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Abstract

In this paper, we discuss some properties for the polynomials Lα,βn (x) including integral
representations, orthogonal condition, Rodrigues formula, recurrence relation and fractional
differential equation.
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1 Introduction and Preliminaries

Prabhakar and Suman [1] introduced the polynomials Lα,βn (x) and defined as,

Lα,βn (x) =
Γ(αn+ β + 1)

n!

n∑
k=0

(−n)kx
k

Γ(αk + β + 1)k!
, (1.1)

where (·)k denotes the Pochhammer symbol and n ∈ N ∪ {0}, α, β ∈ C, <(α) > 0,<(β) > −1. For
α = 1, this reduces to the generalized Laguerre polynomial (Rainville [2]),

Lβn(x) =
n∑
k=0

(−1)k(1 + β)nx
k

k!(n− k)!(1 + β)k
. (1.2)

Jatav and Shukla [3] represented (1.1) as,

Lα,βn (x) =
Γ(αn+ β + 1)

n!
1R0

[
−n
−

∣∣∣∣α, β + 1;x

]
. (1.3)

and also obtained the following generating function of (1.1) as,

∞∑
n=0

(β + 1)n
Γ(αn+ β + 1)

Lα,βn (x)tn = (1− t)−(β+1)
1R0

[
β + 1
−

∣∣∣∣α, β + 1;
xt

t− 1

]
. (1.4)

Desai and Shukla [4, 5] defined the pRq(τ1, τ2; z) function as,

pRq(τ1, τ2; z) = pRq

[
ξ1, ξ2, . . . , ξp
ζ1, ζ2, . . . , ζq

∣∣∣∣ τ1, τ2; z]
=

∞∑
m=0

1

Γ(τ1m+ τ2)

(ξ1)k . . . (ξp)m
(ζ1)k . . . (ζq)m

zm

m!
, (1.5)

1

1 Oct 2023 23:24:40 PDT
230709-Shukla Version 2 - Submitted to Rocky Mountain J. Math.



where p, q ∈ N ∪ {0} and τ1, τ2 ∈ C, <(τ1),<(τ2),<(ξi),<(ζj) > 0; for any i = 1, 2, . . . , p and
j = 1, 2, . . . , q. When no ζj (j = 1, 2, · · · , q) is zero or a negative integer, the series (1.5) is defined.
The series (1.5) terminates to polynomial in z if any numerator parameter ξi (i = 1, 2, . . . , p) is a
zero or negative integer.

The series (1.5) having the following convergence conditions:

(i). If <(τ1) ≥ p− q, the series converges for all finite values of z.

(ii). If <(τ1) = p− q − 1, the series converges for all |z| < 1 and diverges for |z| > 1.

(iii). When <(τ1) = p− q − 1 and |z| = 1, the series can converges on condition depending on the
parameters. If <(τ1) = p− q − 1, the series is absolutely convergent on the circle |z| = 1 if

<

τ1 +

q∑
j=1

ζj −
p∑
i=1

ξi

 > 0.

The confluent hypergeometric function is defined (Rainville [2]) as,

1F1(ξ; ζ; z) =

∞∑
m=0

(ξ)n
(ζ)n

zm

m!
, (1.6)

in which ζ 6= 0 or a negative integer and the series is convergent for all finite z.
The Pochhammer symbol is denoted by (℘)m and defined (Rainville [2]) for ℘ ∈ C as,

(℘)m =
Γ(℘+m)

Γ(℘)
=

{
℘(℘+ 1)(℘+ 2) . . . (℘+m− 1) (m ∈ N)

1 (m = 0, ℘ 6= 0).
(1.7)

The Beta function is defined (Rainville [2]) as,

B(σ, υ) =
Γ(σ)Γ(υ)

Γ(σ + υ)
=

∫ 1

0
ωσ−1(1− ω)υ−1dω, (<(σ) > 0,<(υ) > 0). (1.8)

In this investigation, we need to recall the following result due to Lavoie and Trottier [6],∫ 1

0
ϑχ−1(1− ϑ)2η−1

(
1− ϑ

3

)2χ−1(
1− ϑ

4

)η−1
dϑ =

(
2

3

)2χ Γ(χ)Γ(η)

Γ(χ+ η)
, (1.9)

where χ, η ∈ C with <(χ) > 0 and <(η) > 0.

2 Main Results

In this section, integral representations, Rodrigues formula, recurrence relation, fractional differen-
tial equation and orthogonal condition for the polynomials (1.1) are established.
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2.1 Integral Representations

Theorem 2.1. Let α, β ∈ C with <(α) > 0, <(β) > −1 and ϑ > 0. Then the following integral
representation formula holds true:∫ 1

0
ϑα−1(1− ϑ)2β+1

(
1− ϑ

3

)2α−1(
1− ϑ

4

)β
Lα,βn

(
u(1− ϑ)2α

(
1− ϑ

4

)α)
dϑ

=

(
2

3

)2α Γ(α)Γ(αn+ β + 1)

n!
1R0

[
−n
−

∣∣∣∣α, α+ β + 1;u

]
. (2.1)

Proof. The left-hand side of (2.1) is denoted by Ξ1 and using (1.1), further inverting the order of
summation and integration, we get

Ξ1 =
Γ(αn+ β + 1)

n!

n∑
k=0

(−n)ku
k

k!Γ(αk + β + 1)

×

(∫ 1

0
ϑα−1(1− ϑ)2αk+2β+1

(
1− ϑ

3

)2α−1(
1− ϑ

4

)αk+β
dϑ

)
,

on employing the integral formula (1.9), we obtain the following expression:

Ξ1 =

(
2

3

)2α Γ(α)Γ(αn+ β + 1)

n!

n∑
k=0

(−n)ku
k

k!Γ(αk + α+ β + 1)
,

on solving the above result by using (1.5), this leads to the desired result (2.1). This completes the
proof of Theorem 2.1.

On putting α = 1 in (2.1), in view of (1.6), one can easily obtain the following corollary.

Corollary 2.1. Let β ∈ C with <(β) > −1 and ϑ > 0. Then the following integral representation
formula holds true:∫ 1

0
(1− ϑ)2β+1

(
1− ϑ

3

)(
1− ϑ

4

)β
Lβn

[
u(1− ϑ)2

(
1− ϑ

4

)]
dϑ

=

(
2

3

)2 Γ(β + n+ 1)

n!Γ(β + 2)
1F1

[
−n;
β + 2;

u

]
. (2.2)

Theorem 2.2. Let α, β,$ ∈ C such that <(α) > 0, <($) > 0 and <(β) > −1. Then the following
integral representation formula holds true:

Lα,β+$n (x) =
Γ(αn+ β +$ + 1)

n!Γ($)

∫ 1

0
µβ(1− µ)$−11R0

[
−n
−

∣∣∣∣α, β + 1;xµα
]
dµ. (2.3)

Proof. The left-hand side of (2.3) is denoted by Ξ2, using (1.5) and inverting the order of summation
and integration, we get

Ξ2 =
Γ(αn+ β +$ + 1)

n!Γ($)

n∑
k=0

(−n)kx
k

k!Γ(αk + β + 1)

(∫ 1

0
µαk+β(1− µ)$−1dµ

)

=
Γ(αn+ β +$ + 1)

n!

n∑
k=0

(−n)kx
k

k!Γ(αk + β +$ + 1)
,

on further simplification the above result by using (1.1), this yields the desired result.
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On putting α = 1 in (2.3), in view of (1.6), we obtain the following corollary.

Corollary 2.2. Let β,$ ∈ C such that <($) > 0 and <(β) > −1. Then the following integral
representation formula holds true:

Lβ+$n (x) =
Γ(β +$ + n+ 1)

n!Γ($)Γ(β + 1)

∫ 1

0
µβ(1− µ)$−1 1F1

[
−n;
β + 1;

µx

]
dµ. (2.4)

2.2 Rodrigues Formula

Theorem 2.3. Let α, β ∈ C with <(α) > 0 and <(β) > −1. Then the following Rodrigues formula
holds true:

Lα,βn (x) =
x−βΓ(αn+ β + 1)

n!(β + 1)n

dn

dzn

[
zβ+n1R0

[
β + 1
−

∣∣∣∣α, β + 1;x− z
]]

z=x

. (2.5)

Proof. From (1.4) and employing the Taylor’s theorem [7], we get

(β + 1)n
Γ(αn+ β + 1)

Lα,βn (x) =
1

2πi

∫
C

(1− t)−(β+1)
1R0

[
β + 1
−

∣∣∣∣α, β + 1;
xt

t− 1

]
t−n−1dt,

where C being a closed contour surrounding at t = 0 and lying within the disk |t| < 1. On setting
z = x

1−t , we get

Lα,βn (x) =
x−βΓ(αn+ β + 1)

(β + 1)n 2πi

∫
C′

zβ+n

(z − x)n+1 1
R0

[
β + 1
−

∣∣∣∣α, β + 1;x− z
]
dz,

where C ′ is a circle |z− x| = r of small radius r. Now by Cauchy’s integral theorem [7], this yields
the desired result (2.5).

Remark 2.1. For α = 1 in (2.5), this reduces to the Rodrigues formula for the generalized Laguerre
polynomial [2],

Lβn(x) =
x−βex

n!

dn

dxn
(xβ+ne−x). (2.6)

2.3 Recurrence Relation

Theorem 2.4. Let α, β ∈ C with <(α) > 0 and <(β) > −1. Then the following differential
recurrence relation holds true:

xDLα,βn (xα) = αnLα,βn (xα)− αΓ(αn+ β + 1)

Γ(αn− α+ β + 1)
Lα,βn−1(x

α). (2.7)

Proof. From the right hand side of (2.7), we get

αnLα,βn (xα)− αΓ(αn+ β + 1)

Γ(αn− α+ β + 1)
Lα,βn−1(x

α)

=
αΓ(αn+ β + 1)

(n− 1)!

n∑
k=0

(−1)k
[(

n
k

)
−
(
n− 1
k

)]
xαk

Γ(αk + β + 1)

=
xΓ(αn+ β + 1)

(n)!

n∑
k=0

(−n)k(αk)xαk−1

k!Γ(αk + β + 1)

= xDLα,βn (xα).

This completes the proof of the result (2.7).
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Remark 2.2. For α = 1 in (2.7), this reduces to the differential recurrence relation for generalized
Laguerre polynomials [2],

xDLβn(x) = nLβn(x)− (β + n)Lβn−1(x). (2.8)

2.4 Fractional Differential Equation

Theorem 2.5. Let α, β ∈ C with <(α) > 0, <(β) > −1. Then the following fractional differential
equation holds true:

Dα
[
xβ+1DLα,βn (xα)

]
− xβ+1DLα,βn (xα) + nαxβLα,βn (xα) = 0. (2.9)

Proof. From (2.7), one can write

xDLα,βn (xα) =
αΓ(αn+ β + 1)

(n− 1)!

n∑
k=0

(−1)k
(
n− 1
k − 1

)
xαk

Γ(αk + β + 1)
. (2.10)

Now on multiplying both side by xα and then apply the operator Dα, where D = d
dx , this gets

Dα
[
xβ+1DLα,βn (xα)

]
=
αΓ(αn+ β + 1)

(n− 1)!

n∑
k=0

(−1)k
(
n− 1
k − 1

)
xα(k−1)+β

Γ(αk − α+ β + 1)

= −αΓ(αn+ β + 1)xβ

(n− 1)!

n−1∑
k=0

(−1)k
(
n− 1
k

)
xαk

Γ(αk + β + 1)

= −αΓ(αn+ β + 1)xβ

Γ(αn− α+ β + 1)
Lα,βn−1(x

α). (2.11)

From (2.7) and (2.11), further simplification by removing Lα,βn−1(x
α), this yields the fractional dif-

ferential equation of order α+ 1 (2.9) for polynomials (1.1).

Remark 2.3. For α = 1 in (2.9), this reduces to the differential equation for the generalized
Laguerre polynomial [2].

xD2Lβn(x) + (1 + β − x)DLβn(x) + nLβn(x) = 0. (2.12)

2.5 Orthogonality

Theorem 2.6. If the polynomials Lα,βn (x) form a simple set of real polynomials and weight function

xβe−x > 0 over interval 0 < x <∞, then necessary and sufficient condition that the set Lα,βn (x) to
be orthogonal with respect to weight function xβe−x over the interval 0 < x <∞ is that∫ ∞

0
xβe−xLα,βn (xα)xmdx =

Γ(αn+ β + 1)

n!
δ
′
mn, (2.13)

where α, β ∈ C, <(α) > 0,<(β) > −1 and δ
′
mn =

{
0, if m = 0, 1, 2, ..., n− 1
6= 0, if m = n.

Proof. From the left-hand side of (2.13), we obtain∫ ∞
0

xβe−xLα,βn (xα)xmdx =
Γ(αn+ β + 1)

n!

n∑
k=0

(−n)k
Γ(αk + β + 1)k!

(∫ ∞
0

e−xxαk+β+mdx

)
5
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=
Γ(αn+ β + 1)

n!

n∑
k=0

(−n)kΓ(αk + β +m+ 1)

Γ(αk + β + 1)k!

=
Γ(αn+ β + 1)

n!

[
n∑
k=0

(−1)k
(
n
k

)
Dm(yαk+β+m)

]
y=1

, where D =
d

dy
.

In which yαk+β+m has been inserted for convenience and will be removed later by replacing y = 1
[2]. ∫ ∞

0
xβe−xLα,βn (xα)xmdx =

Γ(αn+ β + 1)

n!

[
Dm(yβ+m)

n∑
k=0

(−1)k
(
n
k

)
yαk

]
y=1

=
Γ(αn+ β + 1)

n!

[
Dm(yβ+m)(1− yα)n

]
y=1

=
Γ(αn+ β + 1)

n!
δ
′
mn,

where δ
′
mn =

{
0, if m = 0, 1, 2, ..., n− 1
6= 0, if m = n.

Which is zero for m = 0, 1, 2, · · ·n − 1 and non zero for m = n. We consider Lα,βn (xα) to observe
the othoganality for different values of α, (0 < α < 1). For α = 1, (2.13) reduces to the orthogonal
condition for the generalized Laguerre polynomial [2].

Concluding Remark

In this paper, we established integral representations, Rodrigues formula, recurrence relation and
fractional differential equation. We used the technique discussed by Rainville [2] to obtained or-

thogonal condition for polynomials Lα,βn (x) . These established results may play significant role in
mathematical physics, classical analysis, quantum mechanics, fractional calculus and engineering
mathematics.
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