Some supercongruences for q-trinomial coefficients

Ji-Cai Liu and Wei-Wei Qi

Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China jcliu2016@gmail.com, wwqi2022@foxmail.com

Abstract. We study supercongruences for the q-trinomial coefficients $\tau_0(n, m, q)$, $T_0(n, m, q)$ and $T_1(n, m, q)$, which were first introduced by Andrews and Baxter. In particular, we completely determine $\tau_0(an, bn, q)$, $T_0(an, bn, q)$ and $T_1(an, bn, q)$ modulo the square of the cyclotomic polynomial $\Phi_n(q)$ for (a, b) = (m, m - 1).

Keywords: q-trinomial coefficients; q-congruences; cyclotomic polynomials MR Subject Classifications: 11A07, 11B65, 13A05, 05A10

1 Introduction

In 1987, Andrews and Baxter [2] introduced six kinds of q-trinomial coefficients in the study of the solution of a model in statistical mechanics, which can be listed as follows:

$$\begin{pmatrix} \binom{n}{m} \end{pmatrix}_{q} = \sum_{k=0}^{n} q^{k(k+m)} \begin{bmatrix} n \\ k \end{bmatrix} \begin{bmatrix} n-k \\ k+m \end{bmatrix},$$

$$\tau_{0}(n, m, q) = \sum_{k=0}^{n} (-1)^{k} q^{nk-\binom{k}{2}} \begin{bmatrix} n \\ k \end{bmatrix} \begin{bmatrix} 2n-2k \\ n-m-k \end{bmatrix},$$

$$T_{0}(n, m, q) = \sum_{k=0}^{n} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{q^{2}} \begin{bmatrix} 2n-2k \\ n-m-k \end{bmatrix},$$

$$T_{1}(n, m, q) = \sum_{k=0}^{n} (-q)^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{q^{2}} \begin{bmatrix} 2n-2k \\ n-m-k \end{bmatrix},$$

$$t_{0}(n, m, q) = \sum_{k=0}^{n} (-1)^{k} q^{k^{2}} \begin{bmatrix} n \\ k \end{bmatrix}_{q^{2}} \begin{bmatrix} 2n-2k \\ n-m-k \end{bmatrix},$$

$$t_{1}(n, m, q) = \sum_{k=0}^{n} (-1)^{k} q^{k(k-1)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^{2}} \begin{bmatrix} 2n-2k \\ n-m-k \end{bmatrix}.$$

Here and in what follows, the q-binomial coefficients are defined as

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{cases} \frac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1})}{(1-q)(1-q^2)\cdots(1-q^k)}, & \text{if } 0 \leqslant k \leqslant n, \\ 0, & \text{otherwise.} \end{cases}$$

Note that these q-trinomial coefficients are six apparently distinct q-analogues of the trinomial coefficients $\binom{n}{m}$, which are given by

$$(1+x+x^2)^n = \sum_{m=-n}^n \binom{n}{m} x^{m+n}.$$

It is well-known that the trinomial coefficients possess the following two simple formulas (see [15, page 43]):

$$\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{k+m},$$

and

$$\binom{n}{m} = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \binom{2n-2k}{n-m-k}.$$

In the past two decades, q-analogues of congruences (q-congruences) were widely studied by many researchers. For recent developments on q-congruences, we refer the interested reader to [6-8, 11-14, 18-20].

It is remarkable that Andrews [1] showed that for any odd prime p,

which gives a q-analogue of Babbage's congruence [3]. In order to understand (1.1), we recall some necessary notations. For polynomials $A_1(q), A_2(q), P(q) \in \mathbb{Z}[q]$, the q-congruence

$$A_1(q)/A_2(q) \equiv 0 \pmod{P(q)}$$

is understood as $A_1(q)$ is divisible by P(q) and $A_2(q)$ is coprime with P(q). In general, for rational functions $A(q), B(q) \in \mathbb{Z}(q)$,

$$A(q) \equiv B(q) \pmod{P(q)} \iff A(q) - B(q) \equiv 0 \pmod{P(q)}.$$

The q-integers are defined as $[n]_q = (1 - q^n)/(1 - q)$ for $n \ge 1$, and the nth cyclotomic polynomial is given by

$$\Phi_n(q) = \prod_{\substack{1 \le k \le n \\ (n,k)=1}} (q - \zeta^k),$$

where ζ denotes an *n*th primitive root of unity.

It is worth mentioning that Straub [16, Theorem 2.2] extended (1.1) as follows (notice that $\binom{2n-1}{n-1} = \binom{2n}{n}/(1+q^n)$):

$$\begin{bmatrix} an \\ bn \end{bmatrix} \equiv \begin{bmatrix} a \\ b \end{bmatrix}_{a^{n^2}} - (a-b)b \binom{a}{b} \frac{n^2 - 1}{24} (q^n - 1)^2 \pmod{\Phi_n(q)^3},$$
 (1.2)

which was further generalized by Zudilin [21].

The first author [10] investigated congruence properties for the q-trinomial coefficients $\binom{an}{bn}_q$ for $(a,b) \in \{(1,0),(2,1)\}$ and showed that for any positive integer n,

$$\binom{n}{0}_{q} \equiv \mathcal{A}_{n}(q) \pmod{\Phi_{n}(q)^{2}}, \tag{1.3}$$

and

$$\left(\binom{2n}{n}\right)_q \equiv 2\mathcal{A}_n(q) - n(1-q^n) \pmod{\Phi_n(q)^2},\tag{1.4}$$

where $\mathcal{A}_n(q)$ is given by

$$\mathcal{A}_n(q) = \begin{cases} (-1)^m (1+q^m) q^{m(3m-1)/2}, & \text{if } n = 3m, \\ (-1)^m q^{m(3m+1)/2}, & \text{if } n = 3m+1, \\ (-1)^{m+1} q^{(m+1)(3m+2)/2}, & \text{if } n = 3m+2. \end{cases}$$

It is remarkable that Chen, Xu and Wang [4] completely determined $\binom{mn}{(m-1)n}_q$ modulo $\Phi_n(q)^2$, which includes (1.3) and (1.4) as special cases.

In this paper, we aim to completely determine $\tau_0(an, bn, q)$, $T_0(an, bn, q)$ and $T_1(an, bn, q)$ modulo $\Phi_n(q)^2$ for (a, b) = (m, m - 1). The main results consist of the following three theorems.

Theorem 1.1 If m and n are both positive integers, then the following holds modulo $\Phi_n(q)^2$:

$$\tau_0(mn, (m-1)n, q) \equiv 2m - nm(2m-1)(1-q^n)$$

+
$$(-1)^n q^{n(n+1)/2} \left(m(\mathcal{A}_n(q) + \mathcal{B}_n(q) - 1) - \frac{3nm(m-1)}{2} (1 - q^n) \right)$$
,

where $\mathcal{B}_n(q)$ is given by

$$\mathcal{B}_n(q) = \begin{cases} (-1)^m (1 + q^{2m}) q^{m(3m-5)/2}, & \text{if } n = 3m, \\ (-1)^m q^{m(3m+1)/2}, & \text{if } n = 3m+1, \\ (-1)^{m+1} q^{(m-1)(3m+2)/2}, & \text{if } n = 3m+2. \end{cases}$$

Theorem 1.2 If m and n are both positive integers, then the following holds modulo $\Phi_n(q)^2$:

$$T_0(mn, (m-1)n, q) \equiv 2m - nm(2m-1)(1-q^n)$$

$$+ (-1)^n \left((1+(-1)^n)(m-1) + 1 \right) \left(m - nm(m-1)(1-q^n) + 2m(\mathcal{A}_n(q)-1) \right).$$

Theorem 1.3 If m and n are both positive integers, then the following holds modulo $\Phi_n(q)^2$:

$$T_1(mn, (m-1)n, q) \equiv 2m - nm(2m-1)(1-q^n)$$

$$+ (-1)^n ((1+(-1)^n)(m-1)+1) (mq^n - nm(m-1)(1-q^n) + 2m(\mathcal{B}_n(q)-1)).$$

The rest of the paper is organized as follows. In Section 2, we first establish some preliminary results. The proofs of Theorems 1.1–1.3 will be given in Sections 3–5, respectively.

2 Preliminary results

In order to prove Theorems 1.1–1.3, we first require two q-binomial identities.

Lemma 2.1 (See [9, Lemma 2.3].) For any non-negative integer n, we have

$$(1 - q^{n}) \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^{k} q^{k(k-1)/2}}{1 - q^{n-k}} {n-k \brack k}$$

$$= \begin{cases} (-1)^{m} (1+q^{m}) q^{m(3m-1)/2}, & if \ n = 3m, \\ (-1)^{m} q^{m(3m+1)/2}, & if \ n = 3m+1, \\ (-1)^{m+1} q^{(m+1)(3m+2)/2}, & if \ n = 3m+2. \end{cases}$$

$$(2.1)$$

Lemma 2.2 For any non-negative integer n, we have

$$(1 - q^{n}) \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^{k} q^{k(k-3)/2}}{1 - q^{n-k}} {n - k \brack k}$$

$$= \begin{cases} (-1)^{m} (1 + q^{2m}) q^{m(3m-5)/2}, & if \ n = 3m, \\ (-1)^{m} q^{m(3m+1)/2}, & if \ n = 3m+1, \\ (-1)^{m+1} q^{(m-1)(3m+2)/2}, & if \ n = 3m+2. \end{cases}$$

$$(2.2)$$

We remark that Chu [5, Theorem 5] recently gave a common generalization of (2.1) and (2.2) through generating function technique. Note that $\mathcal{A}_n(q)$ and $\mathcal{B}_n(q)$ coincide with the right-hand sides of (2.1) and (2.2), respectively.

We also need the following congruence regarding q-binomial coefficients.

Lemma 2.3 For positive integers m and n, we have

$${mn \brack n}_{q^2} \equiv ((1+(-1)^n)(m-1)+1) (m-nm(m-1)(1-q^n)) \pmod{\Phi_n(q)^2}.$$
 (2.3)

Proof. By [4, (2.7)], we have

It is clear that

$$q^n \equiv 1 \pmod{\Phi_n(q)}. \tag{2.5}$$

If n is odd, then $\Phi_n(q)|\Phi_n(q^2)$. It follows from (2.4) and (2.5) that

$${mn \brack n}_{q^2} \equiv m - \frac{nm(m-1)}{2} (1+q^n)(1-q^n)$$

$$\equiv m - nm(m-1)(1-q^n) \pmod{\Phi_n(q)^2},$$

which proves the case $n \equiv 1 \pmod{2}$ of (2.3).

From (1.2) and the fact $\Phi_{2n}(q)|\Phi_n(q^2)$, we deduce that

$$\begin{bmatrix} 2mn \\ 2n \end{bmatrix}_{q^2} \equiv \begin{bmatrix} 2m \\ 2 \end{bmatrix}_{q^{2n^2}} \pmod{\Phi_{2n}(q)^2}.$$
(2.6)

Note that for any positive integer s,

$$q^{2sn^2} = 1 - (1 - (q^{2n})^{sn})$$

$$= 1 - (1 - q^{2n})(1 + q^{2n} + q^{4n} + \dots + q^{2n(sn-1)})$$

$$\equiv 1 - sn(1 - q^{2n}) \pmod{\Phi_{2n}(q)^2}.$$

Thus,

$$\begin{bmatrix} 2m \\ 2 \end{bmatrix}_{q^{2n^2}} = \sum_{i=0}^{2m-2} q^{2in^2} \sum_{j=0}^{m-1} q^{4jn^2}
\equiv (2m-1-n(2m-1)(m-1)(1-q^{2n})) (m-nm(m-1)(1-q^{2n}))
\equiv (2m-1) (m-2nm(m-1)(1-q^{2n})) \pmod{\Phi_{2n}(q)^2}.$$
(2.7)

It follows from (2.6) and (2.7) that for even positive integer n,

$${mn \brack n}_{q^2} \equiv (2m-1)(m-nm(m-1)(1-q^n)) \pmod{\Phi_n(q)^2},$$

which is the case $n \equiv 0 \pmod{2}$ of (2.3).

3 Proof of Theorem 1.1

Note that

$$\tau_{0}(mn, (m-1)n, q)
= \sum_{k=0}^{n} (-1)^{k} q^{mnk - \binom{k}{2}} {mn \brack k} {2mn - 2k \brack n - k}
= (-1)^{n} \sum_{k=0}^{n} (-1)^{k} q^{(n-k)((2m-1)n+k+1)/2} {mn \brack n - k} {2n(m-1) + 2k \brack k}
= (-1)^{n} q^{n((2m-1)n+1)/2} {mn \brack n} + {2mn \brack n}
+ (-1)^{n} \sum_{k=0}^{n-1} (-1)^{k} q^{(n-k)((2m-1)n+k+1)/2} {mn \brack n - k} {2n(m-1) + 2k \brack k},$$
(3.1)

where we have performed the variable substitution $k \to n-k$ in the second step. For $1 \le k \le n-1$, by (2.5) we have

$$\begin{bmatrix} mn \\ n-k \end{bmatrix} = \begin{bmatrix} mn \\ n \end{bmatrix} \frac{(1-q^{n-k+1})(1-q^{n-k+2})\dots(1-q^n)}{(1-q^{(m-1)n+1})(1-q^{(m-1)n+2})\dots(1-q^{(m-1)n+k})}
\equiv \begin{bmatrix} mn \\ n \end{bmatrix} \frac{(-1)^{k-1}q^{-k(k-1)/2}(1-q^n)}{1-q^k}
\equiv \begin{bmatrix} mn \\ n \end{bmatrix} \frac{(-1)^kq^{-k(k+1)/2}(1-q^n)}{1-q^{n-k}} \pmod{\Phi_n(q)^2}.$$
(3.2)

Furthermore, by [17, Lemma 3.3] we have

for $1 \le k \le n-1$. It follows from (2.5) and (3.3) that for $1 \le k \le n-1$,

$$\begin{bmatrix} 2n(m-1) + 2k \\ k \end{bmatrix} = \frac{(1 - q^{2n(m-1)+k+1})(1 - q^{2n(m-1)+k+2}) \dots (1 - q^{2n(m-1)+2k})}{(1 - q)(1 - q^2) \dots (1 - q^k)}$$

$$\equiv (1 + q^k) \begin{bmatrix} 2k - 1 \\ k \end{bmatrix}$$

$$\equiv (-1)^k q^{k(3k-1)/2} (1 + q^k) \begin{bmatrix} n - k \\ k \end{bmatrix} \pmod{\Phi_n(q)}. \tag{3.4}$$

Combining (3.2) and (3.4) with the fact that

$$\frac{(n-k)((2m-1)n+k+1)}{2} = -\frac{k(k+1)}{2} - n(m-1)(k-n) + \frac{n(n+1)}{2},$$

we arrive at

$$\sum_{k=1}^{n-1} (-1)^k q^{(n-k)((2m-1)n+k+1)/2} \begin{bmatrix} mn \\ n-k \end{bmatrix} \begin{bmatrix} 2n(m-1)+2k \\ k \end{bmatrix}$$

$$\equiv q^{n(n+1)/2} (1-q^n) \begin{bmatrix} mn \\ n \end{bmatrix} \sum_{k=1}^{n-1} \frac{(-1)^k q^{k(k-3)/2} (1+q^k)}{1-q^{n-k}} \begin{bmatrix} n-k \\ k \end{bmatrix}$$

$$= q^{n(n+1)/2} \begin{bmatrix} mn \\ n \end{bmatrix} (\mathcal{A}_n(q) + \mathcal{B}_n(q) - 2) \pmod{\Phi_n(q)^2}, \tag{3.5}$$

where we have used (2.1) and (2.2) in the last step.

Noting that

$$q^{n((2m-1)n+1)/2} = q^{n(n+1)/2 + (m-1)n^2}$$

and

$$q^{(m-1)n^2} = 1 - (1 - q^{(m-1)n})(1 + q^{(m-1)n} + q^{2(m-1)n} + \dots + q^{(m-1)n(n-1)})$$

$$\equiv 1 - n(1 - q^{(m-1)n})$$

$$= 1 - n(1 - q^n)(1 + q^n + q^{2n} + \dots + q^{(m-2)n})$$

$$\equiv 1 - n(m-1)(1 - q^n) \pmod{\Phi_n(q)^2},$$

we obtain

$$q^{n((2m-1)n+1)/2} \equiv q^{n(n+1)/2} \left(1 - n(m-1)(1-q^n)\right) \pmod{\Phi_n(q)^2}.$$
 (3.6)

From (2.1) and (2.2), we deduce that

$$\mathcal{A}_n(q) - 1 \equiv 0 \pmod{\Phi_n(q)},\tag{3.7}$$

and

$$\mathcal{B}_n(q) - 1 \equiv 0 \pmod{\Phi_n(q)},\tag{3.8}$$

and so

$$\mathcal{A}_n(q) + \mathcal{B}_n(q) - 2 \equiv 0 \pmod{\Phi_n(q)}. \tag{3.9}$$

Finally, substituting (2.4), (3.5) and (3.6) into the right-hand side of (3.1) and using (3.9), we complete the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Note that

$$T_0(mn,(m-1)n,q)$$

$$=\sum_{k=0}^{n}(-1)^{k}\begin{bmatrix}mn\\k\end{bmatrix}_{q^{2}}\begin{bmatrix}2mn-2k\\n-k\end{bmatrix}$$

$$= (-1)^n \sum_{k=0}^n (-1)^k {mn \brack n-k}_{q^2} {2n(m-1)+2k \brack k}$$

$$= (-1)^n {mn \brack n}_{q^2} + {2mn \brack n} + (-1)^n \sum_{k=1}^{n-1} (-1)^k {mn \brack n-k}_{q^2} {2n(m-1)+2k \brack k}.$$
(4.1)

For $1 \le k \le n-1$, we have

$$\begin{bmatrix} mn \\ n-k \end{bmatrix}_{q^2} = \begin{bmatrix} mn \\ n \end{bmatrix}_{q^2} \frac{(1-q^{2(n-k+1)})(1-q^{2(n-k+2)})\dots(1-q^{2n})}{(1-q^{2(m-1)n+2})(1-q^{2(m-1)n+4})\dots(1-q^{2(m-1)n+2k})}
\equiv \begin{bmatrix} mn \\ n \end{bmatrix}_{q^2} \frac{(-1)^{k-1}q^{-k(k-1)}(1-q^{2n})}{1-q^{2k}}
\equiv \begin{bmatrix} mn \\ n \end{bmatrix}_{q^2} \frac{2(-1)^kq^{-k^2}(1-q^n)}{(1+q^k)(1-q^{n-k})} \pmod{\Phi_n(q)^2}.$$
(4.2)

It follows from (2.1), (3.4) and (4.2) that

$$\sum_{k=1}^{n-1} (-1)^k {mn \brack n-k}_{q^2} \left[2n(m-1) + 2k \right]$$

$$\equiv 2(1-q^n) {mn \brack n}_{q^2} \sum_{k=1}^{n-1} \frac{(-1)^k q^{k(k-1)/2}}{1-q^{n-k}} {n-k \brack k}$$

$$= 2 {mn \brack n}_{q^2} (\mathcal{A}_n(q) - 1) \pmod{\Phi_n(q)^2}. \tag{4.3}$$

Finally, substituting (2.3), (2.4) and (4.3) into the right-hand side of (4.1) and using (3.7), we complete the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Note that

$$T_{1}(mn, (m-1)n, q)$$

$$= \sum_{k=0}^{n} (-q)^{k} {mn \brack k}_{q^{2}} {2mn - 2k \brack n - k}$$

$$= \sum_{k=0}^{n} (-q)^{n-k} {mn \brack n - k}_{q^{2}} {2n(m-1) + 2k \brack k}$$

$$= (-q)^{n} {mn \brack n}_{q^{2}} + {2mn \brack n} + \sum_{k=1}^{n-1} (-q)^{n-k} {mn \brack n - k}_{q^{2}} {2n(m-1) + 2k \brack k}.$$
(5.1)

Similarly to the proof of Theorem 1.2, by using (2.2), (4.2) and (3.4) we obtain

$$\sum_{k=1}^{n-1} (-q)^{n-k} {mn \brack n-k}_{q^2} {2n(m-1)+2k \brack k}$$

$$\equiv 2(-1)^n {mn \brack n}_{q^2} (\mathcal{B}_n(q)-1) \pmod{\Phi_n(q)^2}. \tag{5.2}$$

Substituting (2.3), (2.4) and (5.2) into the right-hand side of (5.1) and using (3.8), we complete the proof of Theorem 1.3.

Acknowledgments. The first author was supported by the National Natural Science Foundation of China (grant 12171370).

References

- [1] G.E. Andrews, q-Analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math. 204 (1999), 15–25.
- [2] G.E. Andrews and R.J. Baxter, Lattice gas generalization of the hard hexagon model III: q-trinomial coefficients, J. Stat. Phys. 47 (1987), 297–330.
- [3] C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical J. 1 (1819), 46–49.
- [4] Y. Chen, C. Xu and X. Wang, Some new results about q-trinomial coefficients, Proc. Amer. Math. Soc., in press, doi: 10.1090/proc/16375.
- [5] W. Chu, q-Binomial sums toward Euler's pentagonal number theorem, Bull. Malays. Math. Sci. Soc. 45 (2022), 1545–1557.
- [6] M. El Bachraoui, On supercongruences for truncated sums of squares of basic hypergeometric series, Ramanujan J. 54 (2021), 415–426.
- [7] O. Gorodetsky, q-Congruences, with applications to supercongruences and the cyclic sieving phenomenon, Int. J. Number Theory 15 (2019), 1919–1968.
- [8] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences modulo the square and cube of a cyclotomic polynomial, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115 (2021), Art. 132.
- [9] J.-C. Liu, Some finite generalizations of Euler's pentagonal number theorem, Czechoslovak Math. J. 142 (2017), 525–531.
- [10] J.-C. Liu, On the divisibility of q-trinomial coefficients, Ramanujan J. 60 (2023), 455–462.
- [11] Y. Liu and X. Wang, q-Analogues of two Ramanujan-type supercongrucences, J. Math. Anal. Appl. 502 (2021), Art. 125238.
- [12] Y. Liu and X. Wang, Some q-supercongruences from a quadratic transformation by Rahman, Results Math. 77 (2022), Art. 44.
- [13] H.-X. Ni, A q-Dwork-type generalization of Rodriguez-Villegas' supercongruences, Rocky Mountain J. Math. 51 (2021), 2179–2184.
- [14] H. Pan and Y.-C. Sun, A q-analogue of Wilson's congruence, Adv. in Appl. Math. 130 (2021), Art. 102228.
- [15] A.V. Sills, An invitation to the Rogers-Ramanujan identities, CRC Press, 2018.
- [16] A. Straub, Supercongruences for polynomial analogs of the Apéry numbers, Proc. Amer. Math. Soc. 147 (2019), 1023–1036.
- [17] R. Tauraso, q-Analogs of some congruences involving Catalan numbers, Adv. in Appl. Math. 48 (2012), 603–614.
- [18] C. Wang, A new q-extension of the (H.2) congruence of Van Hamme for primes $p \equiv 1 \pmod{4}$, Results Math. 76 (2021), Art. 205.
- [19] X. Wang and M. Yue, A q-analogue of a Dwork-type supercongruence, Bull. Aust. Math. Soc. 103 (2021), 303–310.
- [20] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory Ser. A 182 (2021), Art. 105469.
- [21] W. Zudilin, Congruences for q-binomial coefficients, Ann. Comb. 23 (2019), 1123–1135.