A ROBUST STUDY ON THE EXISTENCE AND MULTIPLICITY OF
SOLUTIONS FOR A CLASS OF VARIABLE-EXPONENT EQUATIONS OF
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ABSTRACT. The multiplicity and existence of solutions for a class of variable-exponent e-
quations include Kirchhoff term in variable-exponent Sobolev spaces has been proven under
certain conditions. This is achieved by utilizing the sub-super solution method in conjunction

with the mountain pass theory.

1. INTRODUCTION AND MAIN RESULTS

The solutions to mathematical models enhance our capacity to predict, understand, and
influence the universe. They are crucial for tackling complex issues, decision making, and
advancing in different fields and application [1, 2,3, 4]. In this research, our main concentration

will be on existence of solutions for Kirchhoff p(q)—Laplacian problem

p(q) p(q)—2 , _
-9 (Z?—l Foltz dq) S o ( b 3) =@M+ (g, v) in 2
v >0 ,in Z
v=>0 ,on 07,
(1.1)
R - . . 2o (o972 4 .
where Z C R™ is a bounded domain having smooth boundary, > 3, T < 0 o5 ) 18

p(q)—Laplacian operator, where p € M!(2Z), with 2 < p~ < pt < R, where p~ := ess infy p,

pt = ess supy p, R € M(Z, (1, 4+00)) and w € L*(Z) in which w(q) > 0.a.e.,q € Z. Define

the function p* (q) := Jé\ipp(gq)) if p(¢) <R and p*(q) :=+o0if R>p(q).

Over the past decade, extensive research have been done on the equations with variable
exponent growth conditions, with significant advancements documented in recent works such
as [8, 10, 12, 18]. The extensive literature on problems having variable exponent growth
conditions is motivated by the understanding that these equations can effectively model various
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phenomena in field of image processing [20], theory of electrorheological fluids [6, 17], and

theory of elasticity [2I]. The elliptic equations having variable exponent growth conditions

: 2 o (lowP P2 an ) _
often employ the so-called p(q)-Laplace operator, ie., > 3, 95 \ |9 b | = Ap(g)»

where p(q) represents a function and V ¢, 1 < p(q).
Problem (I.1)) represents the p(¢)— version associated with

9%v ag E [ 2 9%v

“z ~\ 7 tar
Kirchhoff [13] introduced this concept first as a generalization of classical D’Alembert wave

)
dq

n Tar ),

equation, considering changes in the length of strings due to transverse vibrations. Addition-
ally, evolution equation of Kirchhoff-type was presented by Woinowsky-Krieger [22] which is

stated as

v + A% — Q(|| Vol B)Av = g(g, v). (1.2)

It act as a model for deflection of an extensible beam; for details on physics background and
related models, see [5],[7]. Mathematically, multiplicity and existence of solutions for Kirchhoff-
type problems having p(q)— Laplacian have been extensively studied in [12]. The authors in
[12], demonstrated existence of solutions for a wide range of problems with variable exponents.
To obtain the multiplicity of solutions they utilized additional conditions. The paper also
provides illustrative examples to demonstrate applicability of the results. Methodology is
based on the use of sub-super solutions and appropriate L estimates within the context of

variable spaces.

Main objective of this research is to examine multiplicity and existence of solutions for prob-
lem (L.I). The outcomes of this research is an extension of previous findings in [12], which
concentrated on p(q)—Laplacian problem with Q = 1. Our paper explores Kirchhoff-type
problems having variable exponent, with focus on conditions where Q is not fixed. Utiliz-
ing sub-super solution method and specialized weak comparison principle, we demonstrate
existence of solution for problem . Additionally, utilizing mountain pass theorem, we es-
tablish multiplicity of solutions for problem . These outcomes represent significant new

contributions to Kirchhoff-type variable-exponent boundary value problems.

In this context, we consider nonlinearity j and Kirchhoff function Q under certain assump-

tions.
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 3

(Ko) Let Q : [0, +00) — [ko, +00) be a continuous and nondecreasing function for some

positive constant ko;

(K1) One can find x € (0,1) with
t
5(t) = / Q(r)dr > (1= )QE)E ¥ ¢ > 0;
0
(1) j € M(Z x [0, +00),R) and I # > 0 with

ja, 1) = @(@)(1 - DNV (g, 1) € 2 x [0, I);

(j2) One can find s € M(Z, (1, +0o0)) such that

i@, O] < @ (@)1 + D7)V (g, 1) € 2 x [0, +o0);
(j3) One can find p > % such that
t
0 < uGlg, t):= ,u/ Jjlg,r)dr <j(q, t)tie. qeZV0O<T <t.
0

Theorem 1.1. Assume that (Ky) and (j1) — (j2) holds. Then, we can get a F > 0 in such
manner that problem has at one solution with ||w||e < F «-

Theorem 1.2. Assume that (Ko) — (K1) and (j1) — (j3) holds. If X rt < (p*)~ and
(N_ > % or NT < p_), then we can get F* > 0 such that has at one solution with

loolloo < F*.

Our paper is structured as follows: Section 2 introduces some outcomes related to vari-
able exponentiated distances, Section 3 provides auxiliary L™ estimate, and Sections 4 and 5

presents the proofs of Theorems 1.1 and 1.2, respectively.

2. FUNDAMENTAL THEORY

This section, showcase some fundamental ideas and concepts concerning variable exponent
Lebesgue spaces, which will be used to prove the main results (see [11]). Let us indicate the
set of all continuous function by M (Z) and X : Z — (1, +00). For R € M, (Z), we have

N := max®(z) and R~ := min ¥(z).
Z Z

Variable exponent Lebesgue space is stated as

LN(Q)(Z) = {v : Z — R measurable : / |U|N(Q)dq < OO} :
Z
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R(q)
follg =t {o >0+ [V ag <1},
2, 1V

Let L¥'(@(Z) be the conjugate space of L9 (Z) such that ﬁ + N,%q = 1. Then, the below

having norm

=

stated inequality of Holder-type satisfies.

([I1]): Let v € LX9(2) and » € LY@ (Z) . Then

1 1
[ ostda < (= + 5 ) Iellsal v,

Modular function in space LX(*) is consider in the following way

o) (V) = /Z oM@ dg.

([I1]): For any v € LX) (2) | we get
min (110l 101G ) < an @) < max (Il 101X -
([I1]): Let v € LY9(2) and {v,} € LX9(Z). Then, the below stated properties are equivalent:
(1) limp— 400 [[vn — Vllng) = 0
(2) limy,—s 4 00 Q) (vn — v) = 0.

Sobolev space in generalized form as WHP(9) is

W) (2) = {v e LPD(2): g—“ e LP9(2),1=1,..,R } :
q]
with norm
X1l ov
10ll1p00) = 10l + D || 7
= 19a1lly,,
(Whrla)(2), || - ||1,p(z)) represents a Banach reflexive space [11]. Suppose Xg := W(l)’p(q)(Z) be
the closure of M&(Z) in WhP(@) (2). After all p(q) < p*(¢) V q € Z,
X1l ov
[Vllp(g) < MZ Fy. for all v € X (Poincaré-typeinequality),
=1 a P(q)
in which M represents positive constant independent of & and || - ||x, represents norm of space
Xy, stated as
X 1l ov
lvllxe =Y ||7—| for all v € Xq,
=1 P(q)

Lemma 2.1. Assume X € M (Z) such that p*(q) > R(q) V ¢ € Z. Then, one can achieve

compact and continuous embedding Xo < LX®)(Z).
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 5

3. COMPARISON PRINCIPLE

This section will present an estimate for weak comparison principle for ([1.1)) and L esti-

mate, which will be utilized in the formation of appropriate sub and super solutions.

Definition 3.1. Take v, r € Xy. We say that

(@)-2 8v ZR: 93¢ P92 95
J 3(13 i |0 dq1
if vV nonnegative function ¢ € XO.
p(q)—2 9 P2 9,, dc

4,

9q O =
5 0 < 2SN Y /

(9)
in which 8(v) = Zgll / o] gTU o
Z

8q: a3 943 0a

dq.

Lemma 3.2. Let (Ky) satisfies. Then, 7 : Xog — XE‘; is given as

2 ov oc

3.1
Oq1 Oqz 1 (3-1)

(T (v),¢

8(1:

1s strictly monotone and continuous.

Proof. Clearly the operator 7 is continuous. Let v # » € Xy, and 8(v) > 8(3) . Moreover,

nondecreasing property of Q yields

Q(8(v)) > Q(8(52)). (3.2)

2) . (3.3)

11]0v P92 (] g0 |2 9 |?
dg > — | — — | = |— d 3.4
2 /z 2 |90 o ol | B4

Moreover, we get
Ox
Oq

v 0x 1 (|00 ]
g1 g1 ~ 2 \ |Oqa
Thus

v p(q) v p(q)—2 v O
/z dq3 g dq1 0qz

and
/ ( 9 [P@ 95 |P@D=2 9, 3%>
vl

p(q)—2 2 2
. g > /1 O Ox _ ov dq (3.5)
dq7 9qs dq1 9qs 2

2 | Oqg Oqs Oq1
Assume J =1, ..., R be fixed and set

ov Ox
Zqg = €Z: —
{q Oq1| = | 0g3 }
and
Zpy €Z:
{q ('3(1: ’3% }
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From (3:2), (4)-(33) and (Ky), we have

v |P@ v P92 9y 9
Zal q1 q3 q1 0q3
p(q) ¢

p(q)—2
ov 6%) .

O0x
+Q(8(sr / — .
(56 Zas ( dq3 dq1 Oq

da;

1 p(q)—2 2 2
> Sa60) [ |5 gl |22 ) g
Zag 10Q] q] q]
1 93 [PD=2 (1 gy |2 O |2
—20(8(x / el bl I A
3 (504) Zay | 001 A3 oq| )™
1 p(q)—2 p(q)—2 2 2
20y \ |03 a1 a1 h
ko/ v P72 | g, |PO)—2 ovl? |9x|?
> — — — == — dq
2 Jz,3 \|0a dqs Oq1|  |0a
> 0.

Similarly, we obtain

B pa)=2 ov Ox
. zb; 8q: 8q: dq1 gz
¢ p(q) O p(q)—2 @ ai p
g |01 dq1 Oq3
/ v ovl? |9x]?
> = 1 ) dg
2, 1901 9q3 9
1 Ox p(e)—2 v |? O |
——Q(8(5 / o =] e
2 (86=)) 24, 1001 oq 0qs 1
p(q)—2 p(q)—2 2 2
> 50600 [ (|ae| | ool |22 ag
Zoy q q q q
ko/ v P2 | gy |PlO)2 ovl? |9x|?
> 2 — e = dq
2 Jo. \|O@ Oqs g1l |01
> 0
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 7

It yields

(r(v) =7(0), v=30) = (7(v), v=3) = (7(x), v - )

= (E(v), v) - <5(U), %) + (E(x), ») = (E(5), v)

B sz: v [P@) @ P(Q)—287U 37% ;
=~ Jx (9(13 g3 9q1 941
ZR:/ pq)_alp(q)ﬁ@@l
— a3 g1 Oq1 g3
®
= > (A1+ B3 >0
J=1
Which shows that (T(v) — 7(3), v — 3) > 0. Also from (3.6)-(3.7), we get
R
0=(r(v) —7(3), v—3)=> (A1+ By) (3.8)
J=1
R p(q)—2 p(q)—2 2 2
> kOZ/ _ 8l @ _ 8i dg (3.9)
2 & )z 6q3 0qz Iqz dqz
> 0,

which gives the following

B ) (&7 20

Ou | _ ’an’ for J=1,...,R. After that, Q(8(v)) = Q(8(5¢)) and from (, we have

0q3
(% _ 3%>2 da.
O Oqa

so, forJ=1,...,R. g{; = g—;;. a.e., in Z, as a result v = s in Xy. Which is a contradiction, and

(T(v)—7(5), v—13) > 0. As aresult of this, it can be affirmed that 7 is strictly monotonic. O

Ox
| 0¢

)—2
(a) O

daz

hence

0 = (r(v) - T( %), v— >

5(1:

Lemma 3.3. (Comparison principle): Let (Ky) satisfies and assume S, » € Xq verify

v
9qs

P@)=2 5, ZR: o (|0
g Oq1 \ |9qa

pla)=2 5,
— Nl
8(]3) (3.10)

S
>>§aqj<

and v < s on 9Z, i.e., (v —3)" € Xg. Then, v < x> i.e., in Z.
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Proof. Consider a test function ¢ = (v — »)™ in (3.10), then, by (3.1), we achieve

R

ov
T\Ww) —7(»x), \(U—x = Q S v E
< ( ) ( ) ( ) ) ( 0( )> = /Zﬂ[v>%}

Juv r@)=2 gy, O(v — )
oq

il dq
01 Oqa

R

—0Q(8p (s
( 0( >) jz:;/lﬂ[v>%]
0.

il
Iqs

p(g)—2 95 (v — x)

dq
Oq  Oqz

IN

Additionally, from (3.9) we achieve:

T(v) = 7(30), (v—3)T)
X v |PD2 195
_-lz::l/Zﬂ[v>%] ( Iqs e

—~

il
dqs

(Y2
|

oq

p(q)—2 2 2
dq

Hence, (7(v) — 7(x), (v — 3)") = 0. Utilizing Lemma 3.1, we get that (v — )™ = 0 which

Y
o

completes the proof. O

Lemma 3.4. Let (Ky) satisfies and w € L*°(Z) . Then, there exists a unique solution of

~ase) T s (|8 g ) = o) inz

v=20 on 0%

Ov
g3

(3.11)

in the space Xg.

Proof. To complete the proof by Lemma 3.1, we take the strictly monotone operator

ov

p(q)—
P o5
2 | 0a1

(@) < e

We will prove that 7 is coercive to prove the result. Assume {v,} C Xy be a sequence such

that ||vp||x, = +00. We set

pn:{z

g
0qs
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 9

By (Kp) and Lemma 2.2, the following is obtained

R o p(q) o
T(Un)), Un) = Q(Sp(vy /n dqg >k /‘ n 3.12
(r(0n)), va) = Q5o ”;Zaq; 1 OJZ o (3.12)
avn
> OZ
1¢Pn r(a)
ouy, ||P A, IP
= ko (25: S _ ‘égf )
=1 I llp(q) 1eP, 2 llp(q)
R ov "
> koM _( - ) — koR
’ ;E; 941 [lp(q)

= koM, [|unllk, koR,

where M,,~ is independent of n and positive constant. Hence,

lim (7(vn)), vn) — +oo,
n—too ||un|x,

which demonstrates the coerciveness of 7. By applying the Theorem of Minty-Browder Theo-

rem [23], we get that equation 7(v) = w has a unique solution in Xj. O

R
Let us denote the optimal constant of continuous embedding Wé’l(Z) — L®1 by M. Then,

10l o, < Mol [ullygpa g forall v e Wy (3.13)

T(2) (2)

Lemma 3.5. Let (Ky) satisfies, o > 0 and v, be the unique solution of

—Q(So(v)) o3 13q3(’aq3’p 23%)29 in Z
v=20 on 0%Z.

(3.14)

Put § = —F2" _ Then, with o > 9, v, € L®(Z) we have
2Mo|Z|R

—\/ 1
[[0llo0 < MFQM50 ) )or= T,
with o < 6, we get
1
[Vglloo < Mot -1,

in which M7, M5 and M, represents positive constants which depends on Z, ko, R and p.

Proof. Let ¢ > 0 be fixed and put Z,, = {g € Z : v,(¢) > ¢} and v, > 0 and using comparison
principle. By testing equation 1D with (v, — )T, and using 1' along with Young’s
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inequality, it follows that

81)9 0 /
T o
Z/ i aS(wp)) Jo, )
1
0|Zy|®
< =i
- Q(So(vx))H( v HLﬁ
1
< M/ IVu,| dg
ko
!ZwlﬁMo / v, [
< = <
- Z dqs

R

1 el
< Q|Zw‘f}2M0 Z/
ko =z

=1

Z/gp(q

For ¢ > 4, we have

1 1

kop~ P <(5>p_
e=|———F— == ,
20|27 M, 0

we have € < 1, thus

2 ‘ » n(9) (91)9 p(q) )\’Q‘ Mot 5
0 w =M / B K73 * Mye / v, [P
q <
Z Zy Z Iqs
R
1 O p(q)
= Z/ Te dq.
24~ Jz, | Oa
Combining (3.16]) and (3.18]), we arrive at
Z/ (91)9 QQ]Z,w\RMO Z/ 07V g ZCRQMOE U ’ ‘1+R
ko(pt)' ko(pt) Y
In the same way, test function in (3.14]) with 3, yields that
Z/ avg 293@3\/[06_(”7)” |1+%
dqz ko(pt)’ '

From (3.15)), (3.18) and monotonicity of Q, we have

/Zw(vg—ﬁ)dq = Z/

kop~ (p ) ko(p*)

Gvg
0q3
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 11

Through Lemma 5.1 in [I4], the below is achieved

27 —(p7) IR(R 4 1 —(p7)
mumgg<@%emwﬂﬂ> REDMoc™? 7 15, (3.20)

kop~(p*)’ ko(pT)

It follows from (3.17) and (3.20) that

—\/ 1
[0gllo0 < MG (W50 ") 077,

where
L RR+1D)EMY)P) )
o BB i)
(pH)kg “(p7)r 1
and
ZR(QM())(I)_)/ 1 ()
* + -
M2 = N ,k(p*)/ Ry ’Z,| R,
(p™) o (p7)

For A < §, we have

1

kop~ »t ((5)171+
e=|—7F— = (=
20|2| %My e

we have € < 1. Utilizing the same argument we can prove the following:
1
[Vglloc < Mo,

where

R(R 4+ 1)(2M) Pty R(26M) @)’ @ty
M* — ( -2(/ )# |Z‘ R Q ( ( +)/ ) ‘Z’l"r R .
)Ry (p) (pt)'ky  (p=)@tY

4. PROOF OF THEOREM 1.1

Take pair of sub-super solution (v,¥) of problem (1.1)), if v,o € L>*(Z), v < T a.e., in Z
and V nonnegative function ¢ € Xy, the following satisfies

p(q)72 672 &

ov _ .
s 9g3 94 < { w(q)oN D~ Tedg + { 7(g,v)sdq

da

mwmzig

_p(@)—2 e o
9T %%dq > {w(q)UN(Q) 1§dq+g‘](q, T)sdg,

da1

mwmzﬁg

Lemma 4.1. Assume that (Ko) and (j1) — (j2) satisfy. Then, there is F , > 0 in a way that
has a pair of sub-super solution (S, ) € (XoNL>® (Z) x (XoNL>®(2)) with ||, <9,
provided that ||w||s < F x, where ¥ is stated in (j1).
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12 RAFIK GUEFAIFIA!, TAHAR BOUALI?, SALAH BOULAARAS!, AND RASHID JAN3

Proof. Utilizing the Lemmas 3.2, 3.3, and 3.4, we get that &, 3

negative solution of the following

€ Xg N L*®(Z) a unique non-

—0(8(u) Y, A (1022 = o(g) in 2
v=20 on 0Z
and
(8(0) X3y o (|FZPO7288) = w(g) +1 in 2 42)
v=0 on 0%
such that
1v][se < max(MFQM3||w||L))||e]|> —1 M, ||w||’“+ )

where M7, M35 and M, are stated in Lemma 3.4. Next, consider that Q is nondecreasing, then

3 F > 0 relying only on M}, M5 and M, with ||v||c < ¥, given that ||w]||s < F . Additionally,

v < v by Lemma 3.2.

For any arbitrary nonnegative function ¢ in X¢. The above (4.2)) and (j;) implies that

0(1:

/ZW(q)cdq—/Zw
0

From (4.2)) and (j2) , we obtain

IA

p(q

ov
2 | Oq1

> Lu—awm&xw

where

o
Boc := max(|Jv][5, 7,

Selecting F = min (F, i), yields

2 dq 8<
g aqz

1~ [ =

MO-Ledg — /Zj(q,vkdq

mww*w@—/w@u—w@*mm
Z

2 oo (’k / / _

w “ledg — ,U)sd
aqjaqj q ZJ(q )sdq
ol 1) + max(||o] 7, [[o]l5 ™

/(1 — Buj@lloe)sdz > 0 for [|@]]wc < F .
Z

Which completes the proof.
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 13

Proof of Theorem 1.1: Let v,v € XoNL*(Z) as stated in the above lemma and introduce

@(q)v(q)* D=1 + j(q,0(q)) if t >D(q)
hg, t) = @(@QtND~1 +4(q, t) if u(q) <t <v(q)
@ (v D7+ j(q,v(q)) if t < v(q).

Consider the problem

R o (|ow[P97% gy :
~ae) T & (8 8) < a0 w2 "
v=20 on 0%
where functional J : Xy — R defined as
I(v) = 9(8 / H(q, v)dg,
where G(g,t fo r)dr. Then J is a member of class M!, and its critical points correspond

to solutions of problem . From (Kj), it is clear that J is coercive and sequentially weakly
lower semicontinuous. Thus, J attains its minimum within the weakly closed subset [v, D] N Xg

at some vg, proving it as a critical point of J.

5. PROOF OF THEOREM 1.2

To demonstrate the theorem, we will introduce the following

IA

()N D1 + (g, 1) if v(q) <t,

(¢, 1) =
I @(Qu(@™ ™! + (g, v(9) if v(q)

v

t,

also, consider

au [P@—2

g3

~a(s) T i &) =slav) in 2

v=20 on 0Z.

(5.1)

Our method to finding solutions of (5.1)) involves determining critical points of functional

§: Xy — R, stated as:
S(v) = B(S(v)) /Z B(g, v)da,

where B(q, t fo r)dr. Clearly, § is of class M!.

Lemma 5.1. Functional G holds the Palais-Smale condition for the stated assumptions of

Theorem 1.2.
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14 RAFIK GUEFAIFIA!, TAHAR BOUALI?, SALAH BOULAARAS!, AND RASHID JAN3

Proof. Let {v,} C Xp be a sequence, with

G(vp) = c € R and §'(v,) — 0 in X§.

Here, the boundedness of {v,} in X claimed.

Case 1: N™ > 1=

. Let o € (1 —, min(p, N)).lsy(fQﬁ-—(z(ly(jgy 3.12) and embed-

ding theorem, for n large enough, yields that

1+ ¢+ ||unllx,

v

AV

Y

Lo
S(vn) — %<9 (Vn), vn)

R
(1~ )AS(0n)S (1) — 23w Y /
J=

Ko

1
+/ <g(Q7 Un)vn _B(q) Un)) dq
2 \ M0
1—y 1> - 1
k - — J\/[Unp—fR—l—/ < ,nn—iH,vn)d
(57 ) Ol ~R)+ [ (ita w5 ) da

1 1
(G ) @ = M, -
Un>vU

ovuy, |P

p(q)
d
g1 1

o \Ho  R(q)
1—x 1 - + -
fo (£ = ) (90 lenli, = R) = 34 (ol + o)

Pym
_M?)HUHHXQ - M27

where M; and My independent of n and are positive constants. Therefore, sequence {v,,} is

bounded in Xy as p~ > 1.

Case 2: Nt < p~. Utilizing (Ko) — (K1), (j3), (3.12) and embedding theorem, yields that

L+ e+ |lonllx,
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AV

v

1 /
9(“11) - ;<9 (Un)’ Un)

1—x 1 - 1.
o ( X M) OV, ol —R) + /[] (My(q, on)om — (g, m) dg

! 1 N(q)
* — — 57 | w(@)vy Vdg — M|, -M
/[W (u N<q>> (a)0X@dg — Msl[vn]Ix, — Ms

1—x 1 -
m(NN)(Mp-anH&OR) MaClloal &, + loall)

~Ms||vn|lx, — Ma.
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 15

where Mg and M, are independent of n and are positive constants. Therefore, the boundedness
of {v,} in Xy is proved. Further, we have
vp, — v in Xg
vp = v a.e. in Z (5.2)
vy — v in LAD(Z) with 1 < 2~ < st < (p*)~

Thus,

on(1) = (G (vn), vn —v)

= O(S(un)) Z/(

Now, from (j2), (5.2] , Lemmas 2.1 and 2.4, we can prove the following

Ovuy,
dq1

PD=2 9y, 3wy — v)
B TJJ dq — /Zg(qa Un)(vn — v)dgq

/g(q, ) (v —v) = 0.
Z

S(vn) Z/(

Through the assumption of (Kjy), we have

zy:/ % p(q)—2 %a(vn o U) o
1=17% .

oq dg  Oqa
p(q)—2 _

Z/ 2 9(vn — v) - 0.
3(1: Oqgn  Oq

So that
Ovuy,
Oq1

PO=2 90, (g — v)
7 o
dg1  Oq

Similarly

It holds that

p(q)—2 v,

g1

ou, |P
dq1

v PO o (m_&f)d 0
dq A1 Oq e ’

0qa

z/(

combine with Lemma 2.3, we get v, = v in Xj. U

Lemma 5.2. For ||w||s sufficiently small and under assumptions of Theorem 1.2, the follow-
ing holds
(i) We can get v > 0 and o > ||v||x, such that

0 < inf :
S(v) <0<y < veéga(o) 5(v) ;

(it) We can get e € X such that |le||x, > 2« and G(e) <~y
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16 RAFIK GUEFAIFIA!, TAHAR BOUALI?, SALAH BOULAARAS!, AND RASHID JAN3

Proof. (i) Take ¢ = v in first inequality of (4.1)) and apply that Q is nondecreasing, we get

Sw) = 9SW) / B(g, v)dg

< /w dq—/( v)udg
< Z/ dq—/ﬁ dq—/Z (g, v)udg

< 0,
therefore, G(v) < 0. Let v € X with ||v||x, > 1. From (Ky), (j2), (3.12) and embedding

@q:

theorem, one have

k —
9(v)2ﬁ(3v[p—llvll§<o—9%) Mslle oo (I[0llxo + V11%;, + [V1l%,) — M,

where M5, Mg > 0. We can pick v > 0 and a > ||v||x, with
ko -
o+ M= [[vllg = R) = Mo = 2.

Then, letting ||w||so < i this implies that G(v) > ~ for ||S]|x, = .
5

-y
(at+aXt asT)’

(ii) By (K1) , there is My > 0 with

Q(t) < M7t Tx for all £ > 1. (5.3)
From (5.3)) and (j3), V¢ > 1, we get

S(tw) = Q(S(tw)) — / Bg, tv)dg

<M7t1 X(S 11x _ /w Q)dq—Mgt”/U“dq+Mg.
2

Then, for some to > 1 large enough, §(tov) < 0 and [[tov|[x, > 2c, due to £~ < p. Thus, we

take e = tgu, which completes the proof. ]

Proof: Let vy be the solution of problem (1.1)) stated in Theorem 1.1 which holds

I(vo) = inf I(v) ,

veEA
with vg € A := [v,7] N Xp. In a standard way, by mountain pass theorem [19] and Lemmas

5.1, 5.2, mountain pass level is stated as

¢" := inf max G(B(t)),

BeT te[0,1]
with
I':={B € M([0,1],X0); B(0) = v, B(1) = e},
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MULTIPLE SOLUTIONS FOR A CLASS OF BOUNDARY VALUE PROBLEMS 17
where G represent critical value. Which shows the existence of $7 € X such that §'(31) = 0
and §($1) = ¢*. Considering that J(S) = () V S € [0, I]N X, it follows that G(Sp) < §(S).
Let &1 > S i.e. in Z. Utilizing (S — $1)" as a test function in §'(31) = 0 and in the first

inequality of (4.1), we get:

8(v1)) ?;;:1 ?;;Jl (anl:)ll)erq = /g(q, v1)(v — v1)dg
- /w MO+ (g, v) (v — o) tdg
- g:: " g;; qu
that is

(T(v) = 7(v1), (L—01)") <0.

If 7 is strictly monotone (see Lemma 3.1), then (v — v1)T is zero almost every where in Z.
This implies v1 > v almost every where in Z. Consequently, vg and v; are two nonnegative

solutions to problem (|1.1]) such that

G(vo) < G(v) <0<y <" =G(u)

Which completes the proof.
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