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Abstract. Following the concept of L-sets in dual Banach spaces, and the
class of positively limited sets in Banach lattices, the notion of L-positively lim-
ited sets is introduced. The connection between L-positively limited sets, rela-
tively weakly compact sets, and weak∗-sequentially compact sets is discussed.
Moreover, using positively limited completely continuous operators, some oper-
ator characterizations of Banach lattices with the L-positively limited property
are obtained. In particular, some new results of the positive Gelfand-Phillips
property, positive DP∗ property, and dual positive Schur property are investi-
gated. Finally, the notion of weak positive Gelfand-Phillips property is defined,
and using the class of almost positively limited completely continuous opera-
tors, an operator characterization of Banach lattices with order continuous
norm is provided.

1. Notation and preliminaries

Throughout this paper E,F are Banach lattices, X, Y are Banach spaces, and
E+ = {x ∈ E : x ≥ 0} is the positive cone of E. BX is the closed unit ball of
X. The lattice operations are weakly sequentially continuous in E, if for every
weakly null sequence (xn) ⊂ E, |xn|

w−→ 0. Also, the lattice operations are
weak∗ sequentially continuous in E∗, if for every weak∗-null sequence (x∗

n) ⊂ E∗,

|x∗
n|

w∗
−→ 0 [1, 13].

A norm bounded subset C ⊂ X is limited (resp. Dunford-Pettis), if every
weak∗-null (resp. weakly null) sequence (x∗

n) ⊂ X∗ converges uniformly to zero
on C; that is, supx∈C |x∗

n(x)| → 0. If each limited set in X is relatively compact,
then X has the Gelfand-Phillips (GP) property. Each separable Banach space
has the GP property. If every Dunford-Pettis subset of X is relatively compact,
then X has the relatively compact Dunford-Pettis property (abb. DPrcP). Each
reflexive space has the DPrcP [8, 9, 11].

If C ⊆ X∗ is a bounded set, and every weakly null sequence (xn) ⊂ X
converges uniformly to zero on C, then C is called an L-set. By the equality
supx∗∈BX∗ |x∗(xn)| = ∥xn∥, for every sequence (xn) in X, it follows that BX∗ is
an L-set if and only if every weakly null sequence in X is norm null or X has
the Schur property. Using the class of L-sets Banach spaces not containing ℓ1 are
characterized, and several consequences concerning limited and Dunford-Pettis
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sets are obtained. A Banach space X has the reciprocal Dunford-Pettis property
(RDP) if every completely continuous operator on X is weakly compact. It was
proved that X has the RDP property if and only if every L-set in X∗ is relatively
weakly compact [10, 12].

Later, the classes of L-limited sets and limited completely continuous operators
on Banach spaces were defined. If every limited weakly null sequence (xn) in X
converges uniformly to zero on C ⊆ X∗, then C is called an L-limited set. A
Banach space X has the GP property if and only if BX∗ is an L-limited set.
Each L-set is an L-limited set. However, for each Banach space X with the GP
property, and without the Schur property such as c0, BX∗ is an L-limited set,
which is not an L-set. Relatively weakly compact sets are L-limited sets, and
if the converse is valid, then X has the L-limited property. It was proved that
X has the L-limited property if and only if each limited completely continuous
operator from X into ℓ∞ is weakly compact. Each weakly compact operator is
lcc [14, 15].

Recently, the classes of positively limited sets, and positively limited completely
continuous operators on Banach lattices were introduced. A bounded set C ⊂ E
is positively limited, if each positive weak∗-null sequence in E∗ converges uni-
formly to zero on C. Each limited set is positively limited, however Bℓ∞ is a
positively limited set which cannot be limited. If each positively limited set in
E is relatively compact, then we say that E has the positive GP property. Each
Banach lattice with the positive GP property has the GP property. The converse
is false. Banach lattices C[0, 1] and c have the GP property, but they fail to have
the positive GP property. E has the positive GP property if and only if each pos-
itively limited completely continuous operator from E into ℓ∞ is weakly compact.
Each limited completely continuous operator is a positively limited completely
continuous operator. But the converse is false. Consider the identity operator
Idc. Also, E has the positive DP∗ property, if each relatively weakly compact set
in E is positively limited. It is proved that E has the positive DP∗ property, if
and only if each positively limited completely continuous operator from E into c0
is completely continuous. It is clear that the DP∗ property implies the positive
DP∗ property. The converse is not valid. Consider, L1[0, 1] [6, 7].
In the following items, all the concepts mentioned above and needed in the

present paper are collected.

(1) A Banach lattice E has the:
• Schur property, if each weakly null sequence in E is norm null [1].
• positive Schur property, if each positive weakly null sequence in E is
norm null [16].

• DP∗ property if each relatively weakly compact set in E is limited
[9].

• dual positive Schur property if each positive weak∗-null sequence in
E∗ is norm null [18].

• positive Grothendieck property, if each positive weak∗-null sequence
in E∗ is weakly null [18].
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• Interpolation property (I), if for all sequences (xn) and (ym) in E
such that xn ≤ ym, for all m,n, there is an element u ∈ E satisfying
xn ≤ u ≤ ym, for all m,n [13].

(2) An operator T : E → X is called
• completely continuous or Dunford-Pettis, if for every weakly null se-
quence (xn) ⊂ E, ∥Txn∥ → 0 [1].

• almost Dunford-Pettis, if for every disjoint weakly null sequence (xn) ⊂
E, ∥Txn∥ → 0 [2].

• limited completely continuous (lcc), if for every weakly null limited
sequence (xn) ⊂ E, ∥Txn∥ → 0 [15].

• positively limited completely continuous (plcc), if for every weakly null
positively limited sequence (xn) ⊂ E, ∥Txn∥ → 0 [7].

• order weakly compact, if for every order bounded disjoint sequence
(xn) ⊂ E, ∥Txn∥ → 0 [13].

Motivated by the above works, and using the class of positively limited sets in
Banach lattices, the present paper is organized as follows.

In section 2, the class of L-positively limited sets in dual Banach lattices is
introduced. Some results of the properties GP, positive GP, DP∗, positive DP∗,
Dunford-Pettis, and dual positive Schur in Banach lattices are investigated. The
connection between L-positively limited sets, L-limited sets, and L-sets are ob-
tained.

Section 3 is concerned with the connection between the classes of plcc operators,
the weakly compact operators, and weak∗-sequentially compact operators. In that
section, with respect to plcc operators, some operator characterizations of Banach
lattices with the L-positively limited property are discussed. In particular, a new
characterization of Grothendieck Banach lattices is obtained. It is proved that a
Banach lattice is Grothendieck if and only if it has the L-limited property.
In the last section, with respect to positively limited weakly null sequences

with positive terms, the notion of weak positive GP property is introduced. It is
proved that a Banach lattice has the weak positive GP property if and only if it
has order continuous norm. Finally, using the class of almost plcc operators, and
almost Dunford-Pettis operators, provide an operator characterization of Banach
lattices with order continuous norm, and the positive DP∗ property.

2. L-positively limited sets

Let us define the class of L-positively limited sets.

Definition 2.1. A bounded subset B ⊂ E∗ is an L-positively limited set if for
every weakly null and positively limited sequence (xn) of E, supf∈B |f(xn)| → 0.

It is easy to see that B ⊂ E∗ is an L-positively limited set if and only if for
each sequence (fn) in B, and each weakly null positively limited sequence (xn) of
E, fn(xn) → 0.

Theorem 2.2. If each L-positively limited set in E∗ is relatively compact, then
E has the dual positive Schur property.
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Proof. From [6, Theorem 2.11 & Theorem 3.6], each positive operator T : E → c0
takes positively limited subsets of E to positively limited subsets of c0 which are
relatively compact. Hence by [7], T is plcc. Similar to [14, Theorem 2.2 (c)], we
can prove that each positive weak∗-null sequence in E∗ is an L-positively limited
set. Hence if each L-positively limited set in E∗ is relatively compact, then each
positive weak∗-null sequence in E∗ is norm null, and so E has the dual positive
Schur property. □

For the converse of above theorem, note that E has the dual positive Schur
property if and only if BE is a positively limited set. Hence in the dual of a Banach
lattice with the dual positive Schur property, the classes of L-positively limited
sets, and L-sets of E∗ coincide. Also, each L-set in E∗ is relatively compact if
and only if E does not contain a copy of ℓ1 [10]. ℓ∞, and generally, C(K) spaces
have the dual positive Schur property, and also containing a copy of ℓ1. Hence
there is an L-positively limited (L-set) set in their dual which is not relatively
compact.

It is noteworthy that if each L- limited set in E∗ is relatively compact, then
each weak∗-null sequence in E∗ is norm null, and by the Josefson–Nissenzweig
theorem [9], E must be finite dimensional.

Proposition 2.3. For a Banach lattice E, the following are equivalent:

(a) for each f ∈ (E∗)+, [−f, f ] is an L-positively limited set,

(b) for every weakly null and positively limited sequence (xn) of E, |xn|
w→ 0.

Proof. It follows immediately from the equality supg∈[−f,f ] |g(xn)| = f(|xn|) □

Each AM-space E has weakly sequentially continuous lattice operations [13,
Proposition 2.1.11] and so each order interval in E∗ is an L-positively limited set.

Theorem 2.4. Suppose that E has weakly sequentially continuous lattice opera-
tions. Then the solid hull of an L-positively limited subset of E∗ is likewise an
L-positively limited set.

Proof. Assume by a way of contradiction that A ⊂ E is an L-positively limited
set, and Sol(A) is not an L-positively limited set. Then there exist a sequence
(fn) in Sol(A), a weakly null and positively limited sequence (xn) of E and
an ϵ > 0 such that |fn(xn)| ≥ ϵ for all n. For each n there exists gn ∈ A,
such that |fn| ≤ |gn|. Since E has the weakly sequentially continuous lattice
operations, the sequence (|xn|) is weakly null and positively limited [6]. However,
ϵ ≤ |fn(xn)| ≤ |fn|(|xn|) ≤ |gn|(|xn|). Since |gn|(|xn|) = sup|y|≤|xn| |gn(y)|, for
every n there is a sequence (yn) in E with |yn| ≤ |xn| and |gn(yn)| > ϵ. The
sequence (yn) is weakly null and positively limited. To see this, note that solid
hull of a positively limited sequence (xn), is positively limited. Also for each
f ∈ E∗, |f(yn)| ≤ |g|(|yn|) ≤ |g|(|xn|) → 0. Since A is an L-positively limited set,
gn(yn) → 0 which is impossible. Hence, Sol(A) is an L-positively limited set. □

Solid hull of an L-positively limited set in E∗ is not an L-positively limited
set, necessarily. The Rademacher sequence (rn) in L1[0, 1] is weakly null and
positively limited (by the positive DP∗ property), but |rn| = 1 for all n. By
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L-POSITIVELY LIMITED SETS 5

Proposition 2.3, there is an element f ∈ L∞[0, 1] such that Sol{f} = [−f, f ] is
not L-positively limited, while {f} is L-positively limited in L∞[0, 1].

Proposition 2.5. Let E be a Banach lattice. Then BE∗ is an L-positively limited
set if and only if E has the positive GP property.

Proof. From [6, Theorem 3.6], a Banach lattice E has the positive GP property
if and only if each weakly null and positively limited sequence in E is norm null.
Hence the desired conclusion follows from the equality supx∗∈BE∗ |x∗(xn)| = ∥xn∥,
for every sequence (xn) in E. □

The following example shows that the class of L-positively limited sets is gener-
ally larger than L-sets and smaller than L-limited sets. It is proved that Banach
lattice E has the Schur property if and only if E has the positive GP and positive
DP∗ properties if and only if BE∗ is an L-set [6, Proposition 3.11].

Example 2.6. (a) Each non-discrete Banach lattice with order continuous
norm such as L1[0, 1] has the GP property, but it does not have the positive
GP property. That is, BL∞[0,1] is an L-limited set while it is not an L-
positively limited set, see [6, Theorem 3.6] and [17, Theorem 4.5].

(b) Each Banach lattice with the positive GP property failing the positive
DP∗ property such as c0 cannot have the Schur property. That is, Bℓ1 is
an L-positively limited set while it is not an L-set.

The set of all plcc (resp. completely continuous) operators from E into X is
denoted by Lplcc(E,X) (resp. Lcc(E,X)). In [7], it is proved that a Banach
lattice E has the positive DP∗ property, if and only if Lplcc(E, c0) = Lcc(E, c0).
The following theorem also characterizes the positive DP∗ property. Note that
an operator T : E → F is plcc if and only if T ∗(BF ∗) is L-positively limited.

Theorem 2.7. A Banach lattice E has the positive DP∗ property if and only if
each L-positively limited set in E∗ is an L-set.

Proof. If E has the positive DP∗ property, then every weakly null sequence in E
is positively limited, and so every L-positively limited set in E∗ is an L-set.
Conversely, it is enough to show that Lplcc(E, c0) = Lcc(E, c0). If T : E → c0 is
plcc, then T ∗(Bℓ1) is an L-positively limited set, and so it is an L-set. Thus the
operator T : E → c0 is completely continuous. □

It follows from the definition that a Banach lattice E has the positive DP∗

property if and only if each positive weak∗-null sequence in E∗ is an L-set.

Corollary 2.8. For a Banach lattice E the following assertions are equivalent:

(a) E has the positive DP∗ property,
(b) each positive operator T : E → F is completely continuous, for each

Banach lattice F with the positive GP property.

Proof. (a) ⇒ (b) First, note that positive operators take positively limited sets to
positively limited ones [6, Theorem 2.11]. If F has the positive GP property, then
each positive operator T : E → F is plcc. Then T ∗(BF ∗) is an L-positively limited
set, and by Theorem 2.7 it is an L-set. Therefore T is completely continuous.
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(b) ⇒ (a) If E does not have the positive DP∗ property, then there is a positive
weak∗-null sequence (x∗

n) in E∗ which is not an L-set. Hence there is a weakly null
sequence (xn) in E, and some ϵ > 0 with ϵ < |(x∗

n(xn))|, for all n. The positive
operator T : E → c0 defined by T (x) = (x∗

n(x)) for all x ∈ E is not completely
continuous and this is a contradiction. □

Note that in Corollary 2.8, the positivity of the operator T cannot be removed.

Example 2.9. Although, L1[0, 1] has the positive DP∗ property, and c0 has the
positive GP property, but an operator T : L1[0, 1] → c0 be defined as

Tf =

(∫ 1

0

f(t)rn(t)dt

)
for all f ∈ L1[0, 1],

where rn(t) is the nth Rademacher function on [0, 1] is not completely continuous.
Indeed, (rn(t))

∞
n=1 is weakly null in L1[0, 1], but ∥Trn∥ = 1, n ∈ N.

Theorem 2.10. If E∗ has weak∗ sequentially continuous lattice operations, then
each L-limited set in E∗ is an L-positively limited set.

Proof. Just notice that if E∗ has the weak∗ sequentially continuous lattice opera-
tions, then each positively limited set in E is a limited set [6, Theorem 2.5]. This
implies that, each L-limited set in E∗ is an L-positively limited set. □

The converse of Theorem 2.10 is false. Consider ℓ∞. By the DP∗ property, each
L-limited set in ℓ∗∞ is an L-set, and so it is an L-positively limited set. However,
ℓ∗∞ does not have the weak∗ sequentially continuous lattice operations.
The following theorem shows that the converse of Theorem 2.10 holds, in Ba-

nach lattices with order continuous norm.

Theorem 2.11. If each L-limited set in E∗ is an L-positively limited set, and
also E has order continuous norm, then E∗ has weak∗ sequentially continuous
lattice operations. In particular, E has the positive GP property.

Proof. If E has order continuous norm, then it has the GP property, and so BE∗

is an L-limited set. By hypothesis BE∗ is an L-positively limited set, and so E
has the positive GP property. Thus E∗ has the weak∗ sequentially continuous
lattice operations.

As an another proof, from [6, Theorem 2.5] it is enough to show that each order
interval in E is limited; or equivalently each operator T : E → c0 is AM-compact.
If T : E → c0 is an operator, then T is lcc, and so T ∗(Bℓ1) is an L-limited set.
By hypothesis, T ∗(Bℓ1) is an L-positively limited set, and then T is plcc. Since
E has order continuous norm, by [7, Corollary 3.10] the operator T : E → c0 is
AM-compact. □

In general, the class of L-positively limited sets, relatively weakly compact sets,
and weak∗ sequentially compact set in E∗ are unrelated.

Example 2.12. Let E be a Banach lattice. Then

(a) A relatively weakly compact set in E∗ is not an necessarily L-positively
limited and vice versa. Indeed, for each reflexive and non-discrete Banach
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lattice E such as Hilbert space L2(−π, π), BE∗ is relatively weakly com-
pact, while is not L-positively limited. Also, for each non-reflexive Banach
lattice E with the positive GP property such as c0, BE∗ is L-positively
limited, which is not relatively weakly compact.

(b) A weak∗ sequentially compact set in E∗ is not an necessarily L-positively
limited, and vice versa. Indeed, for each separable Banach lattice E with-
out the positive GP property such as L1[0, 1], BE∗ is a weak∗ sequen-
tially compact set, which is not an L-positively limited set. Also, Bl∞[0,2π]

is an L-positively limited set (it is an L-set, by the Schur property of
ℓ1[0, 2π]), however it is not weak∗ sequentially compact. The sequence
gn(t) = sinnt, for each t ∈ [0, 2π] and n ∈ N, is not weak∗ sequentially
compact in l∞[0, 2π]. If (gn) has a weak∗ convergent subsequence (gnk

),
then limnk

gnk
(t) must be exist for each t ∈ [0, 2π], which is impossible.

3. plcc operators and L-positively limited property

In this section, some relations between L-positively limited sets, relatively
weakly compact sets, and w∗-sequentially compact sets in the dual of Banach
lattices are considered. Moreover by plcc operators Banach lattices with the
L-positively limited property are characterized.
A Banach lattice E has the:

• Lw-positively limited property, if every L-positively limited subset of E∗ is
relatively weakly compact.

• Lw-positively limited property, if every relatively weakly compact subset
of E∗ is L-positively limited.

Theorem 3.1. Each Banach lattice E with the dual positive Schur property has
the Lw-positively limited property.

Proof. If E has the dual positive Schur property, then by [18, Proposition 2.1],
E∗ has an order continuous norm. Hence by [3, Theorem 3.1], each L-set in
E∗ is relatively weakly compact. On the other hand the classes of L-sets and
L-positively limited sets in E∗ are the same. Thus L-positively limited sets in
E∗ are relatively weakly compact. Therefore E has the Lw-positively limited
property. □

The converse of Theorem 3.1 is not valid. Every reflexive Banach lattice has the
Lw-positively limited property, and also it has order continuous norm. However,
by [18, Proposition 2.1], it cannot have the dual positive Schur property.

Theorem 3.2. For a Banach lattice E, the following are equivalent:

(a) E has the Lw-positively limited property,
(b) For each Banach space Y , Lplcc(E, Y ) ⊂ Lw(E, Y ),
(c) Lplcc(E, ℓ∞) ⊂ Lw(E, ℓ∞).

Proof. (a) ⇒ (b) Suppose that E has the Lw-positively limited property and
T : E → Y is plcc. Thus T ∗(BY ∗) is an L-positively limited set. By hypothesis,
it is relatively weakly compact, and so T is a weakly compact operator.
(b) ⇒ (c) It is obvious.
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(c) ⇒ (a) If E does not have the Lw-positively limited property, there exists an
L-positively limited set subset A of E∗ that is not relatively weakly compact. So
there is a sequence (x∗

n) ⊂ A with no weakly convergent subsequence. Now we
show that the operator T : E → ℓ∞ by

Tx = (⟨x, x∗
n⟩) , x ∈ E

is plcc, but it is not weakly compact. As (x∗
n) ⊂ A is an L-positively limited

sequence, for every weakly null and positively limited sequence (xm) in E, we
have

∥Txm∥ = sup
n

|⟨xm, x
∗
n⟩| → 0.

Hence, T is a plcc operator. However T ∗(e∗n) = x∗
n , n ∈ N. Hence T ∗ is not a

weakly compact operator and neither is T . This finishes the proof. □

Although each weakly compact operator is lcc, but the identity operator on
each reflexive non-discrete Banach lattice such as IdL2(−π,π) is a weakly compact
operator, which is not plcc. L2(−π, π) has the Lw-positively limited property.

Corollary 3.3. A Banach lattice with the positive GP property has the Lw-
positively limited property if and only if it is reflexive.

Proof. If a Banach lattice E has the positive GP property, then the identity
operator on E is plcc and so is weakly compact, thanks to the Lw-positively
limited property of E. Hence E is reflexive. □

If E is a Grothendieck Banach lattice, then E∗ has an order continuous norm,
and so E has the RDP [13, Theorems 3.7.10 & 5.3.13].

Theorem 3.4. If a Banach lattice E has the Lw-positively limited property, then
E∗ has an order continuous norm, and so E has the RDP.

Proof. It is evident that every L-set in E∗ is an L-positively limited set. If E is a
Banach lattice E with the Lw-positively limited property, then every L-set in E∗

is relatively weakly compact. By [3, Theorem 3.1], E∗ has an order continuous
norm, and so it has the RDP [13, Theorem 3.7.10]. □

The converse of Theorem 3.4 is false. For example c0 has the RDP, and also
its dual c∗0 = ℓ1 has an order continuous norm. However, c0 does not have Lw-
positively limited property.

Theorem 3.5. Each Grothendieck Banach lattice E has the Lw-positively limited
property.

Proof. Every order weakly compact operator on a Grothendieck space is weakly
compact, see [13, Theorem 5.3.13]. From Theorem 3.2, it is enough to show that
every plcc operator T on E is order weakly compact. Let (xn) be a disjoint
sequence of [0, x], and x ∈ E+. Then (xn) is a weakly null, and positively limited
sequence in E. Since T is plcc, ∥Txn∥ → 0. This implies that, T is order weakly
compact. Hence T is weakly compact, and so E has the Lw-positively limited
property. □
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The converse of Theorem 3.5 is not valid. From Theorem 3.1, the Banach
lattices C[0, 1], c have the Lw-positively limited property, while they are not
Grothendieck. C[0, 1], c are AM-spaces with a unit, without the L-limited prop-
erty. From [13, Corollary 2.5.17], each AM-space with a unit, and the interpola-
tion property (I) is a Grothendieck space, and so it has the L-limited property.

Theorem 3.6. Suppose that E has the Lw-positively limited property. If at least
one of the following cases holds, then E is Grothendieck.

(1) E∗ has weakly sequentially continuous lattice operations.
(2) E has the interpolation property (I).

Proof. (1). If E∗ has weakly sequentially continuous lattice operations, then each
positively limited set in E is limited, and so each L-limited set in E∗ is an L-
positively limited set. If E has the Lw-positively limited property, then it has
the L-limited property. We show that E is Grothendieck. By the GP property of
c0, and the L-limited property of E, Llcc(E, c0) = L(E, c0) = Lw(E, c0) [14, 15].
Therefore [13, Theorem 5.3.10] implies that E is Grothendieck.

(2). If E has the Lw-positively limited property, then E∗ has order continuous
norm. On the other hand , each positive operator T : E → c0 is plcc, and by the
Lw-positively limited property, it is weakly compact. Hence E has the positive
Grothendieck property [18]. Hence by the the interpolation property (I), and [13,
Theorem 5.3.13], E is Grothendieck. □

The following theorem provides an interesting characterization of Grothendieck
Banach lattices.

Theorem 3.7. A Banach lattice E is Grothendieck if and only if E has the
L-limited property.

Proof. Similar to Theorem 3.5, each Grothendieck Banach lattice E has the L-
limited property. Just notice that each order bounded disjoint sequence in a
Grothendieck Banach lattice is limited [3, Theorem 2.5]. On the other hand,
in each Banach lattice E with the L-limited property, Llcc(E, c0) = L(E, c0) =
Lw(E, c0). By [13, Theorem 5.3.10], E is Grothendieck. □

In the following, we show that the Lw-positively limited property is carried by
every positively complemented sublattice. A closed subspace Y of E is positively
complemented if there is an onto positive projection P : E → Y . Note that ℓ∞
has the L-positively limited property, while c0 as its closed sublattice does not
have this property.

Theorem 3.8. If a Banach lattice E has the Lw-positively limited property, then
every positively complemented sublattice F of E has the Lw-positively limited prop-
erty too.

Proof. Note that the image of each positively limited set under a positive operator
is positively limited [6]. Consider a positively complemented sublattice F of E
and a positive projection map P : E → F . Suppose T : F → ℓ∞ is a plcc
operator. Then for each weakly null and positively limited sequence (xn) in E,
(Pxn) is weakly null and positively limited in F , and so ∥TPxn∥ → 0. Hence
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TP : E → ℓ∞ is also plcc. Also, E has the Lw-positively limited property and
then by Theorem 3.2, TP is weakly compact. Hence T is weakly compact. □

Now, the results about the Lw-positively limited property will be considered.
One easily verifies that, E has the Lw-positively limited property if and only if

for every weakly null and positively limited sequence (xn) ∈ E and each weakly
null sequence (x∗

n) in E∗, x∗
n(xn) → 0.

Theorem 3.9. Banach lattices with the Dunford-Pettis property have the Lw-
positively limited property. The converse holds in a Banach lattice with the posi-
tive DP∗ property.

Proof. Note that E has the Dunford-Pettis property if and only if for all weakly
null sequences (xn) ⊂ E and (x∗

n) in E∗, x∗
n(xn) → 0. Hence each Banach lattice

with the Dunford-Pettis property has the Lw-positively limited property.
If E has the Lw-positively limited property, then every weakly null and posi-

tively limited sequence (xn) ⊂ E is Dunford-Pettis. By the positive DP∗ property,
every weakly null sequence (xn) ⊂ E is Dunford-Pettis. This implies that E the
Dunford-Pettis property. □

Each reflexive space ℓp(1 < p < ∞) has the Lw-positively limited property,
while cannot have the Dunford-Pettis property.

Theorem 3.10. Each Banach lattice with the positive GP property has the Lw-
positively limited property. The converse holds in Banach lattices with the DPrcP.

Proof. For each Banach lattice E with the positive GP property, BE∗ is L-
positively limited set. So E has the Lw-positively limited property.

For the converse, note that E has the Lw-positively limited property if and
only if for every weakly null and positively limited sequence (xn) ⊂ E is Dunford-
Pettis. Hence in each Banach lattice with the DPrcP, and Lw-positively limited
property, each weakly null and positively limited sequence (xn) ⊂ E is weakly
null and Dunford-Pettis, and so it is norm null [8]. Therefore E has the positive
GP property. □

The converse of Theorem 3.10 is false. In fact, AM-spaces with a unit are
Banach lattices with the Lw-positively limited property, and without the positive
GP property.

Theorem 3.11. For a Banach lattice E, the following are equivalent:

(a) E has the Lw-positively limited property,
(b) For each Banach space Y , Lw(E, Y ) ⊂ Lplcc(E, Y ),
(c) Lw(E, c0) ⊂ Lplcc(E, c0).

Proof. (a) ⇒ (b) ⇒ (c) Obvious.
(c) ⇒ (a) If E does not have the Lw-positively limited property, then there is
a weakly null and positively limited sequence (xn) ⊂ E, a weakly null sequence
(x∗

n) ⊂ E∗, and an ϵ > 0 such that |x∗
n(xn)| > ϵ for all n. Now the operator

T : E → c0 defined by
Tx = (⟨x, x∗

n⟩) , x ∈ E
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L-POSITIVELY LIMITED SETS 11

is weakly compact, but it is not plcc. The sequence (xn) ⊂ E is weakly null and
positively limited, however ∥Txn∥ ↛ 0, and the proof is completed. □

The identity operator on each non-reflexive Banach lattice with the positive
GP property such as Idc0 is plcc, which is not weakly compact. c0 has the Lw-
positively limited property.

Each discrete reflexive Banach lattice E has Lw-positively limited property and
Lw-positively limited property; that is, Lplcc(E, Y ) = Lw(E, Y ) = L(E, Y ) for all
Banach space Y .

Corollary 3.12. For a Banach lattice E, the following are equivalent:

(a) E has the Lw-positively limited property and Lw-positively limited prop-
erty,

(b) for each Banach space Y , Lplcc(E, Y ) = Lw(E, Y ),
(c) Lplcc(E, ℓ∞) = Lw(E, ℓ∞).

In the rest of this section, the relation between L-positively limited sets, and
weak∗ sequentially compact sets is considered. A Banach lattice E has the:

• Lw∗-positively limited property, if every L-positively limited subset of E∗

is weak∗ sequentially compact.
• Lw∗

-positively limited property, if every weak∗ sequentially compact subset
of E∗ is L-positively limited.

It follows easily from the definition that E has the Lw∗
-positively limited prop-

erty if and only if for every weakly null and positively limited sequence (xn) ⊂ E,
and each weak∗ null sequence (x∗

n) in E∗, x∗
n(xn) → 0. It is clear that each sepa-

rable Banach lattice with the Lw∗
-positively limited property has the positive GP

property. The following theorem is proved similar to Theorem 3.9 and Theorem
3.10.

Theorem 3.13. (a). Each Banach lattice with the DP∗ property has the Lw∗
-

positively limited property. The converse holds in a Banach lattice with the posi-
tive DP∗ property.

(b). Each Banach lattice with the positive GP property has the Lw∗
-positively

limited property. The converse holds in a Banach lattice with the GP property

Each reflexive space ℓp(1 < p < ∞) has the Lw∗
-positively limited property,

while it cannot have the DP∗ property. In particular, Theorem 3.13 shows that
in that each Banach lattice with the Lw∗

-positively limited property has the DP∗

property if and only if it has the positive DP∗.
Also, note that ℓ∞ has the DP∗ property and so it has the Lw∗

-positively limited
property, however it does not have the positive GP property. In particular, in
each Banach lattice with the Lw∗

-positively limited property two properties GP,
and positive GP are the same.

The following theorem gives an operator characterization of the Lw∗
-positively

limited property. We say that an operator T : X → Y is weak∗ sequentially
compact operator (w∗sc operator) if T ∗(BY ∗) is a weak∗ sequentially compact set
in X∗. The class of w∗sc operators from X to Y is denoted by Lw∗sc(X, Y ).

Theorem 3.14. For a Banach lattice E, the following are equivalent:
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12 ARDAKANI AND JODEYLI

(a) E has the Lw∗
-positively limited property,

(b) For each Banach space Y , Lw∗sc(E, Y ) ⊂ Lplcc(E, Y ),
(c) Lw∗sc(E, c0) ⊂ Lplcc(E, c0).

Proof. (a) ⇒ (b) Suppose that E has the Lw∗
-positively limited property, and

T : E → Y is w∗sc. Thus T ∗(BY ∗) is a weak∗ sequentially compact set in E∗. By
hypothesis, T ∗(BY ∗) is L-positively limited, and so T is a plcc operator.
(b) ⇒ (c) It is obvious.
(c) ⇒ (a) If E does not have the Lw∗

-positively limited property, then there exists
a weakly null and positively limited sequence (xn) ⊂ E, a weak∗ null sequence
(x∗

n) in E∗, and an ϵ > 0 such that |x∗
n(xn)| > ϵ for all n. Now the operator

T : E → c0 defined by
Tx = (⟨x, x∗

n⟩) , x ∈ E

is w∗sc (since T ∗(e∗n) = x∗
n , n ∈ N), which is not plcc. As (xn) ⊂ E is a

weakly null and positively limited sequence, but ∥Txn∥ ↛ 0, and the proof is
completed. □

Note that the identity operator on ℓ1 is plcc, however it is not a w∗sc operator.
If E has the Lw∗

-positively limited property, then it has the Lw-positively
limited property. The converse is not true. A separable Banach lattice without
the positive GP property such as L1[0, 1] cannot have the Lw∗

-positively limited
property. Then BL∞[0,1] is a weak∗-sequentially compact set , which is not L-
positively limited. However, L1[0, 1] has the Dunford-Pettis property, and so it
has the Lw-positively limited property.
The following theorem which is proved similar to Theorem 3.14, characterizes

Banach lattices with the Lw∗-positively limited property. Each separable Banach
lattice has the Lw∗-positively limited property.

Theorem 3.15. For a Banach lattice E, the following are equivalent:

(a) E has the Lw∗-positively limited property,
(b) For each Banach space Y , Lplcc(E, Y ) ⊂ Lw∗sc(E, Y ),
(c) Lplcc(E, ℓ∞) ⊂ Lw∗sc(E, ℓ∞).

Note that each weakly compact set is E∗ is weak∗-sequentially compact. Hence,
if E has the Lw-positively limited property, then it has the Lw∗-positively lim-
ited property. However, separable spaces ℓ1, L

1[0, 1] have the the Lw∗-positively
limited property, which do not have the the Lw-positively limited property.

Corollary 3.16. For a Banach lattice E, the following are equivalent:

(a) E has the Lw∗-positively limited property and Lw∗
-positively limited prop-

erty,
(b) For each Banach space Y , Lplcc(E, Y ) = Lw∗sc(E, Y ),
(c) Lplcc(E, ℓ∞) = Lw∗sc(E, ℓ∞).

Separable Banach lattices E with the positive GP property such as ℓp(1 ≤
p < ∞) and c0 have two properties Lw∗-positively limited property and Lw∗

-
positively limited property and so Lplcc(E, Y ) = Lw∗sc(E, Y ) = L(E, Y ) for all
Banach space Y .
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4. weak positive GP property

In this section the concept of weak positive GP property is considered. Also,
with respect to the class of almost positively limited completely continuous op-
erators, Banach lattices with order continuous norm are characterized.

Definition 4.1. A Banach lattice E has the weak positive GP property if each
weakly null and positively limited sequence with the positive terms in E is norm
null.

Each Banach lattice with the positive GP property has the weak positive GP
property, but the converse is false. Banach lattice L1[0, 1] has the weak positive
GP property (since it has the positive Schur property [16]), however it does not
have the positive GP property. Similar to [5, Theorem 4.4], it can be proved that
E has the weak positive GP property if and only if E has order continuous norm.
Hence each discrete Banach lattice with the weak positive GP property, has the
positive GP property too.

Theorem 4.2. For a Banach lattice E, these are equivalent:

(a) E has the weak positive GP property,
(b) each disjoint weakly null positively limited sequence (xn) in E is norm

null.

Proof. (a) ⇒ (b) For each disjoint positively limited weakly null sequence (xn),
the sequence (|xn|) is weakly null, and positively limited in E. Thus, ∥xn∥ =
∥|xn|∥ → 0.
(b) ⇒ (a) Assume by way of contradiction that E does not have the weak positive
GP property. Then there exists a (xn) is a weakly null positively limited positive
sequence in E such that ∥xn∥ ↛ 0 By [13, Corollary 2.3.5], there is a disjoint
positive subsequence (xnk

) of (xn) such that ∥xnk
∥ ↛ 0. Note that, (xnk

) is
a disjoint positively limited weakly null sequence and by hypothesis it must be
norm null. This is a contradiction, and it proves that E has the weak positive
GP property. □

Similar to [5, Theorem 4.3], we can prove the following proposition.

Proposition 4.3. For a σ-Dedekind complete Banach lattice E, the following
assertions are equivalent:

(a) E has the weak positive GP property,
(b) each positively limited weakly null disjoint sequence (xn) in E is norm

null,
(c) each almost limited weakly null disjoint sequence (xn) in E is norm null,
(d) each limited weakly null disjoint sequence (xn) in E is norm null.

Note that the σ-Dedekind completeness of E cannot be removed. Indeed, c
has the GP property, and so each limited weakly null sequence in c is norm null,
while c does not have the weak positive GP property.

Corollary 4.4. Suppose that E is discrete σ-Dedekind complete, or E∗ has the
weak∗ sequentially continuous lattice operations. Then these are equivalent:
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14 ARDAKANI AND JODEYLI

(a) E has the positive GP property,
(b) E has the weak positive GP property,
(c) E has the GP property.

Proof. (a) ⇒ (b) ⇒ (c) Obvious.
(c) ⇒ (a) Suppose that E has the GP property. If E∗ has the weak∗ sequentially
continuous lattice operations, then each positively limited set in E is limited, and
so E has the positive GP property.
Each σ-Dedekind complete Banach lattice with the GP property has order con-
tinuous norm [17]. Also, discrete Banach lattice with order continuous norm has
the positive GP property. □

Definition 4.5. A bounded operator T : E → X is almost positively limited
completely continuous (abbr. aplcc) if for every weakly null and positively limited
sequence with the positive terms (xn) ⊂ E, ∥Txn∥ → 0. The class of all aplcc
operators from E to Y is denoted by Laplcc(E,X).

It is clear that E has the weak positive GP property if and only if the identity
operator IdE is aplcc.

Remark 4.6. Each plcc operator on a Banach lattice is aplcc. However the identity
operator on each Banach lattice with the weak positive GP property, and without
the positive GP property such as L1[0, 1] is aplcc, which is not plcc.

Theorem 4.7. Every aplcc operator T : E → X is an lcc operator.

Proof. Let (xn) be an arbitrary order bounded disjoint sequence in E. Then (xn)
is a weakly null and positively limited sequence in E. From [18], the sequences
(|xn|), (x+

n ), and (x−
n ) are weakly null, and by [6, Theorem 3.10] they are positively

limited in E+. By hypothesis, ∥Txn∥ ≤ ∥Tx+
n ∥ + ∥Tx−

n ∥ → 0. This implies
that T is order weakly compact. Therefore by [1, Theorem 5.58], T admits a
factorization through a Banach lattice F with order continuous norm. Since each
Banach lattice with order continuous norm has the GP property, it follows from
[15, Theorem 2.2] that T is lcc. □

The converse of Theorem 4.7 is false. Consider, Idc, and IdC[0,1]. In general,
the identity operator on each Banach lattice with GP property, and without
order continuous norm is an lcc operator which is not aplcc. If E∗ has the weak∗

sequentially continuous lattice operations, then for each Banach space Y , each
operator T : E → Y is lcc if and only if it is aplcc.

Theorem 4.8. For a Banach lattice E the following statements are equivalent:

(a) E has the weak positive GP property.
(b) Laplcc(E, Y ) = L(E, Y ), for each Banach space Y ,
(c) Laplcc(E, ℓ∞) = L(E, ℓ∞).

Proof. It suffices to prove that (c) ⇒ (a) Assume to the contrary that E does
not have the weak positive GP property. Then there exists a weakly null and
positively limited sequence (xn) in E+ such that ∥xn∥ = 1 for all n. Choose a
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normalized sequence (x∗
n) in E∗ such that |⟨xn, x

∗
n⟩| = 1 for all n. The operator

T : E → ℓ∞ defined by

Tx = (⟨x, x∗
n⟩) , x ∈ E

is not aplcc. Since (xn) is a weakly null and positively limited sequence in E+,
however ∥Txn∥ ≥ 1 for all n ∈ N. This leads to a contradiction. □

A bounded operator T : E → Y is almost Dunford-Pettis if and only if for
every positive weakly null sequence (xn) ⊂ E, ∥Txn∥ → 0 [2]. Each almost
Dunford-Pettis operator is aplcc, while the converse is false. Consider, Idc0 . The
class of almost Dunford-Pettis operators from E into X is denoted by Lacc(E,X).
The following theorem provides a characterization of the positive DP∗ property.

In [6] it is proved that E has the positive DP∗ property if and only if for every
weakly null sequence (xn) in E+, and every positive weak∗ null sequence (x∗

n) in
E∗, x∗

n(xn) → 0.

Theorem 4.9. Let E be a Banach lattice. Then the following are equivalent:

(a) E has the positive DP∗ property,
(b) Laplcc(E, Y ) = Lacc(E, Y ), for each Banach space Y ,
(c) Laplcc(E, c0) = Lacc(E, c0).

Proof. (a) ⇒ (b) Each almost Dunford-Pettis operator is aplcc. For the converse,
assume that, T is aplcc and (xn) ⊂ E is a positive weakly null sequence. By
the positive DP∗ property of E, (xn) ⊂ E is positively limited in E+. Hence,
∥Txn∥ → 0. Hence T is almost Dunford-Pettis.
(b) ⇒ (c) It is clear.
(c) ⇒ (a) We show that for every positive weakly sequence (xn) ⊂ E, and positive
weak∗ null sequence (x∗

n) in E∗, x∗
n(xn) → 0. Consider the positive operator

T : E → c0 defined by

Tx = (⟨x, x∗
n⟩) , x ∈ E.

By [6], T is a plcc operator. By hypothesis (c), T is almost Dunford-Pettis. Then
∥Txn∥ → 0 for all n, and so x∗

n(xn) → 0. It proves that E has the positive DP∗

property. □
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