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Abstract. In this paper, we first obtain some new Hermite–Hadamard-type inequalities for interval-

valued LR-convex functions. Afterwards, we investigate Hermite–Hadamard-type inequalities for
interval-valued co-ordinated LR-convex functions. New results are obtained by making special choices

in newly established inequalities in the case of interval-valued LR-convex functions and interval-

valued co-ordinated LR-convex functions. It is also shown that the newly established inequalities are
extensions of comparable results in the literature.

1. Introduction

The Hermite–Hadamard inequality, as discovered by C. Hermite and J. Hadamard (as presented in
references such as [12], [34, p.137]), stands as one of the most firmly established principles within the
realm of convex function theory. This inequality not only possesses a geometric interpretation but also
finds numerous practical applications. These inequalities articulate that when considering a convex
function f : I → R defined on a real number interval I, and selecting two distinct points a and b within
I such that a < b, the following relationships hold:

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

2
.

If f takes a concave form, the inequalities exhibit an inverse correlation. A multitude of mathe-
maticians have played a role in solidifying the Hermite–Hadamard inequalities. It’s worth observing
that the Hermite–Hadamard inequality could be contemplated as a honing of the concept of convex-
ity, effortlessly stemming from Jensen’s inequality. The Hermite–Hadamard inequality concerning
convex functions has undergone a revitalization in recent times, fostering a notable array of en-
hancements and extensions that have been explored extensively (refer, for instance, to works such
as [2], [9], [13], [33], [36], [39]).

Interval analysis, which is utilized in mathematics and computer models as one of the ways for
resolving interval uncertainty, is an important material. Despite the fact that this theory has a lengthy
history dating back to Archimedes’ estimate of the circumference of a circle, substantial research on
this topic was not published until the 1950s. In 1966, Ramon E. Moore, the pioneer of interval calculus,
released the first book [29] on interval analysis. Following that, a slew of researchers delved into the
theory and applications of interval analysis.

In the context of this article, we introduce the notation R+
I to represent the collection of all positive

intervals within the real numbers. The set comprising all interval-valued functions that are Riemann
integrable and real-valued functions on the interval [a, b] is denoted as IR([a,b]) andR([a,b]), respectively.
The subsequent theorem establishes a connection between functions that are integrable in the sense
of (IR) and functions that are Riemann integrable (R-integrable). Moreover, for

[
U ,U

]
and

[
V,V

]
belonging to R+

I , the symbol ”⊆” is employed to indicate the inclusion relationship, where
[
U ,U

]
is

considered to be a subset of
[
V,V

]
. This inclusion holds true if and only if the condition V ≤ U and
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U ≤ V is satisfied. Many authors have recently focused on integral inequalities derived from interval-
valued functions. Sadowska [35] discovered the Hermite-Hadamard inequality for set-valued functions,
which is a more general form of interval-valued mappings:

Theorem 1. [35] Suppose that F : [a, b] → R+
I is interval–valued convex function such that F (t) =[

F (t), F (t)
]
. Then, we have the inequalities:

(1.2) F

(
a+ b

2

)
⊇ 1

b− a
(IR)

b∫
a

F (x)dx ⊇ F (a) + F (b)

2
.

Furthermore, well-known inequalities such as Ostrowski, Minkowski and Beckenbach and their some
applications were provided by considering interval-valued functions in [7, 8, 14, 32]. In addition, some
inequalities involving interval-valued Riemann-Liouville fractional integrals were derived by Budak et
al. in [4]. In [26], Liu et al. gave the definition of interval-valued harmonically convex functions,
and so they obtain some Hermite–Hadamard type inequalities including interval fractional integrals.
In [10] and [11], the authors gave the variant of Jensen’s inequality for interval-valued functions via
fuzzy integrals and proved different integral inequalities. Mitroi et al. proved Hermite–Hadamard
type inequalities for set-valued functions in [28] and in [16, 31], the authors used general forms of
interval-valued convex functions to prove Hermite-Hadamard type inequalities. Some Gronwal type
inequalities for interval-valued functions were obtained by Román Flores et al. in [15]. In [42,43], Zhao
et al proved different types of integral inequalities for interval-valued functions.

Jleli and Samet obtained new Hermite-Hadamard type inequalities involving fractional integrals
with respect to another function in [17]. In [38], Tunç introduced firstly fractional integrals of a
function with respect to the another function. Katugompala established a new fractional integration,
which generalizes the Riemann–Liouville and Hadamard fractional integrals into a single form. Budak
and Agarwal established the Hermite–Hadamard-type inequalities for co-ordinated convex function
via generalized fractional integrals, which generalize some important fractional integrals such as the
Riemann–Liouville fractional integrals, the Hadamard fractional integrals, and Katugampola fractional
integrals in [3]. Kara et al. [18] defined interval-valued left-sided and right-sided generalized fractional
double integrals. In recent years, many authors have focused on interval-valued functions. In [44], the
authors gave a new concept of interval-valued general convex functions to prove several new variants of
Hermite-Hadamard type inequalities. Moreover, in [5], the authors gave a fractional version of Hermite-
Hadamard type inequalities for interval-valued harmonically convex functions. Recently, in [20–23,37],
several researchers extended the concept of interval-valued convexity and defined different kinds of LR-
convexity for interval-valued functions. They also obtained many Hermite–Hadmard type inequalities
for LR-interval-valued convex functions.

Inspired by the on going studies, we give the notions about generalized fractional integrals for the
two variables interval-valued functions to prove Hermite–Hadmard type inequalities for convex and co-
ordinated convex functions. The main advantage of the newly established inequalities is that these can
be turned into Riemann-Liouville fractional Hermite-Hadamard integral inequalities, Hadamard frac-
tional Hermite-Hadamard integral inequalities, Katugampola fractional Hermite-Hadamard inequali-
ties and classical Hermite–Hadamard integral inequalities for LR-convex and coordinated LR-convex
interval-valued functions without having to prove each one separately.

The following is the structure of this paper: Section 2 provides a brief overview of the fundamentals
of interval-valued calculus as well as other related studies in this field. We give some generalized
fractional integrals for two variables interval-valued functions in Section 3. In Section 4, we establish a
new Hermite–Hadamard type inequality for interval-valued LR-convex functions. For Interval-valued
coordinated LR-convex functions, several Hermite-Hadamard type inequalities are parented in Section
5. The relationship between the findings reported here and similar findings in the literature are also
taken into account. Section 6 concludes with some recommendations for future research.

2. Preliminaries

In this section we recall some basic definitions, results, notions and properties, which are used through-
out the paper. A positive interval is an interval that tells you that the left and right endpoints of the
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interval are also positive. We denote R+
I the family of all positive intervals of R. The Hausdorff

distance between [X,X] and [Y , Y ] is defined as

d([X,X], [Y , Y ]) = max
{
|X − Y | , |X − Y

∣∣}.
The (RI , d) is a complete metric space. For more details and basic notations on interval-valued
functions see ( [30,41]).

We now give the properties of fundamental interval analysis operations for the intervals U and V as
follows:

U + V =
[
U + V,U + V

]
,

U − V =
[
U − V,U − V

]
,

U .V = [min Λ,max Λ] where Λ =
{
U V,U V, UV,U V

}
,

U/V = [min ∆,max ∆] where ∆ =
{
U/V,U/V,U/V,U/V

}
and 0 /∈ V.

Scalar multiplication of the interval U is indicated by

θU = θ
[
U ,U

]
=



[
θU , θU

]
, θ > 0

{0} , θ = 0[
θU , θU

]
, θ < 0,

where θ ∈ R.
For

[
U ,U

]
,
[
V,V

]
∈ R+

I , the inclusion ”⊆” is defined by
[
U ,U

]
⊆
[
V,V

]
, and only if, V ≤ U , U ≤ V.

(1) The relation ”≤p ” defined on RI by
[
U ,U

]
≤p

[
V,V

]
if and only if U ≤ V, U ≤ V, for all[

U ,U
]
,
[
V,V

]
∈ R+

I , it is an pseudo order relation. For given
[
U ,U

]
,
[
V,V

]
∈ RI , we say that[

U ,U
]
≤p

[
V,V

]
if and only if U ≤ V, U ≤ V.

(2) It can be easily seen that ”≤p ” looks like ”left and right” on real line R, so we call ”≤p ” is
”left and right ”(or ”LR” order, in short).

It is remarkable that Moore [29] introduced the Riemann integral for the interval-valued functions.
The set of all Riemann integrable interval-valued functions and real-valued functions on [a, b] are
denoted by IR([a,b]) and R([a,b]), respectively. The following theorem gives relation between (IR)–
integrable and Riemann integrable (R–integrable) (see [30], pp. 131):

Theorem 2. Let F : [a, b] → RI be an interval–valued function such that F (t) =
[
F (t), F (t)

]
.

F ∈ IR([a,b]) if and only if F (t), F (t) ∈ R([a,b]) and

(IR)

b∫
a

F (t)dt =

(R)

b∫
a

F (t)dt, (R)

b∫
a

F (t)dt

 .
In [41,42], Zhao et al. introduced a kind of convex interval–valued function as follows:

Definition 1. Let h : [c, d] → R be a non–negative function, (0, 1) ⊆ [c, d] and h 6= 0. We say that
F : [a, b]→ R+

I is a h–convex interval–valued function, if for all x, y ∈ [a, b] and t ∈ (0, 1), we have

(2.1) h(t)F (x) + h(1− t)F (y) ⊆ F (tx+ (1− t)y).

With SX(h, [a, b],R+
I ) will show the set of all h–convex interval–valued functions.

The usual notion of convex interval–valued function corresponds to relation (2.1) with h(t) = t, see [35].
Also, if we take h(t) = ts in (2.1), then Definition 1 gives the other convex interval–valued function
defined by Breckner, see [1].
Otherwise, Zhao et al. obtained the following Hermite–Hadamard inequality for interval–valued func-
tions by using h–convex:
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Theorem 3. [41] Let F : [a, b]→ R+
I be an interval–valued function such that F (t) = [F (t), F (t)] and

F ∈ IR([a,b]), h : [0, 1]→ R be a non–negative function and h
(

1
2

)
6= 0. If F ∈ SX(h, [a, b],R+

I ), then

(2.2)
1

2h
(

1
2

)F (a+ b

2

)
⊇ 1

b− a
(IR)

b∫
a

F (x)dx ⊇ [F (a) + F (b)]

1∫
0

h(t)dt.

Remark 1. (i) If h(t) = t, then (2.2) reduces to the following result:

F

(
a+ b

2

)
⊇ 1

b− a
(IR)

b∫
a

F (x)dx ⊇ F (a) + F (b)

2
,

which is obtained by [35].
(ii) If h(t) = ts, then (2.2) reduces to the following result:

2s−1F

(
a+ b

2

)
⊇ 1

b− a
(IR)

b∫
a

F (x)dx ⊇ F (a) + F (b)

s+ 1
,

which is obtained by [16].
In [27] Lupulescu defined the following interval-valued left-sided Riemann–Liouville frac-

tional integral.

Definition 2. Let F : [a, b]→ RI be an interval-valued function such that F (t) =
[
F (t), F (t)

]
and let

α > 0. The interval-valued left-sided Riemann–Liouville fractional integral of function f is defined by

J αa+F (x) =
1

Γ(α)
(IR)

x∫
a

(x− s)α−1
F (t)dt, x > a

where Γ is Euler Gamma function.

Based on the definition of Lupulescu, Budak et al. in [4] gave the definition of interval-valued right-
sided Riemann–Liouville fractional integral of function F by

J αb−F (x) =
1

Γ(α)
(IR)

b∫
x

(s− x)
α−1

F (t)dt, x < b.

where Γ is Euler Gamma function.
In [38], Tunç gave following fractional integrals for interval-valued functions and corresponding

inequalities of Hermite–Hadamard type as follows:

Definition 3. Let g : [a, b] → R be an increasing and positive monotone function on (a, b], having a
continuous derivative g′(x) on (a, b) and F ∈ IR([a,b]). The interval-valued left-sided (Jαa+;gF (x)) and

right-sided (Jαb−;gF (x)) fractional integral of F with respect to the function g on [a, b] of order α > 0

are defined by

Jαa+;gF (x) =
1

Γ(α)
(IR)

x∫
a

g′(t)

[g(x)− g(t)]
1−αF (t)dt, x > a

and

Jαb−;gF (x) =
1

Γ(α)
(IR)

b∫
x

g′(t)

[g(t)− g(x)]
1−αF (t)dt, x < b

respectively.

Remark 2. (i) If we choose g(t) = ln t in Definition 3, the operators Jαa+;gF (x) and Jαb−;gF (x)

reduce to Hadamard interval-valued fractional integrals Jαa+;gF (x) and Jαb−;gF (x), respectively.

(ii) Considering g(t) = tρ

ρ , ρ > 0 in Definition 3, the operators Jαa+;gF (x) and Jαb−;gF (x) reduce

to Katugampola interval-valued fractional integrals ρIαa+;gF (x) and ρIαb−;gF (x), respectively.
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Theorem 4. [38] Let F : [a, b]→ R+
I be an interval-valued convex function on [a, b] such that F (x) =[

F (x) , F (x)
]

for all x ∈ [a, b] with and g : [a, b]→ R be an increasing and positive monotone function
on (a, b] having a continuous derivative g′ (x) on (a, b), then we obtain the following relation

Jαa+;gF (x) =
[
Jαa+;gF (x) , Jαa+;gF (x)

]
Jαb−;gF (x) =

[
Jαb−;gF (x) , Jαb−;gF (x)

]
where

Jαa+;gf(x) =
1

Γ(α)

x∫
a

g′(t)

[g(x)− g(t)]
1−α f(t)dt, x > a

Jαb−;gf(x) =
1

Γ(α)

b∫
x

g′(t)

[g(t)− g(x)]
1−α f(t)dt, x < b

which are defined by Kilbas et al. in [25].

Theorem 5. [17] Let g : [a, b]→ R be an increasing and positive monotone function on (a, b], having
a continuous derivative g′(x) on (a, b) and let α > 0. If f is a convex function on [a, b] , then

(2.3) f

(
a+ b

2

)
≤ Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gζ(b) + Jαb−;gζ(a)

]
≤ f (a) + f (b)

2

where ζ(x) = f(x) + f(a+ b− x) for x ∈ [a, b] .

Theorem 6. [38] Let g : [a, b]→ RI be an increasing and positive monotone function on (a, b], having
a continuous derivative g′(x) on (a, b) and let α > 0. If F is an interval-valued convex function on
[a, b] , then

(2.4) F

(
a+ b

2

)
⊇ Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gΦ(b) + Jαb−;gΦ(a)

]
⊇ F (a) + F (b)

2

where Φ(x) = F (x) + F̃ (x) and F̃ (x) = F (a+ b− x) for x ∈ [a, b] .

3. Interval-valued double integral and Co-ordinated Convexity

A set of numbers {ti−1, ξi, ti}mi=1 is called tagged partition P1 of [a, b] if

P1 : a = t0 < t1 < . . . < tn = b

and if ti−1 ≤ ξi ≤ ti for all i = 1, 2, 3, . . . ,m. Moreover if we have ∆ti = ti − ti−1, then P1 is said
to be δ−fine if ∆ti < δ for all i. Let P(δ, [a, b]) denote the set of all δ−fine partitions of [a, b]. If
{ti−1, ξi, ti}mi=1 is a δ−fine P1 of [a, b] and if {sj−1, ηj , sj}nj=1 is δ−fine P2 of [c, d], then rectangles

∆i,j = [ti−1, ti]× [sj−1, sj ]

are the partition of the rectangle ∆ = [a, b] × [c, d] and the points (ξi, ηj) are inside the rectangles
[ti−1, ti]× [sj−1, sj ]. Further, by P (δ,∆) we denote the set of all δ−fine partitions P of ∆ with P1×P2,
where P1 ∈ P(δ, [a, b]) and P2 ∈ P(δ, [c, d]). Let ∆Ai,j be the area of rectangle ∆i,j . In each rectangle
∆i,j , where 1≤ i ≤ m, 1 ≤ j ≤ n, choose arbitrary (ξi, ηj) and get

S(F, P, δ,∆) =

m∑
i=1

n∑
j=1

F (ξi, ηj)∆Ai, j .

We call S(F, P, δ,∆) is integral sum of F associated with P ∈ P(δ,∆).
Now we recall the concept of interval-valued double integral given by Zhao et al. in [42].

Theorem 7. [42]Let F : ∆ → RI . Then F is called ID−integrable on ∆ with ID−integral U =
(ID)

∫∫
∆

F (t, s)dA, if for any ε > 0 there exist δ > 0 such that

d(S(F, P, δ,∆)) < ε

for any P ∈ P(δ,∆). The collection of all ID−integrable functions on ∆ will be denoted by ID(∆).
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Theorem 8. [42]Let ∆ = [a, b]× [c, d]. If F : ∆→ RI is ID−integrable on ∆, then we have

(ID)

∫∫
∆

F (s, t)dA = (IR)

∫ b

a

(IR)

∫ d

c

F (s, t)dsdt.

Definition 4. [6]Let F ∈ L1 ([a, b]× [c, d]) .The Riemann-Lioville integrals J α,βa+,c+,J
α,β
a+,d−,+J

α,β
b−,c+

and J α,βb−,d−of order α, β > 0 with a, c ≥ 0 are defined by

J α,βa+,c+F (x, y) =
1

Γ (α) Γ (β)
(IR)

x∫
a

y∫
c

(x− t)α−1
(y − s)β−1

F (t, s) dsdt, x > a, y > c,

J α,βa+,d−F (x, y) =
1

Γ (α) Γ (β)
(IR)

x∫
a

d∫
y

(x− t)α−1
(s− y)

β−1
F (t, s) dsdt, x > a, y > d,

J α,βb−,c+F (x, y) =
1

Γ (α) Γ (β)
(IR)

b∫
x

y∫
c

(t− x)
α−1

(y − s)β−1
F (t, s) dsdt, x < b, y > c,

J α,βb−,d−F (x, y) =
1

Γ (α) Γ (β)
(IR)

b∫
x

d∫
y

(t− x)
α−1

(s− y)
β−1

F (t, s) dsdt, x < b, y < d,

respectively.

Definition 5. Let g : [a, b] → R be an increasing and positive monotone function on (a, b], having
a continuous derivative g′(x) on (a, b) and let w : [c, d] → R be an increasing and positive monotone
function on (c, d], having a continuous derivative w′(y) on (c, d) and F ∈ IR([a,b]×[c,d]). The interval-
valued left sided and right sided fractional integral operators for functions of two variables are defined
by

Jα,βa+,c+;g,wF (x, y) :=
1

Γ(α)Γ(β)
(IR)

x∫
a

y∫
c

g′(t)

[g(x)− g(t)]
1−α

w′(s)

[w(y)− w(s)]
1−β F (t, s)dsdt, x > a, y > c,

Jα,βa+,d−;g,wF (x, y) :=
1

Γ(α)Γ(β)
(IR)

x∫
a

d∫
y

g′(t)

[g(x)− g(t)]
1−α

w′(s)

[w(s)− w(y)]
1−β F (t, s)dsdt, x > a, y < d,

Jα,βb−,c+;g,wF (x, y) :=
1

Γ(α)Γ(β)
(IR)

b∫
x

y∫
c

g′(t)

[g(t)− g(x)]
1−α

w′(s)

[w(y)− w(s)]
1−β F (t, s)dsdt, x < b, y > c,

and

Jα,βb−,d−;g,wF (x, y) :=
1

Γ(α)Γ(β)
(IR)

b∫
x

d∫
y

g′(t)

[g(t)− g(x)]
1−α

w′(s)

[w(s)− w(y)]
1−β F (t, s)dsdt, x < b, y < d

for α, β > 0.

Similar the above definitions, we can give the following interval-valued integrals:

Jαa+;gF

(
x,
c+ d

2

)
:=

1

Γ(α)
(IR)

x∫
a

g′(t)

[g(x)− g(t)]
1−αF

(
t,
c+ d

2

)
dt, x > a,

Jαb−;gF

(
x,
c+ d

2

)
:=

1

Γ(α)
(IR)

b∫
x

g′(t)

[g(t)− g(x)]
1−αF

(
t,
c+ d

2

)
dt, x < b,
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Jβc+;wF

(
a+ b

2
, y

)
:=

1

Γ(β)
(IR)

y∫
c

w′(t)

[w(y)− w(s)]
1−β F

(
a+ b

2
, s

)
ds, y > c,

and

Jβd−;wF

(
a+ b

2
, y

)
:=

1

Γ(β)
(IR)

y∫
c

w′(t)

[w(s)− w(y)]
1−β F

(
a+ b

2
, s

)
ds, y < d.

Remark 3. (i) If we choose g(t) = ln t, w(s) = ln s in Definition 5, the operators Jα,βa+,c+;g,wF (x, y),

Jα,βa+,d−;g,wF (x, y), Jα,βb−,c+;g,wF (x, y) and Jα,βb−,d−;g,wF (x, y) reduce to Hadamard interval-valued

fractional integrals Jα,βa+,c+F (x, y), Jα,βa+,d−F (x, y), Jα,βb−,c+F (x, y) and Jα,βb−,d−F (x, y), respec-
tively.

(ii) Considering g(t) = tρ

ρ and w(s) = sσ

σ , ρ, σ > 0, in Definition 5, the operators Jα,βa+,c+;g,wF (x, y),

Jα,βa+,d−;g,wF (x, y), Jα,βb−,c+;g,wF (x, y) and Jα,βb−,d−;g,wF (x, y) reduce to Katugampola interval-

valued fractional integrals ρ,σIα,βa+,c+F (x, y), ρ,σIα,βa+,d−F (x, y), ρ,σIα,βb−,c+F (x, y) and
ρ,σIα,βb−,d−F (x, y), respectively.

Now we recall the concept of interval-valued co-ordinated convex functions that is given by Zhao et
al. in [45] as follows:

Definition 6. A function F : ∆ = [a, b]× [c, d]→ R+
I is said to be interval-valued co-ordinated convex

function, if the following inequality holds:

F (tx+ (1− t)y, su+ (1− s)w)

⊇ tsF (x, u) + t(1− s)F (x,w) + s(1− t)F (y, u) + (1− s)(1− t)F (y, w),

for all (x, u), (y, w) ∈ ∆ and s, t ∈ [0, 1].

Lemma 1. A function F : ∆ = [a, b]×[c, d]→ R+
I is interval-valued convex on co-ordinates if and only

if there exists two functions Fx : [c, d]→ R+
I , Fx(w) = F (x,w) and Fy : [a, b]→ R+

I , Fy(u) = F (u, y)
are interval-valued convex.

Definition 7. [40] The interval-valued function F : I → R+
I is said to be LR-convex interval-valued

function on convex set I if for all a, b ∈ I and t ∈ [0, 1] we have

(3.1) F (ta+ (1− t) b) ≤p tF (a) + (1− t)F (b) ,

if inequality (3.1) is reversed, then F is said to be LR-concave on I. F is affine if and only if, it is
both LR-convex and LR-concave.

Theorem 9. [40] Let I be an convex set and F : I → R+
I be an interval-valued function such that

F (t) =
[
F (t) , F (t)

]
, ∀t ∈ I.

Then F is LR-convex interval-valued function on I, if and only if, F (t) and F (t) both are convex
functions.

Definition 8. [19] A function F : ∆ = [a, b] × [c, d] → R+
I is said to be interval-valued co-ordinated

LR-convex function, if the following inequality holds:

F (ta+ (1− t)b, sc+ (1− s)d)

≤p tsF (a, c) + t(1− s)F (a, d) + s(1− t)F (b, c) + (1− s)(1− t)F (b, d),

for all (a, b), (c, d) ∈ ∆ and s, t ∈ [0, 1].

4. Hermite-Hadamard Inequalities for LR-Convex Interval-Valued Function

In this section, we obtain some new Hermite-Hadamard-type inequalities for interval-valued LR-
convex functions.
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Theorem 10. Let F : [a, b] → R+
I be a LR-convex interval-valued function on [a, b] and given by

F (x) =
[
F (x) , F (x)

]
for all x ∈ [a, b] . If F ∈ L

(
[a, b] , R+

I
)
, then

F

(
a+ b

2

)
≤p

1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
≤p

F (a) + F (b)

2

where Ψ (x) = F (x) + F (a+ b− x) .

Proof. Since F is a LR-convex interval-valued function and Theorem 5, then F and F are convex we
have,

(4.1)
1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
≤ F (a) + F (b)

2

and

(4.2)
1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
≤ F (a) + F (b)

2
.

From the (4.1) and (4.2) inequalities we get the following expression,

1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a) ,

(
Jαa+,wΨ (b) + Jαb−,wΨ (a)

)]
≤p
[
F (a) + F (b)

2
,
F (a) + F (b)

2

]
.

From here we get,

(4.3)
1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
≤p

F (a) + F (b)

2
.

On the other hand, since F is a LR-convex interval-valued function and using Theorem 5, we have

(4.4) F

(
a+ b

2

)
≤ 1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
and

(4.5) F

(
a+ b

2

)
≤ 1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
.

From the (4.4) and (4.5) inequalities we get the following expression,[
F

(
a+ b

2

)
, F

(
a+ b

2

)]
≤p

1

4 [w (b)− w (a)]

[(
Jαa+,wΨ (b) + Jαb−,wΨ (a)

)
,
(
Jαa+,wΨ (b) + Jαb−,wΨ (a)

)]
.

From here we get,

(4.6) F

(
a+ b

2

)
≤p

1

4 [w (b)− w (a)]

[
Jαa+,wΨ (b) + Jαb−,wΨ (a)

]
.

The required result is obtained from the 4.3 and 4.6 inequalities. The proof is completed. �

Remark 4. If we choose w(t) = t in Theorem 10, then we have the following inequalities for Riemann–
Liouville interval-valued fractional integrals

F

(
a+ b

2

)
≤p

1

4 (b− a)

[
J αa+,wΨ (b) + J αb−,wΨ (a)

]
≤p

F (a) + F (b)

2

which is given by Khan et al. in [21].

Corollary 1. If we choose w(t) = ln t in Theorem 10, then we have the following inequalities for
Hadamard interval-valued fractional integrals

F

(
a+ b

2

)
≤p

1

4
[
ln b

a

] [Jαa+,wΨ (b) + Jαb−,wΨ (a)
]
≤p

F (a) + F (b)

2
.
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Corollary 2. If we choose w(t) = tρ

ρ , ρ > 0 in Theorem 10, then we have the following inequalities

for Katugampola interval-valued fractional integrals

F

(
a+ b

2

)
≤p

ρ

4 [bρ − aρ]
[
ρIαa+,wΨ (b) + ρIαb−,wΨ (a)

]
≤p

F (a) + F (b)

2
.

5. Hermite-Hadamard Inequalities for Co-ordinated LR-Convex Interval-Valued
Function

In this section, we establish some new Hermite-Hadamard-type inequalities for interval-valued co-
ordinated LR-convex functions.

Let F ∈ IR([a,b]×[c,d]). Firstly, we define the following functions which will be used frequently:

F̃1(x, y) = F (a+ b− x, y),

F̃2(x, y) = F (x, c+ d− y),

F̃3(x, y) = F (a+ b− x, c+ d− y),

G(x, y) = F (x, y) + F̃2(x, y)

(5.1)

H(x, y) = F (x, y) + F̃1(x, y)

K(x, y) = F̃1(x, y) + F̃3(x, y)

L(x, y) = F̃2(x, y) + F̃3(x, y)

F(x, y) = F̃1(x, y) + F̃2(x, y) + F̃3(x, y) + F (x, y)

=
G(x, y) +H(x, y) +K(x, y) + L(x, y)

2

for (x, y) ∈ [a, b] × [c, d] . Throughout this section, let us note that g : [a, b] → R is an increasing
and positive monotone function on (a, b] and this function also have a continuous derivative g′(x) on
(a, b). Furthermore, w : [c, d]→ R is an increasing and positive monotone function on (c, d], having a
continuous derivative w′(y) on (c, d).

Theorem 11. Let ∆ = [a, b] × [c, d], if F ∈ L
(
∆, R+

I
)

be a interval-valued co-ordinated LR-convex
function, then for α, β > 0 the following Hermite-Hadamard type inequality holds:

F

(
a+ b

2
,
c+ d

2

)
(5.2)

≤p
Γ(α+ 1)Γ(β + 1)

16 [g(b)− g(a)]
α

[w(d)− w(c)]
β

×
[
Jα,βa+,c+;g,wF(b, d) + Jα,βa+,d−;g,wF(b, c) + Jα,βb−,c+;g,wF(a, d) + Jα,βb−,d−;g,wF(a, c)

]
≤p

F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
,

where the function F is defined as in (5.1).
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Proof. Since F is an interval-valued co-ordinated LR-convex mapping on ∆, we have

(5.3) F

(
u+ v

2
,
ρ+ q

2

)
≤p

F (u, ρ) + F (u, q) + F (v, ρ) + F (v, q)

4

for (u, ρ), (v, q) ∈ ∆. Now, for t, s ∈ [0, 1] , let u = ta+ (1− t)b, v = (1− t)a+ tb, ρ = cs+ (1− s)d and
q = (1− s)c+ sd. Then we have

F

(
a+ b

2
,
c+ d

2

)
(5.4)

≤p
1

4
F (ta+ (1− t)b, cs+ (1− s)d) +

1

4
F (ta+ (1− t)b, (1− s)c+ sd)

+
1

4
F ((1− t)a+ tb, cs+ (1− s)d) +

1

4
F ((1− t)a+ tb, (1− s)c+ sd).

Multiplying both sides of (5.4) by

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β

and integrating the resulting inequality with respect to t, s over [0, 1]× [0, 1] , we get

(b− a) (d− c)
Γ(α)Γ(β)

F

(
a+ b

2
,
c+ d

2

)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β

]
dsdt

≤p
(b− a) (d− c)

4Γ(α)Γ(β)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F (ta+ (1− t)b, cs+ (1− s)d)

]
dsdt

+
(b− a) (d− c)

4Γ(α)Γ(β)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F (ta+ (1− t)b, (1− s)c+ sd)

]
dsdt

+
(b− a) (d− c)

4Γ(α)Γ(β)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F ((1− t)a+ tb, cs+ (1− s)d)

]
dsdt

+
(b− a) (d− c)

4Γ(α)Γ(β)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F ((1− t)a+ tb, (1− s)c+ sd)

]
dsdt.
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By a simple calculations, we have

1∫
0

1∫
0

g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β dsdt =

[g(b)− g(a)]
α

[w(d)− w(c)]
β

αβ(b− a)(d− c)
.

Using the change of variables τ = (1− t)a+ tb and η = (1− s)c+ sd, we obtain

[g(b)− g(a)]
α

[w(d)− w(c)]
β

Γ(α+ 1)Γ(β + 1)
F

(
a+ b

2
,
c+ d

2

)

≤p
1

4Γ(α)Γ(β)
(IR)

b∫
a

d∫
c

g′ (τ)

[g(b)− g (τ)]
1−α

w′ (η)

[w(d)− w (η)]
1−β F (a+ b− τ, c+ d− η)dηdτ

+
1

4Γ(α)Γ(β)
(IR)

b∫
a

d∫
c

g′ (τ)

[g(b)− g (τ)]
1−α

w′ (η)

[w(d)− w (η)]
1−β F (a+ b− τ, η)dηdτ

+
1

4Γ(α)Γ(β)
(IR)

b∫
a

d∫
c

g′ (τ)

[g(b)− g (τ)]
1−α

w′ (η)

[w(d)− w (η)]
1−β F (τ, c+ d− η)dηdτ

+
1

4Γ(α)Γ(β)
(IR)

b∫
a

d∫
c

g′ (τ)

[g(b)− g (τ)]
1−α

w′ (η)

[w(d)− w (η)]
1−β F (τ, η)dηdτ

=
1

4

[
Jα,βa+,c+;g,wF̃3(b, d) + Jα,βa+,c+;g,wF̃1(b, d) + Jα,βa+,c+;g,wF̃2(b, d) + Jα,βa+,c+;g,wF (b, d)

]
=

1

4
Jα,βa+,c+;g,wF(b, d).

That is, we have

(5.5)
[g(b)− g(a)]

α
[w(d)− w(c)]

β

Γ(α+ 1)Γ(β + 1)
F

(
a+ b

2
,
c+ d

2

)
≤p

1

4
Jα,βa+,c+;g,wF(b, d).

Similarly, multiplying both sides of (5.4) by

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

w′ ((1− s)c+ sd)

[w ((1− s)c+ sd)− w(c)]
1−β

and integrating the obtained inequality with respect to t, s over [0, 1]× [0, 1] , we obtain

(5.6)
[g(b)− g(a)]

α
[w(d)− w(c)]

β

Γ(α+ 1)Γ(β + 1)
F

(
a+ b

2
,
c+ d

2

)
≤p

1

4
Jα,βa+,d−;g,wF(b, c).

Moreover, multiplying both sides of (5.4) by

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g ((1− t)a+ tb)− g(a)]
1−α

w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β

and
(b− a) (d− c)

Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g ((1− t)a+ tb)− g(a)]
1−α

w′ ((1− s)c+ sd)

[w ((1− s)c+ sd)− w(c)]
1−β

then integrating the established inequalities with respect to t, s over [0, 1]× [0, 1] , we have the following
inequalities

(5.7)
[g(b)− g(a)]

α
[w(d)− w(c)]

β

Γ(α+ 1)Γ(β + 1)
F

(
a+ b

2
,
c+ d

2

)
≤p

1

4
Jα,βb−,c+;g,wF(a, d)
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and

(5.8)
[g(b)− g(a)]

α
[w(d)− w(c)]

β

Γ(α+ 1)Γ(β + 1)
F

(
a+ b

2
,
c+ d

2

)
≤p

1

4
Jα,βb−,d−;g,wF(a, c),

respectively.
Summing the inequalities (5.5)-(5.8), we get

F

(
a+ b

2
,
c+ d

2

)

≤p
Γ(α+ 1)Γ(β + 1)

16 [g(b)− g(a)]
α

[w(d)− w(c)]
β

×
[
Jα,βa+,c+;g,wF(b, d) + Jα,βa+,d−;g,wF(b, c) + Jα,βb−,c+;g,wF(a, d) + Jα,βb−,d−;g,wF(a, c)

]
.

This completes the proof of first inequality in (5.2).
For the proof of the second inequality in (5.2), since F is a co-ordinated LR-convex, we have

F (ta+ (1− t)b, cs+ (1− s)d) + F (ta+ (1− t)b, (1− s)c+ sd)(5.9)

+F ((1− t)a+ tb, cs+ (1− s)d) + F ((1− t)a+ tb, (1− s)c+ sd)

≤p F (a, c) + F (a, d) + F (b, c) + F (b, d).

Multiplying both sides of (5.9) by

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β

and integrating the resulting inequality with respect to t, s over [0, 1]× [0, 1] , we get

(b− a) (d− c)
Γ(α)Γ(β)

(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F (ta+ (1− t)b, cs+ (1− s)d)

]
dsdt

+
(b− a) (d− c)

Γ(α)Γ(β)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F (ta+ (1− t)b, (1− s)c+ sd)

]
dsdt

+
(b− a) (d− c)

Γ(α)Γ(β)
(IR)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F ((1− t)a+ tb, cs+ (1− s)d)

]
dsdt

+
(b− a) (d− c)

Γ(α)Γ(β)

1∫
0

1∫
0

[
g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

× w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β F ((1− t)a+ tb, (1− s)c+ sd)

]
dsdt
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≤p
(b− a) (d− c)

Γ(α)Γ(β)
[F (a, c) + F (a, d) + F (b, c) + F (b, d)]

×(IR)

1∫
0

1∫
0

g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β dsdt.

Then, we get

Jα,βa+,c+;g,wF̃3(b, d) + Jα,βa+,c+;g,wF̃1(b, d) + Jα,βa+,c+;g,wF̃2(b, d) + Jα,βa+,c+;g,wF (b, d)

≤p [F (a, c) + F (a, d) + F (b, c) + F (b, d)]
[g(b)− g(a)]

α
[w(d)− w(c)]

β

Γ(α+ 1)Γ(β + 1)
,

that is,

(5.10)
Γ(α+ 1)Γ(β + 1)

[g(b)− g(a)]
α

[w(d)− w(c)]
β
Jα,βa+,c+;g,wF(b, d) ≤p F (a, c) + F (a, d) + F (b, c) + F (b, d).

Similarly, multiplying both sides of (5.9) by

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g(b)− g ((1− t)a+ tb)]
1−α

w′ ((1− s)c+ sd)

[w ((1− s)c+ sd)− w(c)]
1−β ,

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g ((1− t)a+ tb)− g(a)]
1−α

w′ ((1− s)c+ sd)

[w(d)− w ((1− s)c+ sd)]
1−β

and

(b− a) (d− c)
Γ(α)Γ(β)

g′ ((1− t)a+ tb)

[g ((1− t)a+ tb)− g(a)]
1−α

w′ ((1− s)c+ sd)

[w ((1− s)c+ sd)− w(c)]
1−β

integrating the resulting inequalities with respect to t, s over [0, 1] × [0, 1] , we establish the following
inequalities

(5.11)
Γ(α+ 1)Γ(β + 1)

[g(b)− g(a)]
α

[w(d)− w(c)]
β
Jα,βa+,d−;g,wF(b, c) ≤p F (a, c) + F (a, d) + F (b, c) + F (b, d),

(5.12)
Γ(α+ 1)Γ(β + 1)

[g(b)− g(a)]
α

[w(d)− w(c)]
β
Jα,βb−,c+;g,wF(a, d) ≤p F (a, c) + F (a, d) + F (b, c) + F (b, d),

and

(5.13)
Γ(α+ 1)Γ(β + 1)

[g(b)− g(a)]
α

[w(d)− w(c)]
β
Jα,βb−,d−;g,wF(a, c) ≤p F (a, c) + F (a, d) + F (b, c) + F (b, d),

respectively.
By adding the inequalities (5.10)-(5.13), we have the inequality

Γ(α+ 1)Γ(β + 1)

[g(b)− g(a)]
α

[w(d)− w(c)]
β

(5.14)

×
[
Jα,βa+,c+;g,wF(b, d) + Jα,βa+,d−;g,wF(b, c) + Jα,βb−,c+;g,wF(a, d) + Jα,βb−,d−;g,wF(a, c)

]
≤p 4 [F (a, c) + F (a, d) + F (b, c) + F (b, d)] .

If we divide the both sides of inequality (5.14) by 16, then we have the second inequality in (5.2).
This completes the proof. �
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Corollary 3. If we choose g(t) = t and w(s) = s in Theorem 11, then we have the following inequalities
for Riemann–Liouville interval-valued fractional integrals

F

(
a+ b

2
,
c+ d

2

)

≤p
Γ(α+ 1)Γ(β + 1)

4 (b− a)
α

(d− c)β
[
J α,βa+,c+F (b, d) + J α,βa+,d−F (b, c) + J α,βb−,c+F (a, d) + J α,βb−,d−F (a, c)

]
≤p

F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
.

Corollary 4. Under assumption of Theorem 11 with g(t) = ln t and w(s) = ln s, then we have the
following inequalities for Hadamard interval-valued fractional integrals

F

(
a+ b

2
,
c+ d

2

)

≤p
Γ(α+ 1)Γ(β + 1)

16
[
ln b

a

]α [
ln d

c

]β [Jα,βa+,c+F(b, d) + Jα,βa+,d−F(b, c) + Jα,βb−,c+F(a, d) + Jα,βb−,d−F(a, c)
]

≤p
F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
.

Corollary 5. Under assumption of Theorem 11 with g(t) = tρ

ρ and w(s) = sσ

σ , ρ, σ > 0, then we have

the following inequalities for interval-valued Katugampola fractional integrals

F

(
a+ b

2
,
c+ d

2

)

≤p
Γ(α+ 1)Γ(β + 1)ρασβ

16 [bρ − aρ]α [dσ − cσ]
β

[
ρ,σIα,βa+,c+F(b, d) + ρ,σIα,βa+,d−F(b, c) + ρ,σIα,βb−,c+F(a, d) + ρ,σIα,βb−,d−F(a, c)

]
≤p

F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
.

Theorem 12. Let ∆ = [a, b]× [c, d], if F : ∆→ R+
I be an interval-valued co-ordinated LR-convex on

∆, then for α, β > 0 the following Hermite-Hadamard type inequality holds:

F

(
a+ b

2
,
c+ d

2

)
(5.15)

≤p
Γ(α+ 1)

8 [g(b)− g(a)]
α

[
Jαa+;gH

(
b,
c+ d

2

)
+ Jαb−;gH

(
a,
c+ d

2

)]

+
Γ(β + 1)

8 [w(d)− w(c)]
β

[
Jβc+;wG

(
a+ b

2
, d

)
+ Jβd−;wG

(
a+ b

2
, c

)]

≤p
Γ(α+ 1)Γ(β + 1)

16 [g(b)− g(a)]
α

[w(d)− w(c)]
β

×
[
Jα,βa+,c+;g,wF(b, d) + Jα,βa+,d−;g,wF(b, c) + Jα,βb−,c+;g,wF(a, d) + Jα,βb−,d−;g,wF(a, c)

]
≤p

Γ(α+ 1)

16 [g(b)− g(a)]
α

[
Jαa+;gH (b, c) + Jαa+;gH (b, d) + Jαb−;gH (a, c) + Jαb−;gH (a, d)

]
+

Γ(β + 1)

16 [w(d)− w(c)]
β

[
Jβc+;wG (a, d) + Jβc+;wG (b, d) + Jβd−;wG (a, c) + Jβd−;wG (b, c)

]
≤p

F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
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where the function H,F and G are defined as in (5.1).

Proof. Since F is an interval valued co-ordinated LR-convex on ∆, if we define the mapping h1
x :

[c, d] → R, h1
x(y) = F (x, y), then h1

x(y) is convex for all x ∈ [a, b] and H1
x(y) = h1

x(y) + h̃1
x(y) =

F (x, y) + F̃2(x, y) = G(x, y). If we apply the inequalities (2.4) for the convex function h1
x(y), then we

have

h1
x

(
c+ d

2

)
≤p

Γ(β + 1)

4 [w(d)− w(c)]
β

[
Jβc+;wH1

x(d) + Jβd−;wH
1
x(c)

]
≤p

h1
x (c) + h1

x (d)

2
,

that is,

F

(
x,
c+ d

2

)
(5.16)

≤p
β

4 [w(d)− w(c)]
β

(IR)

d∫
c

w′(y)

[w(d)− w(y)]
1−β G(x, y)dy + (IR)

d∫
c

w′(y)

[w(y)− w(c)]
1−β G(x, y)dy


≤p

F (x, c) + F (x, d)

2
.

Multiplying the inequalities (5.16) by

α

[g(b)− g(a)]
α

g′(x)

[g(b)− g(x)]
1−α ,

and
α

[g(b)− g(a)]
α

g′(x)

[g(x)− g(a)]
1−α ,

then by integrating the obtained results with respect to x from a to b, we get

Γ(α+ 1)

[g(b)− g(a)]
α Jαa+;gF

(
b,
c+ d

2

)
(5.17)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βa+,c+;g,wG(b, d) + Jα,βa+,d−;g,wG(b, c)

]
≤p

Γ(α+ 1)

2 [g(b)− g(a)]
α

[
Jαa+;gF (b, c) + Jαa+;gF (b, d)

]
and

Γ(α+ 1)

[g(b)− g(a)]
α Jαb−;gF

(
a,
c+ d

2

)
(5.18)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βb−,c+;g,wG(a, d) + Jα,βb−,d−;g,wG(a, c)

]
≤p

Γ(α+ 1)

2 [g(b)− g(a)]
α

[
Jαb−;gF (a, c) + Jαb−;gF (a, d)

]
,

respectively.
On the other hand, since F is a co-ordinated LR-convex on ∆, if we define the mapping h2

x :

[c, d] → R, h2
x(y) = F̃1(x, y), then h2

x(y) is convex for all x ∈ [a, b] and H2
x(y) = h2

x(y) + h̃2
x(y) =

F̃1(x, y) + F̃3(x, y) = K(x, y). If we apply the inequalities (2.4) for the convex function h2
x(y), then we

have

h2
x

(
c+ d

2

)
≤p

Γ(β + 1)

4 [w(d)− w(c)]
β

[
Jβc+;wH2

x(d) + Jβd−;wH
2
x(c)

]
≤p

h2
x (c) + h2

x (d)

2
,

i.e.

F̃1

(
x,
c+ d

2

)
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(5.19)

≤p
β

4 [w(d)− w(c)]
β

(IR)

d∫
c

w′(y)

[w(d)− w(y)]
1−βK(x, y)dy + (IR)

d∫
c

w′(y)

[w(y)− w(c)]
1−βK(x, y)dy


≤p

F̃1(x, c) + F̃1 (x, d)

2
.

Similarly, multiplying the inequalities (5.19) by

α

[g(b)− g(a)]
α

g′(x)

[g(b)− g(x)]
1−α ,

and
α

[g(b)− g(a)]
α

g′(x)

[g(x)− g(a)]
1−α ,

then by integrating the obtained results with respect to x from a to b, we get

Γ(α+ 1)

[g(b)− g(a)]
α Jαa+;gF̃1

(
b,
c+ d

2

)
(5.20)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βa+,c+;g,wK(b, d) + Jα,βa+,d−;g,wK(b, c)

]
≤p

Γ(α+ 1)

2 [g(b)− g(a)]
α

[
Jαa+;gF̃1 (b, c) + Jαa+;gF̃1 (b, d)

]
and

Γ(α+ 1)

[g(b)− g(a)]
α Jαb−;gF̃1

(
a,
c+ d

2

)
(5.21)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βb−,c+;g,wK(a, d) + Jα,βb−,d−;g,wK(a, c)

]
≤p

Γ(α+ 1)

2 [g(b)− g(a)]
α

[
Jαb−;gF̃1 (a, c) + Jαb−;gF̃1 (a, d)

]
,

respectively.
Moreover, if we define the mapping h1

y : [a, b] → R, h1
y(x) = F (x, y), then h1

y(x) is convex for all

y ∈ [c, d] and H1
y(x) = h1

y(x) + h̃1
y(x) = F (x, y) + F̃1(x, y) = H(x, y). Applying the inequalities (2.4)

for the convex function h1
y(x), then we have

h1
y

(
a+ b

2

)
≤p

Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gH1

y(b) + Jαb−;wH1
y(a)

]
≤p

h1
y (a) + h1

y (b)

2
,

that is,

F

(
a+ b

2
, y

)
(5.22)

≤p
α

4 [g(b)− g(a)]
α

(IR)

b∫
a

g′(x)

[g(b)− g(x)]
1−αH(x, y)dx+ (IR)

b∫
a

g′(x)

[g(x)− g(a)]
1−αH(x, y)dx


≤p

F (a, y) + F (b, y)

2
.

Multiplying the inequalities (5.22) by

β

[w(d)− w(c)]
β

w′(y)

[w(d)− w(y)]
1−β
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and
β

[w(d)− w(c)]
β

w′(y)

[w(y)− w(c)]
1−β

then integrating the established results with respect to y from c to d, we obtain the following inequalities

Γ(β + 1)

[w(d)− w(c)]
β
Jβc+;wF

(
a+ b

2
, d

)
(5.23)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βa+,c+;g,wH(b, d) + Jα,βb−,c+;g,wH(a, d)

]
≤p

Γ(β + 1)

2 [w(d)− w(c)]
β

[
Jβc+;wF (a, d) + Jβc+;wF (b, d)

]
and

Γ(β + 1)

[w(d)− w(c)]
β
Jβd−;wF

(
a+ b

2
, c

)
(5.24)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βa+,d−;g,wH(b, c) + Jα,βb−,d−;g,wH(a, c)

]
≤p

Γ(β + 1)

2 [w(d)− w(c)]
β

[
Jβd−;wF (a, c) + Jβd−;wF (b, c)

]
,

respectively.

Furthermore, if we define the mapping h2
y : [a, b]→ R, h2

y(x) = F̃2(x, y), then h2
y(x) is convex for all

y ∈ [c, d] and H2
y(x) = h2

y(x) + h̃2
y(x) = F̃2(x, y) + F̃3(x, y) = L(x, y). Applying the inequalities (2.4)

for the convex function h2
y(x), then we have

h2
y

(
a+ b

2

)
≤p

Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gH2

y(b) + Jαb−;wH2
y(a)

]
≤p

h2
y (a) + h2

y (b)

2
,

i.e.

F̃2

(
a+ b

2
, y

)
(5.25)

≤p
α

4 [g(b)− g(a)]
α

(IR)

b∫
a

g′(x)

[g(b)− g(x)]
1−αL(x, y)dx+ (IR)

b∫
a

g′(x)

[g(x)− g(a)]
1−αL(x, y)dx


≤p

F̃2(a, y) + F̃2 (b, y)

2
.

Similarly, multiplying the inequalities (5.25) by

β

[w(d)− w(c)]
β

w′(y)

[w(d)− w(y)]
1−β

and
β

[w(d)− w(c)]
β

w′(y)

[w(y)− w(c)]
1−β ,

then integrating the obtained results with respect to y from c to d, we obtain the following inequalities

Γ(β + 1)

[w(d)− w(c)]
β
Jβc+;wF̃2

(
a+ b

2
, d

)
(5.26)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βa+,c+;g,wL(b, d) + Jα,βb−,c+;g,wL(a, d)

]
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≤p
Γ(β + 1)

2 [w(d)− w(c)]
β

[
Jβc+;wF̃2 (a, d) + Jβc+;wF̃2 (b, d)

]
and

Γ(β + 1)

[w(d)− w(c)]
β
Jβd−;wF̃2

(
a+ b

2
, c

)
(5.27)

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

[
Jα,βa+,d−;g,wL(b, c) + Jα,βb−,d−;g,wL(a, c)

]
≤p

Γ(β + 1)

2 [w(d)− w(c)]
β

[
Jβd−;wF̃2 (a, c) + Jβd−;wF̃2 (b, c)

]
,

respectively.
Summing the inequalities (5.17), (5.18), (5.20), (5.21), (5.23), (5.24), (5.26) and (5.27), we have the

following inequalities

Γ(α+ 1)

[g(b)− g(a)]
α

[
Jαa+;gF

(
b,
c+ d

2

)
+ Jαb−;gF

(
a,
c+ d

2

)

+Jαa+;gF̃1

(
b,
c+ d

2

)
+ Jαb−;gF̃1

(
a,
c+ d

2

)]

+
Γ(β + 1)

[w(d)− w(c)]
β

[
Jβc+;wF

(
a+ b

2
, d

)
+ Jβd−;wF

(
a+ b

2
, c

)

+Jβc+;wF̃2

(
a+ b

2
, d

)
+ Jβd−;wF̃2

(
a+ b

2
, c

)]

≤p
Γ(α+ 1)Γ(β + 1)

4 [g(b)− g(a)]
α

[w(d)− w(c)]
β

×
[
Jα,βa+,c+;g,wG(b, d) + Jα,βa+,d−;g,wG(b, c) + Jα,βb−,c+;g,wG(a, d) + Jα,βb−,d−;g,wG(a, c)

+Jα,βa+,c+;g,wK(b, d) + Jα,βa+,d−;g,wK(b, c) + Jα,βb−,c+;g,wK(a, d) + Jα,βb−,d−;g,wK(a, c)

+Jα,βa+,c+;g,wH(b, d) + Jα,βb−,c+;g,wH(a, d) + Jα,βa+,d−;g,wH(b, c) + Jα,βb−,d−;g,wH(a, c)

+Jα,βa+,c+;g,wL(b, d) + Jα,βb−,c+;g,wL(a, d) + Jα,βa+,d−;g,wL(b, c) + Jα,βb−,d−;g,wL(a, c)
]

≤p
Γ(α+ 1)

2 [g(b)− g(a)]
α

[
Jαa+;gF (b, c) + Jαa+;gF (b, d) + Jαb−;gF (a, c) + Jαb−;gF (a, d)

+Jαa+;gF̃1 (b, c) + Jαa+;gF̃1 (b, d) + Jαb−;gF̃1 (a, c) + Jαb−;gF̃1 (a, d)
]

+
Γ(β + 1)

[w(d)− w(c)]
β

[
Jβc+;wF (a, d) + Jβc+;wF (b, d) + Jβd−;wF (a, c) + Jβd−;wF (b, c)

+Jβc+;wF̃2 (a, d) + Jβc+;wF̃2 (b, d) + Jβd−;wF̃2 (a, c) + Jβd−;wF̃2 (b, c)
]
.

That is, we have

Γ(α+ 1)

[g(b)− g(a)]
α

[
Jαa+;gH

(
b,
c+ d

2

)
+ Jαb−;gH

(
a,
c+ d

2

)]
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+
Γ(β + 1)

[w(d)− w(c)]
β

[
Jβc+;wG

(
a+ b

2
, d

)
+ Jβd−;wG

(
a+ b

2
, c

)]

≤p
Γ(α+ 1)Γ(β + 1)

2 [g(b)− g(a)]
α

[w(d)− w(c)]
β

×
[
Jα,βa+,c+;g,wF(b, d) + Jα,βa+,d−;g,wF(b, c) + Jα,βb−,c+;g,wF(a, d) + Jα,βb−,d−;g,wF(a, c)

]
≤p

Γ(α+ 1)

2 [g(b)− g(a)]
α

[
Jαa+;gH (b, c) + Jαa+;gH (b, d) + Jαb−;gH (a, c) + Jαb−;gH (a, d)

]
+

Γ(β + 1)

2 [w(d)− w(c)]
β

[
Jβc+;wG (a, d) + Jβc+;wG (b, d) + Jβd−;wG (a, c) + Jβd−;wG (b, c)

]
which completes the proof of the second and third inequalities in (5.15).

On the other hand, from the first inequality in (2.4), we have

F

(
a+ b

2

)
(5.28)

≤p
α

4 [g(b)− g(a)]
α

 b∫
a

g′(x)

[g(b)− g(x)]
α [F (x) + F (a+ b− x)] dx

+

b∫
a

g′(x)

[g(x)− g(a)]
α [F (x) + F (a+ b− x)] dx

 .
Since F is interval-valued co-ordinated convex on ∆, by using the inequality (5.28), we obtain

F

(
a+ b

2
,
c+ d

2

)
(5.29)

≤p
α

4 [g(b)− g(a)]
α

(IR)

b∫
a

g′(x)

[g(b)− g(x)]
α

[
F

(
x,
c+ d

2

)
+ F

(
a+ b− x, c+ d

2

)]
dx

+(IR)

b∫
a

g′(x)

[g(x)− g(a)]
α

[
F

(
x,
c+ d

2

)
+ F

(
a+ b− x, c+ d

2

)]
dx


=

Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gH

(
b,
c+ d

2

)
+ Jαb−;gH

(
a,
c+ d

2

)]
,

and similarly we have

F

(
a+ b

2
,
c+ d

2

)
(5.30)

≤p
β

4 [w(d)− w(c)]
β

(IR)

d∫
c

w′(y)

[w(d)− w(y)]
α

[
F

(
a+ b

2
, y

)
+ F

(
a+ b

2
, c+ d− y

)]
dy

+(IR)

d∫
c

w′(y)

[w(y)− w(c)]
α

[
F

(
a+ b

2
, y

)
+ F

(
a+ b

2
, c+ d− y

)]
dy


=

Γ(β + 1)

4 [w(d)− w(c)]
β

[
Jβc+;wG

(
a+ b

2
, d

)
+ Jβd−;wG

(
a+ b

2
, c

)]
.

Combining the inequalities (5.29) and (5.30), we obtain the first inequality in (5.15).
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From the second inequality in (2.4), we have

α

4 [g(b)− g(a)]
α

(IR)

b∫
a

g′(x)

[g(b)− g(x)]
α [F (x) + F (a+ b− x)] dx(5.31)

+(IR)

b∫
a

g′(x)

[g(x)− g(a)]
α [F (x) + F (a+ b− x)] dx


≤p

F (a) + F (b)

2
.

By using the inequality (5.31), we obtain the following inequalities

(5.32)
Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gH (b, c) + Jαb−;gH (a, c)

]
≤p

F (a, c) + F (b, c)

2
,

(5.33)
Γ(α+ 1)

4 [g(b)− g(a)]
α

[
Jαa+;gH (b, d) + Jαb−;gH (a, d)

]
≤p

F (a, d) + F (b, d)

2
,

(5.34)
Γ(β + 1)

4 [w(d)− w(c)]
β

[
Jβc+;wG (a, d) + Jβd−;wG (a, c)

]
≤p

F (a, c) + F (a, d)

2

and

(5.35)
Γ(β + 1)

4 [w(d)− w(c)]
β

[
Jβc+;wG (b, d) + Jβd−;wG (b, c)

]
≤p

F (b, c) + F (b, d)

2
.

Combining the inequalities (5.32)-(5.35), we obtain the last inequality in (5.15).
This completes the proof completely. �

Corollary 6. If we choose g(t) = t and w(s) = s in Theorem 12, then we have the following inequalities
for Reimann-Liouville interval-valued fractional integrals

F

(
a+ b

2
,
c+ d

2

)

≤p
Γ(α+ 1)

4 (b− a)
α

[
J αa+F

(
b,
c+ d

2

)
+ J αb−F

(
a,
c+ d

2

)]

+
Γ(β + 1)

4 (d− c)β

[
J βc+F

(
a+ b

2
, d

)
+ J βd−F

(
a+ b

2
, c

)]

≤p
Γ(α+ 1)Γ(β + 1)

4 (b− a)
α

(d− c)β
[
J α,βa+,c+F (b, d) + J α,βa+,d−F (b, c) + J α,βb−,c+F (a, d) + J α,βb−,d−F (a, c)

]
≤p

Γ(α+ 1)

8 (b− a)
α

[
J αa+F (b, c) + J αa+F (b, d) + J αb−F (a, c) + J αb−F (a, d)

]
+

Γ(β + 1)

8 (d− c)β
[
J βc+F (a, d) + J βc+F (b, d) + J βd−F (a, c) + J βd−F (b, c)

]
≤p

F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
.

Corollary 7. Under assumption of Theorem 12 with g(t) = ln t and w(s) = ln s, then we have the
following inequalities for Hadamard interval-valued fractional integrals

F

(
a+ b

2
,
c+ d

2

)
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≤p
Γ(α+ 1)

8
[
ln b

a

]α [Jαa+H
(
b,
c+ d

2

)
+ Jαb−H

(
a,
c+ d

2

)]
+

Γ(β + 1)

8
[
ln d

c

]β [Jβc+G (a+ b

2
, d

)
+ Jβd−G

(
a+ b

2
, c

)]
≤p

Γ(α+ 1)Γ(β + 1)

16
[
ln b

a

]α [
ln d

c

]β [Jα,βa+,c+F(b, d) + Jα,βa+,d−F(b, c) + Jα,βb−,c+F(a, d) + Jα,βb−,d−F(a, c)
]

≤p
Γ(α+ 1)

16
[
ln b

a

]α [Jαa+H (b, c) + Jαa+H (b, d) + Jαb−H (a, c) + Jαb−H (a, d)
]

+
Γ(β + 1)

16
[
ln d

c

]β [Jβc+G (a, d) + Jβc+G (b, d) + Jβd−G (a, c) + Jβd−G (b, c)
]

≤p
F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
.

Corollary 8. Under assumption of Theorem 11 with g(t) = tρ

ρ and w(s) = sσ

σ , then we have the

following inequalities for interval-valued Katugampola fractional integrals

F

(
a+ b

2
,
c+ d

2

)

≤p
Γ(α+ 1)ρα

8 [bρ − aρ]α
[
ρIαa+H

(
b,
c+ d

2

)
+ ρIαb−H

(
a,
c+ d

2

)]

+
Γ(β + 1)σβ

8 [dσ − cσ]
β

[
σIβc+G

(
a+ b

2
, d

)
+ σIβd−G

(
a+ b

2
, c

)]

≤p
Γ(α+ 1)Γ(β + 1)ρασβ

16 [bρ − aρ]α [dσ − cσ]
β

[
ρ,σIα,βa+,c+F(b, d) + ρ,σIα,βa+,d−F(b, c) + ρ,σIα,βb−,c+F(a, d) + ρ,σIα,βb−,d−F(a, c)

]
≤p

Γ(α+ 1)ρασβ

16 [bρ − aρ]α
[
ρIαa+H (b, c) + ρIαa+H (b, d) + ρIαb−H (a, c) + ρIαb−H (a, d)

]
+

Γ(β + 1)σβ

16 [dσ − cσ]
β

[
σIβc+G (a, d) + σIβc+G (b, d) + σIβd−G (a, c) + σIβd−G (b, c)

]
≤p

F (a, c) + F (a, d) + F (b, c) + F (b, d)

4
.

6. Concluding Remarks

In this research, authors established Hermite-Hadamard type inequalities for interval-valued LR-
convex functions and co-ordinated interval-valued LR-convex functions. The results in this paper are
the extension of several previously obtained results. Interested author can find more new integral
inequalities another type co-ordinated interval-valued convexity.
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