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Abstract. In this paper, we study the oscillation and nonoscillation behaviors
of the solutions of �rst order sublinear and superlinear di¤erence equations
with general retarded argument of the form

�x(n) + p(n)x� (�(n)) = 0; n 2 N,
where � is a quotient of odd positive integers, (p(n)) is a sequence of nonneg-
ative real numbers, (�(n)) is a sequence of integers such that

�(n) � n for all n � 0 and lim
n!1

�(n) =1

and � denotes the forward di¤erence operator �x(n) = x(n + 1) � x(n).
Examples illustrating the results are also given.
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ment, sublinear di¤erence equation, superlinear di¤erence equation.
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1. INTRODUCTION

Consider the �rst order nonlinear di¤erence equation of the form

�x(n) + p(n)x� (�(n)) = 0; n 2 N, (E)

where � 2 (0;1) is a ratio of odd positive integers, (p(n)) is a sequence of nonneg-
ative real numbers, (�(n)) is a sequence of integers such that

�(n) � n and lim
n!1

�(n) =1 (1.1)

and, � denotes the forward di¤erence operator �x(n) = x(n+ 1)� x(n):
If 0 < � < 1, then (E) is called sublinear equation (see [17] and the references

cited therein), while, if � > 1; then (E) is called superlinear equation (see [17] and
the references cited therein).
In case where � = 1; (E) reduces to the linear retarded di¤erence equation (see

[1�13, 15, 18-19] and the references cited therein)
�x(n) + p(n)x (�(n)) = 0; n 2 N: (1.2)

The problem of establishing su¢ cient conditions for the oscillation of all solutions
of (1.2) has been the subject of many investigations. See [1-20] and the references
cited therein.
In 1998, Zhang and Tian [20] proved that, if (�(n)) is not necessarily monotone

and

lim sup
n!1

p(n) > 0 and lim inf
n!1

n�1X
j=�(n)

p(j) >
1

e
; (1.3)

then all solutions of (1.2) oscillate.
1
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2 ÖZKAN ÖCALAN

In 2008, Chatzarakis, Koplatadze and Stavroulakis [3, 4], when (�(n)) is not
necessarily monotone, studied the equation (1.2) and proved that, if one of the
following conditions

lim sup
n!1

nX
j=h(n)

p(j) > 1, where h(n) = max
0�s�n

�(s), n � 0, (1.4)

or

lim sup
n!1

n�1X
j=�(n)

p(j) <1 and lim inf
n!1

n�1X
j=�(n)

p(j) >
1

e
(1.5)

is satis�ed, then all solutions of (1.2) oscillate.
In [15], Öcalan proved that if (�(n)) is not necessarily monotone and

lim inf
n!1

n�1X
j=�(n)

p(j) >
1

e
; (1.6)

then all solutions of (1.2) oscillate.
In 2019, Karpuz [10] obtained that if (�(n)) is not necessarily monotone and

nX
j=�(n)

p(j) � 1

e
for all large n;

then (1.2) has a nonoscillatory solution.
De�ne

k = �min
n�0

�(n).

(Clearly, k is a positive integer.)
By a solution of the di¤erence equation (E), we mean a sequence of real numbers

(x(n))n��k which satis�es (E) for all n � 0. It is clear that, for each choice of real
numbers c�k; c�k+1; :::; c�1; c0; there exists a unique solution (x(n))n��k of (E)
which satis�es the initial conditions x(�k) = c�k; x(�k+1) = c�k+1; :::; x(�1) =
c�1; x(0) = c0:
A solution (x(n))n��k of the di¤erence equation (E) is called oscillatory, if the

terms x(n) of the sequence are neither eventually positive nor eventually negative.
Otherwise, the solution is said to be nonoscillatory.
Strong interest in Eq. (E) is motivated by the fact that it represents a discrete

analogue of the di¤erential equation

x0(t) + p(t)x� (�(t)) = 0; t � t0, (1.7)

where p 2 C([t0;1); [0;1)); � 2 C([t0;1);R), �(t) < t and � 2 (0;1). See [6
(page 168-175), 13 (page 90-91), 17] and the references cited therein.
If �(n) = n� ` where ` 2 N; Eq. (E) takes the form

�x(n) + p(n)x� (n� `) = 0; n 2 N. (E0)

In 2001, Tang and Liu [17] studied for the �rst time the di¤erence equation (E0)
and established the following theorems:

Theorem 1.1 (See [17, Theorem 1]). Assume that 0 < � < 1. Then all
solutions of (E0) oscillate if and only if

1X
n=0

p(n) =1: (1.8)
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SUBLINEAR AND SUPERLINEAR DIFFERENCE EQUATIONS 3

Note that condition (1.8) shows that the oscillation of all solutions of the sub-
linear equation (E0) is determined only by the coe¢ cient p(n); and is independent
of the retarded argument `.

Theorem 1.2 (See [17, Theorem 2]). Assume that � > 1: Then the following
conclusions hold.
(i) If there exists a � > `�1 ln� such that

lim inf
n!1

�
p(n) exp(�e�n)

�
> 0; (1.9)

then all solutions of (E0) oscillate.
(ii) If

(pn; pn+1; : : : ; pn+`�1) 6� 0 for large n (1.10)

and there exists a � < `�1 ln� such that

lim sup
n!1

[p(n) exp(�e�n)] <1; (1.11)

then (E0) has an eventually positive solution.

In this paper, our aim is to study further (E) and present some results on the
oscillatory and nonoscillatory behavior of the solutions. These results are the im-
proved and generalized discrete analogues of the results for the corresponding dif-
ferential equation, which was studied in 2001 by Tang and Liu [17] and in 2002 by
Tang [18]. Examples illustrating the results are also given.

2. SUBLINEAR EQUATION

In this section we investigated the oscillatory and nonoscillatory behavior of Eq.
(E) in the case where 0 < � < 1:

Theorem 2.1. Assume that (1.1) holds and (�(n)) is not necessarily monotone.
Further assume that 0 < � < 1: Then all solutions of (E) oscillate if and only if

1X
n=0

p(n) =1: (2.1)

Proof. Su¢ ciency. Suppose to the contrary that (x(n)) is an eventually positive
solution of (E). Then there exists a n1 2 N such that x(n); x (�(n)) > 0 and
�x(n) � 0 for n � n1: Therefore, (E) and (2.1) imply that limn!1 x(n) = 0: On
the other hand, by means of the mean value theorem, we have

x1��(n)� x1��(n+ 1) � (1� �)x��(n) [x(n)� x(n+ 1)] : (2.2)

Since (x(n)) is nonincreasing, from equation (E), we obtain

x(n)� x(n+ 1) = p(n)x� (�(n)) � p(n)x� (n) : (2.3)

So, by (2:2) and (2:3), we get

x1��(n)� x1��(n+ 1) � (1� �)x��(n) [x(n)� x(n+ 1)] � (1� �)p(n); n � n1:
(2.4)

Summing (2:4) from n1 to 1 and using (2:1); we obtain

x1��(n1) � (1� �)
1X

n=n1

p(n) =1:

This is a contradiction.
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Necessity. Suppose to the contrary that (2:1) is not true. Then there exists a
n2 2 N such that

1X
n=n2

p(n) � 1

2
: (2.5)

De�ne a sequence (y(n)) as follows:

y(n) =
1

2
+

1X
i=n

p(i); n � n2: (2.6)

From (2:5) and (2:6), we have 1=2 � y(n) � 1 for n � n2 and

y(n) � 1

2
+

1X
i=n

p(i)y� (�(i)) ; n � n3 � n2: (2.7)

From the proof of Lemma 2.2 in [14] and (2:7), it is not di¢ cult to show that the
corresponding equation

x(n) =
1

2
+

1X
i=n

p(i)x� (�(i)) ; n � n3 (2.8)

has an eventually positive solution (x(n)): From (2:8), we can write that

x(n+ 1) =
1

2
+

1X
i=n+1

p(i)x� (�(i)) ; n � n3: (2.9)

Obviously, from (2:8) and (2:9); we have equation (E). Therefore, we get that (x(n))
is also an eventually positive solution of (E), leading to a contradiction, and so the
proof is complete.

Example 2.1. Consider the di¤erence equation

�x(n) + p(n)x1=3(�(n)) = 0; n � 1. (2.10)

Here,

�(n) =

�
n; n is odd
n
2 ; n is even

:

Clearly, �(n) � n and limn!1 �(n) = 1, i.e., (1.1) holds. If we take p(n) = 1
n ,

then it is easy to see that
1X
n=1

p(n) =
1X
n=1

1
n = 1, which means that (2.1) holds.

Thus all conditions of Theorem 2.1 are satis�ed and therefore all solutions of (2.10)

oscillate. On the other hand, if we take p(n) = 1
n2 ; then

1X
n=1

p(n) =
1X
n=1

1
n2 < 1;

which due to Theorem 2.1, we obtain that every solution of (2.10) is nonoscillatory.

3. SUPERLINEAR EQUATION

In this section we investigated the oscillatory and nonoscillatory behavior of Eq.
(E) in the case where � > 1: To prove the following theorems, we need the following
lemmas.
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SUBLINEAR AND SUPERLINEAR DIFFERENCE EQUATIONS 5

Lemma 3.1. Assume that (1.1) holds with p(n) � 0; p(n) 6� 0; � > 0; � is a
quotient of odd positive integers. Then (E) has an eventually positive solution if
and only if the corresponding inequality

�x(n) + p(n)x� (�(n)) � 0; n 2 N
has an eventually positive solution.

Also, Eq. (E) has an eventually negative solution if and only if the corresponding
inequality

�x(n) + p(n)x� (�(n)) � 0; n 2 N
has an eventually negative solution.

Proof. Su¢ ciency. This part is the same as [14, Lemma 2.2].

.Necessity This part is trivial, since any eventually positive solution of (E) sat-
is�es �x(n) + p(n)x� (�(n)) � 0; n 2 N too.
Moreover, the proof of second chapter of the lemma is obtained in a similar way

to the proof of �rst chapter, which we omit it. The proof is complete
Associated with (E), we consider the following equation

�x(n) + q(n)x� (�(n)) = 0; n 2 N; (3.1)

where (q(n)) is a sequence of nonnegative real numbers.
Applying Lemma 3.1, we have the following.

Lemma 3.2. Assume that (1.1) holds with p(n) � 0; p(n) 6� 0 and
p(n) � q(n):

If every solution of (E) oscillates, then every solution of (3.1) oscillates.

Theorem 3.1. Assume that (1.1) holds and that � > 1; ��(n) � 0: Further
suppose that there exists a sequence ('(n)) such that

�'(n) > 0 and lim
n!1

'(n) =1; (3.2)

lim sup
n!1

��'(�(n))

�'(n)
< 1; (3.3)

and

lim inf
n!1

�
p(n)

e�'(n)

�'(n)

�
> 0: (3.4)

Then all solutions of (E) oscillate.

Proof. By (3.2), (3.3) and Discrete l�Hospital�s rule [1, Theorem 1.8.7] , we have

lim sup
n!1

�'(�(n))

'(n)
� lim sup

n!1

��'(�(n))

�'(n)
< 1: (3.5)

It follows from (3.5) that there exists 0 < k < 1; n � n1 such that

��'(�(n))

�'(n)
� k; and

�'(�(n))

'(n)
� k: (3.6)

Because of (3.4), there exists a n2 � n1 such that

p(n)
e�'(n)

�'(n)
� c > 0 for n � n2;

and so we have
p(n) � c�'(n)e'(n); n � n2: (3.7)
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Set
q(n) = c�'(n)e'(n): (3.8)

By Lemma 3.2, it is su¢ cient to prove that every solution of equation (3.1) oscillates.
Assume the contrary, and let (x(n)) be an eventually positive solution of (3.1).
Then there exists a n3 � n2 such that �x(n) � 0; for n � n3; which means that
(x(n)) is nonincreasing and has a limit l � 0: Now, we claim that limn!1 x(n) = 0;
otherwise, limn!1 x(n) = l > 0: Hence, by using this facts, we have

0 < l � " � x(n) � l + "; n � n4; (3.9)

where " is an arbitrary real number. Since � > 1 and (x(n)) is nonincreasing; from
(3.1), (3.8) and (3.9), we get

�x(n) + c�'(n)e'(n)x (n) � 0; for n � n4;

or
�x(n) + c(l � ")�'(n) � 0; for n � n4: (3.10)

Summing up (3.10) from a to 1, and since limn!1 '(n) =1; then we obtain
l � a+ c(l � ") [1� '(a)] � 0;

which is a contradiction, and so our claim is true.
Let y(n) = � lnx(n) for n � n5: So, since (x(n)) is nonincreasing and limn!1 x(n) =

0, it follows that (y(n)) is nondecreasing and limn!1 y(n) =1: Then, from (3.1)
we have

1� ey(n)�y(n+1) = q(n)ey(n)��y(�(n)) � 0; n � n5: (3.11)

Consequently, we obtain

�y(n) � q(n)ey(n)��y(�(n)); n � n5: (3.12)

Therefore, since (y(n)) is nondecreasing, we have the following two possible cases.

Case 1. y(n)� �y (�(n)) � 0 for n � n6: Then, from (3.6), we obtain

y(n)

'(n)
� �y (�(n))

'(n)
=
�'(�(n))

'(n)

y (�(n))

'(�(n))
� k

y (�(n))

'(�(n))
; n � n6: (3.13)

Set z(n) = y(n)
'(n) : Then, from (3.13), we have

z(n) � kz(�(n)); n � n6; (3.14)

which implies that z(�(n)) � z(n) for n � n6: Thus, it follows from this facts that
all subsequences of (z(n)) are nonincreasing. Now, we claim that

lim
n!1

z(n) = 0: (3.15)

Otherwise, there exists a sequence fnpg such that np ! 1 as p ! 1 and
limp!1 z(np) = b > 0: Hence, from (3.14) we have

z(np) � kz(�(np)); n � n6: (3.16)

By taking limit p!1 1 in (3.16), we get

b � kb:

Since 0 < k < 1; this is a contradiction. Therefore, (3.15) is true. From (3.15), it
follows that

y(n) <
1

1 + �
'(n); n � n7: (3.17)
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SUBLINEAR AND SUPERLINEAR DIFFERENCE EQUATIONS 7

Thus, since (y(n)) is nondecreasing, from (3.8), (3.12) and (3.17), we obtain

�y(n) � q(n)e�(��1)y(�(n)) � q(n)e�(��1)'(�(n))=(1+�) > �'(n); n � n7:

It follows that
y(n) > '(n) + y(n7)� '(n7); for n � n7: (3.18)

Therefore, from (3.18), we get

y(n)

'(n)
> 1 +

y(n7)� '(n7)
'(n)

; n � n7: (3.19)

Taking the limit as n!1 in (3.19), we obtain

lim
n!1

z(n) = 0 � 1;

which is a contradiction.

Case 2. y(n) � �y (�(n)) > 0 for n � n6: Thus, we have y(n) > �y (�(n)) for
n � n6: Now, we consider the following possible case for �(n); for some n � n7
(or for all n � n7) n � 1 � �(n) � n and for some n � n7 (or for all n � n7)
�(n) < n� 1:
First, we consider, for some n � n7 (or for all n � n7) n � 1 � �(n) � n. It

is clear that since ('(n)) is increasing, we get '(n � 1) � '(�(n)) and from (3.6)
�'(�(n))

k � '(n); where �
k > 1: Thus, for n � n7 we obtain

�'(n� 1) = '(n)� '(n� 1) � �'(�(n))

k
� '(n� 1)

� �'(�(n))

k
� '(�(n)) � '(�(n))

h�
k
� 1
i
> 0;

and so we have

�'(n) � '(�(n+ 1))
h�
k
� 1
i
> 0; n � n8: (3.20)

Thus, since limn!1 '(n) =1; from (3.20), we obtain

lim
n!1

�'(n) =1:

Secondly, we consider, for some n � n7 (or for all n � n7) �(n) < n�1:Now, we can
�nd a sequence ('(n)) such that conditions (3.2) and (3.6) are satis�ed. Indeed, if
we take '(n) = e

�
k n; then it is clear that (3.2) is satis�ed. Moreover, since

'(n)

' (�(n))
= e

�
k [n��(n)] � �

k
[n� �(n)]e > �

k
; for n � n7;

we have the condition (3.6). On the other hand, we observe that

�'(n) = '(n+ 1)� '(n) = e
�
k (n+1)

�
e� 1
e

�
; for n � n7;

and we get
lim
n!1

�'(n) =1: (3.21)

Then for every case of (�(n)) we have that there is a sequence ('(n)) such that
(3.21) holds. It follows from (3.8), (3.11) and (3.21) that

1 > q(n)ey(n)��y(�(n)) > q(n) > 1; n � n8:

This is a contradiction. If there exists an eventually negative solution (x(n)) of (E),
then the proof can be done similarly as above. The proof is complete.
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Theorem 3.2. Assume that (1.1) holds and that � > 1; ��(n) � 0: Further
suppose that there exists a sequence ( (n)) such that

� (n) > 0 and lim
n!1

 (n) =1; (3.22)

lim inf
n!1

�� (�(n))

� (n)
> 1; (3.23)

and

lim sup
n!1

�
p(n)

e� (n)

� (n)

�
<1: (3.24)

Then (E) has a nonoscillatory solution.

Proof. By (3.23) and Discrete l�Hospital�s rule [1, Theorem 1.8.7], we get

lim inf
n!1

� (�(n))

 (n)
� lim inf

n!1

�� (�(n))

� (n)
> 1; n � n1;

and
� (�(n))

 (n)
� L > 1; n � n1: (3.25)

By (3.24), we have

p(n) � L

L� 1� (n)e
L (n); n � n1; (3.26)

Let x(n) = e�
L
L�1 (n) for n � n1: Thus,

x(n+ 1)� x(n) + p(n)x� (�(n))
= e�

L
L�1 (n+1) � e� L

L�1 (n) + p(n)e��
L
L�1 (�(n))

= = e��
L
L�1 (�(n))

h
p(n)� e� L

L�1 (�(n))�
L
L�1 [ (n)+ (n+1)]

�
e

L
L�1 (n+1) � e L

L�1 (n)
�i

� e��
L
L�1 (�(n))

h
p(n)� e L

L�1 [� (�(n))� (n)]
�
e

L
L�1 (n+1) � e L

L�1 (n)
�i
: (3.27)

Thus, since x � lnx and ln (ex � ey) � ln ex � ln ey for x > y > 0; n � n2; from
(3.27) we get

x(n+ 1)� x(n) + p(n)x� (�(n))

� e��
L
L�1 (�(n))

h
p(n)� e L

L�1 [� (�(n))� (n)] ln
�
e

L
L�1 (n+1) � e L

L�1 (n)
�i

� e��
L
L�1 (�(n))

h
p(n)� e L

L�1 [� (�(n))� (n)]
�
ln e

L
L�1 (n+1) � ln e L

L�1 (n)
�i

= e��
L
L�1 (�(n))

�
p(n)� L

L� 1� (n)e
L
L�1 [� (�(n))� (n)]

�
= e��

L
L�1 (�(n))

�
p(n)� L

L� 1� (n)e
(� (�(n)) (n)

�1) L
L�1 (n)

�
: (3.28)

Also, from (3.25) we have

� (�(n))

 (n)
� 1 � L� 1

and �
� (�(n))

 (n)
� 1
�

L

L� 1 � L: (3.29)
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SUBLINEAR AND SUPERLINEAR DIFFERENCE EQUATIONS 9

So, from (3.28) and (3.29) we obtain

x(n+ 1)� x(n) + p(n)x� (�(n))

� e��
L
L�1 (�(n))

�
p(n)� L

L� 1� (n)e
L (n)

�
� 0; n � n2: (3.30)

This shows that the inequality (3.30) has an eventually positive solution. In view of
Lemma 3.1, the corresponding equation (E) also has an eventually positive solution.
Using the same process above, it is easy to see that under the assumption (3.22),

(3.23) and (3.24), if we choose x(n) = �e� L
L�1 (n) for n � n1; then equation (E)

has an eventually negative solution. The proof is complete.
Now, we have the following result.

Corollary 3.1. Assume that � > 1 and �(n) = n� ` where ` 2 N. Then,
(a) If there exists a � > `�1 ln� such that lim infn!1

�
p(n) exp(�e�n)

�
> 0,

then Theorem 3.1 implies Theorem 1:2 (i):
(b) If there exists a � < `�1 ln� such that lim sup

n!1
[p(n) exp(�e�n)] < 1; then

Theorem 3.2 implies Theorem 1:2 (ii):

Proof. (a) Let �1 2
�
l�1 ln�; �

�
and let '(n) = e�1n: Then,

�'(n) = e�1n
�
e�1 � 1

�
> 0; lim

n!1
'(n) =1;

and

lim sup
n!1

��'(�(n))

�'(n)
=

�

e�1l
< 1:

These show that conditions (3.2) and (3.3) in Theorem 3.1 hold. In addition, it is
easy to see that for large n

�1n+ e
�1n < e�n:

Thus, from (1.9), we obtain

lim inf
n!1

�
p(n)

e�'(n)

�'(n)

�
=

1

(e�1 � 1) lim infn!1

�
p(n) exp

�
�e�1n � �1n

��
� 1

(e�1 � 1) lim infn!1

h
p(n) exp

�
�e

�n
�i

> 0;

which shows that condition (3.4) in Theorem 3.1 also holds. Hence, in view of
Theorem 3.1, every solution of (E0) oscillates.
(b) Let �1 2

�
�; `�1 ln�

�
and let  (n) = e�1n: Then,

� (n) = e�1n (e�1 � 1) > 0; lim
n!1

 (n) =1;

and

lim inf
n!1

�� (�(n))

� (n)
=

�

e
�1l

> 1:

These show that conditions (3.22) and (3.23) in Theorem 3.2 hold. On the other
hand, from (1.11) we have

lim sup
n!1

�
p(n)

e� (n)

� (n)

�
=

1

(e�1 � 1) lim supn!1
[p(n) exp (�e�1n � �1n)]

� 1

(e�1 � 1) lim supn!1

h
p(n) exp

�
�e

�n
�i

<1;
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which shows that condition (3.24) in Theorem 3.2 also holds. Hence, in view of
Theorem 3.2, (E0) has an eventually positive solution.

Example 3.1. Consider the di¤erence equation

�x(n) + enx5=3(�(n)) = 0; n � 1, (3.31)

Here, � = 3; p(n) = en and

�(n) =

�
n�1
2 ; n is odd
n
2 ; n is even

:

Clearly, �(n) � n; limn!1 �(n) =1 and ��(n) � 0: If we take '(n) = n; then it
is easy to see that

�'(n) = 1 > 0 and lim
n!1

'(n) =1;

and

lim sup
n!1

��'(�(n))

�'(n)
=
5

6
< 1;

and

lim inf
n!1

�
p(n)

e�'(n)

�'(n)

�
= lim inf

n!1

�
ene�n

�
= 1 > 0;

which means that (3.2), (3.3) and (3.4) hold. Thus all conditions of Theorem 3.1
are satis�ed and therefore all solutions of (3.31) oscillate. We should point out that
no paper in the literature answers this example.

Example 3.2. Consider the di¤erence equation

�x(n) + enx5=3(�(n)) = 0; n � 1, (3.32)

Here, � = 5=3; p(n) = en and

�(n) =

� �
n� 1

n

�
; n is odd

n; n is even
;

where
�
n� 1

n

�
denotes the greatest integer m �

�
n� 1

n

�
; n = 1; 3; : : : : Clearly,

�(n) � n; limn!1 �(n) = 1 and ��(n) � 0: If we take '(n) = n; then it is easy
to see that

�'(n) = 1 > 0 and lim
n!1

'(n) =1;

and

lim inf
n!1

��'(�(n))

�'(n)
=
5

3
> 1;

and

lim sup
n!1

�
p(n)

e�'(n)

�'(n)

�
= lim sup

n!1

�
ene�n

�
= 1 <1;

which means that (3.22), (3.23) and (3.24) hold. Thus all conditions of Theorem
3.2 are satis�ed and therefore (3.32) has a nonoscillatory solution. We should point
out that no paper in the literature answers this example.
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