
GENERALIZATIONS OF AN IDENTITY OF N-P. SKORUPPA

PANZONE PABLO ANDRES

Abstract. N-P. Skoruppa gave a completely elementary proof for identities
involving the divisor sums showing the hidden pattern behind all of those

identities. In a similar spirit, we extend his ideas to obtain other identities.

1. Introduction

In [Sko] the following identity was proved.

Theorem 1. (Skoruppa’s Identity) Let h(x, y) be a function of integer argu-
ments such that h(x, y) = h(y, y − x). Then for any positive integer ℓ

∑

ax+by=ℓ

h(a, b)− h(a,−b) =
∑

t|ℓ





ℓ

t
h(t, 0)−

t−1
∑

j=0

h(t, j)



 ,

where the sum on the left is understood to run over all quadruples of positive integers
which satisfy the given condition and on the right t runs over all positive divisors
of ℓ.

This beautiful identity can be used to give quick proofs from scratch of Eisenstein
series identities avoiding the use of modular forms. Proofs of such identities had
been given by J. Liouville, S. Ramanujan, B. van der Pol and R. Rankin, see
bibliography in [Sko], chapter 4 and bibliography in [Be]. Also see [Ra] and [Ra1].
A generalization of the above identity was obtained in [By]. Also, Huard, Ou,
Spearman and William proved a far reaching generalization of Liouville’s identity.
In fact Skoruppa’s identity is a special case of their result. See chapter 13 of the
masterpiece [W] and the references therein.

The proof of the theorem is based on the following lemma for which we need
some definitions. Let ℓ be a positive integer. For any pair a, b of positive integers
we define Λℓ(a, b) to be the number of pairs of positive integers (x, y) such that
ax+ by = ℓ. We extend the definition of Λℓ(a, b) for any pair of integers as follows:
if ab 6= 0 then

Λℓ(a, b) = sign(ab)Λℓ(|a|, |b|),

and Λℓ(a, b) = 0 if ab = 0.

Lemma 1. (Lemma, [Sko]) For any triple of integers a, b, c such that a+ b+ c = 0
one has

Λℓ(a, b) + Λℓ(b, c) + Λℓ(a, c) =











1, if abc 6= 0 and t|ℓ

1− ℓ/t, if abc = 0 and t 6= 0, t|ℓ

0, otherwise,

(1)
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2 PANZONE PABLO ANDRES

where t = max {|a|, |b|, |c|} .

The aim of this note is to give some generalizations of this lemma and the above
theorem. Our first result is the following theorem.

Theorem 2. Let h(x, y) be a function of integer arguments such that h(x, y) =
h(y, y − x) and let r be a real parameter. Then for any positive integer ℓ

∑

ax+by=ℓ

h(a, b)xr +
∑

ax+by=ℓ; b>a

h(a, b)(yr − xr)

+
∑

ax+by=ℓ

h(a, b)(x+ y)r −
∑

ax+by=ℓ

(h(a,−b) + h(b,−a)) yr

=
∑

t|ℓ















ℓ/t−1
∑

i=1

ir



+

(

ℓ

t

)r (
ℓ

t
− 1

)







h(t, 0)− 2

(

ℓ

t

)r t−1
∑

j=1

h(t, j)



 ,

where the sums on the left are understood to run over all quadruples of positive
integers which satisfy the given conditions and on the right t runs over all positive
divisors of ℓ.

Here and in what follows we denote, as usual, σj(n) :=
∑

a|n a
j , the sum of the

j powers of the divisors of n.
Observe that for a generic function f(a, b) one has

∑

ax+by=ℓ

f(a, b)yrxr′ =

ℓ−1
∑

k=1

∑

a|(ℓ−k)

∑

b|k

f(a, b)

(

k

b

)r (
ℓ− k

a

)r′

,

(this is easy to prove if one sets by = k, ax = ℓ− k) and therefore

∑

ax+by=ℓ

ar1br2yrxr′ =
ℓ−1
∑

k=1

kr(ℓ− k)r
′

σr2−r(k)σr1−r′(ℓ− k).

If 2 ≤ n is an even positive integer and Bn is the nth Bernoulli number then

Gn = Gn(q) := −
Bn

2n
+

∞
∑

ℓ=1

σn−1(ℓ)q
ℓ,

is the nth Eisenstein series. Any Eisenstein series or derivatives of the form
(qd/dq)kGn can be expressed as a polynomial in G2, G4 and G6 ([Sko], [Be]).

For n = 0, 1, 3 we set

Gn = Gn(q) :=
∞
∑

ℓ=1

σn−1(ℓ)q
ℓ,

and (here e(x) := e2πix)

G±
n = G±

n (q, x) :=

∞
∑

k=1





∑

a|k

an−1e(±ax)



 qk.
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GENERALIZATIONS OF AN IDENTITY OF N-P. SKORUPPA 3

Write for short G±
n (q, x) = G±

n and set

F (q, x) := G+
3 q

d

dq
G−

0 −G+
2 q

d

dq
G−

1 +G+
1 q

d

dq
G−

2

−

(

q
d

dq
G+

2

)

G−
1 +

(

q
d

dq
G+

1

)

G−
2 −

(

q
d

dq
G+

0

)

G−
3 .

The following corollary is a particular case of Theorem 2.

Corollary 1. Let e(x) := e2πix and 0 < r < 1. The following formula holds:

−5

(

q
d

dq
G1

)

G2 +G2G3 +

(

q
d

dq
G2

)

G1 + lim
r→1−

∫ 1

0

F (q, x)

1− re(x)
dx

= q
d

dq

(

3

2
q
d

dq
G1 −

1

8
G1 +

1

2
G2 −

5

3
G3

)

−
G3

24
.

We also prove the following theorems, the first is an easy consequence of Sko-
ruppa’s identity.

Theorem 3. Let h(x, y, z) be a function of integer arguments such that h(x, y, z) =
h(y, y − x, z). Then for any positive integer ℓ

∑

ax+by+cz=ℓ

h(a, b, c)− h(a,−b, c) =

ℓ−2
∑

cz=1

∑

t|(ℓ−cz)





(ℓ− cz)

t
h(t, 0, c)−

t−1
∑

j=0

h(t, j, c)



 ,

where the sum on the left is understood to run over all sextuples of positive integers
which satisfy the given condition. The first sum on the right-hand side is understood
over all positive integers c and z whose product runs from 1 to ℓ− 2.

Set

α(x, y, z) :=











1, if x 6= y, y 6= z, x 6= z,

0, if only two variables are equal,

−2, if x = y = z.

(2)

With this definition one has the following result.

Theorem 4. Assume that ℓ is a positive integer and that h(x, y, z) is an integer-
valued function which satisfies h(x, y, z) = h(y,−2x+ y − z, x− y + z). Then

∑

ax+by+cz=ℓ
a<b<c

h(a+ c, a,−b) +
∑

ax+by+cz=ℓ
a<c<b

h(a,−c− b, c− a)

+
∑

ax+by+cz=ℓ
b<a<c

h(a+ c− b, a− b,−a) +
∑

ax+by+cz=ℓ
b<a<c

h(b, 2c− a, c− 2b)

+
∑

ax+by+cz=ℓ
a<b<c

h(b− a,−b− c, a) +
∑

ax+by+cz=ℓ
a<b<c

h(b− a, 2c− b, c− 2b+ 2a)

−
∑

ax+by+cz=ℓ

α(x, y, z)h(a,−2a− b− 2c, c)

= 2
∑

t|ℓ

i+j<t
∑

i,j=1

h(i,−i− j − t, j),(3)
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4 PANZONE PABLO ANDRES

where the sums on the left are understood to run over all sextuples of positive
integers which satisfy the given conditions and on the right t runs over all positive
divisors of ℓ.

Concerning the condition on h on the last theorem one should observe that if
p(x, y, z) is any integer-valued function then

h(x, y, z) := p(y,−2x+ y − z, x− y + z) + p(−2x+ y − z,−3x− 2z, 3x− y + 2z)

+ p(−3x− 2z,−2x− y − 2z, 4x+ 3z) + p(−2x− y − 2z,−y − z, 3x+ y + 3z)

+ p(−y − z, x, x+ y + 2z) + p(x, y, z),

verifies the condition of the theorem. For example, taking p(x, y, z) as −x/6, x2/2,
xy/2 one obtains

h(x, y, z) = x+ z,

h(x, y, z) = 9x2 + 2y2 + 12xz + 2yz + 5z2,

h(x, y, z) = 6x2 + y2 + 9xz + yz + 4z2,

respectively.
To state our final result we need a definition: if i is an integer and given a

polynomial

p(u) = dnu
n + dn−1u

n−1 + · · ·+ d0,

we define

pℓ,i := dnσn+i(ℓ) + dn−1σn+i−1(ℓ) + · · ·+ d0σi(ℓ).

Theorem 5. If ℓ is a positive integer and p(u) is a polynomial then

−
∑

ax+by+cz=ℓ

α(x,y, z)p(a+ b+ c) + 3
∑

ax+by+cz=ℓ
c>max(a,b); a 6=b

p(c)

= pℓ,2 − 3 pℓ,1 + 2 pℓ,0.

2. Proof of Theorem 2

With r a real parameter and given a, b, ℓ positive integers we set Λr
ℓ,1(a, b) :=

∑

ax+by=ℓ y
r and Λr

ℓ,2(a, b) :=
∑

ax+by=ℓ(x + y)r where the sums are understood

as above, that is, over all pairs of positive integers (x, y) such that ax + by = ℓ.
Observe that Λ0

ℓ,1(a, b) = Λℓ(a, b), Λ
r
ℓ,2(a, b) = Λr

ℓ,2(b, a) and in general Λr
ℓ,1(a, b) 6=

Λr
ℓ,1(b, a). If a, b ≥ 0 and ab = 0 then we extend the definition as Λr

ℓ,1(a, b) =

Λr
ℓ,2(a, b) = 0.

Lemma 2. For integers a, b ≥ 0 the following holds:

Λr
ℓ,1(a, b)− Λr

ℓ,1(a, a+ b)− Λr
ℓ,2(b, a+ b) =























(

ℓ
a+b

)r

, if ab 6= 0 and (a+ b)|ℓ,

−
∑ℓ/a−1

i=1 ir, if b = 0 and a 6= 0, a|ℓ,

−
(

ℓ
b

)r ( ℓ
b − 1

)

, if a = 0 and b 6= 0, b|ℓ,

0, otherwise.
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GENERALIZATIONS OF AN IDENTITY OF N-P. SKORUPPA 5

Proof. If a = b = 0 the lemma is trivially true. If a, b are positive integers then one
has

∑

az+bw=ℓ;z>w wr =
∑

ax+(a+b)y=ℓ y
r = Λr

ℓ,1(a, a + b) via (x, y) = (z − w,w).

Also
∑

az+bw=ℓ;w>z w
r =

∑

bx+(a+b)y=ℓ(x + y)r = Λr
ℓ,2(b, a + b) via (x, y) = (w −

z, z). Therefore

Λr
ℓ,1(a, b)− Λr

ℓ,1(a, a+ b)− Λr
ℓ,2(b, a+ b) =

∑

az+bw=ℓ;z=w

wr,

which is
(

ℓ
a+b

)r

or 0 as (a+ b)|ℓ or not. This proves the first case of the lemma.

If a = 0, b > 0 then the left-hand side of the lemma is

−Λr
ℓ,2(b, b) = −

∑

bx+by=ℓ

(x+ y)r,

while if b = 0, a > 0 the left-hand side of the lemma is

−Λr
ℓ,1(a, a) = −

∑

ax+ay=ℓ

yr,

which proves the lemma. �

Proof. (of the theorem) Interchange a and b in the last lemma and add to the same
lemma to yield that (*): if a, b ≥ 0

Λr
ℓ,1(a, b) + Λr

ℓ,1(b, a)−Λr
ℓ,1(a, a+ b)−Λr

ℓ,1(b, a+ b)−Λr
ℓ,2(b, a+ b)−Λr

ℓ,2(a, a+ b)

=















2
(

ℓ
a+b

)r

, if ab 6= 0 and (a+ b)|ℓ,

−
∑ℓ/(a+b)−1

i=1 ir −
(

ℓ
a+b

)r (
ℓ

a+b − 1
)

, if ab = 0, a+ b 6= 0 and (a+ b)|ℓ,

0, otherwise.

Let δa,b(x, y) be an integer argument function whose value is 1 or 0 as (a, b) =
(x, y) or not (i.e. a Dirac delta at (a, b)). We write for short δa,b = δa,b(x, y).
For integers a, b we define the operator Uδa,b(x, y) = δb,b−a(x, y) and given a
Dirac delta δa,b we define an integer-valued function by Lδa,b := Lδa,b(x, y) =
∑5

i=0 U
iδa,b(x, y). Observe that U6δa,b(x, y) = δa,b(x, y) and Lδa,b(y, y − x) =

Lδa,b(x, y). In other words Lδa,b(x, y) is a function which equal to 1 if (x, y) belongs
to the orbit of (a, b) and is equal to zero if not. The orbit of (a, b) is the set of
points obtanied by applying (a, b) → (b, b − a) repeatedly (the operator U above)
and has six points unless a = b = 0. The orbits of two different points either are
equal or are disjoint.

Now take a, b ≥ 0 and

h(x, y) = Lδa,−b = δa,−b + δ−b,−b−a + δ−b−a,−a + δ−a,b + δb,b+a + δb+a,a,

so that h(x, y) = h(y, y − x). Set

S1 :=
∑

a0x+b0y=ℓ;a0>b0

h(a0, b0)x
r+

∑

a0x+b0y=ℓ;a0<b0

h(a0, b0)(x+y)r−
∑

a0x+b0y=ℓ

h(a0,−b0)y
r,

S2 :=
∑

a0x+b0y=ℓ;b0>a0

h(a0, b0)y
r+

∑

a0x+b0y=ℓ;a0>b0

h(a0, b0)(x+y)r−
∑

a0x+b0y=ℓ

h(b0,−a0)y
r,

so that with the above choice of h

S1 = Λr
ℓ,1(a, a+ b) + Λr

ℓ,2(b, a+ b)− Λr
ℓ,1(a, b),

S2 = Λr
ℓ,1(b, a+ b) + Λr

ℓ,2(a, a+ b)− Λr
ℓ,1(b, a),
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6 PANZONE PABLO ANDRES

if a, b > 0. Also S1 = S2 = 0 if ab = 0.
Finally,

S3 :=
∑

a0x+b0y=ℓ;a0=b0

h(a0, b0)x
r +

∑

a0x+b0y=ℓ;a0=b0

h(a0, b0)(x+ y)r

is equal to Λr
ℓ,1(b, b)+Λr

ℓ,2(b, b) if a = 0, b > 0 (or Λr
ℓ,1(a, a)+Λr

ℓ,2(a, a) if b = 0, a > 0)
or is equal to 0 otherwise.

Note that S1+S2+S3 is the left-hand side of the formula stated in the theorem.
Formula (*) yields that the theorem is true for this particular choice of h. By
linearity the function h0 :=

∑

(a,b);a,b≥0 const(a, b)h, a linear sum of such h, satisfies

the theorem too.
Finally, notice that for any h1 with h1(x, y) = h1(y, y−x) one can find constants

const(a, b) so that h0(x, y) = h1(x, y) whenever (x, y) is in the range of the theorem.
This ends the proof.

�

3. Proof of the corollary

Set h(x, y) = x2 − xy + y2, r = 1 in Theorem 2. One obtains: If ℓ is a positive
integer then

(4)

− 5

ℓ−1
∑

k=1

(ℓ− k)σ0(ℓ− k)σ1(k) +

ℓ−1
∑

k=1

k σ−1(k)σ2(ℓ− k)

+

ℓ−1
∑

k=1

k σ1(k)σ0(ℓ− k) +

ℓ−1
∑

k=1

∑

a|(ℓ−k); b|k; b>a

(a2 − ab+ b2)

(

k

b
−

ℓ− k

a

)

=
3

2
ℓ2σ0(ℓ)−

1

3
ℓσ0(ℓ) +

1

2
ℓσ1(ℓ)−

5

3
ℓσ2(ℓ),

where σj(n) :=
∑

i|n i
j . We remark that the double sum in this formula corresponds

to the second sum of the left hand side of the theorem.
Trivially nσ−1(n) = σ1(n). Observe that the coefficient of qℓ in

(

G2 +
1

24

)

G3,

(

q
d

dq
G2

)

G1,

(

q
d

dq
G1

)(

G2 +
1

24

)

,

respectively is

(5)

ℓ−1
∑

k=1

σ1(k)σ2(ℓ− k) =

ℓ−1
∑

k=1

k σ−1(k)σ2(ℓ− k),

ℓ−1
∑

k=1

k σ1(k)σ0(ℓ− k),

ℓ−1
∑

k=1

(ℓ− k)σ0(ℓ− k)σ1(k),
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GENERALIZATIONS OF AN IDENTITY OF N-P. SKORUPPA 7

respectively. Also (e(x) := e2πix)

G+
n+1(q, x)G

−
m+1(q, x) =

∞
∑

ℓ=2





ℓ−1
∑

k=1

∑

a|ℓ−k;b|k

anbme((a− b)x)



 qℓ.

Let 0 < r < 1. By orthogonality one has
∫ 1

0
e(−nx)
1−re(x)dx = rn if n = 0, 1, 2, . . .

(= 0 if n = −1,−2, . . .). Thus the coefficient of qℓ in

lim
r→1−

∫ 1

0

G+
n+1(q, x)G

−
m+1(q, x)

1− re(x)
dx, lim

r→1−

∫ 1

0

(

q d
dqG

+
n+1(q, x)

)

G−
m+1(q, x)

1− re(x)
dx,

lim
r→1−

∫ 1

0

G+
n+1(q, x)

(

q d
dqG

−
m+1(q, x)

)

1− re(x)
dx,

respectively is

ℓ−1
∑

k=1

∑

a|(ℓ−k); b|k; b>a

anbm,
ℓ−1
∑

k=1

∑

a|(ℓ−k); b|k; b>a

(ℓ− k)anbm,
ℓ−1
∑

k=1

∑

a|(ℓ−k); b|k; b>a

ankbm,

respectively.
Write for short G±

n (q, x) = G±
n and set

F (q, x) := G+
3 q

d

dq
G−

0 −G+
2 q

d

dq
G−

1 +G+
1 q

d

dq
G−

2

−

(

q
d

dq
G+

2

)

G−
1 +

(

q
d

dq
G+

1

)

G−
2 −

(

q
d

dq
G+

0

)

G−
3 .

Using the above, the coefficient of qℓ in

lim
r→1−

∫ 1

0

F (q, x)

1− re(x)
dx,

is

(6)

ℓ−1
∑

k=1

∑

a|(ℓ−k); b|k; b>a

(a2 − ab+ b2)

(

k

b
−

ℓ− k

a

)

.

Using (4), (5), (6) yields

−5

(

q
d

dq
G1

)(

G2 +
1

24

)

+

(

G2 +
1

24

)

G3+

(

q
d

dq
G2

)

G1+ lim
r→1−

∫ 1

0

F (q, x)

1− re(x)
dx

= q
d

dq

(

3

2
q
d

dq
G1 −

1

3
G1 +

1

2
G2 −

5

3
G3

)

,

which proves the corollary after some simplification.
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8 PANZONE PABLO ANDRES

4. Proof of Theorem 3

Observe that

∑

ax+by+cz=ℓ

h(a, b, c)− h(a,−b, c) =

ℓ−2
∑

c,z; cz=1

∑

ax+by=ℓ−cz

h(a, b, c)− h(a,−b, c),

where the first sum on the right is understood to be in positive integers c and z
and cz running from 1 to ℓ − 2. We apply Theorem 1 to the inner sum (with the
change ℓ → ℓ− cz).

5. Generalization of Lemma 1

Let ℓ be a positive integer. For any triple of positive integers (a, b, c) we define
Λℓ(a, b, c) to be the number of pairs of positive integers (x, y, z) such that ax+ by+
cz = ℓ. Notice that Λℓ(a, b, c) is invariant under permutations of {a, b, c}.

Lemma 3. Let ℓ, a, b, c be positive integers. Define ∆1
ℓ(a, b, c) :=

Λℓ(a, b, c)− Λℓ(a+ b+ c, b+ c, c)− Λℓ(a+ b+ c, b+ c, b)− Λℓ(a+ b+ c, a+ c, c)

−Λℓ(a+ b+ c, a+ c, a)− Λℓ(a+ b+ c, a+ b, a)− Λℓ(a+ b+ c, a+ b, b),

and ∆2
ℓ(a, b, c) :=

Λℓ(a+ b, a+ b+ c)+Λℓ(c, a+ b+ c) + Λℓ(b+ c, a+ b+ c)

+Λℓ(a, a+ b+ c) + Λℓ(a+ c, a+ b+ c) + Λℓ(b, a+ b+ c).

Then ∆1
ℓ(a, b, c)−∆2

ℓ(a, b, c) is equal to 1 or 0 as a+ b+ c|ℓ or not.

Proof. 1) The solutions of au+ bv + cw = ℓ which satisfy any of the conditions

u < v < w,

u < w < v,

v < u < w,

v < w < u,

w < u < v,

w < v < u,

are in 1− 1 correspondence with the solutions of

(a+ b+ c)x+ (b+ c)y + cz = ℓ,

(a+ b+ c)x+ (b+ c)y + bz = ℓ,

(a+ b+ c)x+ (a+ c)y + cz = ℓ,

(a+ b+ c)x+ (a+ c)y + az = ℓ,

(a+ b+ c)x+ (a+ b)y + bz = ℓ,

(a+ b+ c)x+ (a+ b)y + az = ℓ,
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respectively via

(x, y, z) = (u, v − u,w − v),

(x, y, z) = (u,w − u, v − w),

(x, y, z) = (v, u− v, w − u),

(x, y, z) = (v, w − v, u− w),

(x, y, z) = (w, u− w, v − u),

(x, y, z) = (w, v − w, u− v),

respectively.
2) The solutions of au+ bv + cw = ℓ which satisfy any of the conditions

u = v > w,

u = v < w,

(that is, we are looking for solutions of (a+ b)u+ cw = ℓ with u 6= w) are in 1− 1
correspondence with the solutions of

(a+ b)x+ (a+ b+ c)y = ℓ,

cx+ (a+ b+ c)y = ℓ,

respectively via

(x, y) = (u− w,w),

(x, y) = (w − u, u).

Similarly the solutions of au+ bv + cw = ℓ which satisfy any of the conditions

u = w > v,

u = w < v,

are in 1− 1 correspondence with the solutions of

(a+ c)x+ (a+ b+ c)y = ℓ,

bx+ (a+ b+ c)y = ℓ,

respectively via

(x, y) = (u− v, v),

(x, y) = (v − u, u).

Finally, the solutions of au+ bv + cw = ℓ which satisfy any of the conditions

v = w > u,

v = w < u,

are in 1− 1 correspondence with the solutions of

(b+ c)x+ (a+ b+ c)y = ℓ,

ax+ (a+ b+ c)y = ℓ,

respectively via

(x, y) = (v − u, u),

(x, y) = (u− v, v).
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3) If u = v = w then au + bv + cw = ℓ has one or no solution acordingly as
a+ b+ c|ℓ or not.

The lemma follows because any positive integer solution of au + bv + cw = ℓ
satisfies exactly one of the above conditions given in the three steps. �

Corollary 2. Let ℓ, a, b, c be a positive integers and define ∆(a, b, c) := Λℓ(a, b +
c) + Λℓ(b, a+ c) + Λℓ(c, a+ b). Then ∆(a, b, c)−∆1

ℓ(a, b, c) is 2 or 0 as a+ b+ c|ℓ
or not.

Proof. Using Lemma 1 one can see that ∆(a, b, c)−∆2
ℓ (a, b, c) is 3 or 0 as a+b+c|ℓ

or not. (Observe that the sum ∆(a, b, c)−∆2
ℓ (a, b, c) is equal to ∆ℓ(a, b+c)−∆ℓ(b+

c, a + b + c) − ∆ℓ(a, a + b + c) plus two similar sums for which Lemma 1 may be
applied.)

Also from Lemma 3, ∆1
ℓ(a, b, c) −∆2

ℓ(a, b, c) is equal to 1 or 0 as a + b + c|ℓ or
not.

These two last results yield that ∆(a, b, c)−∆1
ℓ(a, b, c) is 2 or 0 as a+ b+ c|ℓ or

not. �

6. Proof of Theorem 4

The proof follows three steps. In the first step we prove that the theorem is true
for a particular kind of function and in the second step we show that this is the
only kind of function that matters. The theorem then follows by linearity.

I) Let δa,b,c(x, y, z) be an integer argument function whose value is 1 or 0 as
(a, b, c) = (x, y, z) or not (i.e. a Dirac delta at (a, b, c)). We write for short δa,b,c =
δa,b,c(x, y, z). From now on, we will deal only with integer-valued triplets (a, b, c).

We define the operator Uδa,b,c(x, y, z) = δb,−2a+b−c,a−b+c(x, y, z) and we define
an integer-valued function by

Lδa,b,c := Lδa,b,c(x, y, z) =
5

∑

i=0

U iδa,b,c(x, y, z).

Observe that U6δa,b,c(x, y, z) = δa,b,c(x, y, z) and

Lδa,b,c(y,−2x+ y − z, x− y + z) = Lδa,b,c(x, y, z).

The orbit of (a, b, c) is the set of points obtained by applying (a, b, c) → (b,−2a +
b− c, a− b+ c) sucesively (the operator U above) and it has six points unless one
starts at a point of the form (a, a,−2a) in which case the orbit only has one point.
(This is easy to check.)

In other words, if (a, b, c) is not of the form (a′, a′,−2a′) for some a′, then
Lδa,b,c(x, y, z) is a function which equal to 1 if (x, y, z) belongs to the orbit of
(a, b, c) and is equal to zero if not. The following observation will be used several
times: if Lδa′,b′,c′(a

′′, b′′, c′′) 6= 0 then Lδa′,b′,c′ = Lδa′′,b′′,c′′

The proof of the theorem is then as follows. One computes

Lδa,−2a−b−2c,c =δa,−2a−b−2c,c + δb,2a+b+c,a−b+c + δ−4a−b−3c,−3a−2c,5a+b+4c

+ δ−3a−2c,b,4a+3c + δ−2a−b−2c,−4a−b−3c,3a+b+3c + δ2a+b+c,a,−a−b,(7)

and therefore

Lδa,−2a−b−2c,c = Lδb,2a+b+c,a−b+c = Lδ2a+b+c,a,−a−b.(8)

Then
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S1 :=
∑

a0x+b0y+c0z=ℓ
a0<b0<c0

h(a0 + c0, a0,−b0) +
∑

a0x+b0y+c0z=ℓ
a0<c0<b0

h(a0,−c0 − b0, c0 − a0)

+
∑

a0x+b0y+c0z=ℓ
b0<a0<c0

h(a0 + c0 − b0, a0 − b0,−a0) +
∑

a0x+b0y+c0z=ℓ
b0<a0<c0

h(b0, 2c0 − a0, c0 − 2b0)

(9)

+
∑

a0x+b0y+c0z=ℓ
a0<b0<c0

h(b0 − a0,−b0 − c0, a0) +
∑

a0x+b0y+c0z=ℓ
a0<b0<c0

h(b0 − a0, 2c0 − b0, c0 − 2b0 + 2a0)

is, using (7), equal to

Λℓ(a+ b+ c, a+ b, a) + Λℓ(a+ b+ c, a+ c, a) + Λℓ(a+ b+ c, a+ b, b)

+ Λℓ(a+ b+ c, b+ c, b) + Λℓ(a+ b+ c, a+ c, c) + Λℓ(a+ b+ c, b+ c, c),

in case that h = Lδa,−2a−b−2c,c and a, b, c are positive integers (observe that h 6=
Lδa′,a′,−2a′ for any integer a′ using (7)).

Observe that
∑

a0x+b0y+c0z=ℓ

Lδa,−2a−b−2c,c(a0,−2a0 − b0 − 2c0, c0) = Λℓ(a, b, c).

Also if δ0(x) is the delta Dirac at zero defined on the integers then
∑

a0x+b0y+c0z=ℓ

δ0(x− y)Lδa,−2a−b−2c,c(a0,−2a0 − b0 − 2c0, c0) = Λℓ(a+ b, c),

because the left sum represents the positive solutions x, y, z with x = y of ax+by+
cz = ℓ . Therefore

∑

a0x+b0y+c0z=ℓ

{δ0(x− y) + δ0(y − z) + δ0(z − x)}Lδa,−2a−b−2c,c(a0,−2a0 − b0 − 2c0, c0)

= Λℓ(a, b+ c) + Λℓ(b, a+ c) + Λℓ(c, a+ b) = ∆(a, b, c).

As α(x, y, z) = 1 − {δ0(x− y) + δ0(y − z) + δ0(z − x)} is the function given by
(2) we have reached the following result:

S2 :=
∑

a0x+b0y+c0z=ℓ

α(x, y, z)h(a0,−2a0 − b0 − 2c0, c0)

is Λℓ(a, b, c) − ∆(a, b, c) is case that h = Lδa,−2a−b−2c,c and a, b, c are positive
integers .

Thus we have proved with this choice of h that the sum S1 − S2, which is the
left-hand side of the formula (3), is equal to ∆(a, b, c)−∆1

ℓ(a, b, c), which is, using
the corollary, 2 or 0 if a+ b+ c|ℓ or not.

The right-hand side of (3) is

S3 := 2
∑

t|ℓ

i+j<t
∑

i,j=1

h(i,−i− j − t, j),

which is 2 or 0 if a+b+c|ℓ or not if h = Lδa,−2a−b−2c,c, with a, b, c positive integers
using (7). Thus we have proved that the theorem for such choice of h.

II) Next we we show that the following statement is true: if S1 6= 0 for h =
Lδa′,b′,c′ then for some positive integers a, b, c one has h = Lδa,−2a−b−2c,c .
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12 PANZONE PABLO ANDRES

The proof is as follows. We look at the first summand of (9). If
∑

a0x+b0y+c0z=ℓ
a0<b0<c0

Lδa′,b′,c′(a0 + c0, a0,−b0) 6= 0,

then Lδa′,b′,c′ = Lδa0+c0,a0,−b0 for some positive integers a0, b0, c0. Using that
a0 < b0 < c0 then one can write a0 = a, b0 = a + b, c0 = a + b + c with a, b, c
positive, so that Lδa0+c0,a0,−b0 = Lδ2a+b+c,a,−a−b = Lδa,−2a−b−2c,c using (8).

The second summand of (9) can be treated in a similar way: if
∑

a0x+b0y+c0z=ℓ
a0<c0<b0

Lδa′,b′,c′(a0,−c0 − b0, c0 − a0) 6= 0,

then using a0 < c0 < b0 one can write a0 = a, c0 = a+ c, b0 = a+ b+ c with a, b, c
positive and therefore Lδa′,b′,c′ = Lδa0,−c0−b0,c0−a0

= Lδa,−2a−b−2c,c.
If the third summand in nonzero for some Lδa′,b′,c′ then as b0 < a0 < c0 write

a0 = a + b, b0 = b, c0 = a + b + c with a, b, c positive and therefore Lδa′,b′,c′ =
Lδa0+c0−b0,a0−b0,−a0

= Lδ2a+b+c,a,−a−b = Lδa,−2a−b−2c,c using (8). If the fourth
summand is nonzero then using b0 < a0 < c0 one can write b0 = b, a0 = c+ b, c0 =
a+b+c and then Lδa′,b′,c′ = Lδb0,2c0−a0,c0−2b0 = Lδb,2a+b+c,a−b+c = Lδa,−2a−b−2c,c

using (8).
The fifth and sixth summands can be treated in a similar way and they are left

to the reader: this proves the statement for if S1 6= 0 for some h = Lδa′,b′,c′ then
at least one out of the six summands is nonzero and the proof follows.

It is easy to prove that if S2 6= 0 for h = Lδa′,b′,c′ then h = Lδa,−2a−b−2c,c for
some positive integers a, b, c.

Finally, if S3 6= 0 for some h = Lδa′,b′,c′ then Lδa′,b′,c′ = Lδi,−2i−2j−k,j because
as i+ j < t, 1 ≤ i, j one may write t = i+ j + k with 1 ≤ k.

In other words we have proved: assume that h = Lδa′,b′,c′ 6= Lδa,−2a−b−2c,c for
any choice of positive integers a, b, c. With this choice of h, the right and left-hand
side of (3) is zero.

III) To prove the theorem assume that h satisfies h(x, y, z) = h(y,−2x+y−z, x−
y + z), this condition ensures that h is constant on the orbits of points (x, y, z).

Write

h :=
∑

(a,b,c)

const(a, b, c)Lδa,−2a−b−2c,c +
∑

(a′,b′,c′)

const(a′, b′, c′)Lδa′,b′,c′ ,

where in the first sum a, b, c are positive and in the last sum, each summand
Lδa′,b′,c′ 6= Lδa,−2a−b−2c,c for any choice of positive integers a, b, c (by (II) its con-
tribution is then zero). The theorem follows by linearity using (I).

7. Proof of Theorem 5

The proof follows by linearity from the following result (case p(u) = un of the
theorem): if ℓ is a positive integer and n = 0, 1, 2, . . .

−
∑

ax+by+cz=ℓ

α(x, y, z)(a+ b+ c)n + 3
∑

ax+by+cz=ℓ
c>max(a,b); a 6=b

cn

= 2
∑

3≤t; t|ℓ

tn
(

1

2
t2 −

3

2
t+ 1

)

= σn+2(ℓ)− 3σn+1(ℓ) + 2σn(ℓ).
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This last formula follows taking h(x, y, z) = (x− y+ z)n in the following lemma.

Lemma 4. Assume that ℓ is a positive integer and that h(x, y, z) is an integer-
valued function which satisfies h(x, y, z) = h(y, y − x, z − y) and for any positive
integers a, b, c satisfies h(a,−b, c) = h(c,−a, b) = h(b,−c, a). Then

−
∑

ax+by+cz=ℓ

α(x, y, z)h(b, a+ b, 2a+ b+ c) + 3
∑

ax+by+cz=ℓ
c>max(a,b); a 6=b

h(b, a, c+ a− b)

= 2
∑

t|ℓ

i+j<t
∑

i,j=1

h(i, i+ j, t+ j).(10)

Proof. The proof follows the same lines as before.
I) For integers a, b, c we define the operator Uδa,b,c(x, y, z) = δb,b−a,c−b(x, y, z)

and we define an integer-valued function by Lδa,b,c := Lδa,b,c(x, y, z) =
∑5

i=0 U
iδa,b,c(x, y, z).

Observe that U6δa,b,c(x, y, z) = δa,b,c(x, y, z) and Lδa,b,c(y, y−x, z−y) = Lδa,b,c(x, y, z).
The orbit of a point has six points unless one starts at a point of the form (0, 0, c)
in which case it has only one point (this is easy to check). Observe that

Lδa,−b,c =δb,a+b,2a+b+c + δa+b,a,a+c + δa,−b,c(11)

+ δ−a−b,−a,a+2b+c + δ−a,b,2a+2b+c + δ−b,−a−b,b+c.

which yields

Lδa,−b,c = Lδb,a+b,2a+b+c = Lδa+b,a,a+c.(12)

Define h0 = h0(x, y, z) by

h0 : = Lδa,−b,c + Lδb,−c,a + Lδc,−a,b

= δb,a+b,2a+b+c + δa+b,a,a+c + δa,−b,c + δc,b+c,a+2b+c + δb+c,b,a+b + δb,−c,a

+ δa,a+c,a+b+2c + δa+c,c,b+c + δc,−a,b + . . . ,

where the dots indicate that the remaining terms are of the form δa′,b′,c′ with a′

negative whenever a, b, c are positive (their contribution is zero in the following
sums below). Also notice that h0(y, y − x, z − y) = h0(x, y, z).

From now on let a, b, c be positive integers in the definition of h0. A check yields
∑

a0x+b0y+c0z=ℓ

h0(b0, a0 + b0, 2a0 + b0 + c0)− 3
∑

a0x+b0y+c0z=ℓ
c0>max(a0,b0); a0 6=b0

h0(b0, a0, c0 + a0 − b0)

= 3∆1
ℓ(a, b, c)(13)

where ∆1
ℓ(a, b, c) is defined as in Lemma 3.

Also
∑

a0x+b0y+c0z=ℓ

{δ0(x− y) + δ0(y − z) + δ0(z − x)}h0(b0, a0 + b0, 2a0 + b0 + c0)

= 3 (Λℓ(a, b+ c) + Λℓ(b, a+ c) + Λℓ(c, a+ b)) = 3∆(a, b, c).(14)

Using the definition of α(x, y, z) given by (2) we have reached, using (13) and
(14), the following result: the left-hand side of formula (10) is equal to 3(∆(a, b, c)−
∆1

ℓ(a, b, c)) if h = h0. The last corollary yields that this is equal to 6 or 0 as a+b+c|ℓ
or not.
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To prove the equality notice that the right-hand side of formula (10) is 6 or 0 as
a+ b+ c|ℓ or not, if h = h0. This proves the theorem for the particular case h = h0.

II) Next we will show that the following statement is true: if the right or left-
hand side of formula (10) is non zero for some h = Lδa′,b′,c′ with integers a′, b′, c′,
then one must have h = Lδa,−b,c with a, b, c positive integers.

To prove this, one starts observing that if
∑

a0x+b0y+c0z=ℓ Lδa′,b′,c′(b0, a0 +

b0, 2a0 + b0 + c0) 6= 0 then the orbit of (a′, b′, c′) must be the orbit of (b0, a0 +
b0, 2a0 + b0 + c0). In other words, Lδa′,b′,c′ = Lδb0,a0+b0,2a0+b0+c0 = Lδa0,−b0,c0

with a0, b0, c0 positive using (12).
The second formula of the left-hand side of (10) can be treated in a similar way.

If
∑

a0x+b0y+c0z=ℓ
c0>max(a0,b0); a0 6=b0

Lδa′,b′,c′(b0, a0, c0 + a0 − b0) 6= 0,

then two cases are possible:
i) a0 < b0 < c0, and the orbit of (a′, b′, c′) is the orbit of (b0, a0, c0 + a0 − b0) =

(b+a, a, c+a) with a = a0, b = b0−a0, c = c0− b0 positive integers. In other words
Lδa′,b′,c′ = Lδb+a,a,c+a = Lδa,−b,c using (12).

ii) b0 < a0 < c0, and the orbit of (a′, b′, c′) is the orbit of (b0, a0, c0 + a0 − b0) =
(b, b+ a, 2a+ b+ c) with a = a0 − b0, b = b0, c = c0 − a0 positive integers. In other
words Lδa′,b′,c′ = Lδb,b+a,2a+b+c = Lδa,−b,c using (12).

Finally, if
∑

t|ℓ

∑i+j<t
i,j=1 Lδa′,b′,c′(i, i+ j, t+ j) 6= 0 we can write t = i+ j+k with

i, j, k positive integers and then Lδa′,b′,c′ = Lδi,i+j,i+2j+k = Lδj,−i,k using (12).
This ends the proof of the statement.

III) To prove the theorem assume that h satisfies h(x, y, z) = h(y, y − x, z − y)
and h(a,−b, c) = h(c,−a, b) = h(b,−c, a) for any positive integers a, b, c. The first
condition ensures that h is constant on the orbit of (x, y, z) while the second says
that this constant is the same for the orbits of (a,−b, c), (c,−a, b), (b,−a, c).

Therefore we can find constants such that

h :=
∑

(a,b,c)

const(a, b, c)h0 +
∑

(a,b,c)

const(a, b, c)Lδa,−b,c,

where in the first sum a, b, c are all positive integers with h0 defined as in (I) and
in the last sum at least one of a, b, c is zero or negative (its contribution being zero
by (II)) proving the theorem by linearity. �
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