On impulsive p-Laplacian differential equations
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Abstract

In this article, we discuss a p-Laplacian fractional differential equation involving instanta-
neous and non-instantaneous impulses. We obtain variational structure for the stated problem.
Under this framework, using the critical point theory, we prove the existence result of solutions.
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1 Introduction

In the past few decades, there has been shown a considerable interest in studying fractional
calculus and fractional differential equations, for instance, see [1, 2, 3, 4, 5, 6] and the references
cited therein. Recently, many authors studied the impulsive fractional differential equations and
impulsive fractional differential equations by using variational methods [7, 8, 9, 10, 11, 12, 13].
Agarwal et al. in [14] and Hernddez et al. in [15] introduced non-instantaneous impulses differential
equations. In [16], the authors firs used the variational method and the Lax-Milgram theorem to
study the existence of weak solutions to not-instantaneous impulsive differential equations. Also,
Khaliq and Rehman [17] by the Lax-Milgram theorem studied not-instantaneous impulsive fractional
differential equations. Finally, Tian and Zhang [18] studied the existence of solutions to the following
equation:

—v'(2) = fi(z,v(2)), z€[G &l i=2,...,L,
Ay’(é‘z) ( (61))7 i=1,2,...,L,

V() = v (&), ze(&,G,i=1,2,...,L, (1)
V(¢T) =v(¢), i=1,2,...,L,
v(0)=v(T)=0.

By motivation from above works, we study the following p-Laplacian fractional differential equation
with not-instantaneous impulses:

DY (= bp(u(2)§ DIV (2) = filz,v(2)), z € [Gyzipl, i=2,..., L,
Al by 1(W WD DIV(E))) =miw(@),  i=12...L
DY (b b ((2)§ DYV (2)
= zDﬂ 1(W¢p(ﬂ(§i+)8D£V(fi+))v z€ (&, Gl i=1,2,..., L, (2)
Dy et o ((GT)§D(GT))
=Dy (et S (G HEDIV(GY)), i=1,2,.. . L,
v(0) = (2) =0,
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where 0 = (o < &1 < (1 <& <G <...<& < (L <&41=2,LeN, L>2 ,DJ and DY
are right Riemann-Lioville and left Caputo fractional derivatives of the order 0 < ¥ < 1 respectively
(see [2]), u(z) € L>([0, Z]) with pg = ess infjg zju(z) > 0, pu¥ = ess sup(o, z14(2); ¢p(o) = lo|P~20
for p>1, w; € C(R,R), fi € C((¢i, &i+1] X R, R),
_ 1 B . _ 1 .
D} 1(W¢p<u<<ﬁ>oD£u<<ﬁ>>) =t DY (o D) )

e p(r)p=2

and

Dy (h(gf)p_z (i ;>0D£v<f+>>> = tim D5 (g D))
Dy (Lt(g__l)p_z@pm@;)oz)fu(f;))) = tim D5 (D))

To state our result, we need the assumptions:
(H;) There exists a constant v; € [0,p) for any i = 1,..., L, such that

%-/ w;(T)dr < w;(s)s, for every s € R.

0

(Hs) w; satisfy H; := inf|;— fos w;(T)dr > 0.

(H3) There exists positive constants 8; € [0,p) for any ¢ = 1,..., L, such that
Fi(z,7) < Bir?, VY q€[0,p),z €[0,Z7].

The our main result is as follows:

Theorem 1. Assume that 1% <9 <1,1<p<+oo and (Hy)-(Hs3) hold, then the problem (2) has
a weak solution.

2 Preliminaries

In this section, we introduce some basic definitions and lemmas.

Definition 1. (/13]) Let p € [1,00) and ¥ € (0,1]. Define the following space

BOr — WHVUM

with the norm

Z Z 3
[llo.p = </O Il/(Z)I”ci»Z+/0 u(Z)SDfV(Z)I”dZ> : (3)

Therefore,
EVP = {v € IP[0,Z]| $D’v(z) € L*[0, Z], v(0) = v(Z) = 0}.

Also, we know that E? for 0 < < 1 is a separable and reflexive Banach space (See [12, 19]).
In view of Proposition 3.2 in [19], we have the following Lemma:
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Lemma 1. Let p € [1,00) and 0 < 9 < 1. For every v € E", we have

Z19 zZ %
[l < 7(19 = (/O M(Z)ODEV(Z)lde> ; for0<d <1, (4)
L'+ 1)pg

also, when ¥ > % with % + ﬁ =1, we have

-2 Z P
Wl < z — ( / M(Z)onV(Z)lde> . (5)
L@) (0 —1Dp' + 1) pg \"°

Remark 1. By (4), the norm of (3) is equivalent of

z v
[¥llo.p = (/0 M(Z)onV(Z)I”dZ> , Ve Byt (6)

Proposition 1. Let p > 1,p’ > 1,%+i <1l4norp#1,p # 1,%+i 14+nand v €

L?([0, Z]),v € L? ([0, Z]). Then, ’ ’

T zZ
/ (0D (2))v(t)dt = / (.D;"()w(z)dt, forn > 0.
0 0

Now, by similar methods in [4], one can get the following lemma:

Lemma 2. Let m — 1 <9 <m, vy € AC[0, Z],vh € LP[0, Z], §D? € LP[0, Z] and
=Dz (W%(M(Z)SD%(Z))) € AC[0,Z]. Then

bo
/ W@?(M(Z)SD?ZW(Z))(SDEVQ(Z))CZZ

bo
— [ st DI ) DY (2

-/ 05 (S DI )| (e

_pr (Lt 2)5D%v1 (2)) ) va(z
=05 (st DI () )

-/ =02 (o 00 ) | vt o

bo

ao

3 Proof of the main result

We now prove the variational structure to the equation.

Lemma 3. Forv e Eg’p, the problem (2) is equivalent of the following form:

’ 1 c v c Y
| st DL Tt

L Eit1 L
:E:/. ﬁ@wwwﬂz—zym@@»T@m VYT e B ()

1=0
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Proof. For any v, T € Eg P In view of Proposition 1 and (7) we have

Z

/0 ﬁ%( (=6D:v( o n(z)p2 (2)6D2u(2)) (DY 1Y (2))d=

:/OZ {ZDZ_I (Mz;pgqﬁp( (2)§DYv (= )))] T'(2)dz

-/ ) 05 (St D) ) | T e

[ZDZ* (e300 )| 1o

v 05 (D) ) | T

91 1 _
= Dy (e B D)) T(E)

§1i Y—1 1 c 19V
- [ i [ o0 | aes

- 91 1
+; Dy (Ww (& )D2v(¢ )))T(@)

Dy (M(éﬂ)pgw (& )5D0v f* «sz}

%
L

3 [ [ meeien] 1

=1

L—-1
+ Z {zDgl (N(fi.:,-ll)p2 Qj)p(l‘@hq) D V(Eerl))) T(§i+1)

i=1

1 1 .
—:Dy <W¢p(M(CJ)0D£V@j))) T(Ci)}

Ei+1i 91 ; o
I DE gt D) T

—1 1 c
.0} (W%(u(@)w?v(cm)) (G

‘/< |28 e En ) T
_ /OZZD

9
z
L
+Z {zDél (W?f)p(ﬂ(fj)gDEV(fj)))

i=1

s 2)EDYv(z 2dz
(#(z)pz%(ﬂ( JoDzv( ))) Y(z)d

v—1 1 —\c Y v(E .
DY (u(gi—)w%(ﬂ(@ BDED) }r@)

L
'y {Dz (W%wmo@u(m))

=0

_ v—1 1 —\ec Y ten .
D} (M( et GG ) }m»
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which together by (2), we obtain
7 9 1 9 7 1 9 9
| 2 (W@(u(z)sz?zu(z))) s = [ (I DI DY ()

L
+Zwi(u(§i))r(fi)- (9)
i=1
Also from problem (2), one can get

" D _ 2)sD%v(z z
| DUt DI Tt

L §it1 1
-y /C D MNPV X )t
=0 i

+Z/ Y DY g DI T
i=1 i e M(Z)p_Q b 0=

L iv1 L Ci

-3 [ oy [ 2 [ o5 (Ggrmetente ) | T
i=0 i =1 i
L Eit1 L Gi d

= i(z,v)Y(2)dz — —(w;i(v))Y(2)dz
;A ﬂ)()+;L (@ ()T(2)
L Eit1

=Y [ et (10)
1=0 i

So, by (9) and (10), we get
’ 1 c v c Y p >
/0 oz D )E DV (@) DT (2))d

L Eit1 L
-3 / filz )Y (2)dz = Y wi(v(2)) (&)
i=0 7/ Gi i=1

So, we have the conclusion. O]
Now, we can define the weak solution of (2).
Definition 2. Letv € Eg’p, then v is called weak solution of (2) if (8) is satisfied for every ¢ € Eg’p.
Define the functional % : Ex” — R as
v(&i)

1 z R » Lo réin 4 L '
ORE / ICILECIKESY /C R+ / wi(r)dr, (11)

where F;(z,v) = [ fi(z,7)dr.
Obviously, ) is continuously differentiable on Eg P and

W), ¢) = / L (D) G~ 3 / M ev)eds
) - 0 /J,(Z)p_2 p M 0~z 0~z ~J, 1\~
L
+Y @i (v(&)d (). (12)
=1
5
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Clearly, the critical points of @ are equivalent by weak solutions of (2).
To prove the main result (Theorem 1), we bring the following theorem.

Theorem 2. (Theorem 4.2 ([21])) Let E be a Banach space, © : E — R be a differentiable on E
and bounded from below function. Then, for every € > 0 and for each v € E such that

Ov) < irElf@ +€
there exists ¢ € E such that O(¢) < O), |v — ¢| < €2 and |0/(¢)| < e=.

Now, we can prove the main result (Theorem 1).

Prof of the Theorem 1. We will use Theorem 2 to prove this theorem. In view of (Hy), (Hs) and
similar methods the formula (36) in [22], one can get

/ ws(r)dr > Hi |2 (13)
0

where H; = inf|,—; foz w;(7)dT > 0. Then by (5), (13) and (Hs), we have

1 L Eit1 )
() = p|u||{;7p—;/@ Fl-(z,u)dz—kZ/o =i(7)dr

91 s
1 VAR
> *HVHZ,p_”V”%,p 71 Z&(&H—Q)
P L@) (W =1p" +1)" g ) =0
Vi
L 19_%
~SH, z — |, (14)
i=1 L@)((0 —1)p" +1)7 pg

So, there exists p > 0 such that ¥(v) > 0 for all v € EYP with ||v|ly, = p, which by define

E = B,(0) C E¥P, since v;,q < p then 1(v) is bounded from below.
By similar argument in the proof of Theorem 2.1 in [18], for each € > 0, one can get

inf ¥(v) —e < Y(¢p) < YP(z) < inf P(v)+e. (15)

veFE veE
Also, by Theorem 2, we have
[ (9)ll- < €= (16)

By (15) and (16) there exists sequence {v,,} C B,(0) such that

Y(va) = inf (), ¥ (1) = 0.

veE

Obviously, {v,} is bounded. Since E is a close subset of the reflexive space EV"P, then E by the
restrict norm || - ||lg, on E is reflexive. So the sequence {v, } weakly converges to v* in E. Also, we
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claim that {v,} strongly converges to v* in E. From (12), we get

7
(W (vn) = (W) vm — ") = / W(asp(u(z)wfun)
—¢p<u<z>8D5u*>> (ED?un(2) — §DYw* (2))d
L

Eit1
_Z/ (fi(zal/n) - fi(Z,V*))(Vn - V*)dz

i=0 Y Gi

L
= (@i(vn(&)) — @ () wal&) v (&), (17)
i=1
Since v, — v* in F, we get {v,} uniformly converges to v* in E. Thus

{ZL— 57+1(fz(2 vn) — [i(z,v*))(Wn — v*)dz — 0 as n — oo,
SE (@i (&) — @i (0 (€))) (&) — v5(E)) = 0 as 1 — oo,

By (17) and (18) we get

Z
/0 ﬁ (6p(1(2)5Dv) — b ((2)3DI0*)) (6D v (2) — §Dv* (2))dz — 0,

which yields that

A
/O (6p(1(2)5D7v) — o ((2)5D0*)) (6D v (2) — §DYv*(2))dz = 0.

Then, by similar methods of the proof of Theorem 16 in [12], we can get ||v, —v*||y,, — 0 as n — oo,
{vn} strongly converges to v* in E. Then

Y(v') = inf Y(v), P'()=0

veE
Therefore, v* is a weak solution of (2). O
Example 1. Consider the following boundary value problem,
Db (DI V() = file,), e lGuEinl i=2... L,
A (D5 (e @ u&)DivE))) = miluE),  i=12...L,
D, (e on(nl2)5Dv(2)
(

:Z‘D;Z(M@er 2¢p ,LL( ) l/(fi+))a Ze(giaci}ai:172a"'7[/a (19)
D7 G ron eDIv(G))

- D (N(C +)p 2 P(p’( ) V(<i+))7 L= 172a"'7L7
v(0) =v(Z) =0,

where w@;(v) = v and f;(z,v) = vzt for i =1,2,..., L. Direct computation shows that (Hi)-(Hs)
holds with ~; = %, g =1and 8; = Zi. According to Theorem 1, the above non-instantaneous
impulsive problem of fractional order has a unique weak solution.
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