\left\{w w_{1}, w v, v u, u u_{1}, u u_{2}\right\}$. For any $S \subseteq T$, $\left|\cup_{e \in S} L^{\prime}(e)\right| \geq|S|$. By Theorem 1.6, we can first assign five distinct colors to this five uncolored edges, and last color the edge $w_{1} w_{1}^{1}$ since $\left|N_{2}\left(w_{1} w_{1}^{1}\right)\right|=8<11$, a contradiction.

The discharging rules are defined as follows:
(R1) Every 4 -vertex sends $\frac{4}{5}$ to each very poor 2-vertex.
(R2) Every 4-vertex sends $\frac{3}{5}$ to each poor 2-vertex.
(R3) Every 4-vertex sends $\frac{3}{5}$ to each semi-rich 2 -vertex, $\frac{2}{5}$ to each super-rich 2 -vertex.
(R4) Every 4-vertex which is not a 4_{3}-vertex sends $\frac{1}{5}$ to the 3_{1}-vertex adjacent to a 3_{1}-vertex or a 4_{3} vertex; every 4 -vertex which is not a 4_{3}-vertex sends $\frac{1}{10}$ to the 3_{1}-vertex not adjacent to a 3_{1}-vertex nor a 4_{3}-vertex.
(R5) Every 4 -vertex sends $\frac{1}{5}$ to each 3_{2}-vertex.
(R6) Every 3_{0}-vertex adjacent to one 3_{1}-vertex sends $\frac{1}{5}$ to the 3_{1}-vertex; every 3_{0}-vertex adjacent to two 3_{1}-vertices sends $\frac{1}{10}$ to each 3_{1}-vertex.
(R7) Every special 3_{1}-vertex $\frac{1}{5}$ to the semi-rich 2-vertex. Every non-special 3_{1}-vertex sends $\frac{2}{5}$ to the 2-vertex.
(R8) Every 3_{2}-vertex sends $\frac{1}{5}$ to each 2-vertex.
Now we consider the new charge $\omega^{*}(v)$ for each vertex $v \in H^{*}$. Let $v \in V\left(H^{*}\right)$ be a k-vertex. By Lemma 2.1(1), $k \geq 2$.
(1) $k=2$. If v is a very poor 2 -vertex, then v is adjacent to one 4 -vertex by Lemma $2.2(1)$. By (R1), $\omega^{*}(v)=2-\frac{14}{5}+\frac{4}{5}=0$. If v is a poor 2-vertex, then v is adjacent to one 4 -vertex by Lemma 2.3. By (R2) and (R8), $\omega^{*}(v)=2-\frac{14}{5}+\frac{3}{5}+\frac{1}{5}=0$. Thus, assume that v is a rich 2 -vertex. If v is adjacent to two 3 -vertices u and w, then u and w are 3_{1}-vertices by Lemma 2.3. By Lemma 2.7(1), each of u and w is not a special 3_{1}-vertex. By (R7), $\omega^{*}(v)=2-\frac{14}{5}+2 \times \frac{2}{5}=0$.
Let v be adjacent to one 3 -vertex u and one 4 -vertex w. If v is a semi-rich 2 -vertex, then u is a special 3_{1}-vertex, Thus, $\omega^{*}(v)=2-\frac{14}{5}+\frac{3}{5}+\frac{1}{5}=0$ by (R3) and (R7). If v is a super-rich 2 -vertex, then u is a 3_{1}-vertex but not special one or a 4 -vertex. Thus, $\omega^{*}(v)=2-\frac{14}{5}+2 \times \frac{2}{5}=0$ by (R3) and (R7). If v is adjacent to two 4 -vertices u and w, then $\omega^{*}(v)=2-\frac{14}{5}+2 \times \frac{2}{5}=0$ by (R3).
(2) $k=3$. By Lemma 2.2(3), v is adjacent to at most two 2-vertices.

If v is a 3_{2}-vertex, then v is adjacent to one 4 -vertex by Lemma 2.6(2). By (R5) and (R8), $\omega^{*}(v)=$ $3-\frac{14}{5}+\frac{1}{5}-2 \times \frac{1}{5}=0$.
Let v be a 3_{1}-vertex. If v is adjacent to two 3 -vertices u and w, then each of u and w is a 3_{0}-vertex by Lemma 2.8(1). By Lemma 2.8(4), u and w are adjacent to at most two 3_{1}-vertices. By (R6) and (R7), $\omega^{*}(v) \geq 3-\frac{14}{5}+2 \times \frac{1}{10}-\frac{2}{5}=0$.
Assume next that v is adjacent to one 3 -vertex u and one 4 -vertex w. If u is a 3_{1}-vertex, then w is not a 4_{3}-vertex by Lemma 2.8(2). By (R4) and (R7), $\omega^{*}(v)=3-\frac{14}{5}+\frac{1}{5}-\frac{2}{5}=0$. If u is a 3_{0}-vertex and adjacent to the other 3_{1}-vertex, and w is a 4_{3}-vertex, then v is a special 3_{1}-vertex. By (R7), $\omega^{*}(v)=3-\frac{14}{5}-\frac{1}{5}=0$. Thus, assume that w is a 4_{3}-vertex and u is adjacent to only one 3_{1}-vertex v. By (R6) and (R7), $\omega^{*}(v)=3-\frac{14}{5}+\frac{1}{5}-\frac{2}{5}=0$; If w is a 4 -vertex with at least two 2-neighbors, then by Lemma 2.8(4), u is adjacent to at most two 3_{1}-vertices. By (R4) and (R6), $\omega^{*}(v) \geq 3-\frac{14}{5}+2 \times \frac{1}{10}-\frac{2}{5}=0$.
Finally, assume that v is adjacent to two 4 -vertices u and w. By Lemma 2.8(3), one of u and w is not 4_{3}-vertex. By (R4) and (R7), $\omega^{*}(v)=3-\frac{14}{5}+\frac{1}{5}-\frac{2}{5}=0$.
If v is a 3_{0}-vertex, then by Lemma 2.8(4), v is adjacent to at most two 3_{1}-vertex. By (R6), $\omega^{*}(v) \geq$ $3-\frac{14}{5}-\frac{1}{10} \times 2=0$.
(3) $k=4$. By Lemma 2.9(2), v is adjacent to at most three 2-vertices.

Let v be a 4_{3}-vertex. By Lemmas 2.2(2), 2.9(7) and 2.10, v is not adjacent to a very poor 2 -vertex nor a poor 2 -vertex nor a semi-rich 2 -vertex. By (R4), 4_{3}-vertex sends nothing to adjacent 3_{1}-vertex. By Lemma 2.6(3), v is not adjacent to any 3_{2}-vertex. Thus, $\omega^{*}(v)=4-\frac{14}{5}-3 \times \frac{2}{5}=0$ by (R3).

Let v be a 4_{2}-vertex. Let u and w be two 2-neighbors of v. By Lemma 2.9(1), (3) and (4), one, say w, of u and w is a rich 2 -vertex. If u is a very poor 2 -vertex, by Lemma 2.11, w is a super-rich 2 -vertex. By Lemma 2.9(5), v is not adjacent to a 3 -vertex with at least one 2-neighbor. By (R1) and (R3), $\omega^{*}(v) \geq 4-\frac{14}{5}-\frac{4}{5}-\frac{2}{5}=0$. If u is a poor 2 -vertex, by Lemma $2.9(8), v$ is not adjacent to a 3 -vertex with at least one 2-neighbor. By (R2) and (R3), $\omega^{*}(v) \geq 4-\frac{14}{5}-2 \times \frac{3}{5}=0$. Thus, assume that u is a rich 2 -vertex. If one of u and w is a semi-rich 2 -vertex, by Lemma 2.10, v is not adjacent to a 3 -vertex with at least one 2-neighbor. By (R3), $\omega^{*}(v) \geq 4-\frac{14}{5}-2 \times \frac{3}{5}=0$. Thus, assume that both u and w are super-rich 2-vertices. By (R3), (R4) and (R5), $\omega^{*}(v) \geq 4-\frac{14}{5}-2 \times \frac{2}{5}-2 \times \frac{1}{5}=0$.

Let v be a 4_{1}-vertex and u be a 2-neighbor of v. If u is a very poor 2 -vertex, then v is not adjacent to three 3 -vertices with at least one 2-neighbor by Lemma 2.9(6). By (R1), (R4) and (R5), $\omega^{*}(v) \geq$ $4-\frac{14}{5}-\frac{4}{5}-2 \times \frac{1}{5}=0$. If u is not a very poor 2 -vertex, then $\omega^{*}(v) \geq 4-\frac{14}{5}-\frac{3}{5}-3 \times \frac{1}{5}=0$ by (R2), (R3), (R4) and (R5).
Let v be a 4_{0}-vertex. By (R4) and (R5), $\omega^{*}(v) \geq 4-\frac{14}{5}-4 \times \frac{1}{5}=\frac{2}{5}>0$.

References

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math., 108 (1992) (1-3) 231-252.
[2] M. Bonamy, T. Perrett, L. Postle, Colouring graphs with sparse neighbourhoods: bounds and applications, manuscript.
[3] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, http://arxiv.org/abs/1504.02583.
[4] I. Choi, J. Kim, A. V. Kostochka and A. Raspaud, Strong edge-colorings of sparse graphs with large maximum degree, European J. Combin., 67 (2018) 21-39.
[5] P. DeOrsey, J. Diemunsch, M. Ferrara, N. Graber, S. G. Hartke, S. Jahanbekam, B. Lidicky, L. Nelsen, D. Stolee, E. Sullivan, On the strong chromatic index of sparse graphs, http://arxiv.org/abs/1508.03515.
[6] P. Erdös, Problems and results in combinatorial analysis and graph theory, Discrete Math., 72 (1988) (1-3) 81-92.
[7] J. L. Fouquet, J. L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, Ars Combin. 16A., (1983), 141-150.
[8] J. L. Fouquet, J. L. Jolivet, Strong edge-coloring of cubic planar graphs, Progress in Graph Theory, (1984), 247-264.
[9] P. Hall, On representatives of subsetes, J. Lond. Math. Soc., 10 (1935) 26-30.
[10] M. Huang, M. Santana and G. Yu, Strong chromatic index of graphs with maximum degree four, Electron. J. Combin., 25(3) (2018) P3.31.
[11] H. Hocquard and P. Valicov, Strong edge colouring of subcubic graphs, Discrete Appl. Math., 159 (2011) (15) 1650-1657.
[12] H. Hocquard, M. Montassier, A. Raspaud and P. Valicov, On strong edge-colouring of subcubic graphs, Discrete Appl. Math., 161 (2013) (16-17) 2467-2479.
[13] P. Horák, H. Qing and W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory, 17 (1993) (2)151-160.
[14] J.-B. Lv, X. Li, G. Yu, On strong edge-coloring of graphs with maximum degree 4, Discrete Appl. Math., 235 (2018) 142-153.
[15] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, J. Combin. Theory, Ser. B 69 (1997) 519-530.
[16] T. Nandagopal, T. Kim, X. Gao, V. Barghavan, Achieving MAC layer fairness in wireless packet networks, in: Proc. 6th ACM Conf. on Mobile Computing and Networking, (2000), pp. 87-98.
[17] S. Ramanathan, A unified framework and algorithm for (T/F/C) DMA channel assignment in wireless networks, in: Proc. IEEE INFOCOM' 97, (1997), pp. 900-907.

[^0]: ${ }^{*}$ Research of Jian-Bo Lv was supported by the Science and technology project of Guangxi (Guike AD21220114); NSFC (No.12161010). Research of Xiangwen Li was supported by NSFC (12031018).
 ${ }^{\dagger}$ Email addresses: jblv0829math@163.com; 1146987725@qq.com; xwli68@mail.ccnu.edu.cn

