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Abstract

This paper examines the coefficient problems for the class of semigroup generators, a topic in complex
dynamics that has recently been studied in context of geometric function theory. Further, sharp bounds
of coefficient functional such as second order Hankel determinant, third order Toeplitz and Hermitian-
Toeplitz determinants are derived. Additionally, the sharp growth estimates and the bounds of difference
of successive coefficients are determined, which are used to prove the Bohr and the Bohr- Rogosinski
phenomenon for the class of semigroup generators.
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1 Introduction

Let H be the class of holomorphic functions in the unit disk D = {z ∈ C : |z| < 1} and A ⊂ H containing
functions of the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

By B, we denote the class of holomorphic self mappings from D to D. A family {ut(z)}t≥0 ⊂ B is called a one
parameter continuous semigroup if (i) limt→0 ut(z) = z, (ii)ut+s(z) = ut(z) ◦ us(z), and (iii) limt→s ut(z) =
us(z) for each z ∈ D hold.

Berkson and Porta [3] showed that each one parameter semigroup is locally differentiable in parameter
t ≥ 0 and moreover, if

lim
t→0

z − ut(z)

t
= f(z),

which is a holomorphic function, then ut(z) is the solution of the the Cauchy problem

∂ut(z)

∂t
+ f(ut(z)) = 0, u0(z) = z.

The function f is called the holomorphic generator of semigroup {ut(z)} ⊂ B. The class of all holomorphic
generators is denoted by G. Also, note that each element of {ut(z)} generated by f ∈ G is univalent function
while f is not necessarily univalent [14]. Various properties of generators and semigroup generated by them
are discussed in [3, 6, 13, 16, 14, 39]. Berkson and Porta [3] proved:

Theorem 1.1. The following assertions are equivalent:

(a) f ∈ G;

(b) f(z) = (z − σ)(1 − zσ̄)p(z) with some σ ∈ D and p ∈ H, Re(p(z)) ≥ 0.

1

16 May 2023 21:05:37 PDT
230516-Kumar-2 Version 1 - Submitted to Rocky Mountain J. Math.



The point σ ∈ D := {z ∈ C : |z| ≤ 1} is called the Denjoy–Wolff point of the semigroup generated by f .
By Denjoy-Wolff theorem [39] for continuous semigroup, if any element of the semigroup generated by f is
neither an elliptic automorphism of D nor the identity map for at least one t ∈ [0,∞), then there is a unique
point σ ∈ D such that limt→∞ u(t, z) = σ uniformly, for each z ∈ D. We denote the class of holomorphic
generators with Denjoy-Wolff point σ by G[σ]. For σ = 0, we obtain the following subclass

G[0] = {f ∈ G : f(z) = zp(z), Re p(z) ≥ 0}.

Bracci et al. [7] considered the class G0 = G[0]∩A. In the study of non-autonomous problem such as Loewner
theory, the class G0 plays a significant role [8, 12]. Various subclasses of G0 with parameter such that R is
the smallest one were recently studied (also called filtration), where

R = {f ∈ A : Re f ′(z) > 0}

is the class of functions with bounded turning (see [7, 16, 40]). In particular, for β ∈ [0, 1], the class

Aβ =

{
f ∈ A : Re

(
β
f(z)

z
+ (1 − β)f ′(z)

)
> 0

}
(1.2)

is a subclass of G0. In [7], the authors proved that Aβ1
⊊ Aβ2

⊊ G0 for 0 ≤ β1 < β2 < 1 and whenever
f ∈ Aβ ,

Re
f(z)

z
≥

∫ 1

0

1 − t1−β

1 + t1−β
dt.

Clearly, when β = 0, the class Aβ reduces to the class R. Elin et al. [15] solved the radii problems for
the class Aβ . They found the radii r ∈ (0, 1) for f ∈ Aβ such that f(rz)/r belong to the class of starlike
functions, denoted by S∗, and some other subclasses of starlike functions. This problem arises from the fact
that neither S∗ ⊂ Aβ nor Aβ ⊂ S∗. Generalizing this work, Giri and Kumar [18] obtained r such that
f(rz)/r belong to a unified subclass of starlike functions S∗(φ), where φ is a univalent function mapping
the unit disk in certain specific domain in the right half plane.

For the class Aβ , coefficient problems, growth estimates and others were still open. In this paper, we
focus on these problems. We find the bound of nth Taylor series coefficient of f ∈ Aβ and certain coefficient
functionals such as second Hankel determinant, third order Toeplitz and Hermitian Toeplitz determinant,
and Zalcman functional. Later, Bohr and Bohr-Rogosinski phenomenon with growth estimates are also
discussed for the same class.

In 1914, Bohr [5] proved that, if ω(z) =
∑∞

n=0 cnz
n ∈ B, then

∑∞
n=0|cn|rn ≤ 1 for all z ∈ D with

|z| = r ≤ 1/3. The constant 1/3 is known as Bohr radius and it can not be improved. Different generalizations
of the Bohr inequality are taken into consideration [42, 30]. We say that, the class Aβ satisfies the Bohr
phenomenon if there exists rb such that

|z| +

∞∑
n=2

|an||z|n ≤ d(f(0), ∂f(D))

holds in |z| = r ≤ rb, where ∂f(D) is the boundary of image domain of D under f and d denotes the
Euclidean distance between f(0) and ∂f(D).

Muhanna [35] showed that the Bohr phenomenon holds for the class of univalent functions and the class
of convex functions, when |z| = r ≤ 3 − 2

√
2 and |z| = r ≤ 1/3 respectively. We refer to the survey article

[34] for further details on this topic. There is also the concept of Rogosinski radius along with the Bohr
radius, although a little is known about Rogosinski radius in comparison to Bohr radius [20, 25, 38]. It says
that, if ω(z) =

∑∞
n=0 cnz

n ∈ B, then

N−1∑
n=0

|cn||z|n ≤ 1 (N ∈ N)
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in the disk |z| = r ≤ 1/2. The radius 1/2 is called the Rogosinski radius. Kayumov et al. [21] considered
the following expression, called Bohr-Rogosinski sum,

Rf
N (z) := |f(z)| +

∞∑
n=N

|an||z|n

and found the radius rN such that Rf
N (z) ≤ 1 in |z| = r ≤ rN for the Cesáro operators on the space of

bounded analytic functions. The largest such rN is called the Bohr-Rogosinski radius. Here, we say that:

Definition 1.2. The class Aβ satisfies the Bohr-Rogosinski phenomenon if there exist rN such that

|f(zm)| +

∞∑
n=N

|an||z|n ≤ d(f(0), ∂f(Ω)), m,N ∈ N

holds in |z| = r ≤ rN .

Section 5 is devoted to find the rb and rN for the class Aβ .

For f(z) = z+
∑∞

n=2 anz
n ∈ A, the mth Hankel, Toeplitz and Hermitian Toeplitz determinant for m ≥ 1

and n ≥ 0 are respectively given by

Hm(n)(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+m−1

an+1 an+2 · · · an+m

...
...

...
...

an+m−1 an+m · · · an+2m−2

∣∣∣∣∣∣∣∣∣ ,

Tm(n)(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+m−1

an+1 an · · · an+m−2

...
...

...
...

an+m−1 an+m−2 · · · an

∣∣∣∣∣∣∣∣∣ , (1.3)

Tm,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+m−1

ān+1 an · · · an+m−2

...
...

...
...

ān+m−1 ān+m−2 · · · an

∣∣∣∣∣∣∣∣∣ , (1.4)

where ān = an. Toeplitz matrices have constant entries along their diagonals, while Hankel matrices have
constant entries along their reverse diagonals. In particular,

H2(n)(f) = anan+2 − a2n+1, T3(1)(f) = 1 − 2a22 + 2a22a3 − a23

and T3,1(f) = 1 − 2|a2|2 + 2 Re(a22ā3) − |a3|2. Finding the sharp bound of |H2(2)(f)| for the class S and its
subclasses has always been the focus of many researchers. Although, investigations concerning Toeplitz and
Hermitian Toeplitz are recently introduced in [2, 11], a summary of some of the more significant results is
given in [41]. For more work in this direction (see [24, 23, 27, 19, 36]).

In 1999, Ma [31] proposed a conjecture for f(z) = z +
∑∞

n=2 anz
n ∈ S that

|Jm,n| := |anam − an+m−1| ≤ (m− 1)(n− 1).

He proved this conjecture for the class of starlike functions and univalent functions with real coefficients. It is
also called generalized Zalcman conjecture as it generalizes the Zalcman conjecture |a2n − a2n−1| ≤ (2n− 1)2

for f ∈ S. Recently, bound of |J2,3| are obtained for various subclasses of A [1, 10]. In section 2 and 3, we
obtain the sharp bound of |H2(2)(f)|, |T3(1)(f)| and |J2,3(f)| for f ∈ Aβ .
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2 Hankel Determinant and Zalcman Functional

Theorem 2.1. If f ∈ Aβ is of the form (1.1), then

|an| ≤
2

n− β(n− 1)
. (2.1)

Further, this inequality is sharp for each n.

Proof. Let f ∈ Aβ is given by (1.1), then we have

β
f(z)

z
+ (1 − β)zf ′(z) = p(z) (z ∈ D),

where p(z) = 1 +
∑∞

n=1 pnz
n such that Re p(z) > 0 is a member of the Carathéodory class P. Upon

comparing the coefficients of same powers on either side with the series expansion of f and p yields

(n− (n− 1)β)an = pn−1 (2.2)

for n = 2, 3, 4, · · · , which gives the needed bound of |an| using the Carathéodory coefficient bounds |pn| ≤ 2
(see [12]). The function f̃ : D → C defined by

f̃(z) = z

(
− 1 + 2

(
2F1

[
1,

1

1 − β
,

2 − β

1 − β
, z

]))
= z +

∞∑
n=2

2

n− (n− 1)β
zn (2.3)

satisfies the condition Re
(
βf̃(z)/z + (1 − β)f̃ ′(z)

)
> 0, hence f̃ is a member of Aβ , where 2F1 denotes the

Gauss hypergeometric function. Equality in (2.1) occurs for f̃ , which proves the sharpness of the bound.

Corollary 2.2. If f ∈ Aβ, then for any real µ ≥ 0

|anan+2 − µa2n+1| ≤
4

(n− (n− 1)β)(n+ 2 − (n+ 1)β)
+

4µ

(n+ 1 − nβ)2
.

The bound is sharp.

Proof. Since |anan+2 − µa2n+1| ≤ |an||an+2| + µ|an+1|2. The bound simply follows from (2.1). To see the
sharpness, consider

f̃1(z) = z

(
−1 + 2

(
2F1

[
1,

1

1 − β
,

2 − β

1 − β
, iz

]))
= z +

∞∑
n=2

2in−1

(n− (n− 1)β)
zn. (2.4)

It can be easily seen that f̃1(z) satisfy (1.2), thus f̃1 ∈ Aβ .

For µ = 1, Corollary 2.2 gives the following sharp bound:

Corollary 2.3. If f ∈ Aβ is of the form (2.2), then

|H2(n)(f)| ≤
4
(
(2n2 − 1)β2 − (4n2 + 4n− 2)β + 2n2 + 4n+ 1

)
(n− (n− 1)β)(n+ 2 − (n+ 1)β)(n+ 1 − nβ)2

.

For n = 2 and 3, the following sharp bound of second order Hankel determinant follows:

Corollary 2.4. If f ∈ Aβ is of the form (2.2), then

|H2(2)(f)| ≤ 4(7β2 − 22β + 17)

(4 − 3β)(3 − 2β)2(2 − β)
, |H2(3)(f)| ≤ 4(17β2 − 46β + 31)

(5 − 4β)(4 − 3β)2(3 − 2β)
.
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Theorem 2.5. If f ∈ Aβ is of the form (1.1), then

|J2,3(f)| ≤ 2

4 − 3β
.

The bound is sharp.

Proof. Let f ∈ Aβ is given by (1.1), then from (2.2), we have

|J2,3(f)| = |a2a3 − a4| =

∣∣∣∣ p1p2
(3 − 2β)(2 − β)

− p3
4 − 3β

∣∣∣∣ . (2.5)

For p(z) = 1 +
∑∞

n=1 pnz
n ∈ P, Libera et al. [29] proved that

2p2 = p21 + x(4 − p21),

4p3 = p31 + 2xp1(4 − p21) − x2p1(4 − p21) + 2z(1 − |x|2)(4 − p21),
(2.6)

where |x| ≤ 1 and |z| ≤ 1. Substituting these values of p2 and p3 in (2.5), we obtain

|J2,3(f)| =

∣∣∣∣p314
(

2

2β2 − 7β + 6
+

1

3β − 4

)
− p1(4 − p21)(1 − β)2x

(2 − β)(3 − 2β)(4 − 3β)

+
p1(4 − p21)x2

4(4 − 3β)
− (4 − p2)(1 − |x|2)z

2(4 − 3β)

∣∣∣∣.
Since the class P is rotationally invariant and it is an easy exercise to check that the class Aβ is also
rotationally invariant, therefore, without losing generality, we can take p1 = p ∈ [0, 2]. Now, applying the
triangle inequality with |x| = ρ, we obtain

|J2,3(f)| ≤p
3

4

(
2

2β2 − 7β + 6
+

1

3β − 4

)
+

p(4 − p2)(1 − β)2ρ

(2 − β)(3 − 2β)(4 − 3β)
+

4 − p2

2(4 − 3β)

+ ρ2
(
p(4 − p2)

4(4 − 3β)
− (4 − p2)

2(4 − 3β)

)
=: F (p, ρ).

To determine the maximum value of F (p, ρ), first we find out the stationary points, given by the roots of
∂F/∂p = 0 and ∂F/∂ρ = 0, where

∂F (p, ρ)

∂p
=

3p2(r2(2β2 − 7β + 6) + 4r(1 − β)2 + 2β2 − β − 2)

4(−2 + β)(−3 + 2β)(−4 + 3β)
+ p

(
r2

4 − 3β
− 1

4 − 3β

)
+

r2

4 − 3β
+

4r(1 − β)2

(4 − 3β)(3 − 2β)(2 − β)
.

∂F (p, ρ)

∂ρ
= 2r

(
p(4 − p2)

4(4 − 3β)
+

−4 + p2

2(4 − 3β)

)
+

p(4 − p2)(1 − β)2

(4 − 3β)(3 − 2β)(2 − β)
.

A simple calculation shows that for p ∈ [0, 2] and r ∈ [0, 1], the stationary point is (0, 0) and(
∂2F

∂p2
∂2F

∂ρ2
− ∂2F

∂ρ∂p

)
(p,ρ)=(0,0)

=
4(8 − 11β + 4β2)

(3 − 2β)2(2 − β)2(4 − 3β))
> 0 for all β ∈ [0, 1].

Thus F (p, ρ) attains either maximum or minimum at (p, ρ) = (0, 0). Since, we have(
∂2F

∂p2

)
(0,0)

=
−1

4 − 3β
< 0,

(
∂2F

∂ρ2

)
(0,0)

=
−4

4 − 3β
< 0 for all β ∈ [0, 1].

Therefore, F (p, ρ) attain its maximum value at (p, ρ) = (0, 0), which is 2/(4 − 3β).

Now, to prove the sharpness of the bound, consider the function f̃2 : D → C given by

α
f̃2(z)

z
+ (1 − α)f̃ ′2(z) =

1 + z3

1 − z3
. (2.7)

If f̃2(z) = z +
∑∞

n=2 anz
n, then a2 = a3 = 0 and a4 = 2/(4 − 3β), thus |J2,3(f)| = 2/(4 − 3β).
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3 Toeplitz and Hermitian-Toeplitz Determinant

Theorem 3.1. If f ∈ Aβ is of the form (1.1), then

(i) |T2,n(f)| ≤ 4

(
1

(n− β(n− 1))2
+

1

(n+ 1 − nβ)2

)
,

(ii) |T3,1(f)| ≤ 4β4 − 28β3 + 101β2 − 196β + 140

(3 − 2β)2(β − 2)2
.

The bounds are sharp.

Proof. From (1.3), it follows that

|T2,n(f)| = |a2n − a2n+1| ≤ |an|2 + |an+1|2.

Using the bound of |an| from (2.1), required bound of |T2,n(f)| follows directly and equality case holds for

the function f̃1 given by (2.4).

Now we proceed for |T3,1(f)|. Again from (1.3), we have

|T3,1(f)| = |1 − 2a22 + 2a22a3 − a23| ≤ 1 + 2|a2|2 + |a3||a3 − 2a22|. (3.1)

By (2.2),

|a3 − 2a22| =
1

3 − 2β

∣∣∣∣p2 − 2(3 − 2β)

(2 − β)2
p21

∣∣∣∣ .
Applying the well known result |p2 − µp21| ≤ 4µ− 2 for µ > 1 (see [32]), we obtain

|a3 − 2a22| ≤
8

(2 − β)2
− 2

3 − 2β
.

Using this bound of |a3 − 2a22| and the bounds of |a2|, |a3| from (2.1) in (3.1), required bound of |T3,1(f)|
follows. Sharpness of the bound of |T3,1(f)| follows from the function f̃1.

Remark 3.1. The bounds of |T2,n(f)| and |T3,1(f)| for the class R follow from Theorem 3.1, when β = 0 [2,
Theorem 2.12].

Theorem 3.2. If f ∈ Aβ is of the form (1.1), then

T3,1(f) ≤


4β4 − 28β3 + 37β2 − 4β − 4

(3 − 2β)2(2 − β)2
; 10−

√
10

9 ≤ β ≤ 1,

1; 0 ≤ β ≤ 10−
√
10

9 .

(3.2)

The bounds are sharp.

Proof. For f(z) = z +
∑∞

n=2 anz
n ∈ Aβ , Theorem 2.1 yields

|a2| ≤
2

2 − β
and |a3| ≤

2

3 − 2β
.

Hence |a2| ∈ [0, 2] and |a3| ∈ [0, 2] for β ∈ [0, 1]. From (1.4), we have

T3,1(f) = 1 + 2 Re(a22ā3) − 2|a2|2 − |a3|2

≤ 1 + 2|a2|2|a3| − 2|a2|2 − |a3|2 =: g(|a3|),

where g(x) = 1 + 2|a2|2x− 2|a2|2 − x2 with x = |a3| ∈ [0, 2]. Since g′(x) = 0 at x0 := |a2|2 and g′′(x0) < 0,
therefore g(x) attains its maximum value at x = x0, whenever |a2|2 belongs to the range of x, that means
|a2|2 ≤ 2. Thus

T3,1(f) ≤ g(|a2|2) = (|a2|2 − 1)2
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≤ 1 when |a2|2 ≤ 2,

= 1 when 0 ≤ β ≤ 2 −
√

2.

Now, the other case, when |a2|2 does not lie in the range of x, that is |a2|2 > 2 or 2 −
√

2 ≤ β ≤ 1, then

T3,1(f) ≤ max g(x) = g

(
2

3 − 2β

)
= 1 − 2a22 −

4

(3 − 2β)2
+

4a22
3 − 2β

≤ 4β4 − 28β3 + 37β2 − 4β − 4

(3 − 2β)2(2 − β)2
.

Using all these above arguments, we obtain

T3,1(f) ≤

{
1, 0 ≤ β ≤ β0;
4β4−28β3+37β2−4β−4

(3−2β)2(2−β)2 , β0 ≤ β ≤ 1,

where β0 = (10 −
√

10)/9 is the root of the equation 9β2 − 20β + 10 = 0.

The sharpness of the bound follows from f(z) = z when 0 ≤ β ≤ (10 −
√

10)/9. However, for
(10 −

√
10)/9 ≤ β ≤ 1, equality in (3.2) holds for the function f̃ given in (2.3).

Remark 3.2. For β = 0 in Theorem 3.2, we obtain T3,1(f) ≤ 1 for f ∈ R [23, Example 2.4].

Theorem 3.3. If f ∈ Aβ is of the form (1.1), then

T3,1(f) ≥ 1 − 4β − 9

β4 − 4β3 + 2β2 + 8β − 8
.

The bound is sharp.

Proof. Let f ∈ Aβ , then from (2.2), we have

a2 =
p1

2 − β
, a3 =

p2
3 − 2β

.

Now, by replacing p2 in terms of p1 using (2.6), we get

2 Re(a22ā3) =
p41 + p21(4 − p21) Re ζ

(3 − 2β)(2 − β)2
, −|a2|2 =

|p1|2

(2 − β)2
,

−|a3|2 = −p
4
1 + (4 − p21)2|ζ|2 + 2p21(4 − p21) Re ζ

4(3 − 2β)2
.

A simple computation yields that

T3,1(f) = 1 +
1

4(3 − 2β)2(2 − β)2

(
p41(8 − 4β − β2) − 8p21(3 − 2β)2

− (4 − p21)2(2 − β)2|ζ|2 + 2p21(4 − p21)(2 − β2) Re ζ

)
=: g(p1, ζ,Re(ζ)).

Since the classes Aβ and P are rotationally invariant, we can take p = p1 ∈ [0, 2]. Using Re(ζ) ≥ −|ζ| with
notation |ζ| = y, we have g(p1, |ζ|,Re ζ) ≥ g1(p, y), where

g1(p, y) = 1 +
1

4(3 − 2β)2(2 − β)2

(
p4(8 − 4β − β2) − 8p2(3 − 2β)2

7
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− (4 − p2)2(2 − β)2y2 − 2p2(4 − p2)(2 − β2)y

)
.

Also, note that
∂g1(p, y)

∂y
= −2(4 − p2)2y(2 − β)2 + 2p2(4 − p2)(2 − β2)

4(3 − 2β)2(2 − β)2
< 0

for all p ∈ [0, 2] and β ∈ [0, 1]. Hence g1(p, y) is a decreasing function of y with g1(p, y) ≤ g1(p, 1) =: g2(p).
Minimum of g2(p) is the lower bound of detT3,1(f). The equation g′2(p) = 0 gives the following critical
points

p(1) = 0, p(2) = ±

√
(2β2 − 8β + 7)

(2 − β2)
.

Using the basic calculus rule, it can be easily observed that the function g2(p) attains its minimum value at
p(2) as g′′(p(2)) > 0 for all β ∈ [0, 1]. Thus

detT3,1(f) ≥ g2(p(2)) = 1 − (4β − 9)/(β4 − 4β3 + 2β2 + 8β − 8).

To show the sharpness consider the function f̃3 ∈ A given by

β
f̃3(z)

z
+ (1 − β)f̃ ′3(z) =

1 − z2

1 − z
√

(2β2 − 8β + 7)/(2 − β2) + z2
.

For f̃3(z) = z +
∑∞

n=2 anz
n, we have

a2 =
1

2 − β

√
2β2 − 8β + 7

2 − β2
, a3 =

1 − 2β

2 − β2

and T3,1(f̃3) = 1 − (4β − 9)/(β4 − 4β3 + 2β2 + 8β − 8).

Remark 3.3. For β = 0 in Theorem 3.2, we obtain detT3,1(f) ≥ −1/8 for f ∈ R [23, Example 2.4].

4 Coefficient Difference

Robertson [37] proved that 3|an+1−an| ≤ (2n+ 1)|a2−1| for the class of convex functions. Recently, Li and
Sugawa [28] obtained the bound of |an+1 − an| for particular choices of n for the class of convex function
with fixed second coefficient. In this section, we find the the bound of |aNn+1 − aNn | (N ∈ N) depending on
the second coefficient for f ∈ Aβ . In fact, it is more convenient to express our result in terms of p1 = p,
applying the correspondence

(2 − β)a2 = p1 = p.

To make the results more legible, we define the class Aβ(p), p ∈ [−2, 2] as follows

Aβ(p) = {f ∈ Aβ : f ′′(0) = p}.

Clearly, ⋃
−2≤p≤2

Aβ(p) ⊂ Aβ and
⋃

−2≤p≤2

Aβ(p) ̸= Aβ .

The following lemmas are used to establish our main results.

Lemma 4.1. [9] If p(z) = 1 +
∑∞

n=1 pnz
n ∈ P, then the following estimate holds:

|pNn+1 − pNn | ≤ 2N
√

2 − 21−N Re(pN1 ) (N ∈ N).

Equality holds for the function (1 + eiαz)/(1 − eiαz), where α = cos−1(b/2) and Re p1 = 2b.
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Lemma 4.2. [26] Fix ζ ∈ D̄. If p(z) = 1 +
∑∞

n=1 pnz
n ∈ P, then

|ξpn+1 − pn| ≤
2(1 − |ξ|n)

(
1 + |ξ|2 − Re(ξp1)

)
1 − |ξ|

+ |2 − ξp1||ξ|n for |ξ| < 1.

The bounds are sharp for p(z) = (1 + z)/(1 − z).

According to Komatu [22], if p(z) = 1 +
∑∞

n=1 pnz
n and q(z) = 1 +

∑∞
n=1 qnz

n both are the members of
P, then the weighted Hadamard product, f ∗ g, also belongs to P, where

f ∗ g = 1 +

∞∑
n=1

pnqn
2

zn.

Let us define Fj(z) = Fj−1 ∗ p(z) for j ∈ N with F0(z) = p(z), then using the above result, we have Fj ∈ P.
Particulary, for N ∈ N, the function

FN−1(z) = 1 +

∞∑
n=1

pNn
2N−1

zn ∈ P.

Replacing p(z) in Lemma 4.2 by FN−1, the result is as follows:

Lemma 4.3. Fix ξ ∈ D̄ and N ∈ N. If p(z) = 1 +
∑∞

n=1 pnz
n, then

|ξpNn+1 − pNn | ≤
2(1 − |ξ|n)

(
2N−1 + 2N−1|ξ|2 − Re(ξpN1 )

)
1 − |ξ|

+ |2N − ξpN1 | · |ξ|n for |ξ| < 1,

Equality holds for the function (1 + z)/(1 − z).

Theorem 4.1. If f ∈ Aβ(p), then the following inequalities hold:

|aNn+1 − aNn | ≤
2(σn − µn)(2N−1σ2 + 2N−1µ2 − σµpN )

(σ − µ)σµn+1
+
σn|2Nµ− σpN |

σµn+1
; β ∈ [0, 1),

2N
√

2 − 21−NpN

σ
; β = 1,

(4.1)

where σ = (n − (n − 1)β)N and µ = (n + 1 − nβ)N . Bounds for β ∈ [0, 1) is sharp for p = 2 whereas for
β = 1, bound is sharp for odd N and p = −2.

Proof. For f ∈ Aβ(p), from (2.2), we have

(n− (n− 1)β)N |aNn+1 − aNn | =

∣∣∣∣(n− (n− 1)β

(n+ 1) − nβ

)N

pNn − pNn−1

∣∣∣∣.
From Lemma 4.3 with ((n− (n− 1)β)/((n+ 1) − nβ))

N
=: ξ, bound in (4.1) for β ∈ [0, 1) follows since

ξ ∈ (0, 1) whenever β ∈ (0, 1). For β = 1 we have ξ = 1. Bounds for β = 1 are obtained using Lemma 4.1 .

To show the sharpness for β ∈ [0, 1), consider the function f̃(z) given in (2.3). As for f̃ , we have

|an+1 − an| =
2N

(n− (n− 1)β)N

∣∣∣∣ (n− (n− 1)β)N

(n+ 1 − nβ)N
− 1

∣∣∣∣ ,
which is same as in (4.1) for p = 2. In case of β = 1, for the function f̃(−z), we have

|an+1 − an| =
2N+1

(n− (n− 1)β)N
,

which coincides with the bounds in (4.1) for odd N and p = −2.
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For N = 1, Theorem 4.1 yields the following bounds:

Corollary 4.2. If f ∈ Aβ(p) is of the form (1.1), then

|an+1 − an| ≤


2(σn − µn)(σ2 + µ2 − σµp)

(σ − µ)σµn+1
+
σn|2µ− σp|
σµn+1

; β ∈ [0, 1),

2
√

2 − p

σ
; β = 1,

The class Aβ reduces to the class R for β = 0. Let us take corresponding class R(p) = {f ∈ R : f ′′(0) =
p}. Theorem 4.1 gives the following result for the class R(p) when β = 0.

Corollary 4.3. If f ∈ R(p) is of the form (1.1), then the following sharp bounds hold:

|aNn+1 − aNn | ≤ 2(σn − µn)(2N−1σ2 + 2N−1µ2 − σµpN )

(σ − µ)σµn+1
+
σn|2Nµ− σpN |

σµn+1
.

5 Growth Theorem and Bohr Phenomenon

Theorem 5.1. If f ∈ Aβ is of the form (1.1), then for |z| ≤ r, the following hold:

(i) − f̃(−r)
r

≤ Re

(
f(z)

z

)
≤ f̃(r)

r
,

(ii) −f̃(−r) ≤ |f(z)| ≤ f̃(r),

where f̃(z) is given by (2.3). All these estimations are sharp.

Proof. (i) Let f ∈ Aβ . Consider p(z) = f(z)/z, then we have

Re(p(z) + (1 − β)zp′(z)) > 0.

It can be viewed as p(z) + (1 − β)zp′(z) ≺ (1 + z)/(1 − z). Further, by Hallenbeck and Rusheweyeh [33,
Theorem 3.1b], it follows that

p(z) ≺ q(z) ≺ 1 + z

1 − z
,

where q(z) is convex and best dominant, given by

q(z) =
1

(1 − β)z(
1

1−β )

∫ z

0

(
1 + t

1 − t

)
t(

1
1−β−1)dt

=
f̃(z)

z
,

where f̃(z) is defined in (2.3). Since q(z) is convex and all coefficients are real for β ∈ [0, 1], therefore image
domain of D under the function q(z) is symmetric with respect to real axis and

q(−r) ≤ Re(q(z)) ≤ q(r), |z| = r < 1.

As p(z) = f(z)/z ≺ q(z), so required bound of Re(f(z)/z) follows. This completes the first part. Sharpness
of the bounds follow as q(z) is the best dominant. (ii) From [7, Lemma 4.10], f ∈ Aβ if and only if

f(z) = z

∫ 1

0

p(t1−βz)dt, (5.1)
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where p ∈ P. Using the well known bound |p(z)| ≤ (1 + r)/(1 − r) of Carathéodory functions, we have

|f(z)| ≤ r

∫ 1

0

1 + rt1−β

1 − rt1−β
dt = f̃(r),

Now, we proceed for the lower bound of |f(z)|. After solving the integration in (5.1) for p(z) = (1+z)/(1−z),
we get

f(z) = z(−1 + 2H(z)),

where

H(z) = 2F1

[
1,

1

1 − β
,

2 − β

1 − β
, z

]
.

Thus for z = reiθ,
|f(z)| = |z(−1 + 2H(z))| ≥ min

θ∈[0,2π]
g(θ) (5.2)

where

g(θ) =
√

Re(reiθ(−1 + 2H(reiθ)))2 + Im(reiθ(−1 + 2H(reiθ)))2,

Since for different choices of β in [0, 1), H(z) reduces to different functions. For instance, when β = 0, it
becomes −2 log(1 − z)/z and for β = 1/2, it reduces to −4(z + log(1 − z))/z2. By a simple calculation, we
find that the function g(θ) is decreasing from [0, π] and increasing from [π, 2π] for r ∈ (0, 1) and β ∈ [0, 1).
Hence g(θ) attains its minimum value at θ = π. Thus from (5.2), we get

|f(z)| ≥ |−r(−1 + 2H(−r))|
= r(−1 + 2H(−r)) = −rf̃(−r),

which completes the proof. Bounds are sharp for the function f̃(z).

Theorem 5.2. If f ∈ Aβ is of the form (1.1), then for m ∈ N

|ω(zm)| +

∞∑
n=2

|anzn| ≤ d(0, ∂f(D))

in |z| ≤ r∗, where r∗ is the smallest positive root of

rm + f̃(r) − r + f̃(−1) = 0. (5.3)

The radius r∗ is sharp.

Proof. Let f ∈ Aβ , then by Theorem 5.1, the Euclidean distance between f(0) = 0 and the boundary of
f(D) satisfies

d(0, ∂f(D)) ≥ lim
r→1

|f(z)| = −f̃(−1).

Let |z| ≤ r. Now using (2.1) with the above inequality, we have

|ω(zm)| +

∞∑
n=2

|anzn| ≤ rm +

∞∑
n=2

(
2

n− β(n− 1)

)
rn,

= rm + f̃(r) − r

≤ −f̃(−1) ≤ d(0, ∂f(D)).

which is true in |z| = r ≤ r∗, where r∗ is the root of H(r) = r(rm−1 − 1) + f̃(r) + f̃(−1). Note that,
H(0) = f̃(−1) < 0 and H(1) = f̃(1) + f̃(−1) > 0 for all β ∈ [0, 1], therefore by the Intermediate value
property for continuous functions there must exist a r∗ ∈ (0, 1) such that H(r∗) = 0.

11

16 May 2023 21:05:37 PDT
230516-Kumar-2 Version 1 - Submitted to Rocky Mountain J. Math.



Sharpness holds for the functions f̃(z) and ω(z) = z. Since at z = r∗,

|ω(zm)| +

∞∑
n=2

|anzn| = (r∗)m +

∞∑
n=2

2

n− (n− 1)β
(r∗)n

= (r∗)m + f̃(r∗) − r∗ = −f̃(−1).

Hence the radius is sharp.

For w(z) = z and m = 1, Theorem 5.2 gives the following Bohr-radius for the class Aβ .

Corollary 5.3. If f ∈ Aβ, then |z|+
∑∞

n=2|anzn| ≤ d(0, ∂f(D)) in |z| ≤ rb, where rb is root of f̃(r)+f̃(−1) =
0. The radius rb is sharp.

For various values of β ∈ [0, 1], the root rb is shown in Figure 1 and Table 1.

β = 0.1

β = 0.3

β = 0.5

β = 0.7

β = 0.9

0.2 0.4 0.6 0.8 1.0

2

4

6

8

Figure 1

Table 1: Radius r∗ for various choices of β

β 0.1 0.2 0.3 0.5 0.7 0.8 0.9

rb 0.267139 0.24766 0.22655 0.178366 0.119726 0.085113 0.0457777

Theorem 5.4. If f ∈ Aβ, then

|f(zm)| +

∞∑
k=N

|akzk| ≤ d(0, ∂f(D)) (5.4)

hold for |z| = r ≤ rN , where rN is the root of the equation

f̃(rm) + f̃(r) − f̂(r) + f̃(−1) = 0,

with

f̂(r) =


0 N = 1,
r N = 2,

r +
∑N−1

n=2
2

n−(n−1)β r
n N ≥ 3.

The radius is sharp.

Proof. Suppose f ∈ Aβ , then from (1.2) and Theorem 5.1, we have

|f(zm)| +

∞∑
k=N

|akzk| ≤ f̃(rm) +

∞∑
n=N

2

n− (n− 1)β
rn
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= f̃(rm) − f̂(r) + f̃(r)

≤ −f̃(−1)

≤ d(0, ∂f(D))

holds in |z| = rN , where rN is the root of

G(r) := f̃(rm) − f̂(r) + f̃(r) + f̃(−1) = 0.

Since G(0) = f̃(−1) < 0 and G(1) = (f̃(1) − f̂(1)) + (f̃(1) + f̃(−1)) > 0, therefore there exist a rN ∈ (0, 1)
such that (5.4) holds. Note that, for the function f̃(z) at |z| = rN ,

|f(zm)| +

∞∑
k=N

|akzk| = f̃((rN )m) +

∞∑
n=N

2

n− (n− 1)β
(rN )n

= −f̃(−1),

which proves the sharpness of radius.
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Toeplitz determinants for starlike and convex functions of order α, Bol. Soc. Mat. Mex. (3) 26 (2020),
no. 2, 361–375.

[12] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-
Verlag, New York, 1983.

[13] M. Elin, S. Reich and D. Shoikhet, Numerical range of holomorphic mappings and applications,
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