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AVERAGING OF NONCLASSICAL DIFFUSION EQUATIONS
LACKING INSTANTANEOUS DAMPING ON RN WITH MEMORY

AND SINGULARLY OSCILLATING FORCES

DANG THANH SON♮ AND NGUYEN DUONG TOAN

ABSTRACT. In this paper, we consider for ρ ∈ [0,1) and ε,ς > 0, the following nonclassical diffusion
equations on RN , N ≥ 3 with hereditary memory and singularly oscillating external force

ut −∆ut −
∫

∞

0
κε(s)∆u(t − s)ds+ f (x,u) = g0(t)+ ς

−ρ g1(t/ς),

together with the averaged equation

ut −∆ut −
∫

∞

0
κε(s)∆u(t − s)ds+ f (x,u) = g0(t)

formally corresponding to the limiting case ς = 0. The main characteristics of the model is that the
equation does not contain a term of the form −∆u, which contributes to an instantaneous damping. We
first prove the existence of uniform attractors A ε

ς in the space H1(RN)×L2
µε
(R+,H1(RN)). Then, we

show that the model converges to the nonclassical diffusion equation with lacking instantaneous damping
when ε → 0 as t → ∞. The uniform (w.r.t. ς ) boundedness as well as the convergence of the uniform
attractor A ε

ς of the first equation to the uniform attractor A ε
0 of the second equation as ς → 0+ are also

studied.

1. Introduction

The main goal of this paper is to discuss the following nonclassical diffusion equation with memory

(1.1)


ut −∆ut −

∫
∞

0 κε(s)∆u(x, t − s)ds+ f (x,u) = gς (t), x ∈ RN , t > τ,

u(x, t) = uτ(x), x ∈ RN , t ≤ τ,

u(x,τ − s) = qτ(x,s), x ∈ RN , s > 0,

where uτ(x) and qτ(x,s) are initial data, the function κε(s) : [0,∞)→ R is called a memory kernel
(see [8, 12]), which is a continuous non-negative function, smooth decreasing on (0,∞), vanishing at
infinity and satisfying

κε(s) =
1
ε

κ

( s
ε

)
, ε ∈ (0,1],

and ∫
∞

0
κ(s)ds = k0 < ∞.
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As ε → 0, the function κε(s) converges in the sense of the distributions to the Dirac mass at zero.
In addition, the nonlinearity f and the external force gς (x, t) = g0(x, t)+ ς−ρg1(x, t/ς) satisfy the
following conditions hold:
(H1) We define

µ(s) =−κ
′(s), µε(s) =−κ

′
ε(s) =

1
ε2 µ

( s
ε

)
,

and assume that µ(s)≥ 0 is absolutely continuous, decreasing, ie, µ ′(s)≤ 0 almost everywhere,
and the Dafermos condition

µ
′(s)+δ µ(s)≤ 0,

is satisfied for some δ > 0, ∀s ∈ R+. Noting the definition of µε , we calculate µε satisfying

(1.2) εµ
′
ε(s)+δ µε(s)≤ 0.

Since µ is decreasing, and the Gronwall inequality implies the exponential decay

(1.3) µ(s)≤ δ µ(s0)e−δ (s−s0), ∀s ≥ s0 > 0,

and µ(s) can be confirmed to be integrable,

(1.4)
∫

∞

0
µ(s)ds = k0, then

∫
∞

0
µε(s)ds =

k0

ε
.

To avoid the presence of unnecessary constants, from now on we assume k0 = 1 which can be
always obtained by rescaling the memory kernel.

(H2) The continuous nonlinearity f (x,u), with f (·,0) ∈ L2(RN), satisfies

(1.5) f ′(x,u)≥−ℓ,

(1.6) | f ′(x,u)| ≤C
(

φ1(x)+ |u|
4

N−2

)
,

for some ℓ > 0, and φ1(x) ∈ L
N
2 (RN) is nonnegative functions, along with the dissipation

conditions

(1.7) ⟨F(x,u),1⟩ ≥ −C f ,

(1.8) ⟨ f (x,u),u⟩ ≥ ν0⟨F(x,u),1⟩−C f ,

where C f ≥ 0,ν0 > 0 and F(x,u) =
∫ u

0 f (x,s)ds is a primitive of f .
(H3) The functions g0,g1 ∈L2

b(R;L2(RN)), the space of translation bounded functions in L2
loc(R;L2(RN)),

that is,

(1.9) ∥gi∥2
L2

b
= sup

t∈R

∫ t+1

t
∥gi(s)∥2

L2(RN)ds = M2
i < ∞ (i = 0,1).

A straightforward consequence of (1.9) is∫ t+1

t
∥g1(y/ς)∥2dy = ς

∫ (t+1)/ς

t/ς

∥g1(y)∥2dy ≤ ς(1+1/ς)M2
1 ≤ 2M2

1 ,

thus
∥g1(·/ς)∥2

L2
b
≤ 2M2

1 , ∀ς ∈ (0,1].
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Hence,

∥gς∥2
L2

b
≤ 2∥g0∥2

L2
b
+2ς

−2ρ∥g1(·/ς)∥2
L2

b
≤ 2M2

0 +4M2
1 ς

−2ρ .

For gς ∈ L2
b

(
R;L2(RN)

)
, we denote by Hw(gς ) the closure of the set {gς (· + h)|h ∈ R} in

L2
b(R;L2(RN)) with the weak topology. Noting that, as in [6, Chapter 5, Proposition 4.2], we

have: for all σ ∈ Hw(gς ) and any fixed positive number ς , then ∥σ∥2
L2

b
≤ ∥gς∥2

L2
b
.

The nonclassical diffusion equation is a mathematical model that arises in a variety of physical
phenomena, such as non-Newtonian flows, soil mechanics, and heat conduction theory (see, e.g.,
[1, 16, 17, 20]). It was first proposed by Aifantis in [1], and later modified by Jäckle [13] to include a
memory term in the study of heat conduction and relaxation of high-viscosity liquids. The inclusion
of a memory term in the diffusion equation leads to a faster rate of energy dissipation and a more
accurate description of the phenomena, as the conduction of energy is affected not only by present
external forces but also by historic external forces. On the other hand, equations with memory are
more difficult to solve than the corresponding ones without memory. In recent years, there has been a
significant amount of research on the existence and long-time behavior of solutions to nonclassical
diffusion equations with memory, for both autonomous case (see [2, 4, 5, 9, 10, 21, 22, 23, 25]) and
non-autonomous case (see [3, 14, 23, 24]). However, most of the existing results on nonclassical
diffusion equations with memory have been obtained for bounded domains, except for the two recent
results [18, 19]. In [19], the authors studied a class of nonclassical diffusion equations on RN with
hereditary memory (independent on ε), in presence of singularly oscillating external forces depending
on a positive parameter ε and a new class of nonlinearities, which have no restriction on the upper
growth of the nonlinearity.

More recently, Conti et al. [7] considered the nonclassical diffusion equation with hereditary memory
lacking instantaneous damping

ut −∆ut −
∫

∞

0
κ(s)∆u(x, t − s)ds+ f (u) = g(x)

on a bounded three-dimensional domain. After that, Toan [18] extended some results of [7] to the
non-autonomous case in unbouded domains.

As an effort to improve and extend the results of [7] and [18], in this paper, we will consider the
nonclassical diffusion equation with memory lacking instantaneous damping and singularly oscillating
external force. As we know, there are three main difficulties in studying problem (1.1) on RN . Firstly,
equation (1.1) is the absence of the term −∆u, which makes the nonclassical diffusion is lacking
instantaneous damping. Secondly, the problem is considered on the whole RN , which means that
Sobolev embeddings are no longer compact and the Poicaré inequality is not satisfied. Thirdly, we
rescale κ(s) by a (small) parameter ε , i.e., the memory kernel κ(s) is dependent on ε , which makes
some computations more complicated. Moreover, the presence of the term −∆ut in the equation means
that the solution has no higher regularity, similar to hyperbolic equations. These difficulties make it
challenging to prove the existence of uniform attractors for the problem and to study the singular limit
when the memory kernel collapses into the Dirac mass at zero, and finally, the uniform boundedness
(w.r.t. ς ) and the convergence of uniform attractors A ε

ς as ς tends to 0.
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The paper is organized as follows. In Section 2, we introduce some necessary notations, functional
spaces, and a Gronwall-type lemma. In Section 3, we prove the existence of uniform attractors A ε for
the family of processes generated by the model. In Section 4, we prove that the model converges (in an
appropriate sense) to the nonclassical diffusion equation with lacking instantaneous damping when the
scaling parameter ε of the memory kernel tends to zero. Finally, in Sections 5, we prove the uniform
boundedness (w.r.t ς ) and the convergence of the uniform attractors. Our results have extended some
results in Conti et al. (2020) [7] to the non-autonomous case on the whole space, and the results of
Toan (2020) [18] to the case of the memory kernel term that depends on ε and singularly oscillating
external force.

2. Preliminaries

At first, following Dafermos [11], we consider a new variable which reflects the history of (1.1), that is

η
t(x,s) = η(x, t,s) =

∫ s

0
u(x, t − r)dr, s ≥ 0,

then we can check that
∂tη

t(x,s) = u(x, t)−∂sη
t(x,s), s ≥ 0.

Since µε(s) =−κ ′
ε(s), problem (1.1) can be transformed into the following system

(2.1)


ut −∆ut −

∫
∞

0 µε(s)∆η t(x,s)ds+ f (x,u) = gς (t), x ∈ RN , t > τ,

∂tη
t(x,s) =−∂sη

t(x,s)+u(x, t), x ∈ RN , t > τ,s ≥ 0,
u(x, t) = uτ(x), x ∈ RN , t ≤ τ,

ητ(x,s) = ητ(x,s) :=
∫ s

τ
q(x,r)dr, x ∈ RN , s > 0.

Let ⟨·, ·⟩, ∥ · ∥ be the norm and scalar product in L2(RN), respectively. For i = 1,2, we define the
history spaces

M i
ε =

{
L2

µε
(R+,H i(RN)), ε > 0,

{0}, ε = 0,

equipped with inner product and norm, respectively,

⟨ϕ1,ϕ2⟩M i
ε
=

∫
∞

0
µε(s)⟨ϕ1(s),ϕ2(s)⟩H i(RN) ds,

∥ϕ∥2
M i

ε

=
∫

∞

0
µε(s)∥ϕ∥2

H i(RN)ds.

We now introduce the following Hilbert spaces

H i
ε = H i(RN)×M i

ε , i = 1,2,

with the norms

∥(u,η)∥2
H 1

ε

= ∥u∥2 +∥∇u∥2 +∥η∥2
M 1

ε

,

∥(u,η)∥2
H 2

ε

= ∥u∥2
H2(RN)+∥η∥2

M 2
ε

.
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NONCLASSICAL DIFFUSION EQUATIONS LACKING INSTANTANEOUS DAMPING ON RN WITH MEMORY 5

Since our the main purpose is to consider ε → 0, we must give the equation when ε = 0,

(2.2)

{
ut −∆ut + f (x,u) = gς (t), x ∈ RN , t > τ,

u(x, t) = uτ(x), x ∈ RN , t ≤ τ.

And in order to be consistent with the memory equation, let η t satisfy the Cauchy problem in H 1
ε ,

(2.3)


∂tη

t(x,s) =−∂sη
t(x,s)+u(x, t), x ∈ RN , t > τ,s ≥ 0,

η
τ(x,s) = ητ(x,s) :=

∫ s

τ

q(x,r)dr, x ∈ RN , s > 0.

Let zτ = (uτ ,ητ) and let Uε(t,τ)zτ = z(t) = (u(t),η t), be the solution of (2.1) and

U0
ς (t,τ)uτ = u(t), U0

ς (t,τ)ητ = η
t , ε = 0,

represent the solutions of (2.2) and (2.3), respectively.
The following Gronwall-type lemma is the main tool in the proof.

Lemma 2.1. [15] Let Λε be a family of absolutely continuous nonnegative functions on [τ,∞) satisfying
for some γ > 0, C > 0 and for any ε ∈ (0,ε0), for some small ε0 > 0, the differential inequality

d
dt

Λε(t)+ γεΛε(t)≤ cε
p[Λε(t)]q +

C
εr ,

where the nonnegative parameters p,q,r fulfill

p−1 > (q−1)(1+ r)≥ 0.

Moreover, let E be a continuous non-negative function on [τ,∞) such that

1
m

E(t)≤ Λε(t)≤ mE(t)

for every ε > 0 small and some m ≥ 1. Then, there exist ν > 0 and an increasing positive function
Q(·) such that

E(t)≤ Q(E(τ))e−ν(t−τ)+C.

By the Faedo-Galerkin method, arguing as in the proof of [18, Theorem 2.1], we obtained the
following results.

Theorem 2.2. Assume that hypotheses (H1)-(H3) hold. Then for any fixed nonnegative number ς , any
zτ = (uτ ,ητ) ∈ H 1

ε and T > τ, τ ∈ R given, problem (2.1) has a unique weak solution z = (u,η t) on
the interval [τ,T ] satisfying z ∈C([τ,T ];H 1

ε ). Moreover, the weak solutions depend continuously on
the initial data.

Accordingly, the problem (2.1) generates a dynamical system, we define a family of processes
{Uσ (t,τ)}σ∈Hw(gς ) as follows

Uσ (t,τ) : H 1
ε → H 1

ε ,

where Uσ (t,τ)zτ is the unique weak solution of (1.1) (with σ in place of gς ) at the time t with the
initial datum zτ at τ .
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NONCLASSICAL DIFFUSION EQUATIONS LACKING INSTANTANEOUS DAMPING ON RN WITH MEMORY 6

3. Existence of an uniform attractor

3.1. Existence of an absorbing set. In order to deal with the (possible) singularity of µε(s) at zero,
given any ν ∈ (0,1/4), we choose s∗ = s∗(ν)> 0 such that

(3.1)
∫ s∗

0
µε(s)ds ≤ ν ,

and we define µεν : R+ → R+ as

µεν(s) = µε(s∗)χ(0,s∗](s)+µε(s)χ(s∗,∞](s),

where χ denotes the characteristic function.
The proof of existence of an uniform absorbing set exploits in a crucial way the following technical

lemma.

Lemma 3.1. Assume that z(t) = (u(t),η t) is a sufficiently regular solution to (2.1). Then, for any
ν ∈ (0, 1

4), the functional

Λ j(t) =−
∫

∞

0
µεν(s)⟨u(t), jη t(s)⟩ds−

∫
∞

0
µεν(s)⟨∇u(t),∇η

t(s)⟩ds, j = 0,1,

fulfills the differential inequality

(3.2)

d
dt

Λ j(t)+
1

2ε
∥u(t)∥2

H1(RN) ≤
ε

4
∥ut(t)∥2

H1(RN)+
1
ε2

∫
∞

0
µε(s)

(
j∥η

t(s)∥2 +∥∇η
t(s)∥2)ds

− εµε(s∗)
2

∫
∞

0
µ
′
ε(s)

(
j∥η

t(s)∥2 +∥∇η
t(s)∥2)ds.

Besides, we have the control

(3.3) |Λ j(t)| ≤
1
ε

E j,

where E j = ∥u∥2 +∥∇u∥2 +
∫

∞

0 µε(s)
(

j∥η t(s)∥2 +∥∇η t(s)∥2
)

ds, j = 0,1.

Proof. Firstly, from the definition of Λ j(t), immediately, we deduce the inequality (3.3). Indeed,

|Λ j(t)|=
∣∣∣∣∫ ∞

0
µεν(s)⟨u(t), jη t(s)⟩ds+

∫
∞

0
µεν(s)⟨∇u(t),∇η

t(s)⟩ds
∣∣∣∣

≤ 1√
ε
∥u(t)∥

(∫
∞

0
µε(s) j∥η

t(s)∥2ds
)1/2

+
1√
ε
∥∇u(t)∥

(∫
∞

0
µε(s)∥∇η

t(s)∥2ds
)1/2

≤ 1
ε

(
∥u∥2 +∥∇u∥2)+∫

∞

0
µε(s)

(
j∥η

t(s)∥2 +∥∇η
t(s)∥2)ds ≤ 1

ε
E j.

Secondly, we will prove the inequality (3.2). The time-derivative Λ j, we get

(3.4)

d
dt

Λ j =−
∫

∞

0
µεν(s)⟨ut(t), jη t(s)⟩ds−

∫
∞

0
µεν(s)⟨∇ut(t),∇η

t(s)⟩ds

−
∫

∞

0
µεν(s)⟨u(t), jη t

t (s)⟩ds−
∫

∞

0
µεν(s)⟨∇u(t),∇η

t
t (s)⟩ds.
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Using the Young inequality, we have

−
∫

∞

0
µεν(s)⟨ut(t), jη t(s)⟩ds−

∫
∞

0
µεν(s)⟨∇ut(t),∇η

t(s)⟩ds

≤ 1√
ε
∥ut(t)∥

(∫
∞

0
µε(s) j∥η

t(s)∥2ds
)1/2

+
1√
ε
∥∇ut(t)∥

(∫
∞

0
µε(s)∥∇η

t(s)∥2ds
)1/2

≤ ε

4
(
∥ut(t)∥2 +∥∇ut(t)∥2)+ 1

ε2

∫
∞

0
µε(s)

(
j∥η

t(s)∥2 +∥∇η
t(s)∥2)ds.

Recalling that −η t
t = η t

s −u(t), from the definition of µεν(s) and (3.1), we have

−⟨u(t), jη t
t ⟩µεν

−⟨∇u(t),∇η
t
t ⟩µεν

= ⟨u(t), jη t
s⟩µεν

+ ⟨∇u(t),∇η
t
s⟩µεν

−
∫

∞

0
µεν(s)(∥u∥2 +∥∇u∥2)ds

≤−
∫

∞

s∗
µ
′
ε(s)

(
⟨u, jη t(s)⟩+ ⟨∇u,∇η

t(s)⟩
)
ds−

∫
∞

s∗
µε(s)ds∥u(t)∥2

H1(RN)

≤
(
−
∫

∞

s∗
µ
′
ε(s)ds

)1/2

∥u(t)∥
(
−
∫

∞

s∗
µ
′
ε(s) j∥η

t(s)∥2ds
)1/2

+

(
−
∫

∞

s∗
µ
′
ε(s)ds

)1/2

∥∇u(t)∥
(
−
∫

∞

s∗
µ
′
ε(s)∥∇η

t(s)∥2ds
)1/2

−
(

1
ε
−ν

)
∥u(t)∥2

H1(RN)

≤−εµε(s∗)
2

∫
∞

0
µ
′
ε(s)

(
j∥η

t∥2 +∥∇η
t(s)∥2)ds− 1

2ε
∥u(t)∥2

H1(RN).

Collecting two estimates above, inserting them on the right-hand side of (3.4), we obtain the desired
differential inequality (3.2). The proof is completed. □

Lemma 3.2. Under the assumptions (H1)-(H3), for ε ∈ (0,1], any fixed nonnegative number ς and
any initial datum zτ ∈ H 1

ε , the family of processes {Uσ (t,τ)}σ∈Hw(gς ) associated to problem (2.1)
has an (H 1

ε ,H 1
ε )-uniform absorbing set.

Proof. At first, we replace gς with σ in (2.1), and then multiplying the first and second equation of
(2.1) by u(t) in L2(RN) and by jη t(s) in L2

µε
(R+,L2(RN), respectively, and adding the results, we

obtain

(3.5)

1
2

d
dt

(
∥u∥2 +∥∇u∥2 + j

∫
∞

0
µε(s)∥η

t∥2ds
)
+
〈

f (x,u),u
〉
+

∫
∞

0
µε(s)⟨∇η

t(s),∇u⟩ds

− j
2

∫
∞

0
∂sµε(s)∥η

t∥2ds = j
∫

∞

0
µε(s)⟨η t(s),u⟩ds+(σ ,u).

Similarly, multiplying the second equation of (2.1) by −∆η t(s) in L2
µε
(R+,L2(RN), we have

(3.6)

∫
∞

0
µε(s)

∫
RN

∇η
t
∇udxds =

∫
∞

0
µε(s)

∫
RN

∇η
t
∇η

t
t dxds+

∫
∞

0
µε(s)

∫
RN

∇η
t
∇η

t
sdxds

=
1
2

d
dt

∫
∞

0
µε(s)

∫
RN

|∇η
t |2dxds− 1

2

∫
∞

0
∂sµε(s)

∫
RN

|∇η
t |2dxds.
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Using assumptions (1.8), (1.4) and the Cauchy inequality, we have

(3.7)

⟨ f (x,u),u⟩ ≥ ν0⟨F(x,u),1⟩−C f ,

2(σ ,u)≤ δ

4
∥u∥2 +C∥σ∥2, where 0 < δ < 1,

2 j
∫

∞

0
µε(s)⟨η t(s),u⟩ds ≤ j

δε
∥u∥2 + jδ

∫
∞

0
µε(s)∥η

t∥2ds.

Summation of (3.5), (3.6) and then combining with (3.7), we get

d
dt

E j −2
∫

∞

0
∂sµε(s)

(
j∥η

t∥2 +∥∇η
t∥2)ds+2ν0

(
⟨F(x,u),1⟩−

C f

ν0

)
≤
(

δ

4
+

j
δε

)
∥u∥2 +δ j

∫
∞

0
µε(s)∥η

t∥2ds+C∥σ∥2,

where E j = ∥u∥2 +∥∇u∥2 +
∫

∞

0 µε(s)
(

j∥η t∥2 +∥∇η t∥2
)

ds, j = 0,1.

Besides, multiplying the first equation of (2.1) by ut in L2(RN), we obtain

∥ut∥2 +∥∇ut∥2 +
d
dt

〈
F(x,u),1

〉
= ⟨σ(t),ut⟩−

∫
∞

0
µε(s)⟨∇η

t(s),∇ut⟩ds

≤ 1
2
(∥ut∥2 +∥∇ut∥2)+

1
2ε

∫
∞

0
µε(s)∥∇η

t(s)∥2ds+
1
2
∥σ(t)∥2.

Thus,
d
dt

〈
F(x,u),1

〉
+

1
2
(∥ut∥2 +∥∇ut∥2)≤ 1

2ε

∫
∞

0
µε(s)∥∇η

t(s)∥2ds+
1
2
∥σ(t)∥2.

Now, we define the functional

Φ j(t) = E j +δ
〈
F(x,u),1

〉
+δεΛ j(t), j = 0,1,

where Λ j(t) is defined in Lemma 3.1. Besides, using condition (1.6), (1.7) and (3.3) in Lemma 3.1, we
have

(3.8) E j −δC f ≤ Φ j ≤ 2
(

E j +δ
〈
F(x,u),1

〉)
≤CE

N
N−2
1 +C.

Using the condition (1.3), we can see that −µ ′
ε(s)≥ δ

ε
µε(s), then Φ j satisfies the differential inequality

d
dt

Φ j +
δ

4
∥u∥2

H1(RN)+
δ −δε2

4
∥ut∥2

H1(RN)+2ν0
〈
F(x,u),1

〉
+

δ

8ε

∫
∞

0
µε(s)

(
j∥η

t∥2 +∥∇η
t∥2)ds

− 1−4εµε(s∗)
8

∫
∞

0
µ
′
ε(s)

(
j∥η

t∥2 +∥∇η
t∥2)ds

≤ j
δε

∥u∥2 +C∥σ(t)∥2 +2C f .

Thus, there exist constant γ > 0 such that

d
dt

Φ j + γΦ j ≤
j

δε
Φ0 +C∥σ(t)∥2 +2C f .(3.9)
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From (3.9), let j = 0, and then applying Gronwall inequality, we get

Φ0(t)≤ Φ0(τ)e−γ(t−0)+C
∫ t

τ

e−γ(t−r)∥σ(r)∥2dr+2C f ,(3.10)

with

(3.11)

∫ t

τ

e−γ(t−r)∥σ(r)∥2dr ≤
(∫ t

t−1
e−γ(t−r)∥σ(r)∥2ds+

∫ t−1

t−2
e−γ(t−r)∥σ(r)∥2dr+ . . .

)
≤
(
1+ e−γ + e−2γ + . . .

)
∥σ∥2

L2
b
≤ 1

1− e−γ
∥gς∥2

L2
b
,

where we have used the fact that ∥σ∥2
L2

b
≤ ∥gς∥2

L2
b

for all σ ∈ Hw(gς ).

Combining (3.8), (3.10) and (3.11), we get

(3.12) Φ0(t)≤C
(

E
N

N−2
1 (τ)+1

)
e−γ(t−τ)+

C
1− e−γ

∥gς∥2
L2

b
+2C f ≤ ρ0.

We now consider (3.9) for j = 1, using (3.12) and the Gronwall inequality, we obtain

Φ1(t)≤ Φ1(τ)e−γ(t−τ)+Cρ0 +C
∫ t

0
e−γ(t−r)∥σ(r)∥2dr

≤ Φ1(τ)e−γ(t−τ)+Cρ0 +
C

1− e−γ
∥gς∥2

L2
b
+C.

Thus,

E1(t)≤C
(

E
2N

N−2
1 (τ)+1

)
e−γ(t−τ)+Cρ0 +

C
1− e−γ

∥gς∥2
L2

b
+C.

Hence there exists ρ1 > 0 such that

(3.13) E1(t)≤ ρ1 or ∥z(t)∥2
H 1

ε

≤ ρ1,

for all zτ ∈ B, σ ∈ Hw(gς ) and for all t ≥ TB, where B is an arbitrary bounded subset of H 1
ε . This

completes the proof. □

Combining Lemma 3.2 with Theorem 2.2, we can obtain the result as follows.

Lemma 3.3. Under the assumption of Lemma 3.2, then for any bounded (in H 1
ε ) subset B, there exists

a constant NB = N(∥B∥H 1
ε
,∥gς∥L2

b
), such that for any τ ∈ R,zτ ∈ B,

∥Uσ (t,τ)zτ∥2
H 1

ε

≤ NB, as t ≥ τ.

3.2. Asymptotic compactness. The main difficulty of the problem is that the embeddings are no longer
compact and the whole dissipation is contributed by the convolution term only. In order to show that
Uς

ε (t,τ)zτ is uniformly asymptotically compact in H 1
ε , we perform a standard decomposition of the

solution into two summands, one of which is shown to be arbitrarily small in the long time (see Lemma
3.4) and the other of which is compact (see Lemma 3.6). This yields the desired result.
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3.2.1. Decomposition of the equation. For any r > 0, as in [18], we introduce two smooth positive
functions φ i

r : RN → R+, i = 1,2, such that

φ
1
r (x)+φ

2
r (x) = 1 ∀x ∈ RN ,

and

φ
1
r (x) = 0 if |x| ≤ r,

φ
2
r (x) = 0 if |x| ≥ r+1.

Putting σi(x, t) = σ(x, t)φ i
r(x), i = 1,2. The dependence on r of σi is omitted for simplicity of notation.

Therefore, we can check that
lim
r→∞

∥σ1∥= 0,

σ2(x, t) = 0, as |x| ≥ r+1.

For the nonlinearity f , we decompose f = f0 + f1, where f0, f1 ∈C(R) satisfy

(3.14) f0(x,u)u ≥ 0, F0(x,u) =
∫ u

0
f0(x,y)dy ≥ 0 ∀u ∈ R,

(3.15) | f0(x,u)| ≤C(φ1(x)|u|+ |u|
N+2
N−2 ), ∀u ∈ R,

and

(3.16) | f1(x,u)| ≤C(φ1(x)+ |u|q), ∀u ∈ R, and 0 < q <
N +2
N −2

.

To make the asymptotic regular estimates, we decompose the solution Uσ (t,τ)zτ = z(t) = (u(t),η t)
(where zτ = (uτ ,η

τ)) of problem (2.1) into the sum

Uσ (t,τ)zτ = D(t,τ)zτ +Kσ (t,τ)zτ ,

where D(t,τ)zτ = z1(t) and Kσ (t,τ)zτ = z2(t), that is, z = (u,η t) = z1 + z2, the decomposition is as
follows

u = v+w, η
t = ζ

t +ξ
t ,

z1 = (v,ζ t), z2 = (w,ξ t),

where z1(t) solves the following equation

(3.17)


vt −∆vt −

∫
∞

0 µε(s)∆ζ t(s)ds+ f0(x,v) = σ1(t), x ∈ RN , t > τ,

∂tζ
t =−∂sζ

t + v, x ∈ RN , t > τ,s ≥ 0,
v(x, t) = uτ(x), x ∈ RN , t ≤ τ,

ζ τ(x,s) = ητ(x,s) :=
∫ s

0 gτ(x,r)dr, x ∈ RN ,s > 0,
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and z2(t) is the unique solution of the following problem

(3.18)


wt −∆wt −

∫
∞

0 µε(s)∆ξ t(s)ds+ f (x,u)− f0(x,v) = σ2(t), x ∈ RN , t > τ,

∂tξ
t =−∂sξ

t +w, x ∈ RN , t > τ,s ≥ 0,
w(x, t) = 0, x ∈ RN , t ≤ τ,

ξ τ(x,s) = ξτ(x,s) = 0, x ∈ RN ,s > 0.

By using similar arguments as in the proof of Theorem 2.2, one can prove the existence and uniqueness
of solutions to problems (3.17) and (3.18).

We begin with the decay estimate for solutions of (3.17). By using similar arguments as in the proof
of Lemma 3.2, replacing σ(t) with σ1(t) and f (x,u) with f0(x,u), we obtain the lemma as follows.

Lemma 3.4. Assume that hypotheses (3.14), (3.15) and (H2)-(H3) hold, for any τ ∈ R, the solutions
of equation (3.17) satisfy the following estimate: there is a constant γ1 > 0 and there exist T > τ large
enough, such that

∥D(t,τ)zτ∥2
H1

≤ Q(∥zτ∥H1)e
−γ1(t−τ)+ρ2,

where Q is an increasing function on [0,∞) and ρ2 depends on ∥σ1∥L2
b
.

About the solution z2(t) of (3.18), arguing as in the proof of [18, Lemmas 3.7, 3.8], we obtain the
following results.

Lemma 3.5. Let B be a bounded subset in H1. Then for any ω > 0, there exist Tω > 0 and Kω > 0
such that∫

|x|≥Kω

(|w|2 + |∇w|2)dx+
∫

∞

0
µε(s)

∫
|x|≥Kω

(
|ξ t(s)|2 + |∇ξ

t(s)|2
)

dxds < ω,∀t ≥ Tω ,∀zτ ∈ B.

Lemma 3.6. Let (H1)-(H3) and (3.16) hold and α = min{1
4 ,

N+2−q(N−2)
2 }. For each time T > τ and

R > rB, there exists a positive constant N∗ which depends on T , ∥σ1∥L2
b

and ∥zτ∥H 1
ε

, such that

∥Kσ (T,τ)zτ∥2
H 1+α

ε

≤ N∗.

Therefore, we get the following lemma.

Lemma 3.7. Let {Kσ (t,τ)zτ}t≥τ be the solution process of (3.18). Then under the assumption of
(H1)-(H3) and (3.16), for T > τ large enough, such that

Kσ (t,τ)B0 is relatively compact in H 1
ε .

By Lemma 3.2, the family of processes Uσ (t,τ) has a bounded absorbing B0 in H 1
ε . Moreover,

Uσ (t,τ) is uniform asymptotically compact in H 1
ε due to Lemmas 3.4 and 3.7. Therefore, we obtain

the following theorem.

Theorem 3.8. Assume that hypotheses (H1)-(H3) hold. Then for any fixed positive number ε , the
family of processes {Uσ (t,τ)}σ∈Hw(gς ) associated to (1.1) possesses an uniform attractor A ε in the
space H 1

ε . Moreover,
A ε =

⋃
σ∈Hw(gς )

Kσ (s), ∀s ∈ R,

where Kσ (s) is the kernel section at time s of the process Uσ (t,τ).
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4. The singular limit

In this section, for any fixed positive number ς , we consider the singular limit of the system with
gς = 0 when t →+∞. Let

Uε
ς (t,τ)zτ = ẑ(t) = (û(t), η̂ t),

U0
ς (t,τ)zτ = z(t) = (u(t),η t),

denote the solutions of system of (2.1) and (2.2)-(2.3), respectively. Set

ū(t) = û(t)−u(t), and η̄
t = η̂

t −η
t ,

then z̄ = (ū, η̄ t) fulfills the system

(4.1)


ūt −∆ūt −

∫
∞

0 µε(s)∆η̄ t(s)ds+ f (x, û)− f (x,u) = 0, x ∈ RN , t > τ,

∂t η̄
t =−∂sη̄

t + ū, x ∈ RN , t > τ,s ≥ 0,
ū(x, t) = 0, x ∈ RN , t ≤ τ,

η̄τ(x,s) = 0, x ∈ RN , s > 0.

From Lemma 3.2 and using assumption (1.2), we immediately obtain the following lemma.

Lemma 4.1. For gς = 0, we have(
∥Uε

ς (t,τ)zτ∥2
H ε

1
,∥U0

ς (t,τ)zτ∥2
H1

)
≤ Q(zτ)e−γ(t−τ), ∀t ≥ τ.

We refer to Conti et al [8] for the proof of the following lemma.

Lemma 4.2. [8] For all ε ∈ (0,1], we have

max
{
∥η̂

t∥2
M ε

1
,∥η

t∥2
M ε

1

}
≤ Q(zτ)e

−δ (t−τ)
2ε +Cε, ∀t ≥ τ.

Now we have the main theorem of this section.

Theorem 4.3. For any zτ ∈ BH ε
1

and any t ≥ τ ,
(i) for every fixed ε > 0, there holds

lim
t→+∞

∥Uε(t,τ)zτ −U0(t,τ)zτ∥2
H ε

1
≤Cε.

(ii) ∀ε > 0, there holds

lim
ε→0+

lim
t→∞

∥Uε(t,τ)zτ −U0(t,τ)zτ∥2
H ε

1
= 0.

Proof. Multiplying the first equation of (4.1) by ū(t)+ ε2ūt in L2(RN), the second equation of (4.1)
by jη̄ t(s) in L2

µε
(R+,L2(RN), and adding the results, we get

(4.2)

d
dt

(
∥ū∥2 +∥∇ū∥2 +

∫
∞

0
µε(s)( j∥η̄

t∥2 +∥∇η̄
t∥2)ds

)
−2

∫
∞

0
∂sµε(s)( j∥η̄

t∥2 +∥∇η̄
t∥2)ds

+2ε
2(∥ūt∥2 +∥∇ūt∥2)+2ε

2
∫

∞

0
µε(s)

∫
RN

∇η̄
t
∇ūtdxds+ ⟨ f (x, û)− f (x,u),2ū+2ε

2ūt⟩

= 2 j
∫

∞

0
µε(s)⟨η̄ t(s), ū⟩ds.
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Using the Hölder inequality, (3.13), (1.6) and H1(RN) ↪→ L
2N

N−2 (RN) continuously, we get

⟨ f (x, û)− f (x,u),2ε
2ūt⟩ ≤Cε

2
∫
RN

(
|û|

4
N−2 + |u|

4
N−2 + |φ(x)|

)
|ū||ūt |dx

≤Cε
2
(
∥û∥

4
N−2

L
2N

N−2
+∥u∥

4
N−2

L
2N

N−2
+∥φ(x)∥

L
N
2

)
∥ū∥

L
2N

N−2
∥ūt∥

L
2N

N−2

≤Cε
2
(
∥û∥

4
N−2
H1(RN)

+∥u∥
4

N−2
H1(RN)

+∥φ(x)∥
L

N
2 (RN)

)
∥ū∥H1(RN)∥ūt∥H1(RN)

≤Cε
2∥ū∥2

H1(RN)+
ε2

2
∥ūt∥2

H1(RN),

and similarly

⟨ f (x, û)− f (x,u),2ū⟩ ≤C
∫
RN

(
|û|

N+2
N−2 + |u|

N+2
N−2 + |φ1(x)|(|u|+ |û|)

)
|ū|dx

≤C
(
∥û∥

N+2
N−2

L
2N

N−2
+∥u∥

N+2
N−2

L
2N

N−2
+∥φ(x)∥

L
N
2
(∥u∥

L
2N

N−2
+∥û∥

L
2N

N−2
)

)
∥ū∥

L
2N

N−2

≤C
(
∥û∥

N+2
N−2
H1(RN)

+∥u∥
N+2
N−2
H1(RN)

+∥φ(x)∥
L

N
2 (RN)

(
∥u∥H1(RN)+∥û∥H1(RN)

))
∥ū∥H1(RN)

≤ ε∥ū∥2
H1(RN)+

C
ε
,

and

2ε
2
∫

∞

0
µε(s)

∫
RN

∇η̄
t
∇ūtdxds ≤ 2ε

2
∫

∞

0
µε(s)∥∇η̄

t∥∥∇ūt∥ds

≤ 2ε
2
(

1
ε

∫
∞

0
µε(s)∥∇η̄

t∥2ds+
ε

4

∫
∞

0
µε(s)ds∥∇ūt∥2

)
≤ 2ε

∫
∞

0
µε(s)∥∇η̄

t∥2ds+
ε2

2
∥∇ūt∥2, where

∫
∞

0
µε(s)ds =

1
ε
,

and

2 j
∫

∞

0
µε(s)∥η̄

t(s)∥∥ū∥ds ≤ jδ
ε

∫
∞

0
µε(s)∥η̄

t(s)∥2ds+
j
δ
∥ū∥2.

Combining the above inequalities, we obtain

d
dt

E1 j(t)−2
∫

∞

0
∂sµε(s)( j∥η̄

t∥2 +∥∇η̄
t∥2)ds+2ε

2(∥ūt∥2 +∥∇ūt∥2)

≤ 2ε

∫
∞

0
µε(s)∥∇η̄

t∥2ds+(Cε
2 + ε)∥ū∥2

H1(RN)+
C
ε
+

jδ
2ε

∫
∞

0
µε(s)∥η̄

t(s)∥2ds+
j
δ
∥ū∥2,

where E1 j(t) = ∥ū∥2
H1(RN)

+
∫

∞

0 µε(s)( j∥η̄ t∥2 +∥∇η̄ t∥2)ds and E1 j(τ) = 0. Putting Φ1 j(t) = E1 j(t)+
ν1εΛ1 j(t), where Λ1 j is defined as in Lemma 3.1 but with (ū, η̄) instead of (u,η). Besides,

εE1 j(t)≤ Φ1 j(t)≤
2
ε

E1 j(t).
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Therefore, using (1.2), we get

d
dt

Φ1 j(t)+
ν1 −2ε

2
∥ū∥2

H1(RN)+
δ −2ν1 − ε2

2ε

∫
∞

0
µε(s)( j∥η̄

t∥2 +∥∇η̄
t∥2)ds

−
(
1−4ε

2
µε(s∗)

)∫ ∞

0
∂sµε(s)( j∥η̄

t∥2 +∥∇η̄
t∥2)ds+

ε2(2−ν1)

4
(∥ūt∥2 +∥∇ūt∥2)

≤Cε
2∥ū∥2

1 +
C
ε
+

j
δ
∥ū∥.

Choosing ν1 > 0 is small enough such that ν1 < min{δ

2 ,2}, therefore

(4.3) d
dt

Φ1 j(t)+ γ1εΦ1 j(t)≤ ε
2
Φ1 j(t)+

C
ε
+

j
δ

Φ10(t).

Putting j = 0 in (4.3) and using Lemma 2.1, we obtain

E10(t)≤C,

where E1 j(τ) = 0. For gς = 0 and by Lemmas 4.1 and 4.2, we deduce for every fixed ε ,

lim
t→+∞

E10(t)≤Cε, where E10(τ) = 0.

Similarly, we get

lim
t→+∞

E11(t)≤Cε and lim
ε→0+

lim
t→+∞

E11(t) = 0.

We complete the proof. □

5. Uniform boundedness and convergence of the uniform attractors

In this section, we will prove the following facts concerning the family A ε
ς of uniform attractors of the

processes generated by (1.1):

(i) The family A ε
ς is uniformly (w.r.t. ς ) bounded in H 1

ε :

sup
ς∈[0,1]

∥A ε
ς ∥H 1

ε
< ∞.

(ii) The attractor A ε
ς converges to A ε

0 as ς → 0+ in the standard Hausdorff semi-distance in H 1
ε :

lim
ς→0+

{distH 1
ε
(A ε

ς ,A0)}= 0.

To prove the above results, we add the assumption for the following nonlinear function:

(5.1) ⟨ f (x,u),u⟩ ≥ d0∥u∥
2N

N−2

L
2N

N−2
−C,

for some d0 > 0. Then, from (1.6) and (5.1), we deduce that there exists d1 > 0 such that

(5.2) d1∥u∥
2N

N−2

L
2N

N−2
−C ≤ ⟨F(x,u),1⟩ ≤C∥u∥

2N
N−2

L
2N

N−2
+C.
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5.1. Uniform boundedness of the uniform attractors. To this end, setting G(t,τ) =
∫ t

τ
g1(s)ds, t ≥ τ ,

we assume that

(5.3) sup
t≥τ,τ∈R

∥G(t,τ)∥2 ≤ m2.

Proposition 5.1. Assume that g1 ∈ L2
b(R;L2(RN)) and satisfies (5.3). Then, the solution v(t) to the

problem

(5.4)


vt −∆vt −

∫
∞

0 µε(s)∆η t
1(s)ds = g1(t/ς),

∂tη
t
1 =−∂sη

t
1 + v,

(v(τ),ητ
1 ) = (0,0),

with ε ∈ (0,1], satisfies the inequality

(5.5) ∥v(t)∥2
H1(RN)+∥η

t
1(s)∥2

1,µε
≤Cm2

ς
2, ∀t ≥ τ,

where C is a constant independent of g1.

Proof. Without loss of generality, we may assume τ = 0, then

Vt(t) = v(t) =
∫ t

0
vt(s)ds, because v(0) = 0,

∂t η̄
t
1(x,s) = η

t
1(x,s) =

∫ t

0
∂tη

r
1(x,s)dr because η

0
1 = 0.

Integrating (5.4) in time, we see that the function V (t) solves the problem

(5.6)

{
Vt −∆Vt −

∫
∞

0 µε(s)∆η̄ t
1(x,s)ds = Gς (t),

∂t η̄
t
1 +∂sη̄

t
1 =V,

where
V |t=0 = 0, η̄

t
1|t=0 = 0,

Gς (t) =
∫ t

0
g1(s/ς)ds = ς

∫ t/ς

0
g1(s)ds = ςG(t/ς ,0).

From (5.3), we deduce that

(5.7) sup
t≥0

∥Gς (t)∥ ≤ mς .

Thus, ∫ t+1

t
∥Gς (s)∥2ds = ς

2
∫ (t+1)/ς

t/ς

∥G(s,0)∥2ds

≤ ς
2(1+

1
ς
)sup

t≥0

(∫ t+1

t
∥G(s,0)∥2ds

)
≤ 2m2

ς
2,

i.e.

sup
t≥0

∫ t+1

t
∥Gς (s)∥2ds ≤ 2m2

ς
2.
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For γ > 0, as estimated in (3.11), we get∫ t

0
e−γ(t−s)∥Gς (s)∥2ds ≤Cm2

ς
2.

Multiplying the first equation of (5.6) by V + ε2Vt in L2(RN), the second equation of (5.6) by jη̄ t in
L2

µε
(R+,L2(RN), and adding the results, we get

d
dt

(
∥V∥2 +∥∇V∥2 +

∫
∞

0
µε(s)( j∥η̄

t
1(s)∥2 +∥∇η̄

t
1(s)∥2)ds

)
−2

∫
∞

0
µ
′
ε(s)( j∥η̄

t
1(s)∥2 +∥∇η̄

t
1(s)∥2)ds+2ε

2(∥Vt∥2 +∥∇Vt∥2)

= 2⟨Gς (t),V + ε
2Vt⟩−2ε

2
∫

∞

0
µε(s)⟨∇η̄

t
1(s),∇Vt⟩ds+2 j

∫
∞

0
µε(s)⟨η̄ t

1(s),V ⟩ds.

Using the Hölder and Young inequality, we have

2⟨Gς (t),V + ε
2Vt⟩−2ε

2
∫

∞

0
µε(s)⟨∇η̄

t
1(s),∇Vt⟩ds+2 j

∫
∞

0
µε(s)⟨η̄ t

1(s),V ⟩ds

≤C∥Gς (t)∥2 +
ν2

4
∥V∥2 + ε

2∥Vt∥2 + ε

∫
∞

0
µε(s)( j∥η̄

t
1(s)∥2 +∥∇η̄

t
1(s)∥2)ds+ ε

2∥∇Vt∥2

+
jδ
2ε

∫
∞

0
µε(s)∥η̄

t
1(s)∥2ds+

2 j
δ
∥V∥2.

Now, putting E2 j = ∥V∥2+∥∇V∥2+
∫

∞

0 µε(s)( j∥η̄ t
1(s)∥2+∥∇η̄ t

1(s)∥2)ds, Φ2 j =E2 j+ν2εΛ2 j, where
Λ2 j is defined in Lemma 3.1 (with (V, η̄ t

1) in place of (u,η t)), we obtain

d
dt

Φ2 j +
ν2

4
∥V∥2

H1(RN)+
ε2(4−ν2)

4
∥Vt∥2

H1(RN)+

(
δ −2ν2 − ε2

2ε

)∫
∞

0
µε(s)( j∥η̄

t
1(s)∥2 +∥∇η̄

t
1(s)∥2)ds

−
(

1− ν2ε2µε(s∗)
2

)∫
∞

0
µ
′
ε(s)( j∥η̄

t
1(s)∥2 +∥∇η̄

t
1(s)∥2)ds ≤ 2 j

δ
∥V∥2 +C∥Gς (t)∥2.

Choosing ν2,γ2 > 0 is small enough, we have

d
dt

Φ2 j +2γ2E2 j ≤
2 j
δ
∥V∥2 +C∥Gς (t)∥2.

Up to further reducing γ2, we also have

εE2 j ≤ Φ2 j ≤
2
ε

E2 j.

Thus,

d
dt

Φ2 j + γ2εΦ2 j ≤
2 j
δ

Φ20 +C∥Gς (t)∥2.(5.8)

Putting j = 0 in (5.8) and subsequently substituting the result into (5.8) with j = 1, we deduce that

Φ21(t)≤ Φ21(0)e−γt +Cm2
ς

2 +C
∫ t

τ

e−γ(t−r)∥Gς (t)∥2dr ≤Cm2
ς

2.
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Thus,

E21 = ∥V∥2 +∥∇V∥2 +
∫

∞

0
µε(s)

(
∥η̄

t
1∥2 +∥∇η̄

t
1(s)∥2)ds ≤Cm2

ς
2.(5.9)

Now, multiplying (5.6) by Vt , applying the Hölder and Cauchy inequalities, we obtain

∥Vt∥2 +∥∇Vt∥2 ≤(Gς (t),Vt)+

∣∣∣∣∫ ∞

0
µε(s)

(
∇η̄

t
1(s),∇Vt

)
ds
∣∣∣∣

≤C∥Gς (t)∥2 +
1
2
(
∥Vt∥2 +∥∇Vt∥2)+C

∫
∞

0
µε(s)∥∇η̄

t
1(s)∥2ds.

Using (5.9) and (5.7), we deduce that

(5.10) ∥Vt∥2 +∥∇Vt∥2 ≤Cm2
ς

2, i.e., ∥v∥2 +∥∇v∥2 ≤Cm2
ς

2.

Multiplying the second equation in (5.6) by η t
1 in L2

µε
(R+;H1(RN)), we get

d
dt
∥η

t
1∥2

1,µε
+2⟨∂sη

t
1,η

t
1⟩2

1,µε
= 2

∫
∞

0
µε(s)⟨η t

1(s),Vt⟩H1(RN)ds.

Using (1.2) we have
d
dt
∥η

t
1∥2

1,µε
+

δ

ε
∥η

t
1∥2

1,µε
≤C∥Vt∥2

1.

Using (5.10) and applying the Gronwall inequality, we have

(5.11) ∥η
t
1∥2

1,µε
≤Cm2

ς
2.

Combining (5.10) and (5.11), we get (5.5) as desired.
This completes the proof. □

Theorem 5.2. Assume (H1)-(H3) and (5.3) hold. Then the uniform attractors A ε
ς are uniformly (w.r.t.

ς ) bounded in H 1
ε , that is,

sup
ς∈[0,1]

∥A ε
ς ∥H 1

ε
< ∞.

Proof. Let z(t) = (u(t),η t(s)) be the solution to (1.1) with initial datum zτ ∈ H 1
ε . Firstly, for ς > 0,

we consider the problem 
vt −∆vt −

∫
∞

0 µε(s)∆η t
1(s)ds = ς−ρg1(t/ς),

∂tη
t
1 =−∂sη

t
1 + v,

(v(τ),ητ
1 ) = (0,0).

From Proposition 5.1, we have

(5.12) ∥v∥2
H1(RN)+∥η

t
1∥2

1,µε
≤Cm2

ς
2(1−ρ), ∀t ≥ τ.

Then, the function (w(t),η t
2) = z(t)− (v(t),η t

1) clearly satisfies the equation

(5.13)


wt −∆wt −

∫
∞

0 µε(s)∆η t
2(s)ds+ f (x,w) =−( f (x,w+ v)− f (x,w))+g0(t),

∂tη
t
2 =−∂sη

t
2 +w,

(w(τ),ητ
2 ) = (uτ ,ητ).
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Multiplying the first equation of (5.13) by w+a2wt in L2(RN), the second equation of (5.13) by jη t
2

in L2
µε
(R+,L2(RN), and adding the results, we get

d
dt

(
∥w∥2 +∥∇w∥2 +

∫
∞

0
µε(s)( j∥η

t
2(s)∥2 +∥∇η

t
2(s)∥2)ds+2a2⟨F(x,w),1⟩

)
+2a2∥wt∥2

H1(RN)−2
∫

∞

0
µ
′
ε(s)( j∥η

t
2(s)∥2 +∥∇η

t
2(s)∥2)ds+2⟨ f (x,w),w⟩+2a2

∫
∞

0
µε(s)⟨∇η

t
2(s),∇wt⟩ds

= −2⟨ f (x,w+ v)− f (x,w),w+a2wt⟩+2⟨g0(t),w+a2wt⟩+2 j
∫

∞

0
µε(s)⟨η t

2(s),w⟩ds.

From (1.6), (5.1), (5.2) and the embedding H1(R) ↪→ L
2N

N−2 (RN), we get

⟨ f (x,w),w⟩ ≥ ν0⟨F(x,w),1⟩−C f ,

⟨ f (x,w),w⟩ ≥ d0∥w∥
2N

N−2

L
2N

N−2
−C,

and

|⟨ f (x,w+ v)− f (x,w),w⟩| ≤C
∫
RN

(
|φ(x)|+ |v|

4
N−2 + |w|

4
N−2

)
|v||w|dx

≤C∥φ∥
L

N
2 (RN)

∥v∥H1(RN)∥w∥H1(RN)+C∥v∥
N+2
N−2
H1(RN)

∥w∥H1(RN)+C∥v∥H1(RN)∥w∥
N+2
N−2
H1(RN)

≤C∥φ∥2

L
N
2 (RN)

∥v∥2
H1(RN)+C∥v∥

2(N+2)
N−2

H1(RN)
+C∥v∥

2N
N−2
H1(RN)

+
ν3

4
∥w∥2

H1(RN)+
d0

2
∥w∥

2N
N−2

L
2N

N−2 (RN)
,

similarly,

|⟨ f (x,w+ v)− f (x,w),a2wt⟩|

≤Ca2
∫
RN

(
|φ(x)|+ |v|

4
N−2 + |w|

4
N−2

)
|v||wt |dx

≤Ca2∥φ∥
L

N
2 (RN)

∥v∥H1(RN)∥wt∥H1(RN)+Ca2∥v∥
N+2
N−2
H1(RN)

∥wt∥H1(RN)+Ca2∥v∥H1(RN)∥w∥
4

N−2

L
2N

N−2 (RN)
∥wt∥H1(RN)

≤Ca2∥φ∥2

L
N
2 (RN)

∥v∥2
H1(RN)+Ca2∥v∥

2(N+2)
N−2

H1(RN)
+Ca2∥v∥

2N
N−2
H1(RN)

+

(
a2

4
+∥v∥2

H1(RN)

)
∥wt∥2

H1(RN)+Ca4∥w∥
8

N−2

L
2N

N−2 (RN)
,

and

2 j
∫

∞

0
µε(s)⟨η t

2(s),w⟩ds ≤ jν3

ε

∫
∞

0
µε(s)∥η

t
2(s)∥2ds+

j
ν3

∥w∥2,

and the last

⟨g0(t),w+a2wt⟩ ≤C∥g0(t)∥2 +
ν3

4
∥w∥2 +

a2

4
∥wt∥2.
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Combining all the above inequalities, we obtain
(5.14)

d
dt

E3 j +a2∥wt∥2
H1(RN)−2

∫
∞

0
µ
′
ε(s)( j∥η

t
2(s)∥2 +∥∇η

t
2(s)∥2)ds+ν0⟨F(x,w),1⟩+ d0

2
∥w∥

2N
N−2

L
2N

N−2 (RN)

≤C∥φ∥2

L
N
2 (RN)

∥v∥2
H1(RN)+C∥v∥

2(N+2)
N−2

H1(RN)
+C∥v∥

2N
N+2
H1(RN)

+
jν3

ε

∫
∞

0
µε(s)∥η

t
2(s)∥2ds+

j
ν3

∥w∥2

+
ν3

4
∥w∥2

H1(RN)+Ca4∥w∥
8

N−2

L
2N

N−2 (RN)
+C(∥g0(t)∥2 +1),

where E3 j = ∥w∥2 +∥∇w∥2 +
∫

∞

0 µε(s)( j∥η t
2(s)∥2 +∥∇η t

2(s)∥2)ds+2a2⟨F(x,u),1⟩, j = 0,1.
Putting

Φ3 j(t) = E3 j +ν3εΛ3 j,

where Λ3 j is defined in Lemma 3.1 with (w,η t
2) in place of (u,η t).

From (5.14) and (1.2), we obtain
(5.15)
d
dt

Φ3 j +
δ −2ν3

ε

∫
∞

0
µε(s)( j∥η

t
2(s)∥2 +∥∇η

t
2(s)∥2)ds+

ν3

4
∥w∥2

H1(RN)+ν0⟨F(x,w),1⟩

+

(
a2 − ε2ν3

4

)
∥wt∥2

H1(RN)−
(

1− ν3ε2µε(s∗)
2

)∫
∞

0
µ
′
ε(s)( j∥η

t
2(s)∥2 +∥∇η

t
2(s)∥2)ds+

d0

2
∥w∥

2N
N−2

L
2N

N−2 (RN)

≤C∥φ∥2

L
N
2 (RN)

∥v∥2
H1(RN)+C∥v∥

2(N+2)
N−2

H1(RN)
+C∥v∥

2N
N−2
H1(RN)

+
j

ν3
∥w∥2 +Ca4∥w∥

8
N−2

L
2N

N−2 (RN)
+C(∥g0(t)∥2 +1).

We consider two cases:
Case 1: N ≥ 4. We have 8

N−2 ≤ 2N
N−2 for all N ≥ 4, then

(5.16) Ca4∥w∥
8

N−2

L
2N

N−2 (RN)
≤ d0

2
∥w∥

2N
N−2

L
2N

N−2 (RN)
+C.

Combining with (5.15) and (5.16), choosing ν3,γ3 > 0 is small enough, we obtain

d
dt

Φ3 j + γ3E3 j ≤C∥φ∥2

L
N
2 (RN)

∥v∥2
H1(RN)+C∥v∥

2(N+2)
N−2

H1(RN)
+C∥v∥

2N
N+2
H1(RN)

+
j

ν3
∥w∥2 +C(∥g0(t)∥2 +1),

where −
∫

∞

0 µ ′
ε(s)( j∥η t

2(s)∥2 +∥∇η t
2(s)∥2)ds > 0 can be neglected.

On the other hand, εE3 j ≤ Φ3 j ≤ 1
ε
E3 j we get

(5.17)
d
dt

Φ3 j + γ3εΦ3 j ≤
j

ν3
Φ30 +C∥φ∥2

L
N
2 (RN)

∥v∥2
H1(RN)+C∥v∥

2(N+2)
N−2

H1(RN)
+C∥v∥

2N
N+2
H1(RN)

+C(∥g0(t)∥2 +1).

Putting j = 0 in (5.17) and subsequently substituting the result into (5.17) with j = 1, we deduce that

Φ31(t)≤CΦ31(τ)e−γ3(t−τ)+Cm2
ς

2(1−ρ)+Cm
2(N+2)

N−2 ς
2(N+2)(1−ρ)

N−2 +Cm
2N

N+2 ς
2N(1−ρ)

N−2

+C
∫ t

τ

e−γ3(t−r)∥g0(r)∥2dr+C.
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Arguing as in the proof of (3.11), we have

(5.18) C
∫ t

τ

e−γ3(t−r)∥g0(r)∥2dr ≤ 1
1− e−γ3

∥g0∥L2
b
≤CM2

0 ,

thus,

Φ31(t)≤CΦ31(τ)e−γ3(t−τ)+C
(

1+m2 +m
2(N+2)

N−2 +m
2N

N+2 +M2
0

)
.(5.19)

Case 2: N = 3. Using (5.2), we have

(5.20)
Ca4∥w∥

8
N−2

L
2N

N−2 (RN)
=Ca4∥w∥8

L6(RN)
≤Ca4(⟨F(x,w),1⟩+C)

4
3

≤Ca4
Φ

4
3
3 j(t)+C.

Combining with (5.15) and (5.20), choosing ν3 > 0 is small enough such that 0 < ν3 < min{δ

2 ,1}, we
obtain
(5.21)

d
dt

Φ3 j + γ4aΦ3 j(t)

≤Ca4
Φ

4
3
3 j(t)+

j
ν3

Φ30(t)+C∥φ∥2

L
3
2 (RN)

∥v∥2
H1(RN)+C∥v∥5

H1(RN)
+C∥v∥

6
5
H1(RN)

+C(∥g0(t)∥2 +1).

From (5.21), let j = 0, then applying Gronwall inequality in Lemma 2.1 and (5.18), we get

Φ30(t)≤ Q(Φ30(τ))e−γ4(t−τ)+Cm2
ς

2(1−ρ)+Cm5
ς

5(1−ρ)+Cm
6
5 ς

3(1−ρ)

+C
∫ t

τ

e−γ4(t−r)∥g0(r)∥2dr+C

≤CQ(Φ30(τ))e−γ4(t−τ)+C
(

1+m2 +m5 +m
6
5 +M2

0

)
.(5.22)

Now consider (5.21) for j = 1 and using (5.22) and Gronwall inequality in Lemma 2.1, we obtain

Φ31(t)≤ Q(Φ30(τ))e−γ4(t−τ)+C
(

1+m2 +m5 +m
6
5 +M2

0

)
.(5.23)

From (5.19) and (5.23) we can see that

(5.24)
∥w∥2 +∥∇w∥2 +

∫
∞

0
µε(s)

(
∥η

t
2∥2 +∥∇η

t
2(s)∥2)ds

≤ Q(E31(τ))e−γ4(t−τ)+C
(

1+m2 +m
2(N+2)

N−2 +m
2N

N+2 +M2
0

)
, ∀N ≥ 3.

Recalling that z(t) = (v(t),η t
1(s))+(w(t),η t

2(s)) and using (5.12) and (5.24), we have

(5.25) ∥z∥2
H 1

ε

≤ e−γ5(t−τ)∥zτ∥2
H 1

ε

+C
(

1+m2 +m
2(N+2)

N−2 +m
2N

N+2 +M2
0

)
, ∀t ≥ τ.

Hence the processes Uε
ς (t,τ) have an absorbing set B∗, which is independent of ς . Since A ε

ς ⊂ B∗,
the proof is completed.

□
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5.2. Convergence of the uniform attractors. In this subsection, we will establish the upper semiconti-
nuity of the uniform attractors A ε

ς at ς = 0.

Theorem 5.3. Let conditions (H1)-(H3) and (5.3) hold. Then, for every ρ ∈ [0,1), the uniform
attractor A ε

ς converges to A ε
0 as ς → 0+ in the following sense:

lim
ς→0+

{distH 1
ε
(A ε

ς ,A
ε

0 )}= 0.

The proof of this theorem requires some steps. The first task is to compare the solutions to (1.1)
corresponding to ς > 0 and ς = 0, respectively, starting from the same initial data. Denoting

zε
ς (t) =Uε

ς (t,τ)zτ ,

where zτ belongs to the absorbing set B∗ which found in the previous section.
Besides, in order to prove the convergence of the uniform attractors, we actually need consider

whole family of equations

(5.26) ût −∆ût + f (x,u)−
∫

∞

0
µε(s)∆η̂

t(s)ds = ĝς (t),

with the external force ĝς ∈ Hw(gς ). To this end, we observe that every function ĝ1 ∈ Hw(g1) fulfills
the inequality (5.3).

For any ς ∈ [0,1], we denote
ûς (t) =Uĝς (t,τ)uτ ,

where uτ belongs to the absorbing set B∗. Therefore,

ẑς (t) = (ûς (t), η̂ t
ς ) =Uĝς (t,τ)ẑτ ,

is the solution to (5.26) with the external force ĝς = ĝ0 + ς−ρ ĝ1(./ς) ∈ Hw(gς ). Since Theorem 5.2,
along with the estimate of Theorem 3.8 to handle the case ς = 0, we get the uniform bound

sup
ς∈[0,1]

∥ẑς (t)∥H 1
ε
≤C, ∀t ≥ τ.

Next, we define the deviation
z(t) = ẑς (t)− ẑ0(t) = (r(t),ζ t).

Lemma 5.4. For every ς ∈ (0,1], we have the estimate

(5.27) ∥z(t)∥2
H 1

ε

≤C
(
ℓm2

ς
2(1−ρ)+mς

1−ρ

)
eC(t−τ)+Cm2

ς
2(1−ρ), ∀t ≥ τ,

for some positive constant C independent of ς ,τ, ĝς .

Proof. Let (v(t),η t
1) be the solution to the auxiliary problem (5.4) with null initial datum (vτ ,η

τ
1 ) =

(0,0). The difference (w(t),η t
2) = z(t)− (v(t),η t

1) = (r(t),ζ t)− (v(t),η t
1) clearly satisfies the equa-

tions 
wt −∆wt −

∫
∞

0 µε(s)∆η t
2(s)ds+ f (x,uς )− f (x,u0) = 0,

∂tη
t
2 =−∂sη

t
2 +w,

(w(τ),ητ
2 ) = (0,0).
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Multiplying the first equation of (5.2) by w in L2(RN), the second equation of (5.2) by η t
2(s) in

L2
µε
(R+,L2(RN), and adding the results, we get

d
dt

(
∥w∥2 +∥∇w∥2 +

∫
∞

0
µε(s)(∥η

t
2∥2 +∥∇η

t
2∥2)ds

)
−2

∫
∞

0
µ
′
ε(s)(∥η

t
2∥2 +∥∇η

t
2∥2)ds+2( f (x,uς )− f (x,u0),w+ v)

≤ 2
∣∣( f (x,uς )− f (x,u0),v)

∣∣+2
∫

∞

0
µε(s)⟨η t

2(s),w⟩ds.

Using conditions (1.5) and (1.6), we obtain

2( f (x,uς )− f (x,u0),w+ v) = 2
∫

Ω

f ′(ξ )(w+ v)2dx

≥−2ℓ∥w+ v∥2 ≥−Cℓ(∥w∥2 +∥v∥2),

and

2
∣∣( f (x,uς )− f (x,u0),v)

∣∣≤ 2
∫

Ω

(| f (uς )|+ | f (u0)|)|v|dx

≤ 2
(
∥ f (uς )∥

L
2N

N+2 (RN)
+∥ f (u0)∥

L
2N

N+2 (RN)

)
∥v∥

L
2N

N−2 (RN)

≤C∥v∥H1(RN),

and

2
∫

∞

0
µε(s)⟨η t

2(s),w⟩ds ≤ 1
δ
∥w∥2 +

δ

ε

∫
∞

0
µε(s)∥η

t
2(s)∥2ds.

Besides, using (1.2), we have

0 ≤−
∫

∞

0
µ
′
ε(s)(∥η

t
2∥2 +∥∇η

t
2∥2)ds ≤ δ

ε

∫
∞

0
µε(s)(∥η

t
2∥2 +∥∇η

t
2∥2)ds.

Combining all the above inequalities and using (5.25) and we get

d
dt

(
∥w∥2 +∥∇w∥2 +∥η

t
2∥2

1,µε

)
≤C

(
ℓ+

1
δ

)
∥w∥2 +Cℓ∥v∥2 +C∥v∥H1(RN),

thus
d
dt

y(t)≤Cy(t)+Cℓm2
ς

2(1−ρ)+Cmς
(1−ρ),

where

y(t) = ∥w∥2 +∥∇w∥2 +∥η
t
2∥2

1,µε
.

Since (w(τ),ητ
2 ) = (0,0), the Gronwall inequality leads to

∥w∥2 +∥∇w∥2 +∥η
t
2∥2

1,µε
≤C

(
ℓm2

ς
2(1−ρ)+mς

1−ρ

)
eC(t−τ), ∀t ≥ τ.

Finally, recalling that (w(t),η t
2) = (r(t),ζ t)− (v(t),η t

1), using again (5.12), we obtain the desired
estimate (5.27). □
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Proof of Theorem 5.3. Although the proof of this theorem is similar in [19, Theorem 4.4], we present
here another (simpler) proof for the completeness and convenience of the reader.

For ς > 0, let zς ∈ A ε
ς . Thus, in view of (3.8), there exists a complete bounded trajectory ẑς (t) of

(5.26), with the external force

ĝς = ĝ0 + ς
−ρ ĝ1(./ς) ∈ Hw(gς ), where ĝ0 ∈ Hw(g0), ĝ1 ∈ Hw(g1),

such that ẑς (0) = zς .
By Lemma 5.4 with t = 0,

∥zς −Uĝ0(0,τ)ẑ
ς (τ)∥H 1

ε
≤C

(
ℓm2

ς
2(1−ρ)+mς

1−ρ

)
eCτ +Cm2

ς
2(1−ρ), ∀τ ≤ 0.

Besides, it is known (see e.g. [6]) that the set A ε
0 attracts Uĝ0(t,τ)B

∗, uniformly not only with respect to
τ ∈R, but also with respect to ĝ0 ∈ Hw(g0). Then, for every δ > 0, there is τ = τ(δ )≤ 0 independent
of ς such that

distH 1
ε

(
Uĝ0(0,τ)ẑ

ς (τ),A ε
0

)
≤ δ .

Using the triangle inequality we get

distH 1
ε

(
zς ,A ε

0

)
≤C

(
ℓm2

ς
2(1−ρ)+mς

1−ρ

)
eC(t−τ)+Cm2

ς
2(1−ρ)+δ .

Since zς ∈ Aε
ς is arbitrary, we reach the conclusion

limsup
ς→0+

{distH 1
ε
(A ε

ς ,A
ε
0)} ≤ δ .

Letting δ → 0 we complete the proof.
□

Acknowledgements. The author would like to thank the reviewers for the helpful comments and
suggestions which improved the presentation of the paper.

References

[1] E.C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), 265-296.
[2] C.T. Anh, D.T.P. Thanh and N.D. Toan, Global attractors for nonclassical diffusion equations with hereditary memory

and a new class of nonlinearities, Ann. Polon. Math. 119 (2017), 1-21.
[3] C.T. Anh, D.T.P. Thanh and N.D. Toan, Averaging of noncassical diffusion equations with memory and singularly

oscillating forces, Z. Anal. Anwend. 37 (2018), 299-314.
[4] Shuilin Cheng, Random attractor for the nonclassical diffusion equation with fading memory, J. Part. Diff. Eq., 28

(2015), 253-268.
[5] T. Chen, Z. Chen and Y. Tang, Finite dimensionality of global attractors for a non-classical reaction-diffusion equation

with memory, Appl. Math. Lett. 25 (2012), no. 3, 357-362.
[6] V.V. Chepyzhov and M.I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloq. Publ.,

Vol. 49, Amer. Math. Soc., Providence, RI, 2002.
[7] M. Conti, F. Dell’Oro and V. Pata, Nonclassical diffusion equation with memory lacking instantaneous damping,

Commun. Pure Appl. Anal. 19 (2020), 2035-2050.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

13 Jan 2024 07:31:34 PST
231127-Dang Version 2 - Submitted to Rocky Mountain J. Math.



NONCLASSICAL DIFFUSION EQUATIONS LACKING INSTANTANEOUS DAMPING ON RN WITH MEMORY 24

[8] M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J. 55
(2006), no. 1, 169-215.

[9] M. Conti and E.M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim. 73
(2015), 1-21.

[10] M. Conti, E.M. Marchini and V. Pata, Nonclassical diffusion with memory, Math. Meth. Appl. Sci. 38 (2015), 948-958.
[11] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37 (1970), 297-308.
[12] S. Gatti, M. Grasselli, A. Miranville and V. Pata, Memory relaxation of first order evolution equations, Nonlinearity 18

(2005), no. 4, 1859-1883.
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